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Abstract
We prove that for every tree T of order at least 2 and every minimum dominating

set D of T which contains at most one endvertex of T , there is an independent
dominating set I of T which is disjoint from D. This confirms a recent conjecture of
Johnson, Prier, and Walsh.
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1 Introduction

We consider finite, undirected and simple graphs and use standard terminology as in [3].
A dominating set of a graph G is a set D of vertices of G such that every vertex of G which
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does not lie in D has a neighbour in D. The domination number γ(G) of G is the minimum
cardinality of a dominating set of G. A dominating set of G of cardinality γ(G) is called
minimum. An independent set in a graph G is a set of pairwise non-adjacent vertices. The
independence number α(G) of G is the maximum cardinality of an independent set in G.

Johnson, Prier, and Walsh recently posed the following conjecture.

Conjecture 1 (Johnson et al. [4]) If T is a tree of order at least 2 and D is a minimum
dominating set of T containing at most one endvertex of T , then there is an independent
dominating set I of T which is disjoint from D.

As pointed out in [4], Conjecture 1, if true, is best-possible. This may be seen by
considering a path P : v1v2v3 . . . v3k+1 on 3k + 1 ≥ 4 vertices and the dominating set
D = {v1, v4, . . . , v3k+1} of P . Note that D is minimum and that P has no independent
dominating which is disjoint from D.

The motivation due to Johnson, Prier, and Walsh [4] for posing their conjecture is based
on a related conjecture concerning the so-called inverse domination in graphs. A classical
observation in domination theory is that, if D is a minimum dominating set of a graph
G = (V,E), then V \D is also a dominating set of G. A set D′ is an inverse dominating set
of G if D′ is a dominating set of G and D′ ⊆ V \D for some minimum dominating set D
of G. The inverse domination number γ′(G) of G is the minimum cardinality of an inverse
dominating set of G. Inverse domination in graphs was introduced by Kulli and Sigarkant
[5]. In their original paper in 1991, they include a proof that for all graphs with no isolated
vertex, the inverse domination number is at most the independence number. However, this
proof contained an error and in 2004, Domke, Dunbar, and Markus [1] formally posed this
“result” of Kulli and Sigarkant as a conjecture. This conjecture still remains open and
has been proved for many special families of graphs, including claw-free graphs, bipartite
graphs, split graphs, very well covered graphs, chordal graphs and cactus graphs (see [2]).

Our result is the proof of Conjecture 1.

2 Result

In this section we prove Conjecture 1.

Theorem 2 Conjecture 1 is true.

Before we proceed to the proof, we explain our general strategy. Given T and D as in
the statement of the conjecture, it suffices to determine an independent set J of vertices
which is disjoint from D and contains a neighbour of every vertex in D, because a maximal
independent set I which contains J but is disjoint from D is clearly a dominating set of
T . A simple strategy to select the elements of J is to root T in some vertex r in D and
to select a child of every vertex in D which itself is not contained in D. Since T has order
at least 2 and D contains at most one endvertex of T , choosing the root r of T as an
endvertex, if possible, every vertex in D has at least one child. If this strategy succeeds,
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then the selected vertices will clearly form an independent set. Nevertheless, this strategy
fails in the presence of vertices u in D all children of which are also in D. For such a vertex,
we necessarily have to choose its parent. Since J has to be independent, this choice affects
the choosability of the children of ancestors of u in D. Working out the consequences of
this reasoning, leads to the algorithm Select (cf. Algorithm 1 below).

Input: A tree T of order at least 2 and a minimum dominating set D of T
containing at most one endvertex of T

Output: An independent dominating set I of T which is disjoint from D

begin1

Choose a vertex r ∈ D of minimum degree dT (r) = min{dT (u) | u ∈ D};2

Root T in r;3

J ← ∅;4

while ∃ u ∈ D such that u 6∈ NT (J) and all children of u lie in D ∪NT (J) do5

Let v be the parent of u;6

J ← J ∪ {v};7

partner(u)← v;8

end9

while ∃ u ∈ D such that u 6∈ NT (J) do10

Choose a child v of u such that v 6∈ D ∪NT (J);11

J ← J ∪ {v};12

end13

Let I be a maximal independent set of T with J ⊆ I and D ∩ I = ∅;14

end15

Algorithm 1: Select

We proceed to the
Proof of Theorem 2: In view of the above remarks it suffices to argue that Select

successfully determines an independent set J of T such that D ∩ J = ∅ and D ⊆ NT (J).
Note that, since D contains at most one endvertex and by the choice of r in line 3, every
vertex in D has at least one child.

Claim The vertex u in line 5 has a parent which does not belong to D.

Proof: For contradiction, we consider the first execution of the while-loop in line 5 for
which the vertex u has no parent which does not belong to D, i.e. either u is the root r of
T or the parent of u belongs to D.

Let D′ denote the set of vertices u′ from D which can be reached from u on a path P
of the form

P : u0w1v1u1w2v2u2 . . . wlvlul (1)

with u0 = u, ul = u′, l ∈ N, wi 6∈ D, and partner(ui) = vi for 1 ≤ i ≤ l. Note that w1 is a
child of u. Let the set D′′ contain the parent of the parent of u′ — the grandparent of u′

— for every vertex u′ in D′. Let D̃ = (D \D′ ∪ {u}) ∪D′′. Note that |D̃| < |D|.
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Let w′′ be a child of u. Clearly, w′′ 6∈ J . If w′′ ∈ D, then w′′ ∈ D̃. If w′′ 6∈ D, then
w′′ has a child v′′ which belongs to J , and v′′ has a child u′′ which belongs to D such
that partner(u′′) = v′′ . Since uw′′v′′u′′ is a path as in (1), we obtain, by the definition of
D′, that u′′ ∈ D′. This implies w′′ ∈ D′′, and hence w′′ ∈ D̃. Therefore, in both cases,
u,w′′ ∈ NT [D̃] and all vertices which were dominated by u in D are still dominated by
vertices in D̃.

Let u′ ∈ D′. Let P be as in (1) with u′ = ul. Since wl ∈ D̃, we have vl ∈ NT [D̃]. If
w′′ is a child of u′, then exactly the same argument as above implies that w′′ ∈ D̃. Hence
again all vertices which were dominated by u′ in D are still dominated by vertices in D̃.

Altogether, we obtain that D̃ is a dominating set of T which contradicts the assumption
that D is a minimum dominating set. �

By the claim, the while-loop in line 5 successfully adds to the set J the parents of vertices
in D which do not belong to D. By the condition for the while-loop in line 5, just before
the first execution of the while-loop in line 10, the set J is independent and every vertex
u ∈ D with u 6∈ NT (J) has at least one child which does not belong to D and is non-
adjacent to the vertices in J . Since during the executions of the while-loop in line 10
only children of vertices in D are added to J , this property is maintained throughout
the remaining execution of Select. Hence the while-loop in line 10 successfully adds
to the set J the children of vertices in D which do not belong to D such that after the
last execution of the while-loop in line 10, the set J is independent, disjoint from D and
D ⊆ NT (J).

By the above remarks, the set I defined in line 14 is an independent dominating set of
T which completes the proof. �
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