
Processing Rank-Aware Queries in
Schema-Based P2P Systems

Dissertation

Zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

vorgelegt der

Fakultät für Informatik und Automatisierung

der Technischen Universität Ilmenau

von

Dipl.-Inf. Katja Hose

Tag der Einreichung: 27. Oktober 2008

Tag der wissenschaftlichen Aussprache: 17. April 2009

Gutachter

1. Kai-Uwe Sattler

2. Alon Halevy

3. Felix Naumann

urn:nbn:de:gbv:ilm1-2009000084

Processing Rank-Aware Queries in
Schema-Based P2P Systems

Katja Hose

A dissertation submitted

in partial fulfillment of the requirements

for the degree of

Doktor-Ingenieur (Dr.-Ing.)

Faculty of Computer Science and Automation

Technische Universität Ilmenau

October 2008

Reading Committee

1. Kai-Uwe Sattler

2. Alon Halevy

3. Felix Naumann

Abstract

In recent years, there has been considerable research with respect to query processing
in data integration and P2P systems. Conventional data integration systems consist
of multiple sources with possibly different schemas, adhere to a hierarchical structure,
and have a central component (mediator) that manages a global schema. Queries are
formulated against this global schema and the mediator processes them by retrieving
relevant data from the sources transparently to the user. Arising from these systems,
eventually Peer Data Management Systems (PDMSs), or schema-based P2P systems
respectively, have attracted attention. Peers participating in a PDMS can act both as
a mediator and as a data source, are autonomous, and might leave or join the network
at will. Due to these reasons peers often hold incomplete or erroneous data sets and
mappings. The possibly huge amount of data available in such a network often results
in large query result sets that are hard to manage. Due to these reasons, retrieving the
complete result set is in most cases difficult or even impossible. Applying rank-aware
query operators such as top-N and skyline, possibly in conjunction with approximation
techniques, is a remedy to these problems as these operators select only those result
records that are most relevant to the user. Being aware that in most cases only a small
fraction of the complete result set is actually output to the user, retrieving the complete
set before evaluating such operators is obviously inefficient.

Therefore, the questions we want to answer in this dissertation are how to compute
such queries in PDMSs and how to do that efficiently. We propose strategies for efficient
query processing in PDMSs that exploit the characteristics of rank-aware queries and op-
tionally apply approximation techniques. A peer’s relevance is determined on two levels:
on schema-level and on data-level. According to its relevance a peer is either considered
for query processing or not. Because of heterogeneity queries need to be rewritten, en-
abling cooperation between peers that use different schemas. As existing query rewriting
techniques mostly consider conjunctive queries only, we present an extension that al-
lows for rewriting queries involving rank-aware query operators. As PDMSs are dynamic
systems and peers might update their local data, this dissertation addresses not only
the problem of considering such structures within a query processing strategy but also
the problem of keeping them up-to-date. Finally, we provide a system-level evaluation
by presenting SmurfPDMS (SiMUlating enviRonment For Peer Data Management Sys-
tems) – a system created in the context of this dissertation implementing all presented
techniques.

Processing Rank-Aware Queries in Schema-Based P2P Systems v

Zusammenfassung

Effiziente Anfragebearbeitung in Datenintegrationssystemen sowie in P2P-Systemen ist
bereits seit einigen Jahren ein Aspekt aktueller Forschung. Konventionelle Datenintegra-
tionssysteme bestehen aus mehreren Datenquellen mit ggf. unterschiedlichen Schemata,
sind hierarchisch aufgebaut und besitzen eine zentrale Komponente: den Mediator, der
ein globales Schema verwaltet. Anfragen an das System werden auf diesem globalen
Schema formuliert und vom Mediator bearbeitet, indem relevante Daten von den Daten-
quellen transparent für den Benutzer angefragt werden. Aufbauend auf diesen Systemen
entstanden schließlich Peer-Daten-Management-Systeme (PDMSs) bzw. schemabasierte
P2P-Systeme. An einem PDMS teilnehmende Knoten (Peers) können einerseits als Me-
diatoren agieren andererseits jedoch ebenso als Datenquellen. Darüber hinaus sind diese
Peers autonom und können das Netzwerk jederzeit verlassen bzw. betreten. Die potentiell
riesige Datenmenge, die in einem derartigen Netzwerk verfügbar ist, führt zudem in der
Regel zu sehr großen Anfrageergebnissen, die nur schwer zu bewältigen sind. Daher ist das
Bestimmen einer vollständigen Ergebnismenge in vielen Fällen äußerst aufwändig oder
sogar unmöglich. In diesen Fällen bietet sich die Anwendung von Top-N - und Skyline-
Operatoren, ggf. in Verbindung mit Approximationstechniken, an, da diese Operatoren
lediglich diejenigen Datensätze als Ergebnis ausgeben, die aufgrund nutzerdefinierter
Ranking-Funktionen am relevantesten für den Benutzer sind. Da durch die Anwendung
dieser Operatoren zumeist nur ein kleiner Teil des Ergebnisses tatsächlich dem Benutzer
ausgegeben wird, muss nicht zwangsläufig die vollständige Ergebnismenge berechnet wer-
den sondern nur der Teil, der tatsächlich relevant für das Endergebnis ist.

Die Frage ist nun, wie man derartige Anfragen durch die Ausnutzung dieser Erkennt-
nis effizient in PDMSs bearbeiten kann. Die Beantwortung dieser Frage ist das Haupt-
anliegen dieser Dissertation. Zur Lösung dieser Problemstellung stellen wir effiziente
Anfragebearbeitungsstrategien in PDMSs vor, die die charakteristischen Eigenschaften
ranking-basierter Operatoren sowie Approximationstechniken ausnutzen. Peers werden
dabei sowohl auf Schema- als auch auf Datenebene hinsichtlich der Relevanz ihrer Daten
geprüft und dementsprechend in die Anfragebearbeitung einbezogen oder ausgeschlossen.
Durch die Heterogenität der Peers werden Techniken zum Umschreiben einer Anfrage von
einem Schema in ein anderes nötig. Da existierende Techniken zum Umschreiben von An-
fragen zumeist nur konjunktive Anfragen betrachten, stellen wir eine Erweiterung dieser
Techniken vor, die Anfragen mit ranking-basierten Anfrageoperatoren berücksichtigt. Da
PDMSs dynamische Systeme sind und teilnehmende Peers jederzeit ihre Daten ändern
können, betrachten wir in dieser Dissertation nicht nur wie Routing-Indexe verwendet
werden, um die Relevanz eines Peers auf Datenebene zu bestimmen, sondern auch wie
sie gepflegt werden können. Schließlich stellen wir SmurfPDMS (SiMUlating enviRon-
ment For Peer Data Management Systems) vor, ein System, welches im Rahmen dieser
Dissertation entwickelt wurde und alle vorgestellten Techniken implementiert.

Processing Rank-Aware Queries in Schema-Based P2P Systems vii

Acknowledgements

There are a couple of people I want to thank. First, I would like to thank Kai-Uwe
Sattler not only for his guidance and for supervising the project but also for offering me
a PhD position after I graduated – without the offer I might never have started a career
in database research. Second, I would like to thank Alon Halevy and Felix Naumann for
many discussions and for the feedback they have given me. Another person who paved
the way for me to become a computer scientist is Rainer Werner. It was he who helped
me to get along with my first PC – especially after I have carefreely tried out some DOS
commands without knowing what they actually did – the format command in particular
had a surprising and long-lasting effect. I am also grateful to my parents and my sister for
encouraging me to keep going no matter how much effort it cost to reach my goal. I would
also like to thank Marcel Karnstedt and all other fellow PhD students at the department
who joined me on the way to receive a PhD for those many discussions and support in
all aspects. I would like to particularly mention Anja Fischer for reading several drafts
of this dissertation. I also appreciate the help of the students whose diploma theses I
supervised and who contributed to the development of SmurfPDMS: Christian Lemke,
Jana Quasebarth, Daniel Zinn, and Andreas Job.

Processing Rank-Aware Queries in Schema-Based P2P Systems ix

Contents

Abstract . v
Zusammenfassung . vii
Acknowledgements . ix
List of Figures . xv
List of Tables . xix

1 Introduction 1
1.1 PDMS System Definition . 3
1.2 Distributed Query Processing in PDMSs 6
1.3 Outline of Dissertation . 9

2 Background 11
2.1 Rank-Aware Query Operators . 11

2.1.1 Top-N Queries . 11
2.1.2 Skyline Queries . 14
2.1.3 Applicability to PDMSs . 22

2.2 Approximation . 23
2.2.1 Pruning-Based Approximation . 24
2.2.2 Representation-Based Approximation 25
2.2.3 Applicability to PDMSs . 26

2.3 Query Routing and Routing Indexes . 27
2.3.1 Routing Indexes . 28
2.3.2 Histograms and Bloom Filters as Routing Indexes 30
2.3.3 Bit Vectors as Routing Indexes 31
2.3.4 Routing Indexes Based on Indexing Clusters 32
2.3.5 Applicability to PDMSs . 33

2.4 Histograms and Maintenance . 34
2.4.1 Maintenance . 35
2.4.2 Applicability to PDMSs . 37

2.5 Distributed Query Processing Strategies 37
2.5.1 Data Shipping and Query Shipping 38
2.5.2 Mutant Query Plans . 39
2.5.3 Incremental Message Shipping . 39
2.5.4 Applicability to PDMSs . 41

2.6 Query Rewriting . 41
2.6.1 Conjunctive Queries . 44
2.6.2 Query Containment and Containment Mapping 46

xi

CONTENTS

2.6.3 Query Rewriting Algorithms . 48
2.6.4 Applicability to PDMSs . 50

2.7 PDMS Implementations . 51
2.7.1 Piazza . 52
2.7.2 Hyperion . 53
2.7.3 System P . 53
2.7.4 HePToX . 54
2.7.5 coDB . 54
2.7.6 Orchestra . 55

2.8 Conclusion . 55

3 Model Definition 59
3.1 Network Model . 60
3.2 Mapping Definition Language . 60
3.3 Query Formulation . 64
3.4 Summary . 68

4 Rewriting Rank-Aware Queries for XML Data 71
4.1 Subgoal Trees . 72

4.1.1 Creating Subgoal Trees for Views 72
4.1.2 Creating Subgoal Trees for Queries 77

4.2 Query Rewriting Using Subgoal Trees . 79
4.2.1 Receiving a Query Plan . 80
4.2.2 Preprocessing . 81
4.2.3 Creating Buckets . 84
4.2.4 Sorting View Subgoals into Buckets 85
4.2.5 Creating Combinations of Buckets 86
4.2.6 Creating Query Snippets . 88
4.2.7 Creating Initial Rewritings . 89
4.2.8 Optimizing Remote Queries and Rewritings 91
4.2.9 Assembling the Rewritten Query Plan 94

4.3 Cycle Detection . 95
4.4 Evaluation . 99

4.4.1 Rewriting vs. Schema Indexing 99
4.4.2 The Influence of the Choice of Neighbors 102
4.4.3 Benefits of Considering Rank-Aware Query Operators for Rewriting 104
4.4.4 Costs for Rewriting . 105

4.5 Conclusion . 107

5 Query Routing 109
5.1 Distributed Data Summaries . 110
5.2 QTree . 112

5.2.1 Definition . 113
5.2.2 Construction . 113
5.2.3 Lookups . 119
5.2.4 Deletions . 120

xii Processing Rank-Aware Queries in Schema-Based P2P Systems

CONTENTS

5.2.5 Penalty Functions . 126
5.2.6 Evaluation . 130
5.2.7 Extension to Support String Attributes 136
5.2.8 Summary . 138

5.3 Maintenance . 138
5.3.1 Update Representation and Rewriting Updates as well as Summaries139
5.3.2 Constructing Distributed Data Summaries from Scratch 141
5.3.3 Classification of Maintenance Strategies 145
5.3.4 Update-Driven Strategies . 147
5.3.5 Query-Driven Strategies . 154
5.3.6 Comparison . 161
5.3.7 Evaluation . 163

5.4 Conclusion . 169

6 Query Processing 171
6.1 Processing Top-N Queries Using DDSs 173

6.1.1 Top-N Queries on Regions . 173
6.1.2 Distributed Processing of Top-N Queries 175

6.2 Skyline Query Processing . 177
6.2.1 Skylines on Regions . 177
6.2.2 Distributed Processing of Skyline Queries 179

6.3 Constraints . 181
6.4 Relaxation . 182

6.4.1 Top-N . 182
6.4.2 Skylines . 187

6.5 Evaluation . 190
6.5.1 Top-N Queries . 191
6.5.2 Skyline Queries . 195

6.6 Conclusion . 196

7 SmurfPDMS 199
7.1 System Architecture . 200

7.1.1 Network Layer . 201
7.1.2 Simulation Layer . 201
7.1.3 GUI Layer . 203

7.2 Simulation Core . 205
7.3 Simulation Workflow . 207
7.4 Important Steps of Simulating a PDMS 209

7.4.1 Detecting SmurfPDMS Instances 210
7.4.2 Initializing a Simulation . 210
7.4.3 Running a Simulation . 214
7.4.4 Evaluating Statistics and Creating Diagrams 218

7.5 Evaluation . 219
7.6 Conclusion . 220

8 Conclusion and Future Work 223

Processing Rank-Aware Queries in Schema-Based P2P Systems xiii

List of Figures

1.1 Mediator System . 2
1.2 Peer Data Management System . 2
1.3 Example for Schema Heterogeneity . 4
1.4 PDMS as Data Integration System . 6
1.5 Distributed Query Processing . 7
1.6 Query Processing in a PDMS . 8

2.1 Top-N Query example . 12
2.2 Skyline Query Example . 14
2.3 Classification of Algorithms for Skyline Computation 15
2.4 D&C Dominating Regions . 16
2.5 Constrained Skyline Query Example . 18
2.6 Classification of Approximation Techniques for Top-N and Skyline Queries 24
2.7 Classification of Routing in Unstructured P2P Systems 27
2.8 Routing Indexes . 29
2.9 Query Shipping vs. Data Shipping . 38
2.10 Mutant Query Plans . 39
2.11 Incremental Message Shipping - Query Propagation 40
2.12 Incremental Messsage Shipping - Answer Propagation 40
2.13 GAV Example . 43
2.14 LAV Example . 44
2.15 Conjunctive Queries on Relations and XML Data 46

3.1 Query Processing in PDMSs - Query Formulation/Parsing and Mapping
Definition . 59

3.2 Example Network . 61
3.3 Correspondences between the Schemas of Two Peers 62
3.4 Mappings between Two Peers . 62
3.5 POP Tree Representation . 68

4.1 Query Processing in PDMSs – Query Rewriting 72
4.2 Creating Subgoal Trees for View Definitions 74
4.3 Subgoal Trees for the Example Skyline Query 77
4.4 Subgoal Trees for the Example Join Query 78
4.5 Preprocessing of a Query with Union POPs 81
4.6 Preprocessing of a Skyline Query . 82
4.7 Preprocessing of a Skyline Query with Join 83

xv

LIST OF FIGURES

4.8 Preprocessing of a Skyline Query with Join – Alternative 84
4.9 Sorting View Subgoals into Buckets . 87
4.10 Creating Query Snippets from Tagged Subgoal Trees 90
4.11 Generating Rewritings for a Skyline Query 90
4.12 Generating Rewritings for a Join Query 91
4.13 Optimizing Rewritings . 92
4.14 Combining Remote Queries of a Rewriting 93
4.15 Removing a Join in a Rewriting . 94
4.16 Reordering Joins in a Query . 94
4.17 Combining Joins in a Query . 95
4.18 Rewritten Query Plans as Results of the Rewriting Process 96
4.19 Cycle Detection . 97
4.20 Example Network with Mappings . 100
4.21 Example Network without Mappings . 101
4.22 Example Network with 20 Peers . 103
4.23 Benefits of Considering Rank-Aware Query Operators for Rewriting . . . 105

5.1 Query Processing in PDMSs – Distributed Data Summaries 110
5.2 Structure of a Routing Index . 111
5.3 Equi-Width Histogram as Base Structure 112
5.4 Deletions in QTrees with Overlapping Buckets 121
5.5 Deletion of Buckets - Removing a Sibling Node 123
5.6 Deletion of Buckets - Removing the Parent Node 123
5.7 QTree – Problems when Deleting Records 124
5.8 Random Test Data . 126
5.9 Random Test Data in a QTree Using PMaxBound as Penalty Function . . . 126
5.10 Random Test Data in a QTree Using PSumDim as Penalty Function . . . 127
5.11 Random Test Data in a QTree Using PAvgDim as Penalty Function 127
5.12 Random Test Data in a QTree Using PDiameter as Penalty Function . . . 128
5.13 Random Test Data in a QTree Using PV olume as Penalty Function 128
5.14 Comparison of Penalty Functions – Random Data 129
5.15 Cluster Test Data . 130
5.16 Comparison of Penalty Functions – Clustered Data 130
5.17 Influence of fmax and bmax on Random Data 131
5.18 Influences of Data Distribution and Dimensionality 133
5.19 Influence of the Order of Insertion on the Approximation Error 134
5.20 Influence of the Deletion Strategy – Deleting Single Records from the

Random Data Set . 134
5.21 Influence of the Deletion Strategy – Deleting Single Records from the

Clustered Data Set . 135
5.22 QTree after Deletion of 4800 of 5000 Records – Random Data 135
5.23 Rewriting Updates in the Presence of LAV Mappings 140
5.24 DDS Construction with P1 as Initiator 143
5.25 DDS Construction in the Presence of Unidirectional Mappings 144
5.26 DDS Construction – 2-Phase-Flooding 145
5.27 Example for Update Propagation Using STPS 149

xvi Processing Rank-Aware Queries in Schema-Based P2P Systems

LIST OF FIGURES

5.28 Example for Update Propagation Using ATPS 151
5.29 Example for Updating Routing Indexes Using Query Feedback 158
5.30 Exploiting Cached Knowledge about Queried Regions 159
5.31 Evaluation Results for Update-Driven Strategies (IPS, STPS, and ATPS) 164
5.32 False Routing Decisions for Update-Driven Strategies and a Propagation

Rule Based on MNonProp . 165
5.33 Evaluation Results for QFS . 167
5.34 Evaluation Results for QES . 168

6.1 Query Processing in PDMSs – Query Optimization 172
6.2 Top-N Query Evaluation on Regions . 175
6.3 Skyline on Regions . 179
6.4 Relaxed Top-N Query Example . 183
6.5 Finding Representatives for Regions . 186
6.6 Relaxed Skyline Query Example . 188
6.7 Test Data . 191
6.8 Distributed Processing of Relaxed Top-N Queries 192
6.9 Cost Benefit Analysis for Top-N Query Processing 193
6.10 Distributed Processing of Relaxed Constrained Top-N Queries 194
6.11 Distributed Processing of Relaxed Skylines 196
6.12 Distributed Processing of Relaxed Constrained Skylines 197
6.13 Cost Benefit Analysis for Skyline Query Processing 198

7.1 SmurfPDMS System Architecture . 201
7.2 SmurfPDMS – Class Diagram: Associations between Simulation Layer and

Network Layer . 202
7.3 SmurfPDMS GUI – Main Window . 203
7.4 SmurfPDMS GUI – Simulation Windows 204
7.5 SmurfPDMS GUI – Statistics Window 205
7.6 SmurfPDMS – Simulation Core Architecture 206
7.7 SmurfPDMS – General Steps of Running a Simulation 208
7.8 SmurfPDMS – Important Classes of the Simulation Layer Instantiated

During Runtime . 209
7.9 SmurfPDMS – Topology and Data Generation 212
7.10 SmurfPDMS – Query Processing Parameters 213
7.11 SmurfPDMS – Communication Connections between SmurfPDMS Instances214
7.12 SmurfPDMS – Data Updates Parameters 215
7.13 SmurfPDMS – Interactions between Classes for Synchronization 217
7.14 SmurfPDMS – Evaluation Environment 219
7.15 SmurfPDMS – Diagram Generation . 220
7.16 SmurfPDMS – Performance of Distributed Simulations 221

Processing Rank-Aware Queries in Schema-Based P2P Systems xvii

List of Tables

2.1 Characteristics of PDMSs and their Spectrums of Values 51

3.1 Terminology . 63
3.2 Algebra Operators . 65

4.1 Evaluation Query Mix . 100
4.2 Results for Query Shipping . 101
4.3 Results for Incremental Message Shipping 102
4.4 Comparison of Query Processing in Data Integration Systems and PDMSs 104

5.1 Advantages and Disadvantages of the Strategies Discussed in this Section 161

xix

Chapter 1

Introduction

In many application scenarios data is distributed among multiple sources. In order to
access the data of all these sources, multiple queries have to be formulated. This is
a very inconvenient solution, especially if the sources use different schemas to manage
their data (schema heterogeneity). Data integration systems have been developed to
make querying the sources more convenient. Their objective is to integrate the data in a
way that makes querying it transparent to the user, i.e., to formulate only one query and
have the system query the data sources automatically. A solution to query the sources in
spite of schema heterogeneity in an automatic fashion is to formulate the original query
on a uniform query interface using a mediated schema (global schema) and automatically
rewrite the query into the schemas of the sources. For this purpose, the system needs
to know the correspondences between schema elements of the source schemas and of the
global schema (provided by mappings). An example for such a data integration system is
a mediator system, which uses a mediator to provide the uniform query interface and to
rewrite the queries formulated on the global schema. Figure 1.1 sketches the structure of
such a system with each source being connected to the mediator. However, this approach
has a bottleneck: the mediator. If it crashes, an application can no longer query remote
data sources. Although algorithms might be applied to appoint another mediator as
a backup solution (replication of the mediator), extensibility of such a system is still
limited. Participants issuing queries still strongly depend on the mediator and have no
noteworthy degree of autonomy.

In contrast, data sources (i.e., peers) in P2P systems have the utmost degree of au-
tonomy. In such loosely-coupled systems peers can leave or join the network at any time.
Peers are equal in terms of functionality and responsibilities, i.e., each peer participating
in the network might issue queries and there is no peer that performs special tasks in
comparison to the others. However, there are two main classes of P2P systems that we
have to distinguish: structured and unstructured P2P systems. For the latter class the
sovereignty over the data remains at the peer providing it, i.e., the data that a peer
decides to “share” with the network remains at the peer and is neither relocated nor
replicated at another peer. In contrast, in structured P2P systems the shared data is re-
distributed among participating peers according to a commonly known rule, e.g., a hash
function. Another difference between these classes is that unstructured P2P systems do
not require any specific network topology, i.e., a peer is free to choose its neighbors,
whereas a structured P2P system is based on a fixed topology such as a hypercube [168],

1

CHAPTER 1. INTRODUCTION

a ring [180], or a tree [101]. Thus, in unstructured P2P systems peers are free to build
semantic clusters of peers with similar schemas [49,112,128,138].

The consequence of strict peer autonomy in unstructured P2P systems is that there
is no global knowledge, i.e., there is no central instance that might help a peer to find
relevant data for a particular query – whereas in structured systems the rule according
to which the data has been redistributed in the first place can be used for this purpose.
In unstructured systems peers have to make routing decisions independently from all the
other peers. The question is how to route queries efficiently to only those peers that
provide relevant data if there is no global knowledge or central instance that could help
identify them. One means to overcome this disadvantage is the application of routing
indexes [41], i.e., each peer maintains local summaries of the data that can be retrieved
via its neighbors.

Mediator

Figure 1.1: Mediator System

Peer 5

Peer 4

Peer 3Peer 2

Peer 1

Peer 6

Figure 1.2: Peer Data Management System

By combining the two approaches (unstructured P2P systems and data integration)
we obtain Peer Data Management Systems (PDMSs) – Figure 1.2 sketches an example.
PDMSs can, for example, be applied in ad-hoc data integration scenarios such as disaster
management [85] or as decentralized data structures for mediation between ontologies in
the Semantic Web [5]. Another application of PDMSs proposed by the literature is to
enable information exchange between enterprises or research institutes [95, 170]. With
unstructured P2P systems as basis, PDMSs inherit characteristics such as a high degree
of peer autonomy and the absence of both global knowledge and a single point of failure.
In contrast to mediator systems, peers are considered equal so that each peer can issue
queries as well as participate in answering them. Another difference in comparison to
data integration systems is that paths from one peer to another are likely to involve more
than two peers. Thus, queries may be transformed multiple times (chaining) before they
reach distant peers holding relevant data.

An important aspect of query processing in PDMSs is minimizing execution costs.
In contrast to centralized systems the most important cost factor in PDMSs is not local
execution costs but network traffic and the number of involved peers. Nevertheless, a
popular strategy for query processing in PDMSs (but also for unstructured P2P and data
integration systems) is to forward the query to all the peers in the network (flooding)
whose schemas indicate their relevance. However, in large-scale settings flooding the

2 Processing Rank-Aware Queries in Schema-Based P2P Systems

1.1 PDMS System Definition

network in order to answer a single query is extremely expensive or sometimes even
impossible.

Thus, the goal of a query processing strategy in a PDMS is to prune peers from
consideration (e.g., by applying routing indexes) that cannot contribute to the result.
Whenever a peer is pruned from the set of peers that a query is forwarded to (i) local
execution costs at the pruned peer are reduced to zero because it does not participate in
answering the query, (ii) network traffic is reduced as no data is sent to or received from
the pruned peer, and (iii) local execution costs at the initiator are reduced because there
are less answer messages and thus less data to be processed locally in order to compute
the final result. Hence, whenever a peer is pruned from the set of peers that the query
is forwarded to, execution costs are reduced.

In most cases users are interested only in a quick overview of the data available in
the network. Such an overview can be provided by applying rank-aware query operators
such as top-N and skyline [19], which are already applied in centralized systems and P2P
systems. As these operators reduce the result set, they also reduce the number of relevant
peers and thus query execution costs. In consideration of PDMS characteristics such as
the system’s dynamic behavior and incomplete or erroneous mappings and data, it is
already difficult to guarantee complete query answers. Thus, introducing approximation
techniques that sacrifice result completeness/correctness in a controlled fashion up to
a certain user-defined extent, is another possibility to reduce execution costs without
much increasing the loss of completeness we have to deal with even without applying
approximation.

What distinguishes PDMSs from other P2P systems the most is the fact that in a
PDMS each peer is allowed to have its own data schema – a characteristic inherited from
data integration systems. We need mappings and query rewriting algorithms to overcome
data heterogeneity and translate a query formulated in one schema into another. If both
are the same, there is no extra effort. If not – and this is assumed to be the normal
case – the query has to be rewritten into the other schema exploiting the knowledge of
schema correspondences given in the form of mappings in conjunction with appropriate
query rewriting algorithms.

Operating PDMSs entails finding solutions to the problems arising from their main
characteristics discussed above. Since the notion of PDMSs came up only a few years ago,
research concerning PDMSs is still more or less in its infancy being an important issue of
ongoing research. Although the quality of mappings plays a decisive role for a PDMS, the
main focus of this dissertation is not mapping definition or network construction but the
practical use of PDMSs, i.e., efficient techniques for query processing. Before motivating
the challenges and the contributions of this dissertation, Sections 1.1 and 1.2 give a brief
introduction to PDMSs and query processing in such systems.

1.1 PDMS System Definition

The basic prerequisite to building a network of largely autonomous peers is a peer’s
willingness to cooperate with others. This means at least some of the peer’s data and
resources have to be accessible to other peers connected via communication links. This is
only a negligible impairment of peer autonomy that has to be accepted in order to build

Processing Rank-Aware Queries in Schema-Based P2P Systems 3

1.1 PDMS System Definition

Peer 2

books(title,author,ISBN)

Peer 1
 book*
 title
 author
 ISBN

Figure 1.3: Different Schemas Representing the Same Kind of Data: Relations (left),
XML (right)

a network of cooperating peers. Since PDMSs also inherit some characteristics from data
integration systems (federated database systems [40]), let us review the degrees of peer
autonomy that have been identified for these systems [166,177]:

• Design Autonomy: The local schema can be designed by each peer independently
from others.

• Execution Autonomy: Local data can be changed (deleted, added, updated)
without interference from external operations. External queries (operations) are
treated the same way as local queries (operations).

• Communication Autonomy: A peer with communication autonomy is able to
decide when and how it responds to a request from another peer.

• Association Autonomy: Each peer has the ability to decide whether and to
what extent to share its functionality (i.e., the operations it supports) and resources
(i.e., the data it manages) with others. This includes the ability to associate or
disassociate itself from the network and the ability to participate in one or more
networks.

• Hardware and Software Autonomy: Each peer may choose its hardware and
software in accordance to its local needs.

PDMSs aim at conserving as much autonomy as possible while allowing participants
to share data and functionality. Being a consequence of design autonomy one of the
main problems PDMSs have to deal with is heterogeneity. Whatever data model we
use, there are always various possibilities to model the same semantic issue even though
using the same model. Moreover, schemas may differ in their data models (relational,
object-oriented, object-relational, XML). Take Figure 1.3 for an example. The left hand
side shows a peer storing data in relations. The right hand side shows a peer storing the
same kind of data in XML format - nesting is represented by indentation and “*” means
the element may occur multiple times or never ([0, ∗]).

To reconcile all these different models in just one system with the aim of supporting
data exchange, it is useful to appoint one model for peer interaction. Each peer using
a different local data model can still participate by using wrappers so that in the end
all the peers provide peer schemas in the same model describing their local data. In
case a peer does not want to make all its local data available to other peers, its peer
schema might represent only a portion of its local data. For simplicity, we will make no

4 Processing Rank-Aware Queries in Schema-Based P2P Systems

1.1 PDMS System Definition

distinction between a peer’s peer schema and the schema the data is actually stored in
locally – assuming both are the same.

In principle, we could still define a common global schema for all peers while allowing
them to keep their local ones. However, using this kind of global schema for peer inter-
action has several shortcomings. It means to use global knowledge because all the peers
would have to know and to use the same global schema. However, we consider dynamic
systems whose peers might leave or join the network at any time. The global schema
would ideally have to integrate all data that peers (including future peers) might want
to share. If not, it would have to be adapted whenever a new peer with semantically
unique data joins the network. The only option to do this efficiently is again a central
component representing the bottleneck of the system.

Alternatively, peers can make their local data available by defining several binary
mappings to other peers (neighbors) participating in the network. This is the paradigm
we use in PDMSs so that the usage of global knowledge is avoided. In general, when using
binary mappings between peers, each peer only knows correspondences to the schemas of
its direct neighbors. By chained rewriting data from peers that are located in a distance
of several hops can also be accessed. The resulting network topology can be regarded as
an unstructured P2P system with peers deciding by themselves to which neighbors links
and mappings are established. An interesting problem in this context is how to find the
best set of neighbors for a new peer. In principle, a peer might use schema matching
techniques [167] to find a peer whose schema is most similar to its own. It seems to be
worthwhile to establish mappings to peers with similar data but also to establish some
long-range links [159] to peers with different data. A detailed discussion on this aspect
would be out of the scope of this dissertation. Thus, in the following we assume that
such a policy to find appropriate neighbors exists and that a peer joining the network
knows at least one peer that already participates.

On the logical level each peer P in a PDMS and its neighborhood can be regarded
as a stand-alone data integration system with P serving as mediator defining the global
schema. Figure 1.4 shows an example with highlighted data integration systems for peers
P0, P9, and P10. Because of the overlap of these integration systems, queries and data
can be exchanged. In accordance to the definition of data integration systems given
in [24,119] we define a PDMS according to Definition 1.1.1.

Definition 1.1.1 (Peer Data Management System, Communication Link, Peer Schema,
Source Schema, Mapping). A Peer Data Management System P is a pair 〈N , IN 〉, where

• N is an arbitrary unstructured P2P overlay network that defines logical directed
communication links of the form (P1, P2) to express the existence of a link from
peer P1 to peer P2 (P1, P2 ∈ N)

• IN is the set of integration systems that contains exactly one element
IP = 〈GP,SP,MP〉 for each P ∈ N :

– GP is P ’s peer schema expressed in a language LGP
over an alphabet AGP

. The
alphabet comprises a symbol for each element of GP (i.e., for each relation if
GP is relational),

– SP represents the peer schemas of all of P ’s neighbors (source schemas), i.e.,
all peers that N defines a communication link to. SP is expressed in a language
LSP

over an alphabet ASP
. ASP

comprises a symbol for each element of SP.

Processing Rank-Aware Queries in Schema-Based P2P Systems 5

1.2 Distributed Query Processing in PDMSs

Peer 5

Peer 4

Peer 3

Peer 11

Peer 10

Peer 9

Peer 8

Peer 7

Peer 0Peer 2 Peer 1

Peer 6

Figure 1.4: PDMS as a Combination of Multiple Data Integration Systems. Highlighted
data integration systems for peers P0, P9, and P10.

– MP is a mapping between GP and SP consisting of a set of assertions of the
form

qSP
⊆ qGP

where qGP
and qSP

are two queries of the same arity over GP using AGP
resp.

over SP using ASP
.

Whenever a query is issued in a PDMS, a peer uses its mappings to rewrite the query
into the schemas of its neighbors. However, there are multiple possibilities to define such
mappings. Their complexity mainly depends on the queries involved in the assertions.
In this dissertation, we focus on the LAV (Local-As-View) approach, which means the
assertions defining mappings (Definition 1.1.1) between peers are all of the same type:
s ⊆ qGP

with s ∈ SP referring to a relation in the source schemas and qGP
being a query

referring to relations in the global schema – Chapter 2 discusses this issue in more detail.

1.2 Distributed Query Processing in PDMSs

With respect to query processing in conventional distributed database systems [150],
e.g., federated database systems, we distinguish between several steps (Figure 1.5). The
first step is query formulation: a query needs to be formulated by the user or by a
user application. The query has to adhere to a syntax that is understood by the query
parser, which then translates the query into an internal representation. In general, the
internal representation is a query plan which consists of logical operators describing the
operations that need to be executed in order to compute the answer to the query.

6 Processing Rank-Aware Queries in Schema-Based P2P Systems

1.2 Distributed Query Processing in PDMSs

User Query

Query Result

Query Parsing

Query Transformation

step 1

step 2 Global Schema

Global Optimizationstep 4 Fragment Statistics

Postprocessingstep 6

Data Localizationstep 3 Fragment Schema

Internal Representation

Internal Representation

Fragment Query

Local Optimizationstep 5.1

Local Executionstep 5.2

Local Schema,
Statistics

Query Execution Plan

Optimized Fragment Query

Local Query Result

Controlling Site

Local Site

Figure 1.5: Distributed Query Processing

In the next step, the query is transformed in consideration of the global schema,
which is available in distributed systems such as federated database systems. This in-
cludes the application of equivalence rules in order to effect normalization, unnesting,
and simplification. The resulting query still references elements of the global schema.
Thus, in the next step (data localization) the query is transformed into a fragment query
that only references schema elements of the data sources. The initial fragment query is
simplified by eliminating redundant subqueries and subqueries producing empty results.
Afterwards, the fragment query is optimized (global optimization). In distributed sys-
tems such as federated database systems [40], the optimizer replaces logical operators
with specific algorithms (plan operators) and determines the order of execution. In con-
sideration of statistics, indexes, and the applied query processing strategy the optimizer
also determines at which site an operation is to be executed and inserts corresponding
communication primitives into the plan. The output of this step is a globally optimized
fragment query formulated on the fragments. Parts of this query are executed non-
locally at participating nodes, which optimize their subqueries in the style of centralized
database systems using local statistics. After the query has been executed, the partial
results are sent to the controlling site. In most cases the postprocessing step, which is
executed at the controlling site, consists of a simple union of the partial results received
from the nodes. Finally, the result can be output to the user application.

As PDMSs are distributed systems, the general steps of query processing, as illus-
trated in Figure 1.6, are similar. The first step of query formulation and parsing is the
same as for other distributed systems: the query is parsed and transformed into a query

Processing Rank-Aware Queries in Schema-Based P2P Systems 7

1.2 Distributed Query Processing in PDMSs

plan consisting of logical plan operators that refer to schema elements of the initiator’s
schema and represent the operations that need to be executed in order to compute the
answer to the query.

Query Parsingstep 1

User Query

Query Transformationstep 2 Peer Schema

Local Evaluationstep 3 Local Data

Query Optimizationstep 4 Distributed Data
Summaries

Query Rewritingstep 5 Schema Mappings

Postprocessingstep 6

Local Optimizationstep 3.1

Local Executionstep 3.2

Local Schema,
Statistics

Query Initiator

P
a

rt
ic

ip
a

ti
n

g
P

e
e

rs

Query Result

Figure 1.6: Query Processing in a PDMS

The second step (query transformation) again concerns the application of equivalence
rules to effect normalization, unnesting, and simplification of the parsed query. In general,
the initiator of the query itself provides local data that is relevant to answer the query.
As already mentioned in Section 1.1, we assume that a peer’s peer schema does not differ
from the schema it uses to manage its local data. As the input query is formulated with
respect to the initiator’s peer schema, the query can be evaluated on its local data –
applying optimization techniques in the style of centralized systems (step 3).

As a consequence of the absence of global knowledge, the optimizer (step 4) does
neither know if there is data relevant to the query available in the network nor which
particular peers in the system hold it. For this purpose, we propose the application of
Distributed Data Summaries (DDSs) [90, 118, 213] – Chapter 5. DDSs are a subclass of
routing indexes [41] providing summaries of the data that can be accessed by contacting
particular neighbors. Although many PDMS implementations do not consider statistics
or routing indexes for query optimization at all, we argue that it is an important step
(step 4) that should be considered even before rewriting the query into the schema of
neighboring peers.

In addition to DDSs the optimizer uses a set of rules that, optionally in conjunction
with the output of step 3 (the partial result evaluated on the initiator’s local data),
helps to refine the query with respect to the data provided by the neighbors. These
rules are defined by query processing strategies that consider the special characteristics
of query operators, e.g., rank-aware operators. Furthermore, in order to minimize query
execution costs, these strategies can also consider approximation techniques [92,93,213].
This kind of optimization has not yet been payed much attention to in PDMSs so that

8 Processing Rank-Aware Queries in Schema-Based P2P Systems

1.3 Outline of Dissertation

the optimizations considered in this dissertation (Chapter 6) are novel in the context of
PDMSs.

Based on the set of relevant neighbors and the refinements determined in step 4, the
initiator uses query rewriting algorithms [94, 165] to create a query plan that contains
subqueries formulated in the schema of neighboring peers. Therefore, a peer needs to
know the correspondences between local schema elements and schema elements of its
neighbors (provided by schema mappings). In this dissertation (Chapter 4), we propose
an appropriate extension to existing algorithms that considers not only select-project-join
queries but also rank-aware queries such as top-N and skyline.

After query optimization and rewriting, the subqueries are sent to neighboring peers.
With the absence of global knowledge, which we assume a PDMS adheres to, the initiator
of the query cannot optimize the query plan with respect to all the peers in the system –
much in contrast to conventional data integration systems, where a central instance
knows mappings to all data sources. Thus, global reasoning is impossible in this setup.
As a consequence, each peer that receives a subquery from one of its neighbors needs to
perform the same kind of optimization as the query’s initiator. Hence, the peers receiving
the subqueries process them by following steps 2 through 6 – possibly by contacting
further peers in the system (chaining) – and send their results back to the initiator.

In order to obtain the final query result, it is often necessary to add a postprocessing
step (step 6). In most cases the task of this step is merging the partial result evaluated
locally on the local data and the results received from queried neighbors. However, post-
processing might also perform further tasks such as identifying and removing duplicates.
Finally, the result to the query can be output to the user application that has issued the
query.

1.3 Outline of Dissertation

In summary, the main contributions of this dissertation concern:

• Rank-Aware Query Operators and Approximation: State-of-the-art peer data man-
agement systems are mostly based on conjunctive queries. As rank-aware operators
such as top-N and skyline are not part of this paradigm, the systems do not support
these operators. However, as argued above, those operators in particular have the
potential to minimize query execution costs and should therefore be considered. In
addition to these high-level query operators, approximation is another aspect that
this dissertation introduces into PDMSs.

• Query Processing Strategies : Many PDMS variants rely on a simple flooding ap-
proach that routes queries to all the peers in the system. This is expensive, scales
poorly, and is therefore not recommendable. Some systems introduced centralized
indexes to identify peers that are likely to hold relevant data for a query. We argue
that this impairs peer autonomy in an unacceptable fashion, introduces a single
point of failure, and should therefore be avoided. In this dissertation, we propose
advanced query processing strategies that apply a subclass of routing indexes to
identify relevant peers. Furthermore, these strategies exploit the characteristics of

Processing Rank-Aware Queries in Schema-Based P2P Systems 9

1.3 Outline of Dissertation

rank-aware query operators and approximation in order to prune additional peers
from consideration.

• Rewriting : In order to access the local data of a neighboring peer, the query formu-
lated at the initiator needs to be rewritten into the schema of the neighbor. Several
query rewriting algorithms have been developed for conjunctive queries, mostly in
conjunction with relational data. In this dissertation, we assume XML to be the
native data format of peers. Thus, in order to process queries involving rank-aware
operators and XML data, this dissertation presents an appropriate extension.

This dissertation is structured as follows. In Chapter 2 we define the terminology used
in this dissertation and provide background information on the basic concepts our work
builds upon, i.e., we discuss related work on rank-aware query operators, approximation,
query processing strategies, query routing, and query rewriting.

Chapter 3 defines the specifics of the PDMS model we are working with. The sub-
sequent chapters present our solutions to the problems discussed above. In detail, we
propose (i) an algorithm for query rewriting in consideration of rank-aware query op-
erators – Chapter 4, (ii) a novel subclass of routing indexes that is most beneficial for
query routing in PDMSs as well as corresponding maintenance strategies in the presence
of data updates – Chapter 5, and (iii) query processing strategies that efficiently process
top-N and skyline queries using routing indexes and optionally applying approximation –
Chapter 6.

Chapter 7 presents SmurfPDMS (SiMUlating enviRonment For PDMS), a system
developed in the context of this dissertation, which implements all algorithms proposed
in the previous chapters. It also represents the platform we used to perform the evaluation
of all proposed algorithms.

Finally, Chapter 8 concludes this dissertation with a summary and an outlook to
future work.

10 Processing Rank-Aware Queries in Schema-Based P2P Systems

Chapter 2

Background

In this chapter, we review related work that is relevant to the contribution of this dis-
sertation. We provide a classification and discuss why existing strategies do not solve
the problems we aim to solve. Following a bottom-up perspective on the system archi-
tecture, we begin with rank-aware query operators and approximation and proceed with
query routing. Afterwards, we review related work on query processing strategies in dis-
tributed environments and query rewriting. We conclude with related work on PDMS
implementations.

2.1 Rank-Aware Query Operators

Rank-aware queries are a very popular approach to deal with the possibly huge number
of result records that the complete answer to a query might consist of. In the following,
we focus on two representatives: top-N and skyline.

2.1.1 Top-N Queries

All rank-aware queries are based on ranking functions by definition. Top-N queries
(Definition 2.1.1) use only one such function r in combination with an integer number N
to limit the result size to those N records with the highest (lowest) ranks. In accordance
to Börzsönyi et al. [19] we assume that each ranking function has an annotation (MIN or
MAX) that indicates whether the highest or lowest ranked records are relevant. Ranking
functions can be defined on a single attribute, e.g., ranking hotels according to their
distance to the beach. But it is also possible to define them on multiple attributes,
e.g., ranking hotels according to their distance to the beach and the price per night:
dist ·0.5+price. The latter is an example of a ranking function using weights to indicate
the importance of multiple attributes.

Definition 2.1.1 (Top-N Query). Given an integer number N , a ranking function r,
an annotation γ ∈ {MIN, MAX}, and a set of records D, then a top-N query TN

r on
a set of records D is defined by function t(N, r, γ, D) := {d1, d2, . . . , dN}. The result
set consists of those N records of D that are ranked highest (γ = MAX) resp. lowest
(γ = MIN) by ranking function r.

11

2.1 Rank-Aware Query Operators

Figure 2.1 shows an example top-N query with N = 10, which ranks objects in
two-dimensional Euclidean space according to their Euclidean Distance to a given ref-
erence record q – represented by the asterisk. More precisely, the ranking function is√∑n

i=1(pi − qi)2 =
√

(p1 − q1)2 + (p2 − q2)2 with p denoting a data record in the input
data set. The result consists of those N records with the minimum distances. The circle
indicates the distance of the record with the maximum distance to the asterisk that is
still part of the result set.

An important issue we want to stress with respect to processing top-N queries is
whether the user is allowed to define arbitrary ranking functions or if the system poses
any restrictions on their formulation. In this dissertation, we are working with arbitrary
user-defined ranking functions (Definition 2.1.2) that are possibly unique to any query
being issued so that the user is not restricted to a set of predefined ranking functions.

Definition 2.1.2 (User-Defined Ranking Function). A ranking function r is said to be
user-defined if the user was free to compose r to his/her own discretion, limited only with
respect to the set of arithmetic operations supported by the system.

*

Figure 2.1: Top-N Query example

We can distinguish two classes of top-N query processing strategies: (i) those devel-
oped for centralized systems with global knowledge being available and (ii) those being
applied in distributed environments.

Computing Top-N Queries in Centralized Systems

Since most users are not interested in hundreds of result records, which would be the
exact answer to a query, it is a good idea to present the best N records ranked according
to a user-defined ranking function. In this sense top-N queries have already played an
important role in centralized relational database management systems (RDBMSs) before
their introduction into distributed environments. Thus, several approaches and efficient
strategies for top-N query processing have been developed. Chaudhuri et al. [23, 36],
for instance, use existing data structures in RDBMSs such as indexes and histograms to
map a top-N query into a traditional selection query by trying to determine a minimal
n-dimensional rectangle that contains all the top-N records for a given query but as few
additional records as possible. Another idea is to use materialized views to speed up
top-N query processing [96,208].

12 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.1 Rank-Aware Query Operators

Computing Top-N Queries in Distributed Environments

Later on, when distributed systems gained more importance, algorithms such as Three
Phase Uniform Threshold (TPUT) [27] have been developed. TPUT actually is an en-
hanced version of the Threshold Algorithm (TA), which was developed independently by
multiple groups [82,131,146], but is often referred to as Fagin’s threshold algorithm [131].
The aim of TPUT is to reduce network bandwidth consumption by pruning ineligible
objects (data records). Each data source provides one attribute for a data object, i.e.,
data is distributed vertically among peers. The peers provide lists of objects sorted in as-
cending order of the respective attribute value. A central manager that has direct access
to all peers coordinates query processing. In phase 1 each source is asked to send the top
N items from its list to the central manager (sorted access). Based on the received in-
formation the manager computes partial aggregations (partial sums) for the objects with
the present information. The partial aggregate value serves as a lower-bound estimate –
unknown attribute values are assumed to be 0, which is the lowest possible attribute
value. After the manager has ranked the objects, the N highest partial sum is used as a
lower bound, denoted as τ1.

In phase 2 the manager sets T = (τ1/m) as threshold (with m being the number of
attributes) and sends it to all peers. Each peer then sends the list of objects whose values
are at least equal to T . If an object is not reported by any peer, then all its attribute
values are smaller than T . This means that its aggregate value must be smaller than
τ1. Hence, it cannot be a member of the top-N result set and can be pruned. With the
retrieved information the manager refines the lower bound estimate T by recalculating
the partial sums for the objects, again by determining the N highest partial sum τ2. This
time further objects can be pruned using an upper bound estimate. To define the upper
bound estimate, the manager computes an upper bound for each object. It is defined as
the sum of all known attribute values and T for all unknown attributes values. We can
safely do that because if the unknown attribute values were higher than T , they would
have already been reported. Objects whose upper bounds are smaller than τ2 are pruned.

In phase 3 the missing attribute values of the remaining objects, which have not been
eliminated in step 2, are requested from the sources (random access). The manager can
now calculate the complete aggregate value for each object, rank the objects accordingly,
and output the top N objects to the user.

Cao et al. [27] also briefly discuss how to apply TPUT on hierarchical and P2P
networks. The algorithm needs three round-trips, i.e., for answering a single query the
network is flooded three times. The basic threshold algorithm [82,131,146] has also been
adapted to situations where some of the lists may not be accessed in sorted access [132].
The key concept is to use the lists that can be accessed in sorted order in the same
way as explained above, retrieve for each object the missing attribute values by random
access, and compute the threshold using the value of 1 for those attribute values that can
only be accessed in random order. However, further variants of TA have been developed
for instance for multimedia repositories [37], distributed preference queries over web-
accessible databases [133], and ranking query results on structured databases [7, 35].

Another algorithm for processing top-N queries in distributed environments, i.e., in
Edutella [145] P2P networks, is presented by Balke et al. [11]. This approach tries to
improve top-N query processing by dynamically collecting query statistics that allow for

Processing Rank-Aware Queries in Schema-Based P2P Systems 13

2.1 Rank-Aware Query Operators

a better routing when the same query is issued the next time. The first time, however, all
peers have to participate in processing the query while several round-trips are required
in order to retrieve the final result.

Only recently, skyline-based techniques for processing top-k queries in super peer
based P2P networks [197] have been proposed. The solution is based on the K-skyband
[141,153] that is created in a preprocessing step at each super peer. Thus, each super peer
maintains a K-skyband of all assigned peers which can be used to answer any incoming
top-k query. Furthermore, peers exchange skylines (Section 2.1.2) to build up an index
which can be used for query routing.

Finally, let us mention that top-N algorithms have also been developed for other
application areas such as stream processing and information retrieval, e.g., [28, 141] to
mention a few recent ones.

M
IN

MIN

Figure 2.2: Skyline Query Example

2.1.2 Skyline Queries

Skyline queries can be considered a multidimensional variant of top-N queries since data
records are not ranked according to one single ranking function but according to at least
two of them. Let us first illustrate the principle with an example. Imagine a user is
looking for hotels that fulfill two criteria: they should be as cheap as possible and as
close as possible to the beach. In most situations it is not obvious whether the user
would prefer (i) a hotel that is very close to the beach but not as cheap as others, or
(ii) a hotel that is very cheap but farther away from the beach. Thus, it is important to
present all “interesting” answers that might fulfill the user’s preferences so that he or she
can choose the most promising one. This set of interesting answers is called the skyline.
Figure 2.2 shows a visualization of the example with each point representing a hotel and
the axes corresponding to distance and price. Definition 2.1.3 formally defines a skyline.

Definition 2.1.3 (Skyline Query, Dominance Relation). Given a set of ranking functions
R each annotated with γ ∈ {MIN, MAX} and a set of data records D, then the skyline
SR(D) comprises all those data records that are not dominated by any other record. One
data record p dominates another one q with respect to R (p ≺R q) if it is as good as or
better in all dimensions and better in at least one dimension, that is:

p ≺R q :⇔ (i) ∀r ∈ R : r(p) Θeq(γ) r(q), and
(ii) ∃r ∈ R : r(p) Θ(γ) r(q)

14 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.1 Rank-Aware Query Operators

and
SR(D) := {d ∈ D |�p ∈ D : p ≺R d}

Θeq and Θ denote the comparatives in dependence on the annotation:

Θeq(MIN) → ≤
Θeq(MAX) → ≥
Θ(MIN) → <
Θ(MAX) → >

Two data records p and q are said to be incomparable if p ⊀R q and q ⊀R p.

In the example introduced above (Figure 2.2) object o1 is for instance dominated by
an object o2 if o2 is cheaper and located at least as close to the beach as o1. Each pair
of objects that is part of the skyline is incomparable.

With respect to computing skylines we again distinguish between two main classes of
algorithms: (i) computation in centralized systems and (ii) computation in distributed
systems. Moreover, we identify another class that comprises skyline variants as extensions
of the basic concept. Figure 2.3 illustrates the two main classes and their subclasses that
we discuss in the following.

skyline computation

non-index-
based

index-
based

centralized systems decentralized systems

web information
systems

super peer
architectures

unstructured
P2P systems

structured
P2P systems

Figure 2.3: Classification of Algorithms for Skyline Computation

Computing Skylines in Centralized Systems

Already before the introduction of skylines into database research [19], the same prob-
lem had been known as the Pareto optimum or the maximum vector problem [117,164].
Along with a corresponding SQL extension, allowing MIN, MAX, and DIFF as annota-
tions, Börzsönyi et al. [19] present several basic main memory algorithms for computing
the skyline in centralized databases: BNL (Block Nested Loops) and D&C (Divide &
Conquer). The principle of both algorithms is that instead of comparing each data
record to all the others, blocks of records are compared. BNL maintains a set of records
in main memory (window w). Records are read one after another. Each record p is
checked for dominance by any record that is currently contained in w. If there is a record
q in w that dominates p (q ≺R p), then p can safely be discarded as it cannot be part
of the skyline. If there is no such record q, p is inserted into w. Finally, each record in
w that is dominated by p is removed. As the size of w is limited, there is a swap file.

Processing Rank-Aware Queries in Schema-Based P2P Systems 15

2.1 Rank-Aware Query Operators

Whenever w is full and a record shall be inserted into w, the record is written into the
swap file. After all records of the input set have been read, those records in w that have
been compared to all the others can be output as skyline records and removed from w.
Then, the records of the swap file are checked for dominance as explained above. These
steps might have to be repeated several times, but finally all skyline records are found.

Applying the divide and conquer algorithm (D&C), the set of input records is recur-
sively divided into smaller sets. By exploiting the additivity characteristic of skylines,
i.e., SR(SR(A) ∪ SR(B)) = SR(A ∪ B), the skyline is computed in the smallest par-
titions first. Then, the skylines computed for these partitions are merged recursively
until finally the skyline on the complete input set can be determined. Another important
observation that D&C exploits is illustrated in Figure 2.4: regions S1,2 and S2,1 do not
need to be checked for mutual dominance at all since it is impossible that records in
these regions dominate each other, i.e., all records in S1,2 are incomparable to records
in S2,1 and vice versa. Börzsönyi et al. [19] also sketch approaches which exploit sorted
indexes (B-tree and R-tree) proposing an extension to Fagin’s A0 algorithm [58] for use
with B-Trees and the branch-and-bound principle for use with R-trees. However, both
approaches have been elaborated on in future work and are discussed below.

M
IN

MIN

S2,2S1,2

S1,1 S2,1

Figure 2.4: D&C Dominating Regions

In order to speed up processing time, index-based algorithms (e.g., [183] using pre-
computed bitmap and B-tree indexes) have been proposed. They describe each attribute
of each single data record as bitmaps. Assume we have two dimensions (attributes) with
10 distinct attribute values each. In that case, each record would be represented by a
20 bit long vector (10 per dimension, i.e., one bit per distinct value). A data record p
is encoded as follows: for each dimension the bit corresponding to p’s attribute value is
set to 1, i.e., if p’s attribute value is the second “best” of all existing values, the second
bit is set to 1. All bits that represent “worse” values are also set to 1 while all other bits
are set to 0. This is done for all data records and their attribute values in the input data
set. In order to determine if a data record p belongs to the skyline, i.e., to determine
whether there is a record q that dominates p, all that needs to be done is to compare
the bit vectors. Remember the definition of the dominance relation (Definition 2.1.3). If
a record q dominates p, then (i) all of q’s attribute values are at least as good as those
of p and (ii) at least one attribute value of q is better than the corresponding value of
p. Consequently, all records q that might dominate p must have at least as many 1’s
in their bit vectors for each dimension as p – if they have exactly the same bit vector
representation in one dimension the corresponding attribute values are the same. If q
has only one more 1 in the bit vector for a dimension, this means that q’s attribute value
in that dimension is better than p’s.

16 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.1 Rank-Aware Query Operators

The second approach presented by Tan et al. [183] uses a B-tree to index data records.
There is one B-tree index for each dimension (attribute). Each data record p is inserted
into the index corresponding to p’s minimal attribute value. Consequently, each record
is contained in only one of the indexes. For instance, if all records have two attributes
and p = (1, 5), then p is inserted into the index corresponding to the first attribute.
Assuming we want to compute a MIN skyline, then the indexes are sorted in ascending
order. The algorithm treats the indexes as sorted lists of batches, a batch is defined as
the set of all records in an index with the same attribute values. The skyline computation
starts with the list that contains elements with the lowest attribute value. All records
within the corresponding batch are checked for dominance. The algorithm proceeds with
the list providing the lowest not yet processed attribute value. Again, all records of the
corresponding batch are checked for dominance. This goes on until one batch contains a
record p whose attribute values are smaller than all those batches of all lists which have
already been processed – p dominates all records that are not yet read.

Algorithms such as NN-search (Nearest Neighbor) [116] and BBS (Branch and Bound
Skyline – using an R-tree) [152] have also been developed for application in centralized
databases. Their main advantage is that they can progressively give an overview de-
scribing the final result already after a short time of processing. The main principle of
these algorithms is to compute the nearest neighbor to the origin (minimizing all rank-
ing functions). The nearest neighbor is guaranteed to be part of the result skyline and
output to the user because there is no data record that might dominate it. Then, the
nearest neighbor can be used to partition the data space. Obviously, the region domi-
nated by the nearest neighbor does not have to be considered any further and can safely
be pruned from consideration. By looking recursively for the nearest neighbor in each of
the remaining partitions, the total skyline can be determined.

An extension of BBS supports approximate skylines [153], i.e., skylines containing
hypothetical points. Based on the regions of the R-tree index hypothetical points are
probabilistically determined and a so-called “low-resolution” skyline is output to the user.
This enables a “drill-down” exploration of the actual skyline, which is refined iteratively
by traversing the R-tree index from root to leaf nodes.

However, as recent publications show [12, 39, 71], research has not yet solved this
problem, not even for centralized systems. For more details we refer to a recent survey
on skyline computation in centralized systems [72].

Skyline Variants and Derivatives

In recent years, new applications and variants of skylines have been proposed, for instance
the k most representative skyline operator (top-k RSP – top k representative skyline
points) [130]. Top-k RSP is defined as the k-element subset s of the skyline that of all
possible k-element subsets dominates the largest number of data records, i.e., s maximizes
the set of dominated data records.

Another variant of skylines are multi-source skylines [48,176]. Whereas a single-source
skyline query might ask for hotels that are cheap and close to the beach (or close to any
given location), a multi-source skyline query considers multiple records at the same time
(e.g., to find hotels that are cheap and close to the university, the botanic garden, and
china town). The algorithms presented by Sharifzadeh et al. [176] deal with the problem

Processing Rank-Aware Queries in Schema-Based P2P Systems 17

2.1 Rank-Aware Query Operators

in Euclidean space whereas Deng et al. [48] propose algorithms for use in road networks.
In these networks it is impossible to compute the distance between any two records using
the Euclidean Distance.

Further variants of skylines are constrained skylines [152], subspace skylines [185,
186], and skycubes [155, 157, 204, 211]. A constrained skyline query returns the most
interesting records in the data space defined by a set of constraints. Each constraint
defines a range along a dimension (attribute) and the conjunction of all constraints
forms a hyper-rectangle in d-dimensional space. For example, looking for hotels that
are cheap and close to the beach a user might define a constraint for the price, e.g.,
restricting the price to $100 − $300 in order to guarantee a certain standard. Figure 2.5
illustrates this principle – the region defined by the constraints is highlighted in grey.
In comparison to the non-constrained skyline (black circles), the constrained skyline
(red circles) only consists of records that are contained in the region defined by the
constraints. In case of a subspace skyline we do not restrict the attribute values but
the set of attributes that are considered for computation. For instance, in addition to
price and the distance to the beach the hotel data records could additionally possess an
attribute indicating a user-ranking. Now, computing a skyline on only two of the three
dimensions conforms to computing a subspace skyline. There are even some approaches
which combine constrained and subspace skylines [46]. Another variant that is worth
mentioning is the skycube, which is defined as the complete computation of all possible
subspace skylines – similar to the idea of the data cube [6] for data warehouses.

M
IN

MIN

Figure 2.5: Constrained Skyline Query Example

Some works focus on skylines in high-dimensional spaces, i.e., a skyline defined on a
high number of attributes/ranking functions. In such spaces the result set of a skyline
query consists of many records. In order to give the user a better overview, Chan et
al. [32] propose to select only the top k records with the highest skyline frequency, i.e.,
the top k records that are contained in the skyline of as many subspaces as possible.
As the computation of the top-k frequent skyline records would require to compute the
skyline in each possible subspace, Chan et al. propose an approximate algorithm which
trades off accuracy for query response time. A related concept, the k-dominant skyline,
is proposed by Chan et al. in [31]. To output only the most interesting skyline records
in high-dimensional space, the dominance relation is relaxed to k-dominance. A record
p k-dominates another record q if p is as good as or better in k dimensions and better in
at least one of these k dimensions.

18 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.1 Rank-Aware Query Operators

Spatial skyline queries (SSQs) [176] are skylines considering the spatial distance be-
tween records. For this kind of queries the dominance relation is adapted so that a record
p spatially dominates p′ with respect to database D if every qi ∈ D is closer to p than to p′.
Yet another variant of skyline queries, dealing also with spatial attributes, is represented
by neighborhood dominant queries (NHDQs) [126]. They were developed to support a
micro-economic approach towards decision making. The key concept is to consider not
only the dominance relationship between records but also their spatial distance to each
other. Given hotel data (quality, price, coordinates x and y, etc.) and a specific hotel
p, an example for such a query would be to find the nearest hotel q that dominates p
with respect to quality and price. To compute such queries efficiently, Li et al. propose
index-based methods (R-trees and bitmaps).

In general, skyline computation is considered for totally-ordered attribute domains.
However, there are a few approaches towards skyline computation for partially-ordered
attribute domains. An example for such data is categorical or set-valued data. Chan
et al. [29, 30] present a technique that transforms partially-ordered attributes into two
integer-domain attributes and organizes the data by using an index. Apart from two
further variants, Chan et al. propose an advanced version of the Branch and Bound
Skyline algorithm (BBS) to compute the skyline on the transformed data. Chaudhuri et
al. [34] study cardinality and cost estimation of the skyline operator in relational engines
involving partially ordered attributes. Wong et al. [201] go one step beyond partially-
ordered attributes: nominal attributes. These are categorical attributes that do not have
a fixed predefined order: as different users might have different preferences on nominal
attributes, more than one order needs to be considered.

Jin et al. [104] propose thick skylines, i.e., not only the skyline records are output to
the user but also all records within an ε-distance around them. The intention is to give
the user a choice between several almost equally good records instead of outputting only
the best one that dominates the others. Jin et al. propose several methods to compute
such skylines within RDBMSs based on sampling and indexing the data.

Only recently another variant of skylines has been proposed: reverse skylines [56].
Given a point q, all other points are represented by their distance vector to q. A skyline
on this data is also called a dynamic skyline. The reverse skyline query returns the
objects whose dynamic skylines contain the query object q. To compute such queries,
Dellis et al. propose an improved and adapted version of the BBS algorithm. In order
to speed up query processing, Dellis et al. use precomputed approximations of skylines.

Materialized views are an effective possibility to reduce query response time, which has
been used in various contexts for many years [84]. The same principle can be applied to
skyline query processing. However, the problem is how to maintain materialized skyline
views in the presence of data updates (insertions and deletions). The problem of skyline
maintenance has already been considered in conjunction with the BBS algorithm [153].
The addition of records is straightforward and can be solved efficiently by considering
only the records contained in the view, i.e., in the current skyline. However, the deletion
of skyline records is more complicated and requires reevaluating records of the original
data set, as they might be part of the skyline now. Papadias et al. [153] propose to issue
constrained skyline queries on the exclusive dominance region of the deleted record. This
is the region in data space that is only dominated by the deleted record. As this idea is
not much elaborated on by Papadias et al. [153], Wu et al. [202] elaborate on this idea

Processing Rank-Aware Queries in Schema-Based P2P Systems 19

2.1 Rank-Aware Query Operators

and examine the shape of such exclusive dominance regions. Furthermore, they propose
an advanced algorithm to update skylines in the presence of deletions.

Finally, let us mention that skyline query processing is also considered in further
application areas such as data stream mining [129, 140, 184, 191, 205]. Even continuous
skyline queries for moving objects, i.e., data values dependent on space and time, have
been considered [98]. Furthermore, the problem of processing skylines has also been
considered for uncertain data (probabilistic skylines) [156] and incomplete data [110].

Skylines in Distributed Environments

Most work on skyline queries has been designed for use in centralized systems. There are
only a few ones that consider computing skylines in distributed environments. However,
most of these few are restricted to specialized network structures, which makes them
hardly applicable to the general case or unstructured P2P systems.

One of these algorithms [10] exploits the TA principle of sorted lists, which we have
already discussed in the context of top-N queries above, for processing skylines in Web
Information Systems. Again, the setup assumes data to be distributed vertically across
different Web Information Services with each site providing one attribute of a data record.
Each web source provides a score list in globally sorted order. The principle of the basic
algorithm is the same as for computing top-N queries: in step 1 sorted access is used on
all lists until the same object has been read in all lists, in step 2 additional sorted access
is performed to retrieve objects with the same attribute values, and in step 3 random
access is used to retrieve the attribute values of all objects that have been read so far in
any list. Finally, all objects are checked for dominance and the result is output to the
user.

Another work considering skyline computation in distributed environments is DSL
[203]. It progressively computes constrained skylines using a CAN [168] network to route
queries through the network. Each peer is assigned a region of the data space. There are
two main principles: first, peers can work in parallel if none of their records can dominate
each other. Second, due to the data organization in CAN networks, all regions SR and
corresponding peers can be pruned from consideration once a peer has been contacted
whose assigned data region dominates all regions in SR.

Wang et al. [198] present a strategy (Skyline Space Partitioning, SSP in short) for
distributed processing of skyline queries in BATON [101] networks. Peers in BATON are
organized in a balanced tree structured P2P overlay network that can be used to route
queries efficiently. In such a network each peer is responsible for a data region. Techniques
for splitting and merging allow load balancing among peers. By dynamically sampling
load from random nodes, load imbalance can be detected and data may be migrated to
other peers in order to counteract the imbalance. The principle of processing skylines
is straightforward: identify regions that are not dominated and send the query to peers
holding data of those regions using the BATON structure to route the queries. More
precisely, looking for a MIN − MIN skyline on a two-dimensional data set, skyline
computation starts at that peer pstart whose local results are guaranteed to be in the
final skyline (i.e., the peer being responsible for the region containing the origin). This
peer computes the local skyline and selects the most dominating record pmd (i.e., the
record dominating the largest region [97]). Then, pmd is used to refine the search space

20 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.1 Rank-Aware Query Operators

and thus to prune irrelevant regions and peers from consideration. Wang et al. state
that this is an important difference to the approach proposed by Wu et al. [203], which
uses all intermediate skyline results for this purpose. A peer can safely be pruned with
respect to the skyline definition if its region’s best record is dominated by pmd.

Another work [127] exploiting the same principle on top of structured overlay networks
uses an overlay network called Semantic Small World (SSW) to organize peers. Peers
are organized in clusters based on semantic labels that are centroids of their largest data
clusters. Each peer is assigned to a cluster, which is defined by a region in data space.
Each peer maintains information about peers providing data in the same data space. A
peer maintains short-range links to peers within the same cluster and some long-range
links to peers of other clusters. The computation of a skyline starts in the cluster that is
guaranteed to contain skyline records, i.e., in case of a MIN-skyline the cluster containing
the origin. Then, the skyline in this cluster is computed. The corresponding result can
already be output to the user because it is guaranteed to be in the final result as we
have already discussed above (NN-search). The nearest neighbor to the origin is used to
determine those clusters that still have to be considered – pruning all clusters that are
dominated by the nearest neighbor. Finally, the partial skylines are combined and the
result can be output to the user.

Apart from this exact algorithm Li et al. [127] also propose an approximate algorithm,
which can be used when it is impossible to construct an SSW overlay network. Still,
peers have semantic labels that can be used to process the skyline. As a peer knows
the semantic label of its neighbors, it forwards the query to the neighbor that has a
“better” label with respect to the query definition (single-path). This means the query
is sent to a peer providing data which might be ranked better than the local data. Once
a peer receives the query twice, skyline computation ends and the result is output to
the user. A second variant of this concept (multi-path) considers each queried attribute
in parallel and forwards the query to each peer providing “better” data for at least one
attribute. This variant makes heavy use of the peer that initiates the query because it
has to coordinate the computation and issue a stop command when a certain number
of peers has been queried. The application of these approximate algorithms makes only
sense if the data provided by each peer is clustered. When data is distributed randomly,
the chance of missing relevant data is high. Furthermore, the use of the base algorithm
creates heavy load in the cluster containing the origin, which might become the bottleneck
of the system if skyline queries are issued often.

Vlachou et al. [196] propose an algorithm for processing skylines in super peer net-
works. In these networks some peers (super peers) are assigned special roles due to their
enhanced features such as availability, storage capacity, and bandwidth capacity. In the
baseline algorithm each super peer holds an extended skyline on the data of all its sub-
ordinate peers. The extended skyline is the subset of the original data set containing the
skyline records of any possible subspace. Storing such an extended skyline at each super
peer reduces execution costs by not having to ask every single peer in the system but
only all super peers. Query processing takes place by flooding the backbone network of
super peers. Each super peer computes a partial skyline and sends additional information
along with the query to its neighbors when flooding the network.

This additional information is a consequence of the application of the following obser-
vation: multi-dimensional data records p can be transformed into one dimensional values

Processing Rank-Aware Queries in Schema-Based P2P Systems 21

2.1 Rank-Aware Query Operators

by the following formula: f(p) = mind
i=1(p[i]). Let distU(p) denote the L∞-distance of

record p from the origin based on the dimension set U , i.e., distU(p) = maxi∈U(p[i]). A
record p for which the following inequality holds cannot be in the skyline of subspace
U : f(p) > distU(psky) with psky being a skyline record in subspace U . In other words,
when the minimum coordinate (all dimensions) of a record p is higher than the maximum
coordinate (queried dimensions) of a skyline record psky, then p cannot be part of the
skyline. Exploiting this observation the additional information, which a peer attaches to
a query when forwarding it, consists of the minimum value of distU(p) of all records p
that are part of its locally computed partial skyline. The receiver can use this value to
prune all records with higher f(p) values than the value received along with the query
because they are dominated by already known records.

Very recently Cui et al. [43] proposed an algorithm for processing constrained skyline
queries in unstructured P2P networks. When a query is issued at a peer, it first collects
statistics from all the peers in the network, i.e., for each peer the d-dimensional bounding
box of its local data is retrieved – assuming that each peer provides data only with respect
to a certain cluster in data space. The main principle is to determine which peers can
process the query in parallel. Thus, the initiator determines, based on the dominance
relation and the global knowledge in the form of the minimal bounding boxes, peer
groups whose results cannot dominate each other. For each of these groups the initiator
determines a query plan, which is sent to one peer of each group. Once a peer has
processed the query, it removes itself from the query plan and forwards the query to the
next peer indicated by the plan. In order to reduce network traffic, each peer attaches
some filter records to the query. These are data records that are likely to dominate many
other records peers might store locally. The results are first collected per group at the
designated peers and then sent to the initiator.

2.1.3 Applicability to PDMSs

Most of the approaches towards top-N and skyline computation we have discussed are
not applicable to PDMSs. Those developed for centralized systems have been designed
to reduce main memory consumption as well as IO and CPU costs. Since in P2P systems
data is distributed over many peers, the only way to apply most of these approaches would
be collecting all the data at the initiating peer and computing the query there. Obviously,
this is not an acceptable solution. However, some of the approaches for centralized
systems use indexes to accelerate computation. Note that this kind of indexes is of
severely limited use in unstructured P2P networks and PDMSs as it requires indexing all
available objects. With the absence of global knowledge it is hard to provide direct access
to the sources and such detailed indexes. Of course, we also propose the use of indexes to
enable efficient query routing but these semantic routing indexes describe data records
with as few values as possible trying to reduce memory consumption and maintenance
costs by applying summarization/approximation techniques. Most important is the fact
that routing indexes are general purpose and not restricted to any special kind of queries,
i.e., they are useful for any kind of queries: top-N , skyline, selection, etc.

We have also discussed several other approaches developed for distributed systems.
However, the problem is that they strongly depend on a specialized network structure.
One of these algorithms is TA and all its variants and advanced versions for top-N and

22 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.2 Approximation

skyline query processing. All these algorithms based on TA cannot be applied to PDMSs
because the algorithm requires lists of objects in globally sorted order. Furthermore, the
data distribution in PDMSs is totally different; a peer does not provide only one attribute
but is likely to provide all attributes for a particular object. Finally, there is no central
manager with global knowledge which is able to directly contact all participating peers.
However, Cao et al. [27] nevertheless briefly discuss how to apply TPUT in hierarchical
networks and P2P networks. The algorithm still needs three round-trips, i.e., for an-
swering a single query the network is flooded three times. Although the algorithm might
still work in P2P systems, we argue that flooding a network consisting of more than only
a few peers should strictly be avoided because flooding the network, even only once, is
in most cases too expensive. Thus, flooding it multiple times to answer a single query
cannot be considered an efficient solution.

We have also sketched several algorithms developed for use in structured P2P overlay
networks. These algorithms are efficient in the networks they have been developed for
because the specialized network topology can be used to route queries efficiently. On the
other hand, they cannot be applied to PDMSs for the same reason. Trying to preserve
peer autonomy, PDMSs do not impose any network structure upon the network. Most
importantly, data in PDMSs is not redistributed among the peers in the network such
that the routing and pruning algorithms proposed by algorithms developed for structured
P2P systems cannot be used in PDMS.

We have also discussed an approach for processing skyline queries in super peer sys-
tems [196]. The backbone network consisting of the super peers could be considered an
unstructured P2P system. However, in order to process a query, it is forwarded to all
the super peers in the network, i.e., applying a simple flooding approach. Although the
number of super peers is much lower than the total number of participating peers, this
approach is still likely to be expensive and to cause high network and computational
load.

The strategy for processing skyline queries recently proposed by Cui et al. [43] was
designed for application in unstructured P2P systems. However, although PDMSs are
built upon such systems, the proposed strategy is based on global knowledge available
at the initiator’s site in order to determine peer groups and query plans. Furthermore,
each peer is assumed to provide data only with respect to a cluster in data space.

Finally, let us comment on the techniques proposed by Balke et al. [11]. Dynamically
collecting query statistics is an interesting approach but only worthwhile if the same
query is issued multiple times. The first time, however, all peers in the system need
to participate. In this dissertation, we try to find a solution that does not rely on
the user issuing the same query twice but tries to be optimal even when queries with
completely unknown ranking functions are issued. On top of these algorithms we can
still use caching in conjunction with algorithms for testing query containment such that
results from previous queries can be used to accelerate the computation of future ones.

2.2 Approximation

Approximation is a very popular approach to reduce execution costs. There are different
types of approximation; all of them have two things in common. First, the algorithms

Processing Rank-Aware Queries in Schema-Based P2P Systems 23

2.2 Approximation

need parameters as input limiting the degree of applicable approximation (in most cases
defined by the user). Second, approaches applying approximation need to provide some
kind of guarantee which estimates the goodness of the result. Usually, the guarantee
is a simple consequence of the input parameters that limit approximation. An example
of such guarantees are probabilistic guarantees as proposed in the context of top-N
queries [89,190].

As this dissertation is focusing on skyline and top-N queries, the following pages
discuss the classes of approximation the literature proposes for these queries. In this
context, we identify the two classes illustrated in Figure 2.6. The first kind of approxi-
mation is pruning and introduced by the query processing strategy, i.e., the data remains
untouched/unapproximated but for example the algorithm stops searching for further
result candidates at an early stage before having read all input records. The second
kind of approximation (representation-based) works on data-level, i.e., a certain degree
of fuzziness is introduced such that for example one record might represent another one
that would actually be part of the result.

pruning representation

approximation

Figure 2.6: Classification of Approximation Techniques for Top-N and Skyline Queries

2.2.1 Pruning-Based Approximation

We have already discussed an algorithm [127] that applies pruning-based approximation
in the context of skyline query computation in SSW overlay networks. Peers forward
the query to peers that seem to provide relevant data and stop when the same peer has
received a query twice. Thus, although there might be non-considered relevant data in
the network, the algorithm stops.

Fagin [60] discusses several top-N algorithms for ranking multimedia data such as
images and videos. In these systems data qualifications such as color are hard to deal
with. For instance, the color is not simply defined as “red”. Instead, there is a degree
of redness that ranges between 0 (not red at all) and 1 (totally red). In response to a
query asking for red objects, a multimedia system might typically assign such a redness
score to each object and output only the top N records. The result of such a query is
a “graded” (or “fuzzy”) set [212]. The algorithms discussed by Fagin [60] are designed
for middleware systems that have access to several data sources. For each data record
we have m attributes and m sorted lists of records containing one entry for each record
ranked by the corresponding attribute values. In this context, the usage of the threshold
algorithm [59, 62, 81, 147] that we have already mentioned in Section 2.1.1 is proposed.

24 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.2 Approximation

It begins with reading the sorted lists in parallel (sorted access). For each record that
has been read in any list all “missing” attribute values are retrieved by random access.
The algorithm stops reading the lists in sorted access when N objects with an overall
grade at least equal to τ have been seen. τ is computed using the last seen attribute
values retrieved by sorted access on the lists, i.e., the worst values seen so far by sorted
access. Based on this threshold, Fagin presents an approximate variant of the threshold
algorithm: θ-approximation. The θ-approximation to the top N answers (for ranking
function r over database D) is a collection of N objects (and their grades) such that for
each y among these N objects and each z not among these N objects: θ · t(y) ≥ r(z),
θ > 1. Only the stop rule of the threshold algorithm has to be adapted: as soon as at
least N objects were seen whose grades are at least equal to τ/θ, the algorithm halts.

Another work [190] based on the threshold algorithm, an idea later on picked up by
the KLEE framework [136], introduces probabilities into query processing and presents
a family of approximate top-N algorithms that probabilistically try to predict when it
is safe to drop candidate objects and to halt the scans on the sorted lists. What these
algorithms do is similar to the θ-approximation technique. They approximate the result
set by stopping the index scans as soon as a certain level of correctness is reached. Thus,
they obtain a result set that still contains a certain level of approximation in comparison
to the correct answer, which would be computed by the basic threshold algorithm.

Koltun et al. [114] present another notion of approximation for skyline queries that
we also classify as pruning-based. Given a skyline query, the goal is to reduce the num-
ber of result records by computing a set of approximately dominating representatives
(ADRs). The degree of approximation – denoted as ε – is defined by the user. A set of
ε-approximate dominating representatives (ε-ADR) is defined as a subset A of D (D is
the set of all records) that has the following property: For each p ∈ D there is a repre-
sentative q ∈ A such that (1 + ε) · q dominates p, i.e., a skyline record p is represented
by a record q, if the distance between p and q is smaller than ε. Koltun et al. provide
algorithms which take a set of records as input and output the set of appropriate ADRs.
For efficiency reasons the usage of a traditional algorithm is proposed to pre-process the
input set. The resulting skyline is then provided as input for the algorithm to find the
minimum set of ε-ADRs. Koltun et al. [114] proof that the problem of minimizing the
number of ADRs for two dimensional data sets can be solved in polynomial time whereas
the three or more dimensional case is NP-hard but has a polynomial-time logarithmic
approximation. Thus, a polynomial time algorithm for the two-dimensional case is pro-
posed. To calculate ADRs with three and more dimensions, Koltun et al. propose a
greedy algorithm which approximates ADRs in any dimension. This is what Koltun et
al. denote as a second kind of approximation. The result is no longer the optimum set
of ADRs but an approximation of this optimum.

2.2.2 Representation-Based Approximation

We have already sketched an algorithm of this class in the context of skyline computa-
tion. Papadias et al. [153] propose an extension of BBS that based on the R-tree index
computes hypothetical points representing all records represented by a region.

Kießling [111] examines techniques to enhance the computation and specification of
preference queries in general – including Pareto (i.e., skyline) computation. Preference

Processing Rank-Aware Queries in Schema-Based P2P Systems 25

2.2 Approximation

queries allow the user to define soft constraints (i.e., preferences) instead of only hard
constraints (i.e., standard selection predicates) within a query. Kießling presents a variety
of preference constructors that allow for specifying user preferences. He distinguishes be-
tween base constructors and complex constructors that are applicable to skyline queries.
As a novel semantic concept for complex preferences Kießling introduces the notion of
“substitutable values” (SV-semantics), characterizing equally good values amongst indif-
ferent values.

The key concept is to identify indifferent values, e.g., by using so-called d-parameters
grouping ranges of values. In this way, a categorical view on numerical values is achieved
so that certain indifferent values can be interpreted as “substitutable” or “equally good”.
Kießling shows that using such a categorical view may help to reduce the result size of
skylines without sacrificing the importance of other user preferences defined in the query.

However, Kießling’s focus is to personalize database queries by means of a semantically
rich and flexible preference model for query composition and arbitrary databases. Thus,
Kießling extends the constructor-driven foundation of preferences as strict partial orders
in two ways: (i) by introducing d-parameters to model a categorical view on numerical
data for base constructors, (ii) by enriching preferences by SV-semantics – preserving the
strict partial order property even for Pareto preferences, prioritization, and numerical
ranking.

We classified this kind of approximation as representation-based because the “mean-
ing” of the data is changed by the introduction of SV-semantics, i.e., by applying this
semantics the “value” of an attribute is set equal to another one.

2.2.3 Applicability to PDMSs

Intuitively, approximation offers the opportunity to reduce query execution costs not only
in centralized systems but also in distributed environments such as PDMSs. However,
most of the pruning-based techniques we have discussed are based on the threshold
algorithm and rely on a special network architecture, which is not compatible to PDMSs.
Another approach, which we classified as pruning-based, aims at computing a relaxed
answer to a skyline query while relying on the set of all records or at least the non-relaxed
answer to the skyline query as input. This requirement makes it unacceptable for PDMSs
as these systems cannot provide that kind of global knowledge. Furthermore, we want to
apply approximation in order to reduce execution costs. If we have to provide the answer
to the skyline query as input, we obviously cannot achieve this goal.

On the other hand, the application of representation-based approximation techniques
is much more promising. We have reviewed the application of SV-semantics as a repre-
sentative of this class. If the user provides such information, this approach can also be
used in PDMSs. Remember that the focus of SV-semantics is to personalize database
queries using preferences whereas our goal is to reduce query execution costs. Thus, in
this dissertation we focus on another representation-based approximation technique that
exploits the information provided by the routing indexes to determine which records can
be represented by others. Although we only consider this kind of representation-based
approximation, SV-semantics could still be added to our algorithms.

26 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.3 Query Routing and Routing Indexes

2.3 Query Routing and Routing Indexes

Queries in distributed environments have to be rewritten into a set of subqueries that can
be sent to neighboring peers in order to retrieve non-local data. One of the problems to be
solved in this context is query routing. Whereas in structured P2P systems routing can
efficiently be done by exploiting the rule according to which the data has been distributed
among the peers in the first place, there is no such global knowledge in unstructured P2P
systems which we could use to route queries efficiently to peers providing relevant data.

With respect to routing in unstructured P2P systems we distinguish between two
main approaches (Figure 2.7): (i) flooding and (ii) semantic routing. Gnutella [70] is
an example of the former kind of systems, i.e., each peer forwards the query to all its
neighbors. They in turn proceed alike until a peer is found that can answer the query –
resulting in flooding the network. Obviously, this results in a heavy load for the network.
Thus, other systems use indexes that provide information about which peers hold relevant
data to a query. Napster [144], for example, uses a centralized index, which makes Napster
a somewhat hybrid approach since it uses a central component to route queries.

However, appropriate routing algorithms for use in PDMSs should work in a com-
pletely decentralized manner. Thus, each peer that receives a query has to decide which
neighbors the query should be forwarded to, with the only help of the information re-
ceived along with the query and the information stored locally. The application of routing
indexes, which are very popular in unstructured P2P systems, is a possible solution to
this problem. Thus, on the following pages we discuss related work on routing indexes
and review several instances of the classes illustrated in Figure 2.7.

query routing in
unstructured P2P systems

flooding routing indexes

centralized distributed

CRI HRI ERI

keyword histogram bitvector

Figure 2.7: Classification of Routing in Unstructured P2P Systems

Processing Rank-Aware Queries in Schema-Based P2P Systems 27

2.3 Query Routing and Routing Indexes

2.3.1 Routing Indexes

Crespo et al. [41] introduced the notion of routing indexes in unstructured P2P systems:

The objective of a Routing Index (RI) is to allow a node to select the “best”
neighbors to send a query to. An RI is a structure (and associated algorithms)
that, given a query, returns a list of neighbors, ranked according to their
goodness for the query. The notion of goodness may vary but in general it
should reflect the number of documents in “nearby” nodes.

Thus, routing indexes are defined according to Definition 2.3.1.

Definition 2.3.1 (Routing Index (Crespo, Garcia-Molina)). A routing index is a data
summarizing structure that captures information about the data accessible via all neigh-
boring peers. Each peer maintains exactly one such structure.

In their work Crespo et al. consider a scenario in which documents are indexed ac-
cording to a list of keywords or topics. Hence, documents are organized in categories
and the index is a hash table of such categories. Several hash values may hash to the
same bucket so that the count in a bucket represents the aggregate number of documents
in those categories. Each peer maintains a local index that describes the locally stored
documents according to the list of keywords. A routing index describes the data acces-
sible via a peer’s neighbors, i.e., RIs are used to index routes rather than destinations.
Consequently, routing indexes in general provide information about neighbors but not for
each peer in the system. More precisely, Crespo et al. distinguish between three types
of routing indexes:

• Compound Routing Indexes (CRIs): CRIs contain (i) the number of documents
available via each neighbor and (ii) the number of documents on each topic of
interest (for each neighbor).

• Hop count Routing Indexes (HRIs): RIs of this type maintain one aggregation for
each neighbor and each “hop” up to a maximum number of hops. Consequently,
there are multiple aggregations per neighbor. For example, the 1 hop aggregation
describes what data is reachable via each neighbor in a distance of 1 hop (i.e., the
data stored locally at the neighbors). The 2-hops-aggregations for each neighbor
subsume the local data of all peers reachable within 2 hops, the 3-hops-aggregations
subsume the data of all peers reachable within 3 hops, and so on.

• Exponential Routing Indexes (ERIs): ERIs hold information about all accessible
nodes in the system in only one aggregation per neighbor. The higher the distance
of indexed data in terms of hops, the less influence they have on the aggregated
value.

Queries are defined as conjunctions of keywords (indexed by the RIs). When a query
is issued at a peer, the peer first processes the query locally. Then, it ranks its neighbors
according to their goodness values (computed using its RI) with respect to the given
query. Assuming that a stop value (a maximum number of result records) is given, the
peer forwards the query to the first peer in the ranked list. Once the answer is received,

28 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.3 Query Routing and Routing Indexes

the peer checks if the stop condition is already fulfilled. If not, the query is forwarded to
the next peer in the list. This goes on until finally either all neighbors have been asked or
the stop condition is fulfilled. In addition to this sequential processing strategy, Crespo
et al. also propose sending the query to several neighbors in parallel. However, they do
not elaborate on this aspect and use the sequential strategy only.

Creation Routing indexes as proposed by Crespo et al. [41] are created and extended
when peers join the network. The two peers that establish a connection between each
other exchange information about the data accessible via them. This information is the
aggregation of a peer’s local index and the RI entries describing the data of its “old”
neighbors. Both peers add a new entry for the new neighbor to their routing indexes
with the received aggregated information. Afterwards, the two peers have to inform their
old neighbors about the new data that is now accessible via them. Thus, they propagate
the aggregated information to all such peers. These in turn proceed alike so that finally
all peers have updated their routing indexes.

 # DB N T L
P6 50 15 0 25 25
P4 150 85 0 85 125

 # DB N T L
P4 100 60 0 60 75
P5 50 25 0 15 50
P6 50 15 0 25 25
P1 1400 50 380 10 90

 # DB N T L
P1 300 30 80 0 10
P2 100 20 0 10 30
P3 1000 0 300 0 50
P4 200 100 0 100 150

 # DB N T L
P5 50 25 0 15 50
P4 150 75 0 85 100

1400 50 380 10 90

1550 135 380 85 215

1550 125 380 95 190

200 100 0 100 150

1500 130 380 100 210

600 150 80 110 160

Peer 5

Peer 4

Peer 3

Peer 2

Peer 1

Peer 6

Figure 2.8: Example for Creating Routing Indexes in a Tree-Structured Network [41].
Categories: databases (DB), networks (N), theory (T), and languages (L)

Figure 2.8 shows an example of the construction process. P1 and P4 establish a
connection that did not exist before (dashed line). Thus, they exchange the aggregation
of their local indexes and their old routing indexes. Then, P1 adds a new entry to
its routing index describing the data it can access via P4. P4 does the same with the
information received from P1. Afterwards, both P1 and P4 propagate the information to
all their old neighbors. The recipients update their RIs by simply replacing the old entries
with the received information. For example, the message that P1 sends to P2 contains
P1’s local index and the routing index information about data at P3 and P4. After all
peers have propagated such information through the network, all routing indexes of all
peers in the system are up-to-date.

Maintenance Whenever there is a change in the local data of a peer, it needs to prop-
agate this change to all its neighbors such that they may update their routing indexes.
In principle, the algorithm is the same as for the creation of RIs: (i) a peer recomputes
its local index, (ii) aggregates its new local index and its RI information, and (iii) sends
the resulting aggregation to all its neighbors – of course, for the aggregation the peer

Processing Rank-Aware Queries in Schema-Based P2P Systems 29

2.3 Query Routing and Routing Indexes

needs to pay attention not to include the RI entry corresponding to the receiver of the
update message. Then, the receiver updates its local routing index (replacing the old en-
try), computes new aggregates, and forwards them to its neighbors, which proceed alike.
However, it is obvious that although this represents a basic solution to the problem, it
does not scale well with the number of participating peers and the number of updates.

Cycles When the network contains cycles, the algorithms proposed so far might result
in situations where an update runs in an infinite loop. Crespo et al. [41] discuss three
strategies to solve this problem:

• no-op solution: the problem is ignored and we assume that cycles never occur,

• cycle avoidance solution: application of connection protocols to prevent cycles,

• cycle detection and recovery solution: cycles are allowed but actions are taken to
recover from their effects. A unique identifier assigned to messages can be used to
detect cycles. If a cycle is detected, a recovery procedure is started, e.g., only the
first message is processed and all others are ignored.

Obviously, the third option provides the most flexibility and should therefore be chosen
whenever possible. The approach presented by Crespo et al. [41] was only the beginning of
RI usage for query routing in unstructured P2P systems. The concept has been extended
and enhanced in other works. We are discussing some of them in the following.

2.3.2 Histograms and Bloom Filters as Routing Indexes

One of the works extending the basic routing index approach indexes structured data
[158], i.e., a numerical attribute of data records is indexed instead of files. For this
purpose, no longer keywords are used but one-dimensional histograms so that the distri-
bution of numerical attribute values is captured. Each peer maintains one routing index
(a histogram defined on the same numerical attribute) for each of its neighbors. A rout-
ing index describes all data records (with respect to the indexed attribute) accessible via
the neighbor within a horizon of a predefined number of hops. Because of this definition,
we classify this kind of routing indexes as a subclass of CRIs (Figure 2.7). Nevertheless,
note that this still is a slightly different definition of routing indexes, since now there is
one routing index per neighbor whereas in the original definition (Definition 2.3.1) there
was only one routing index for all neighbors altogether. Definition 2.3.2 formalizes this
new definition of routing indexes.

Definition 2.3.2 (Routing Index (Petrakis, Koloniari, Pitoura)). A routing index is a
data summarizing structure that captures information about the data accessible via one
neighboring peer. Each peer maintains exactly one such structure for each of its neighbors.

In addition to the routing problem, Petrakis et al. [158] also propose a technique to
build network structures in which peers with similar data are clustered, i.e., there are
many links to peers with similar data (short range links) and only a small number of
links that connect peers of different clusters (long range links). When a peer P joins
the network, the histograms describing the peers’ local data (local indexes) are used to
determine the difference between P ’s local data and the local data of other peers in the
network. Based on the resulting similarity short and long range links are established.

30 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.3 Query Routing and Routing Indexes

With respect to routing range queries Petrakis et al. propose a sequential strategy
where a query is routed to only one neighbor at a time – disregarding the possibility of
exploiting parallelism. Each peer P that receives (or poses) a query at first processes
it locally based on its local data. Then, the query is forwarded to the neighbor (out of
the set of all neighbors) that promises to contribute the most results. When the answer
is retrieved (answers are sent back the same way the query has been propagated on), P
checks whether the desired number of matching data records (results) has been retrieved.
If not, the query is forwarded to the second best neighbor of P (the third best, fourth
best,. . .) until the desired number of records has been received.

In addition to the number of result records, there is another constraint for forwarding
a query. A query is only forwarded (i) if the desired number of matching data records
(results) has not yet been obtained and (ii) if the maximum number of visited peers has
not yet been reached. If any of these two conditions is not fulfilled, the query is not
forwarded. Although Petrakis et al. do not mention how they check these constraints,
we assume they attach a simple counter of visited peers to the query message. Since
query results are sent back to the initiator on the same route that the query has been
propagated on and neighbors are queried sequentially, counting the current result size and
the number of visited peers is straightforward. Note that these checks are only possible
if parallelism is not practiced (depth-first traversal). However, parallelism would be a
means to reduce processing time. To avoid cycles, each peer remembers the unique
identifier assigned to each query and the peer the query has been received from.

If no short range neighbor with relevant data is found, the query is forwarded using a
long range link hoping that even though the local routing indexes do not know of any peer
with matching result records in the predefined horizon, then maybe there is a matching
peer in the horizon of the long range peer.

Another approach [159] by Petrakis et al. applies similar strategies to routing in-
dexes based on Bloom Filters [15]. In this work only queries based on keyword search are
supported. Bloom Filters are bit vectors supporting membership queries used for prob-
abilistic representation of sets. Such bit vectors do not provide any information about
result cardinality, i.e., about the number of records that fulfill the condition defined by
the query. The only question the applied Bloom Filters may answer is: “Does a keyword
a occur in a set of documents?” As a consequence, a peer with routing indexes for its
neighbors (indexing a set of predefined keywords) cannot determine how many result
records are actually provided by them.

A common disadvantage of both approaches mentioned above is that the query rout-
ing algorithm does not exploit parallelism, which could considerably speed-up query
processing. Another weakness is that both approaches do not consider any information
about attribute correlation. If, for example, a query asks for documents containing two
keywords a and b, the approach introduced above can identify neighbors that provide
“interesting” documents. But it cannot decide if the queried keywords are contained in
the same document or if there are only documents containing either a or b.

2.3.3 Bit Vectors as Routing Indexes

Marzolla et al. [134] present an approach for routing indexes based on bit vectors, which
can also be considered a subclass of CRIs (Figure 2.7). Marzolla et al. apply them on

Processing Rank-Aware Queries in Schema-Based P2P Systems 31

2.3 Query Routing and Routing Indexes

a numeric attribute whose range they partition into disjoint intervals of equal lengths
so that one bit of the bit vector represents one of these intervals. Thus, the bit vector
corresponding to a data record contains a “1” at the position of the interval that contains
the indexed attribute value of the record. Aggregating routing indexes (as it is necessary
to create them) is simply done by a bitwise “or” operation.

In order to support query routing, the queried attribute range has to be represented
as a bit vector itself. By performing a bitwise “and” operation over the bit vectors of the
routing indexes, relevant neighbors can easily be determined. Just like the approaches
mentioned above, answers are sent along the path the query has been propagated on. To
avoid cycles, the approach uses a spanning tree algorithm.

Marzolla et al. consider the problem of updates and insertions and propose an update
propagation algorithm: whenever an update occurs, a new bit vector is created and
compared to the old one. If these two vectors are different, the new vector is propagated
to all neighbors. They in turn proceed alike and stop propagation when the received bit
vector does not result in any changes of the indexes propagated to neighboring peers. In
the worst case, all peers in the system have to update their routing indexes. Insertions and
deletions can be treated as updates using the same algorithm. This kind of maintenance
is almost the same as proposed by Crespo et al. [41] and likewise inefficient because a
single update results in flooding the network.

Assume we have a network with many data records. Then, it is likely that a peer has
data records with attribute values in many or even all of the bit vector intervals. It is even
more likely that by aggregating the bit vectors of several peers, most if not all bits are
set to “1”. Such routing indexes are of little use since queries are actually processed by
flooding the network. Unfortunately, the evaluation presented by Marzolla et al. [134] is
restricted to networks with very little data. Each peer holds at most one data record and
approximately half of the peers do not provide any local data at all. Although Marzolla
et al. [134] do not show the impact of having more data in the network, one can easily
imagine that in this case query processing would result in almost flooding the network.

Just like the other approaches, this one does not consider queries defined on more than
just one single attribute. However, a query on structured data is likely to be defined on
several attributes. As mentioned above, without capturing attribute correlations many
peers might be queried that cannot contribute to the result. Thus, the efficiency of query
processing is limited because of inefficient query routing.

2.3.4 Routing Indexes Based on Indexing Clusters

An approach [53] very recently published by Doulkeridis et al., which also has to be
considered a subclass of CRIs with respect to the classification of Figure 2.7, applies
routing indexes based on the iDistance measure [100,209] in conjunction with equi-width
histograms to enable efficient routing of range and k-NN queries (k Nearest Neighbor)
in super peer P2P networks. iDistance is an indexing method for similarity search that
partitions the data space into n clusters. Each cluster Ci is defined by a cluster center
Ki and a cluster radius ri. Each data record p contained in a cluster Ci is assigned a
one-dimensional iDistance value according to its distance to Ci’s cluster center Ki. The
data records themselves are stored into a B+-tree using the iDistance values as keys.
Applying this concept, similarity search is turned into range query processing.

32 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.3 Query Routing and Routing Indexes

In a super peer network, each super peer has a set of peers exclusively connected to
the super peer. The super peer has some special tasks with respect to query processing,
i.e., each query issued at any peer is sent to the corresponding super peer and optimized
there. Hence, only super peers maintain routing indexes.

The construction of routing indexes follows a flooding approach. At first, each peer
clusters its local data and sends the cluster descriptions (cluster centroid Ki and radius
ri) to its super peer. The original data remains at the peer. The super peer holds this
information in a B+-tree applying the iDistance technique in order to determine later on
if a particular peer provides relevant data to a query. However, the super peer applies the
clustering algorithm once again on the cluster information received from all its assigned
peers – obtaining a set of hyper clusters that describe the data of all records provided by
all its connected peers.

The hyper clusters are broadcasted among the super peers in the network and are
further summarized in order to reduce the amount of data that needs to be kept in main
memory. The result is a set of routing clusters maintained at super peer level and used for
query routing across the super peer network. This means the routing clusters represent
the routing indexes.

However, in order to process k-NN queries efficiently, super peers need additional
information to estimate the number of records contained in a cluster. For this purpose,
each super peer maintains an equi-width histogram for each cluster that any of its peers
provides – capturing the distances of records to the cluster center. Furthermore, super
peers maintain two additional histograms per hyper cluster. The first histogram indicates
the number of clusters (of the peers) that a range query intersects – capturing the distance
distribution of the peer clusters within a hyper cluster. The second histogram maintains
an estimate of the number of data objects that the hyper clusters contain based on the
radius of the intersection between query and cluster – summarizing the information of
the peer clusters. This second histogram is attached to a hyper cluster and broadcasted
along with the hyper cluster in the routing index construction phase.

Although this might be an efficient approach in super peer architectures with only
a small number of super peers, we argue that the amount of additional information
(three-level clustering plus several kinds of histograms) the super peers need to maintain
in main memory is relatively high. Furthermore, construction and maintenance of the
routing indexes and histograms is based on flooding the super peer network whenever a
change occurs – this might be a local data update of a peer or a peer joining or leaving
the network. Especially in highly dynamic networks or networks with a large number of
super peers this is no satisfactory solution.

2.3.5 Applicability to PDMSs

In this section we have discussed several examples of routing indexes. Some of them
have been developed to index keywords in files, others to index individual attributes of
structured data without capturing attribute correlations. However, as top-N and skyline
queries are defined on numerical attributes, the ones most relevant to our work are based
on histograms. As we have already discussed, having no information about attribute
correlation but only information about each attribute in separate, leads to a high number
of unnecessary false positive routing decisions, i.e., the query is forwarded to many peers

Processing Rank-Aware Queries in Schema-Based P2P Systems 33

2.4 Histograms and Maintenance

that cannot contribute to the result. Considering the fact that queries (especially skyline
queries) are likely to be defined on multiple attributes, we argue that routing indexes
capturing attribute correlations should be preferred. We also reviewed one approach
which considers indexing multidimensional numerical data. However, although this might
be an efficient approach in super peer architectures with only a small number of super
peers, we argue that the amount of additional information (three-level clustering plus
several kinds of histograms) the super peers need to maintain in main memory is too
high. In principle, however, all the approaches to index numerical data could be adapted
to work in PDMSs. To overcome the problem of schema heterogeneity, we could, for
example, define routing indexes on attributes of a peer’s local schema and index the data
of neighbors that can be mapped to those attributes.

Still, there is another important aspect, even though it is ignored by most approaches:
index construction and maintenance in the presence of data updates and/or changes in
the network structure. Even the approaches that acknowledge this as a problem only
propose a simple flooding strategy. Intuitively, it is obvious that this cannot be efficient
in large or highly dynamic networks as flooding the network is likewise expensive for
index maintenance as it is for query processing.

2.4 Histograms and Maintenance

In the previous section we have reviewed related work on routing indexes and identified
those based on histograms (Figure 2.7) as being most relevant with respect to processing
queries on structured numerical data. As histograms are a very popular approach to
summarize numerical data and as there has been considerable research, let us first discuss
some approaches proposed by the literature and afterwards review several techniques
regarding their maintenance.

Assume we want to capture the value distribution of a particular numerical attribute.
For this purpose, histograms use buckets defined by lower and upper boundaries de-
scribing the range of values they represent. In addition to these boundaries, a bucket
is assigned statistical information, i.e., the number of records whose attribute values lie
within that range. Some of the most popular histograms are: equi-width histograms,
equi-depth histograms, and compressed histograms. For equi-width histograms the value
range is partitioned into multiple buckets that all have equal extensions, i.e., the distances
between upper and lower boundaries are equal. In contrast to equi-width histograms, the
goal in construction of equi-depth histograms is to create buckets that represent equal
numbers of records. Consequently, buckets might have different extensions/sizes. For
compressed histograms, the k most frequent attribute values are stored into singleton
buckets (each capturing not a range of attribute values but only one) whereas the others
are partitioned according to the rules of equi-width or equi-depth histograms. There are
many more variants of histograms and construction algorithms. For the sake of brevity,
we refer to [99] for a comprehensive study.

Most histograms are only defined on one attribute value. Using multiple one-di-
mensional histograms to estimate the result cardinality for queries defined on multiple
attributes is only possible by assuming independence between attributes. In reality, we
usually observe correlation between attributes and the assumption of independence often

34 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.4 Histograms and Maintenance

leads to bad approximations of result cardinalities [161]. This is disadvantageous not only
for routing indexes but also for centralized systems and the problem of cardinality esti-
mation. The first histogram developed to counteract this problem is the two-dimensional
equi-depth histogram proposed by Muralikrishna et al. [142]. By defining histograms on
multiple attributes, correlations can be captured and cardinalities can be estimated more
precisely.

However, most multidimensional histograms [80, 142, 161] are static and need to be
reconstructed each time the data they summarize is updated. This is expensive not only
in centralized environments but also in distributed environments, for which reconstructing
routing indexes is even more expensive. Thus, in the following we review some strategies
designed for efficient incremental maintenance of histograms.

2.4.1 Maintenance

First approaches for incremental maintenance of one-dimensional equi-depth and com-
pressed histograms were proposed by Gibbons et al. [69]. In addition to histograms, the
system also maintains a backing sample, i.e., an up-to-date random sample of the records
currently stored in a relation. In order to adapt histograms, an algorithm based on split
and merge operations is proposed. Whenever an update occurs, the backing sample as
well as the corresponding histogram bucket are adapted. If the count of a bucket, i.e.,
the number of records it represents, exceeds a predefined split threshold, the bucket is
split up into two. The boundaries of the resulting buckets are chosen according to the
backing sample. If now the number of buckets exceeds the maximum number of buckets
the histogram is allowed to use, other buckets need to be merged. Thus, two adjacent
buckets whose combined count does not exceed the split threshold are merged. Likewise,
if due to deletions the number of records within a bucket falls beyond a predefined merge
threshold, the bucket is merged with one of its adjacent buckets and the bucket with the
largest count is split up.

The concept of query feedback was first introduced by Chen et al. [38]. In this ap-
proach the data distribution is approximated by a curve-fitting function. In order to
adapt this function, the approximating distribution is adjusted according to query feed-
back using a technique based on the recursive least-square-error. However, the concept
of query feedback has been used later on also in the context of histograms. LEO (DB2’s
LEarning Optimizer) [179] exploits query results to validate database statistics and to
compute adjustment factors in order to repair incorrect statistics and cardinality esti-
mates of query execution plans. Application of feedback in LEO works in four steps: (i)
retaining the query plan, (ii) monitoring query execution and collecting feedback infor-
mation, (iii) analyzing feedback information and computing correction values, and (iv)
considering correction values for query planning. In contrast to most other approaches,
the histograms are not changed, rather both the original histogram and the correction
values are considered in order to estimate result cardinality.

Updating multidimensional histograms using query feedback was considered by Aboul-
naga et al. [3]. Because of the applied grid structure (defined by the buckets’ boundaries)
and the aspect of self tuning, the approach is often referred to as STGrid. Applying this
approach, both the buckets’ counts as well as their boundaries are adapted. Adjacent
buckets of the initial histogram share bucket boundaries, i.e., there is no space in between

Processing Rank-Aware Queries in Schema-Based P2P Systems 35

2.4 Histograms and Maintenance

buckets, and the regions of all buckets altogether cover the entire data space defined by
the indexed attributes. In order to update the bucket counts, the algorithm exploits feed-
back from issued queries. At first, the algorithm needs to find all buckets whose regions
overlap the queried region because all these regions potentially represent data that was
part of the query answer. Based on these regions and the overlap, the difference between
the estimated number of result records and the retrieved number is determined. The
bucket counts are adapted in proportion to their current count, i.e., assuming the higher
a bucket’s count the higher is its “blame” on the incorrect estimate. Bucket boundaries
are adapted periodically based on the split/merge algorithm proposed by Gibbons et
al. [69], which considers each attribute in isolation. In contrast to the original algorithm,
more than two buckets can be merged and a bucket can be split up into more than two
buckets. As STGrid does not hold any samples, the buckets resulting from a split oper-
ation have equal sizes. In order to ensure that the maximum number of buckets is not
exceeded, some consecutive buckets need to be merged. Hence, if the difference between
consecutive buckets is less than a predefined percentage of the number of indexed records,
they are merged. The disadvantages of this algorithm are due to the relatively rigid grid
structure. Thus, a split operation with respect to one dimension does not affect only
one bucket but, because of the multidimensionality, all buckets within a slice of the data
space. Although the split decision might be worthwhile for some of the buckets, it is
suboptimal for others.

For all histograms discussed so far buckets are not allowed to overlap. This is different
for GENHIST [80], which allows buckets to have variable sizes and to overlap. During
construction of these histograms, the grid structure (created by the buckets partitioning
data space) is redefined in each step and those cells with the highest densities are made to
buckets. However, this approach does not consider the problem of maintenance and the
configuration of its many parameters is complex. Another approach that allows buckets
to “overlap” but considers updates is STHoles [22]. STHoles has a hierarchical structure,
in which buckets might contain others, i.e., they might contain holes represented by child
buckets. Just like STGrid, STHoles uses query feedback to update histograms. The
distribution of buckets within the data space in STHoles depends on the query workload,
i.e., the more frequently a region is queried, the more buckets are used to describe the
data distribution within that region. The histogram is initialized as one large bucket that
covers the whole data space. Then, in dependence on the queried region a new bucket
is created, i.e., a hole is drilled into an already existing bucket. In order to limit the
number of buckets, buckets with similar frequency distributions are merged. Although
this approach eliminates several problems of STGrid, some problems remain, e.g., it
might take a long time to correctly represent larger changes in the data distribution due
to updates. Furthermore, as a general problem of all approaches using query feedback
for index maintenance, estimates for regions queried only rarely are likely to be bad.

Srivastava et al. [178] presents ISOMER (Improved Statistics and Optimization by
Maximum-Entropy Refinement), an algorithm for feedback-driven histogram construc-
tion. For this purpose, the algorithm collects query feedback records (QFRs) consisting of
predicates and their selectivities. The algorithm uses the maximum-entropy principle to
approximate the true data distribution by the “simplest” distribution that is consistent
with the set of all currently valid QFRs. ISOMER uses STHoles as base structure but
uses a slightly different algorithm for creating and merging buckets. QFRs are collected

36 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.5 Distributed Query Processing Strategies

and used in batches to refine the histogram, e.g., during periods of light load. When
updating an existing histogram, all old QFRs that conflict with the new ones need to be
identified and removed. Afterwards, new buckets (holes) are created so that the current
set of QFRs is represented by the histogram. Finally, buckets are merged in a similar
fashion as proposed by Bruno et al. [22].

2.4.2 Applicability to PDMSs

In this section we have reviewed maintenance strategies for histograms with the intention
of finding appropriate strategies that we can use to build and maintain routing indexes
in PDMSs. The main problem with all these approaches is that they have been designed
to update histograms maintained for estimating selectivity or result cardinality in cen-
tralized systems. Thus, the split and merge strategies used to construct and update
these histograms aim at producing buckets that capture areas with similar frequency
distributions. This often results in rather large regions represented by a single bucket.
Furthermore, the approaches discussed so far assume that the buckets cover the whole
data space. STHoles makes even use of a bucket (the root bucket) that covers the whole
data space.

When estimating selectivity in centralized systems, as the strategies have been devel-
oped for, the worst thing that could happen is choosing a suboptimal query plan while the
correct result would still be retrieved. For routing indexes query execution costs could be
unnecessarily high (false positive routing decisions) or query results could be incomplete
(false negative routing decisions). If the histogram of a routing index has large buckets
(no matter how many data records they represent), the routing algorithm most likely
always forwards the query to all its neighbors. This is true not only for range queries but
also for skyline and top-N queries. Although the result cardinality might be estimated
correctly, the goal of applying routing indexes, which is the reduction of network load
and the number of involved peers, is not achieved. Hence, it must be the primary goal of
a routing index to indicate what areas do not provide any data at all such that the peer
can safely prune neighbors from consideration. Then, only the secondary goal is to form
buckets capturing uniform data distributions.

Another disadvantage of the approaches based on query feedback reviewed in this
section is that histograms are only updated in subspaces which are queried frequently.
Applying such a strategy for routing indexes would mean that when a peer updates its
local data such that it afterwards provides data with attribute values completely different
from the ones it has provided before, then it will not receive any queries from its neighbors
referring to its new data. Thus, relevant data that should be considered is missed.

2.5 Distributed Query Processing Strategies

As already mentioned above, in structured (DHT-based) P2P networks the same rule that
was used to distribute data among peers can be used to efficiently route queries to only
those peers that contribute to the result. As we assume unstructured P2P networks to
underly PDMSs, redistributing or replicating data is not possible. In contrast, peers have
to make routing decisions with the only help of schema mappings and routing indexes.

Processing Rank-Aware Queries in Schema-Based P2P Systems 37

2.5 Distributed Query Processing Strategies

Still, it is possible to consider a super peer architecture as basis in which only the super
peers as a backbone network participate in a PDMS. Then, super peers make the data
of their subordinate peers accessible to other super peers in the network. Although the
application of routing indexes is recommendable and promising for every query processing
strategy, they can be considered optional. Thus, in the following we discuss techniques
for query processing that are independent from the application of routing indexes.

2.5.1 Data Shipping and Query Shipping

In P2P systems there are two basic paradigms for processing queries that can also be
applied to PDMSs: data shipping (DS) and query shipping (QS) [115]. Applying data
shipping, all data identified as being relevant to a query is transferred (shipped) to the
initiator, which processes the answer to the query locally based on its local data and
the data received from other peers in the network. When applying query shipping, the
initiator sends the query to other peers in the system. In contrast to the data shipping
approach, parts of the query are already processed at the peers that provide relevant
data. Only the data they cannot process any further is sent to the initiator, which then
computes the final result based on its local data and the preprocessed data received from
its neighbors. It is obvious that such preprocessing reduces the amount of transferred
data as well as network load and execution costs. Both basic paradigms, data shipping
and query shipping, exploit the fact that peers can work in parallel on the same query.

Initiator

Select *

Where name = “J.R.R. Tolkien”

Oliver Twist

The Adventures of

Huckleberry Finn

The Lord of the RingsJ.R.R. Tolkien

Charles Dickens

Mark Twain

booktitlewriter

J.R.R. Tolkien The Silmarillion

booktitlewriter

Moby Dick

The Hitchhiker’s Guide

to the Galaxy

Herman Melville

Douglas Adams

Oliver Twist

The Adventures of

Huckleberry Finn

The Lord of the RingsJ.R.R. Tolkien

Charles Dickens

Mark Twain

booktitlewriter

J.R.R. Tolkien The Silmarillion

booktitlewriter

Moby Dick

The Hitchhiker’s Guide

to the Galaxy

Herman Melville

Douglas Adams

Figure 2.9: Query Shipping vs. Data Shipping

Figure 2.9 illustrates the differences between data shipping and query shipping. Let
us assume the initiator forwards the query to two neighboring peers. Applying data
shipping, both send much more data to the initiator than necessary, namely all their
local data, since they do not evaluate the query locally. However, when applying query
shipping, the two peers that receive the query evaluate the predicate “name = J.R.R.
Tolkien” on their local data and thus send much less data to the initiator.

38 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.5 Distributed Query Processing Strategies

2.5.2 Mutant Query Plans

An interesting approach for query processing in distributed environments on XML data
is the application of Mutant Query Plans (MQPs) [154]. The principle is illustrated in
Figure 2.10. and basically combines data shipping and query shipping. An MQP is a
query plan graph that in addition to URLs (Unified Resource Locators) may contain
URNs (Unified Resource Names). While the former refer to peers in the network, the
latter refer to abstract resource names. A peer receiving an MQP (serialized for trans-
mission in XML) has a local catalog that maps URNs to URLs. Using this catalog the
peer is able to replace URNs with URLs of peers holding the data referred to by the
URNs. As the information provided by the catalog may be incomplete, a peer is usually
not able to replace all URNs of a query. Thus, the query is forwarded to another peer
that hopefully will be able to do so. In addition to replacing URNs the peer itself tries to
compute at least parts of the query locally based on its local data. The resulting XML
fragments are inserted into the MQP. Then, the mutated query plan is sent to a peer
that knows how to resolve at least one of the remaining resources. By chaining the query
in this manner through several peers, the answer to the original query can be processed
in a distributed manner – sharing load among multiple peers.

Parser Catalog Optimizer
XML

URL

Policy ManagerQuery Engine

Subplans to evaluate

MQP

To next server

URN

URN URN

Cost estimatesMutated QP

XML fragments

Sub�plans

Figure 2.10: Mutant Query Plans [154]

A formal model for MQPs is presented by Abiteboul et al. [2]. The key contribution is
to provide an algebraic model and thus a language that enables formulating distributed
computations on XML data. For this purpose, XML documents contain service calls that
specify the receiving peer, the name of the service as well as a set of parameters.

2.5.3 Incremental Message Shipping

So far we have only distinguished strategies by what data is sent through the network
and whether parts of the query are evaluated at remote peers. However, usually peers
receiving a query forward the query again such that chains with lengths of several hops
occur. Let us assume each peer in such a chain always waits for the answers of its
neighbors before sending its own answer. This works well in static systems but leads

Processing Rank-Aware Queries in Schema-Based P2P Systems 39

2.5 Distributed Query Processing Strategies

to great difficulties in dynamic environments with peer failures. To avoid having peers
wait for an answer of a crashed peer for too long, timeouts can be used. When such a
timeout elapses, the peer processes its answer only based on the already received answers.
Nevertheless, the user might still wait a long time until he/she is presented an answer.
We have proposed an incremental strategy (Incremental Message Shipping, IMS) [107]
to overcome these shortcomings. Peers forward result records as soon as they are known.
Thus, a queried peer is likely to send more than just one answer message. Consequently,
this results in a higher number of messages and thus a higher network load but has the
advantage that even when peers crash, answers arrive at the initiator and first results
are output to the user at an early stage.

Q

Q

Q Q

QA

Peer 1
Peer 0

Peer 2
Peer 3

Peer 4

Figure 2.11: Incremental Message Shipping - Query Propagation

Figure 2.11 shows an example of IMS – illustrating the first phase of query propa-
gation. Let us assume P0 issues a query and sends it to its neighbors (P1 and P2). P1

again forwards the query to P3 and P4. P2 also forwards the query to P4 not being aware
that the query has already been sent to P4 by P1. P2 already sends an answer message
(evaluated on its local data) to P0. P1 does not send such a message because it has no
local data records matching the query. In the next step, P0 can already output an inter-

A

A Q

Q

A
A

Peer 1
Peer 0

Peer 2
Peer 3

Peer 4

Figure 2.12: Incremental Messsage Shipping - Answer Propagation

mediate result based on the local data of P0, P1, and P2 to the user. Figure 2.12 depicts
the following steps in processing the query. P3 processes the query received from P1, it
forwards the query to P4, and sends an answer to P1. Likewise, P4 processes the received

40 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.6 Query Rewriting

messages. Assume the message from P2 has been received first. Then, P4 processes this
query, forwards it to P3, and sends an answer to P2. The message received from P1 is
neglected because the answer to the query with respect to P4’s local data is already sent
to the initiator via P2. The application of a unique query identifier (e.g., based on the
peer ID of the initiator and a timestamp) enables P4 to detect such a cycle. Both queries
that have been forwarded in the last step to P3 and P4 can safely be neglected due to the
same reasons. P1 and P2 forward the answers to P0, which now can compute the final
result and output it to the user.

The difference to QS is that peers can send multiple answer messages or none at all.
Hence, in general more messages are sent using IMS. However, in networks with only a
few peers contributing to the result, IMS may perform better than QS even though the
network might be rather static. The reason is that QS demands each peer to send one
answer message in any case so that the sender of the query may stop waiting. As this is
not necessary using IMS, the number of messages might actually be lower in comparison
to QS when only a few peers contribute to the result.

2.5.4 Applicability to PDMSs

With respect to PDMSs we cannot apply MQPs in their original sense. The main reason
is that with the absence of global knowledge we cannot create a global query plan at
the initiator. In addition, peers in a PDMS cannot contact arbitrary peers since a
mapping between two such peers needs to exist. Furthermore, answers to a query must
be routed back the same way as the query because not only does the query itself need
to be rewritten but also the data records of an answer such that finally the initiator
receives a set of records in its local schema. Another weakness of MQPs is that they
do not exploit parallelism, which should be considered in distributed environments in
order to reduce query response time. However, there are still some interesting aspects a
strategy applicable to a PDMS should use. These are chaining and having non-initiator
peers compute partial or intermediate results and attaching them to the query. QS and
IMS are both applicable to PDMSs if the query is routed back the same way it has been
propagated on. Furthermore, we need to add a query rewriting step before forwarding
the query and a result transformation step before sending an answer.

2.6 Query Rewriting

A basic prerequisite for query rewriting is, of course, to define mappings between schemas.
Hence, before going into details on query rewriting let us first discuss the basic ap-
proaches to define mappings between schemas. For data integration the two most
common approaches to express mappings are: local-as-view (LAV) and global-as-view
(GAV) [86, 119]. The basic idea of these approaches is to express a mapping between
two schemas as views. For this reason, the definition of PDMSs (Definition 1.1.1), as
given in the introduction of this dissertation, uses queries to express mappings/assertions.
Such queries are defined on the relations of one schema and create relations of the other
schema (without loss of generality referring to the relational data model). Assuming we
have a mediator system [68,124] with a global schema and several connected sources with

Processing Rank-Aware Queries in Schema-Based P2P Systems 41

2.6 Query Rewriting

heterogeneous local schemas, the difference between LAV and GAV is which schema is
described by the views:

• the global schema (GAV) or

• the local schemas (LAV).

This means that in order to define mappings, GAV approaches only use assertions of
the form qSP

⊆ g (with qSP
being a query referring to relations in the source schemas

and g ∈ GP referring to a relation in the global schema) and LAV approaches only use
assertions of the form s ⊆ qGP

(with s ∈ SP referring to a relation in the source schemas
and qGP

being a query referring to relations in the global schema). The differences between
GAV and LAV can best be illustrated with an example. Thus, let us consider a mediator
system with relational data as an example.

Global-As-View (GAV)

For each global relation we need to define a view (query) over the sources’ local schemas.
Typical for such views is that they contain several union operations to combine the results
of multiple subqueries. These subqueries describe how to extract tuples from the sources.
Figure 2.13 shows an example with P0 serving as the mediator – the schema of P0 serves
as global schema. The views maintained by P0 describe how to integrate the data from
P1, P2, and P3 into the global schema.

When a query Q (formulated in the global schema) is issued at P0, all global relations
referred to by Q are replaced by their view definitions (unfolding). To execute Q, we first
need to compute the referenced views and then all the other operations (select, project,
join) being part of Q’s definition.

Obviously, the main advantage of GAV is that processing the query means low algo-
rithmic effort: we simply need to replace references to global relations with their view
definitions and process the resulting query. On the other hand, some knowledge might
get lost when modeling the global relations, e.g., the data of the global relations might
already be stored in a joined format at a source. Furthermore, local constraints at the
sources cannot be modeled at the global level. Another important disadvantage is that
whenever a data source enters or leaves the network, the global relations and their view
definitions have to be adapted in order to reflect the new situation.

Local-As-View (LAV)

In contrast to GAV, the local schema of each source peer in LAV is described as a view
over the global schema. Figure 2.14 shows how such mappings could look like in the
network of Figure 2.13.

The problem we encounter for processing a query formulated in the global schema
is that we can no longer simply replace a part of the query with the view definitions.
Instead, we have to rewrite the query in order to access the data of the sources. In
general, the rewriting process produces a set of queries whose results are converted into
the global schema and aggregated into the final query result. The literature proposes
several algorithms dealing with this problem of “query answering using views” [84, 122]:
the Bucket Algorithm [74,123,124], Inverse Rules [54, 55], and MiniCon [162,163].

42 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.6 Query Rewriting

book(title,author,ISBN,library)

CREATE VIEW book AS
SELECT title,author,ISBN,library as location
FROM P1.book
UNION
SELECT title,author,ISBN,town as location
FROM P2.work
UNION
SELECT title,author,”” as ISBN,location
FROM P3.item

item(title,author,nationality,location)
location(libraryName,city)

author(fullname,nationality)
book(title,author,ISBN,location)
library(name,street,zip,town)

CREATE VIEW author AS
SELECT name as fullname,nationality
FROM P1.writer
UNION
SELECT author as fullname,nationality
FROM P3.item

CREATE VIEW library
SELECT libraryName,”” as street,”” as zip,city as town
FROM P3.location

writer(name,nationality,birthdate)
work(title,author,ISBN,town)

P0
Peer 0

Peer 2

Peer 1

Peer 3

Figure 2.13: GAV Example with P0 as Mediator

The advantage of LAV over GAV is that when a peer joins or leaves the network,
the global schema as well as the mapping definitions of all the other sources remain
unaffected. Furthermore, associations and constraints defined locally at the sources may
be considered. As already indicated above, these advantages do not come for free: they
require far more complex query processing techniques that include query rewriting.

Combinations of GAV and LAV – GLAV and Both-As-View

As we have already discussed above, both LAV and GAV have several disadvantages.
Hence, approaches have been developed that combine LAV and GAV. One of them is
GLAV (Global-Local-As-View) [66]. It promises to combine the expressive power of both
LAV and GAV. For LAV a mapping to a source relation is defined by using a view
formulated on the global schema. For GAV a mapping to a global relation is defined
as a view formulated on source relations. Applying the GLAV approach, mappings are
defined by using two views, i.e., a view on the local schema is defined as a view on the
global schema – allowing recursive queries over the sources. Thus, when applying GLAV,
the global schema and mappings do not have to be adapted each time a new source joins
the network. Whereas for LAV-style mappings the global schema needs to represent all
schema elements that are shared by multiple source relations (to allow joins between
them), GLAV-style mappings can express joins between multiple source relations in the
mapping definition so that these join attributes do not have to be part of the global
schema. Furthermore, query processing can benefit from the GAV assertions.

The Both-As-View (BAV) approach [151] provides a framework of reversible sche-
ma transformation sequences (pathways). Using BAV it is possible to extract both a
definition of the global schema as view over the source schemas and definitions of the

Processing Rank-Aware Queries in Schema-Based P2P Systems 43

2.6 Query Rewriting

CREATE VIEW book AS
SELECT title,author,ISBN,location as library
FROM book

CREATE VIEW writer AS
SELECT fullname as name,nationality, ”” as birthdate
FROM author

CREATE VIEW work AS
SELECT title,author,ISBN,location as town
FROM book

CREATE VIEW item AS
SELECT title,fullname as author,nationality,location
FROM author,book
WHERE author.fullname=book.author

CREATE VIEW location AS
SELECT name as libraryName,town as city
FROM library

book(title,author,ISBN,library)

item(title,author,nationality,location)
location(libraryName,city)

author(fullname,nationality)
book(title,author,ISBN,location)
library(name,street,zip,town)

P0

P3

P0
Peer 0

Peer 2

Peer 1

Peer 3

writer(name,nationality,birthdate)
work(title,author,ISBN,town)

Figure 2.14: LAV Example with P0 as Mediator

source schemas as views over the global schema. On the other way around, BAV pathways
can be extracted from GAV and LAV view definitions. Furthermore, BAV supports
the evolution of global and local schemas, allowing the transformation pathways and
schemas to be incrementally modified. Thus, BAV combines the advantages of both
GAV and LAV. However, the disadvantage is that pathways are often very fine granular
so that query optimization might be expensive for the corresponding LAV and GAV view
definitions.

Because of the advantages such as low-effort extensibility that LAV entails for dy-
namic environments, we favor LAV over GAV. Being a combination of both approaches,
GLAV [66] would be another interesting choice we could use to define mappings in our
system. However, as LAV is the more challenging part, we limit our considerations to
LAV-style mappings.

2.6.1 Conjunctive Queries

As most related work on query rewriting focuses on conjunctive queries in the context of
relational data, we introduce this kind of queries in the following and sketch how query
rewriting based on them works. At first, we give a theoretical introduction to the topic
and then illustrate the rewriting process with an example.

Conjunctive queries [193,194] represent select-project-join queries and do not consider
any kind of grouping, sorting, aggregation, or any other kind of higher level operators.
A conjunctive query can be written in the form [25]:

{x|∃ y : body(x, y)} (2.1)

where body(x, y) is a conjunction of atoms (function-free first-order logic (FOL) for-

44 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.6 Query Rewriting

mulas that may contain constants and whose relation symbols refer to relations in the
given schema) involving the free variables x = x1, . . . , xn (also distinguished or exported
variables), the non-distinguished variables y = y1, . . . , ym (also existentially quantified
variables), and constants. Thus, the conditions given by the atoms in the body are
connected via logical “and” operations. A query containing atoms connected via logical
“or” operations can still be expressed by combining the results of multiple conjunctive
queries [33], which corresponds to the application of a union operator in relational al-
gebra. Futhermore, the conjunctive queries we consider in the following may contain
built-in arithmetic comparison predicates using ≤, <,≥, >, =, and �=. Hereafter, they
are referred to simply as predicates or conditions.

The datalog notation for conjunctive queries has been widely adopted. A conjunctive
query without built-in comparison predicates in datalog notation is a logical rule adhering
to the following form [84]:

q(X̄) : −r1(X̄1), . . . , rn(X̄n) (2.2)

where q and r1, . . . , rn are predicate names referring to database relations. The atom
q(X̄) is called the head of the query and refers to the answer relation. The atoms
r1(X̄1), . . . , rn(X̄n) are the subgoals in the body of the query. The records X̄, X̄1, . . . , X̄n

contain either variables or constants. For query rewriting we limit the expressiveness of
datalog and require that the query is non-recursive and safe [193], i.e., X̄ ⊆ X̄1∪· · ·∪X̄n,
that is every variable appearing in the head must also appear in the body.

Datalog queries assign variables and constants to attributes of a relation using the
position of a variable in the schema to determine the corresponding attribute. Variables
may be used multiple times within the same datalog rule. Join predicates, for instance,
are formulated by assigning the same variable to multiple attributes. Datalog queries
may also contain subgoals whose predicates involve arithmetic comparisons Θ = {≤, <,
≥, >, =, �=}. Thus, a query in general has the following form:

q(X̄) : −r1(X̄1), . . . , rn(X̄n), c1, . . . , cm (2.3)

where c1, . . . , cm are binary boolean logic expressions of the form X θ Y with θ ∈ Θ
referring to variables and constants. For all involved variables we require that if a variable
X appears in a subgoal of a comparison predicate, then X must also appear in an ordinary
subgoal [84].

Figure 2.15 illustrates the relationship between SQL, XQuery, and datalog. It shows
an example SQL query on a relational schema and the same query formulated in XQuery
referring to XML structures representing the same data. The name of a context node in
the XML structure corresponds to the name of a relation in the relational data model.
As both queries involve only select-project-join operations, both queries can be mapped
to the same datalog query.

With respect to datalog queries we distinguish between:

• exported symbols or exported variables such as x and y in Figure 2.15,

• literals or subgoals such as writer(x, y, n),

• constants (e.g., Germany), and

• conditions (e.g., {n =“Germany”}).

Processing Rank-Aware Queries in Schema-Based P2P Systems 45

2.6 Query Rewriting

select first, last
from writer

where nation=“Germany”

for $p in writer

where $p/nation=“Germany”
return <result>
 <first>{$p/first}</first>
 <last>{$p/last}</last>
 </result>

result(y, x) :- writer(x, y, n), n=“Germany”

relation: writer
attributes: first, last, nation

RELATIONAL DATA MODEL

DATALOG

<writer>
 <first>...</first>
 <last>...</last>
 <nation>...</nation>
</writer>

XML

SQL

XQuery

Figure 2.15: Conjunctive Queries on Relations and XML Data

According to this we denote:

• the set of symbols (variables) of a query Q as S(Q),

• the set of exported symbols as E(Q),

• the set of literals/subgoals as L(Q),

• the set of constants as C(Q), and

• the set of conditions/predicates as P(Q).

2.6.2 Query Containment and Containment Mapping

As this dissertation focuses on LAV-style mappings, we need to consider how these map-
pings can be used to rewrite a query. For this purpose, let us consider a single data
integration system that might be part of a PDMS in the sense of Figure 1.4 and discuss
the main characteristics of an appropriate rewriting.

The input to an algorithm for query rewriting using views is a query Q formulated
on the global schema and a set of views V = {V1, . . . , Vn}. The task of the algorithm is
to find a rewriting Q′ formulated on the views only. With respect to such rewritings we
distinguish two categories: equivalent rewritings and contained rewritings. An equivalent
query rewriting provides all answers to the query whereas a contained query rewriting
possibly provides only a subset. Definition 2.6.1 formally defines the two notions [84].

Definition 2.6.1 (Query Containment and Equivalence). A query Q is said to be con-
tained in a query Q′, denoted by Q � Q′, if for all database instances D the set of records
computed for Q is a subset of those computed for Q′, i.e., Q(D) ⊆ Q′(D). The two
queries are said to be equivalent if Q � Q′ and Q′ � Q.

46 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.6 Query Rewriting

In PDMSs or data integration systems in general we have to deal with a possibly
large number of peers (sources) and thus a large number of views describing mappings
between them. Although we do not assume that each peer maintains views to all other
peers in the network, depending on the application and the network structure a peer
might still have a high number of neighbors, i.e., peers that it has established mappings
to. In contrast to query optimization in centralized systems, which use materialized
views to accelerate query processing, the data provided by the sources in a PDMS might
often be incomplete, i.e., a source might only store some of the records that satisfy its
view definitions. In this context, Lenzerini et al. [26, 119] distinguish three cases: views
can be sound (i.e., the source extension provides any subset of the records satisfying the
view definition), complete (i.e., the source extension provides any superset of the records
satisfying the view definition), or exact (i.e., the source extension provides exactly the
set of records satisfying the view definition). Another distinction we need to make is
whether the set of objects contained in the domain (world) is exactly the same as the
set of objects represented by the views (closed-world assumption – CWA) or if there
might exist any other objects besides those stored in the views (open-world assumption –
OWA). As in a PDMS we can usually neither guarantee that a view is complete or exact
nor that all existing objects are represented by the sources; in this dissertation we adopt
the open-world assumption and assume that the views are sound. We do not go into
details on the theoretical implications of these assumptions but refer to [1,26,84,119] for
more details.

Under these assumptions it is hard or even impossible to find an equivalent rewriting
of a query in a PDMS. The best we can do is try to retrieve the maximal set of answers
to a query, i.e., find a maximally-contained rewriting according to Definition 2.6.2, which
will often involve a union of several queries over the sources.

Definition 2.6.2 (Maximally-Contained Rewriting). Let Q be a query, LA a query
language, and V = {V1, . . . , Vm} a set of view definitions. The query Q′ is a maximally-
contained rewriting of Q using V w.r.t. LA if:

• Q′ is a query in LA that refers only to the views in V,

• Q′ is contained in Q, and

• there is no rewriting Q1 ∈ LA, such that Q′ � Q1 � Q and Q1 is not equivalent
to Q′.

Note that a rewriting is maximally-contained only with respect to a specific query
language. Thus, it might be possible that a rewriting providing more answers exists
in a more expressive language. In the following we will for convenience often refer to
maximally-contained rewritings simply as rewritings.

An essential part of Definition 2.6.2 is query containment, i.e., to decide whether a
query Q′ is contained in another query Q. To decide if Q′ is contained in Q finding a
containment mapping is a sufficient condition [33,122]:

Q′ � Q ⇐⇒ ∃ containment mapping from Q to Q′ (2.4)

Processing Rank-Aware Queries in Schema-Based P2P Systems 47

2.6 Query Rewriting

Definition 2.6.3 (Containment Mapping). A containment mapping [33, 120, 122] from
Q to Q′ is a symbol mapping (h : S(Q) �→ S(Q′)) such that:

• ∀e ∈ E(Q) : h(e) ∈ E(Q′)
there is a mapping for each exported variable e in query Q to an exported variable
in Q′,

• ∀c ∈ C(Q) : h(c) = c
each constant c in Q is mapped to the same constant in Q′,

• ∀l ∈ L(Q)∃l′ ∈ L(Q′) : h(l) = l′

each literal l in Q is mapped to at least one literal l′ in Q′, and

• P(Q′) =⇒ P(Q)
the conditions in Q′ imply the conditions in Q.

Consequently, in order to obtain the maximal result set, the rewriting must contain
mappings for all relations and attributes referred to by the query. The information we
need for finding these mappings is provided by the view definitions. Thus, the main
problems that remain to be solved by a rewriting algorithm are:

• to decide if a rewriting actually provides a mapping for all symbols used in the
query and

• to ensure that the conditions in the query and in the views of the rewriting are not
contradictory.

2.6.3 Query Rewriting Algorithms

On the previous pages we have limited our considerations to theoretical aspects of query
rewriting. With this theoretical background, let us now review some state-of-the-art
query rewriting algorithms. For this purpose, consider again a data integration system
in which mappings are represented in LAV-style and queries are formulated as conjunctive
queries.

There are three main rule-based algorithms for LAV-style mappings proposed in the
literature dealing with conjunctive queries: the Bucket Algorithm [74,123,124], MiniCon
[162,163], and Inverse-Rules [54,55]. Inverse-Rules basically inverts the information given
by the view definitions to build rules describing how to extract records from the data
sources and insert them into global relations to answer a query. Unfortunately, data
joined locally is separated in the global relations. If there is the same join condition in
both query and view, the records have to be recomputed and joined again. To avoid this
and to obtain a more efficient rewriting, the inversed rules have to be unfolded.

The other two algorithms are based on another principle. They consider the subgoals
contained in queries and views and use them to determine which combinations of views
would not yield empty result sets – a subgoal is contained in the body of a query or
view definition and consists of the reference to a relation with its attributes and possibly
existing predicates. The first step in the Bucket Algorithm is to create one bucket for each
subgoal contained in the query. As views are defined as queries, they contain subgoals
as well. Thus, these subgoals can be used to decide whether a view (and consequently a
source peer) provides relevant data or not. For this purpose, the subgoals of the views are
compared to the subgoals of the query. Whenever a containment mapping from a view

48 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.6 Query Rewriting

subgoal to a query subgoal exists, the view is inserted into the bucket corresponding to
the matching query subgoal. To reformulate the whole query, the Cartesian product of
the views in the buckets is built. This Cartesian product may be rather large and may still
contain a lot of combinations that would lead to empty answers, e.g., because of missing
attributes for joins or conflicting predicates. In order to find rewritings, the algorithm
performs a query containment test for each candidate combination. All candidates that
do not pass the containment test are pruned. This is the main disadvantage of the Bucket
Algorithm with regard to performance.

MiniCon is an advanced version of the Bucket Algorithm. It starts alike by creating
buckets for query subgoals and sorting views into them. For each view definition the
algorithm determines which query subgoals can be answered by the view. After having
found a partial mapping from the query to the view, the join predicates of the query
are considered in order to find out which additional set of view subgoals is needed to
rewrite the whole query. This set and the mapping information is called a MiniCon
Description (MCD). In the second phase, the MCDs are combined and query rewritings
are created. Compared to the Cartesian product of the buckets in the Bucket Algorithm,
fewer combinations of MCDs have to be considered. In MiniCon a portion of the work
done in the second phase of the Bucket Algorithm is shifted into the first phase when
building the MCDs. Thus, views that cannot be combined because of missing attributes
for join conditions are detected at an early stage.

Example

To illustrate the process of query rewriting with an example, let us consider how the
Bucket Algorithm rewrites a query. Assume we have the global schema:

writer(fullname, nation)

books(title, author, publicationDate)

and two sources:

S1: item(title, writer, nationality, year), year > 1900

S2: authors(name, nation)

The mappings V1 and V2 in LAV-style for the two sources S1 and S2 are defined as:

V1(t, w, n, y) :- writer(w, n),

books(t, w, y),

y > 1900

V2(n, nat) :- writer(n, nat)

Further assume we are given the following query in the global schema:

Q(t, a, n) :- writer(a, n), books(t, a, 1954)

Q selects author, title, and nation entries of all books published in 1954. In order to
answer Q, we need to rewrite it so that the data of the sources can be queried. The
Bucket Algorithm identifies two subgoals in the query and therefore creates two buckets:

writer(a, n) books(t, a, 1954)

Processing Rank-Aware Queries in Schema-Based P2P Systems 49

2.6 Query Rewriting

Afterwards, the view subgoals are compared to the query subgoals. V1 is inserted into
both buckets whereas V2 is only inserted into one bucket. We obtain:

writer(a, n) books(t, a, 1954)

V1(t, a, n, y) V1(t, a, n, 1954)

V2(a, n)

The bucket corresponding to writer(a, n) contains views V1 and V2 because the bodies
of both views contain subgoals for whom variable mappings have been found:

V1: (a -> w, n -> n)
V2: (a -> n, n -> nat)

Note that S1’s predicate year > 1900 does not contradict Q’s predicate year = 1954.
That is why V1 was inserted into the bucket corresponding to books(t, a, 1954). After
having built the Cartesian product, we obtain:

q1(t, a, n) :- V1(t, a, n, y),

V1(t, a, n, 1954)

and

q2(t, a, n) :- V2(a, n),

V1(t, a, n, 1954)

q1 can still be optimized by unifying the constant 1954 and the variable y so that
V1 occurs only once in the body of q1. In the last step, we need to check whether
these combinations yield any contradictions. If, for example, V1 contained a predicate
w = “Charles Dickens” and V2 a predicate n = “J.R.R. Tolkien”, then q2 would have an
empty result set and would therefore be pruned. However, in our example there are no
such contradictions so that the rewriting result is the union of two conjunctive queries:

q1(t, a, n) :- V1(t, a, n, 1954),

union

q2(t, a, n) :- V2(a, n),

V1(t, a, n, 1954)

2.6.4 Applicability to PDMSs

In this section we have reviewed state-of-the-art algorithms for query rewriting in the
presence of LAV-style mappings. Although we can use these algorithms to rewrite queries
in PDMSs, they lack the support of query operators such as top-N and skyline. As in
particular the introduction of these operators into PDMSs is the focus of this dissertation,
we need to develop an appropriate extension to these algorithms that considers these
operators.

50 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.7 PDMS Implementations

2.7 PDMS Implementations

In the previous sections we have highlighted the components that are relevant to the
objective of this dissertation, i.e., to efficiently process rank-aware queries in PDMSs.
Some of the approaches we apply, especially rank-aware query operators and routing
indexes, have not been developed for PDMSs or data integration systems and are therefore
not considered by any other state-of-the-art PDMS implementation. In this section, we
discuss some of the most important PDMS implementations proposed in the literature.
The main aspects that distinguish these implementations are sketched in Table 2.1.

Data Model RDF – XML – Relational
Query Language Conjunctive Queries – XQuery – XPath – SQL

Mappings LAV – GAV – GLAV – Data Schema Interplay – Mapping Tables
Query Processing Flooding – Index – Statistics

Table 2.1: Characteristics of PDMSs and their Spectrums of Values

The first aspect that distinguishes PDMS implementations is the data model a system
works with, e.g., RDF, XML, or relations. In dependence on the data model, systems
vary in the query languages they use to formulate queries. Some systems are based on
datalog, others use XQuery-based languages, XPath, or SQL. Another distinction is made
by the mappings that are supported. As mentioned above, mappings can be defined for
example in LAV, GAV, or GLAV style. Some systems use special kinds of mappings that
do not fit into these basic categories – we sketch some of them below. A final aspect we
want to emphasize is that systems also vary in their query processing strategies. Many
systems follow a simple flooding approach, i.e., forwarding the query to all the peers
in the network – only pruning peers on schema-level when their schemas indicate their
irrelevance. Some systems additionally apply indexes or statistics to prune peers on
data-level as well. However, to the best of our knowledge none of them yet considers
the application of routing indexes in the sense that we propose in this dissertation. To
illustrate the differences between PDMS variants and our approach, the following pages
discuss the most important PDMS implementations with respect to the characteristics
of Table 2.1.

For the sake of completeness, it should be mentioned that there are also some systems
dealing with the problem of schema heterogeneity in P2P systems, e.g., Edutella [50,145]
relying on a HyperCuP [174] overlay topology. Therefore, the literature often refers to
them as schema-based P2P systems. As PDMSs are also referred to as schema-based P2P
systems, both kinds of systems are often classified the same [21] although they work on
different levels. Whereas PDMSs provide algorithms for query rewriting, Edutella only
indexes different schemas and allows queries to refer to elements that are part of different
schemas. The query is not rewritten but simply routed to peers providing the referenced
RDF schema elements that the original query refers to. Thus, because of the lack of
query rewriting, we do not discuss these systems in more detail in this dissertation.

Processing Rank-Aware Queries in Schema-Based P2P Systems 51

2.7 PDMS Implementations

2.7.1 Piazza

Piazza [85, 188] is the most prominent peer data management system. The underlying
network of peers is assumed to be a standard P2P system. However, the authors empha-
size that other architectures such as a super peer network can be supported as long as
there is a network of peers wanting to share semantically similar data.

Schema Heterogeneity Piazza aims to combine the two data integration formalisms
LAV and GAV into one system. Data can be provided either in XML or RDF format.
Queries are formulated in XQuery. Piazza knows two types of schema mappings: peer de-
scriptions and storage descriptions. The former relate two or more peer schemas (schemas
that peers publish to make their local data accessible to other peers) whereas the latter
relate peer schemas and stored schemas (schemas of the actual data provided by the
peers). There are two kinds of peer descriptions: equality descriptions (Q1(P1) = Q2(P2)
with Q1 and Q2 being conjunctive queries with the same arity and P1 and P2 being sets
of peers) and inclusion descriptions (Q1(P1) ⊆ Q2(P2)) – equality can always be regarded
as two inclusions. Thus, a mapping statement specifies a semantic mapping by stating
that evaluating Q1 over the peers P1 will always produce the same answer (or a subset
in the case of inclusions) as evaluating Q2 over P2.

Query Rewriting Queries are formulated as conjunctive queries and are rewritten
in a centralized fashion. For this purpose, two techniques with respect to GAV and
LAV mappings are used: query unfolding and query answering using views (MiniCon
[84]). Both techniques are combined and applied recursively on the result using peer
descriptions until no more rewriting is possible – applying the rule-goal-tree approach
of [86]. Then, the storage descriptions are used for the final step of reformulation. The
result of this rewriting process is a query on stored relations only (i.e., relations included
in the storage descriptions).

Query Processing and Indexing In Piazza basically all available peers are contacted
and thus participate in processing a query. The only possibility for a peer to get pruned
(i.e., excluded from query processing) is when the mapping to the peer indicates that it
cannot contribute relevant results. However, facing queries restricted to only a portion
of the whole data space, it is worthwhile to identify peers that do not provide data in
the queried range and to prune them as well. This problem can be solved by building
an index. Therefore, Piazza offers a centralized index representing a summary of the
data stored at the peers. Each peer participating in the system uploads a summary of
its local data to a central instance (index engine) and refreshes it periodically. Users
perform searches by submitting queries to the index engine (that also knows all peer
mappings). The index consists of objects d that contain sets of attribute-value pairs of
the following form: d ::= [A1 = v1, A2 = v2, . . . , An = vn] where A1, . . . , An are attributes
and v1, . . . , vn are atomic values or patterns (with wildcards). The number of attributes
may differ from one summary to the next so that the list of attributes does not have to
be known in advance. Using the peer descriptions, relationships between attributes can
be derived and queries of the form q = [B1 = w1, B2 = w2, . . . , Bp = wp] with attributes
B1, . . . , Bn and constants w1, . . . , wn are supported.

52 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.7 PDMS Implementations

2.7.2 Hyperion

Hyperion [169] names itself a Peer Database Management System (PDBMS) envisioned
to be a conventional DBMS augmented with a P2P interoperability layer. This layer is
built on top of a JXTA framework1 [73, 149], which is used for communication between
peers. Enabling communication and data exchange between peers results in a logical P2P
network that might change over time. In this network peers providing similar data in a
domain may form interest groups. Data is managed by conventional relational database
management systems and queries are formulated in SQL. Each peer has its own DBMS
and defines an independent access interface. The interoperability layer provides the peers
with functionalities which enable data sharing.

Schema Heterogeneity Hyperion uses a special way to represent mappings - it applies
mapping tables [109] listing pairs of corresponding values to search for data residing on
different peers. Mapping tables represent expert knowledge and are typically created by
domain specialists. More formally, a mapping table is a relation over the attributes X∪Y ,
where X and Y are non-empty sets of attributes from two peers. Mapping tables explicitly
express heterogeneity on data level – relating one set of attribute values to others and thus
relating records. They can also be used to express constraints on information exchange
between peers [109]. In general, a mapping table m[X ∪ Y] encodes not only data
associations but also attribute correspondences between the set of attributes X and
Y [135]. Furthermore, translation rules describe the relationships between corresponding
attributes in terms of structure, format, and data values.

Query Processing and Rewriting Whenever there are corresponding entries in the
mapping tables, a query is forwarded to the corresponding peer. Using this concept
of representing mappings and constraints, specialized techniques of query rewriting are
required [108]. We do not go into details as they are only useful in conjunction with
mapping tables and are thus not relevant to this dissertation.

2.7.3 System P

System P [170, 171] is a PDMS that has been developed and published only recently. It
uses, shares, and rewrites relational data and peers communicate via JXTA. For exper-
imental purposes System P provides a PDMS generator: based on a reference schema
this generator creates a given number of peers, local sources, heterogeneous schemas, and
mappings. The data of the peers is either generated automatically or provided by the
user in the predefined reference schema.

Schema Heterogeneity and Rewriting Just like Piazza, System P uses both local-
as-view (LAV) and global-as-view (GAV) mappings to describe correspondences between
schemas of neighboring peers. Mappings as well as queries are formulated as conjunctive
queries using datalog rules. Though System P adopts the rule-goal-tree approach of [86] –
also used by Piazza – it does not create a global plan that can be optimized. In contrast

1http://www.jxta.org

Processing Rank-Aware Queries in Schema-Based P2P Systems 53

2.7 PDMS Implementations

to Piazza, System P implements query rewriting in a completely decentralized way so
that based on the given mappings a peer receiving a query rewrites it using only local
information.

Query Processing, Indexing, and Routing For query processing System P pro-
vides a budget-driven approach that enables peers to exchange queries with associated
budgets and resulting record sets. The main idea is to prefer peers and mappings that
promise large partial result sets and mappings with low information loss. To prepare
such decisions, each peer ranks all of its outgoing peer mappings (i.e., neighbors) ac-
cording to the potential amount of data returned. This is achieved by estimating result
cardinalities using multi-dimensional histograms [3] – applying query feedback to keep
them up-to-date. The given budget is split up and assigned to the rewritten queries in
accordance to the estimated information loss and result cardinality.

2.7.4 HePToX

HePToX [17,18] is a peer-to-peer database system that deals with XML data and hetero-
geneity. The outstanding feature of HePToX is that the user can specify correspondences
by using a graphical interface to draw a set of visual annotations. Mapping rules are then
derived automatically from these annotations so that queries can be rewritten.

Schema Heterogeneity Mappings are represented as datalog-like rules adapted to
tree structured data. They are derived automatically from 1-1 correspondences defined
by the user using the graphical interface. The basis for such annotations are DTDs
representing schemas.

Query Processing and Rewriting Queries in HePToX are restricted to a subset of
XQuery: queries that are expressible as joins of tree patterns [9]. A tree pattern is a
rooted tree where nodes are labeled with variables. These variables may be constrained,
e.g., on a value: $y/text() = “123”. Queries are rewritten similar to Piazza applying a
simplified version of an algorithm for answering queries using views [122].

2.7.5 coDB

Another approach worth mentioning in this context is coDB [63, 64]. It considers net-
works of peers with relational data. Such peers are interconnected by means of GLAV
coordination rules (inclusions of conjunctive queries) and communicate using JXTA. The
problem coDB aims to solve is to replicate data such that each peer may answer a query
correctly with respect to initial data placement and mappings. For simulations a so-
called super peer, which is connected to all participating peers, is introduced. During
the simulation each peer collects statistics that are afterwards collected by the super peer
and aggregated into the final statistics report. In contrast to many other systems, the
authors considered the network’s dynamic behavior, which means links between peers
may be removed and added at runtime.

54 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.8 Conclusion

Query Processing and Rewriting Because of the GLAV definitions of mappings,
rewriting in principle comes down to unfolding and does not pose any further problems.
Queries in coDB are formulated by first order formulas in the language of the peer’s local
database. Query processing is implemented by first doing a global data update (issuing
an update request to all neighboring peers) and then answering the query locally (using
local replica). Each peer that receives an update request propagates it to all its neighbors
(flooding). This process goes on until either a peer is found that has no more neighbors
to propagate the query to or a peer receives the request more than once. The latter case
is possible since cycles are not prohibited but identified by means of IDs assigned to the
request messages.

2.7.6 Orchestra

Orchestra [78,79,189] is a collaborative data sharing system (CDSS) designed for the needs
of bioinformatics and biomedical researchers. Building upon concepts developed in the
Piazza project, Orchestra systems consist of a number of peers each of which having its
own data schema. Each participant queries and manipulates the local database instance
and may occasionally publish its database. Since in contrast to PDMSs researchers might
have different viewpoints on what data is correct, modifications and updates are accepted
according to some trust policy. This means that they might be accepted, rejected, or
deferred to the future. This process of selectively importing updates (in particular those
that do not conflict with existing data) is termed reconciliation. As data is modified
at different sites, Orchestra publishes and propagates the updates to all sites that are
willing to accept them.

Since in principle peers are allowed to have different schemas, updates need to be
translated into other schemas such that peers receiving the updates are able to under-
stand them. However, the preliminary results presented by Taylor et al. [189] assume a
setup where all peers have the same data schema. Thus, the aspect of update translation
remains future work. Recently, an implementation of Orchestra and a complete seman-
tics for translating updates into a target schema, maintaining provenance, and filtering
untrusted updates has been published [78].

A recently started project SHARQ (Sharing Heterogeneous and Autonomous Re-
sources and Queries) [20] uses Orchestra as core engine. This project again focuses on
biological data and aims at enabling biologists to find relevant information within a
PDMS.

2.8 Conclusion

In this chapter we have reviewed related work relevant to the objective of this dissertation.
We do not claim that the approaches and systems discussed so far represent a complete list
of relevant related work. Rather, we meant to give the reader an overview of the state-of-
the-art. The PDMS implementations we have discussed work well for the specific aspects
they were built for. Unfortunately, they are very hard to extend to support efficient
query processing for rank-aware queries. To extend PDMS functionality in this way, we
identify the four main aspects/tasks discussed below.

Processing Rank-Aware Queries in Schema-Based P2P Systems 55

2.8 Conclusion

Rank-Aware Query Operators Rank-aware query operators such as top-N and sky-
line represent important instruments for decision making. They are a very promising ap-
proach to reduce execution costs in distributed environments: because of their capability
to reduce the size of the query result set, they also reduce the number of relevant peers
(in conjunction with routing indexes) and consequently query execution costs. Moreover,
applying the concept of approximation promises to reduce execution costs even further.
To the best of our knowledge no existing PDMS implementation so far considers these
aspects. Furthermore, the techniques for query processing and approximation we present
for computing rank-aware operators are also novel for P2P systems and can be applied
to those systems as well.

Query Processing The key to efficient query processing in distributed environments
is to prune neighboring peers from consideration without unintentionally missing relevant
data. For this purpose, a peer needs to know what data can be accessed via its neigh-
bors. Routing indexes are appropriate structures that provide such information. The
application of routing indexes, which has originally been proposed for unstructured P2P
systems, enables a peer and its query processing strategy to consider result cardinalities
for its routing decisions. Hence, peers can be ranked efficiently and pruned on data-level
according to the expected number of records. However, most existing approaches for
use in P2P systems do not capture attribute correlations. But without capturing them
queries defined on multiple attributes (such as skylines) cannot be computed efficiently
as the number of false routing decisions might be large. However, most implementa-
tions simply neglect the possibility of using additional information to prune peers on
data-level. Although some of them use centralized indexes to overcome this problem,
ignoring that in a PDMS there should be no instance with global knowledge, we ar-
gue that routing indexes should be used which adhere to the decentralized character of
PDMSs. In this dissertation we propose not only efficient query processing strategies for
rank-aware queries that exploit parallelism but also a novel variant of routing indexes
enabling efficient query processing in PDMSs as well as in unstructured P2P systems.

Query Rewriting Because of schema heterogeneity, peers need to rewrite queries for-
mulated on their local schema into the schemas of their neighbors. As most PDMS
implementations apply the relational data model and conjunctive queries, the aspect of
integrating rank-aware query operators goes beyond their capabilities. Thus, rewritings
using existing approaches do not contain rank-aware operators. The portion of the data
the rank-aware operator is defined on has to be transformed and sent to the query’s ini-
tiator so that the rank-aware operators can be evaluated there. This causes not only high
network load but also a high computational load at the peers. Hence, rank-aware query
operators should be contained in rewritings as they are likely to prune most of the data
already at the peer providing it. Although all PDMS implementations provide techniques
for rewriting select-project-join queries, we cannot use them to rewrite queries containing
rank-aware operators. Thus, this dissertation presents an appropriate extension.

Keeping Routing Indexes Up-To-Date As a query processing strategy that uses
routing indexes relies on their correctness, we also need to find a solution to the problem

56 Processing Rank-Aware Queries in Schema-Based P2P Systems

2.8 Conclusion

of keeping them up-to-date. There are multiple reasons that might require updating
routing indexes: peers may join and leave the network or update their local data at any
time. Most existing PDMS implementations do not consider this aspect. Since the query
processing strategies that most systems propose come down to a simple flooding of the
network, they actually do not have to pay attention to this problem: the only peers not
queried are those whose schemas do not fit the query. But as soon as peers are pruned
using information about attribute value ranges or cardinalities (routing indexes), some
relevant data and thus answers might get lost if the indexes are not up-to-date. Thus, the
system needs to detect such changes and apply strategies to keep the indexes up-to-date.

Even in P2P systems the problem of routing index maintenance has not yet been payed
much attention to. The only strategies we are aware of are based either on propagating
each single update through the whole network or on applying query feedback. As we will
work out in this dissertation, both are no satisfactory solutions to the problem. Thus, this
dissertation proposes and evaluates several strategies to efficiently keep routing indexes
up-to-date.

Processing Rank-Aware Queries in Schema-Based P2P Systems 57

2.8 Conclusion

58 Processing Rank-Aware Queries in Schema-Based P2P Systems

Chapter 3

Model Definition

In the previous chapters we have already discussed the main characteristics of PDMSs.
One of them is data heterogeneity. We stated that we limit our considerations to LAV-
style mappings because in comparison to GAV-style mappings they represent the more
complicated case. We argue that additionally integrating GAV-style mappings is possible
but do not consider this option in this dissertation. In this chapter, we provide several
basic definitions the following chapters build upon. This concerns the network model,
mapping definition, and query formulation. Figure 3.1 highlights the steps of query
processing in PDMSs that are affected.

Query Parsingstep 1

User Query

Query Transformationstep 2 Peer Schema

Local Evaluationstep 3 Local Data

Query Optimizationstep 4 Distributed Data
Summaries

Query Rewritingstep 5 Schema Mappings

Postprocessingstep 6

Local Optimizationstep 3.1

Local Executionstep 3.2

Local Schema,
Statistics

Query Initiator

P
a

rt
ic

ip
a

ti
n

g
P

e
e

rs

Query Result

Figure 3.1: Query Processing in PDMSs - Query Formulation/Parsing and Mapping
Definition

59

3.2 Mapping Definition Language

3.1 Network Model

As already mentioned in the introduction, we consider the network structure of a PDMS
to be an unstructured P2P system (Definition 1.1.1). As native data format for our
system we make use of XML because of its immense popularity for many applications
that exchange data. Besides, most database systems offer the possibility to export data
in XML format so that also non-XML data sources can participate and make their data
accessible with low effort. Thus, peers with other native data formats are assumed to use
wrappers and export their data in XML. There is no common agreement on connections
(communication links) between peers and clustering. Although clustering peers according
to their similarity in terms of schema and/or data would be beneficial, there is no directive
to do so. Thus, we assume that the network structure is implicitly defined when peers
join the network by establishing mappings and communication links to other peers in the
system. We do not provide any means to automatically change the network structure and
peers may have an arbitrary number of neighbors that they have established mappings to.

As we use LAV-style mappings, mappings are directed and expressed by views. Hence,
in the following we often use the two terms mapping and view definition as synonyms.
All mappings are stored locally at the peers so that a mapping is only known to the
peer owning it. There is no global instance that might assist in rewriting the query.
As a consequence, global reasoning and optimization is impossible. In contrast, at each
peer the query is rewritten in a completely independent process. It is likely that when
forwarding a query from peer A to peer D, all peers on the routing path between A and
D (e.g., B and C) have to rewrite the query repeatedly into different schemas.

Figure 3.2 illustrates an example network consisting of six peers. The data the peers
share in this example describes libraries, authors, and books. The schemas in the network
differ in the naming of attributes, in the way the data is structured, and in the data
the peers provide (e.g., some peers provide information about authors and their books
whereas others focus on libraries only). Each data record (data object, data item) adheres
to the schema of the peer providing it. Nesting of XML structures is expressed by
indentation and substructures that might occur multiple times are marked with “*”.
Arrows between peers indicate the existence of a mapping between them. The direction
of an arrow indicates the direction of the mapping. In our example there is an arrow and
thus a mapping from P0 to P2 but not vice versa. This means P0 knows a mapping to P2

and thus can rewrite queries into the schema of P2 but P2 does not know a mapping to
the schema of P0 and thus cannot rewrite queries into the schema of P0. In this example,
P0 holds mappings to almost all other peers in the system. Thus, this network comes
relatively close to a standard data integration scenario with P0 as mediator. However, as
it is a PDMS, queries can be issued at any peer in the system. Furthermore, peers might
leave the network at any time and peers joining the network do not have to establish
mappings to P0.

3.2 Mapping Definition Language

Let us consider an example LAV mapping that P0 might use to rewrite queries from its
local schema into the schema of P1 (Figure 3.4). Similar to Piazza [85] our mapping

60 Processing Rank-Aware Queries in Schema-Based P2P Systems

3.2 Mapping Definition Language

Peer 0

literature
 author*
 fullname
 nationality
 book*
 title
 edition
 ISBN
 library
 library*
 name
 street
 zip
 town
 nmbOfBooks
 membershipFee
 interLibraryLoanFee

JRRTolkien
 book*
 title
 ISBN
 editor
 library
 zipcode

readingList
 book*
 title
 author
 description
 ISBN
 availableAt
 library
 city
 retailPrice

libraries
 library*
 name
 city
 books
 ILLF

Peer 4

Peer 2

Peer 1

authors
 author*
 fullname
 nationality
 book*
 title
 publisher
 date
 library

Peer 3

authors
 author*
 name
 nation
 birth
 date
 place
 book*
 title
 ISBN

Peer 6

Figure 3.2: Example Network

language [94,165] makes use of XQuery-like blocks. A view definition is well-formed and
uses the XML structure corresponding to the schema of the neighboring peer (receiver
schema) as basis (P1’s schema in our example).

Figure 3.3 illustrates the schema correspondences between the two schemas. The
lower part of Figure 3.4 shows the complete mapping definition that P0 (rewriter) uses to
rewrite queries into the schema of P1 (receiver) – Table 3.1 summarizes the terminology
we will use in the following.

First, we need to define a set of context nodes. These are nodes contained in the
schema of the rewriter and in the schema of the receiver corresponding to relations in the
relational data model. A receiver context node is defined in the mapping definition by
an XML attribute named context, which is assigned to an element in the receiver schema
and therefore defines this element as the receiver context node. In our example the
context attribute is assigned to an XML node book, which is part of P1’s local schema.
This declares book as the receiver context node. The context attribute also defines the
rewriter context nodes as well as variables. In our example the following variables are
defined: $a=literature/author, $b=$a/book, and $l=literature/library. These
variable declarations define the following rewriter context nodes: literature/author

and literature/library.

Processing Rank-Aware Queries in Schema-Based P2P Systems 61

3.2 Mapping Definition Language

literature
 author*
 fullname
 nationality
 book*
 title
 edition
 ISBN
 library
 library*
 name
 street
 zip
 town
 nmbOfBooks
 membershipFee
 interLibraryLoanFee

JRRTolkien
 book*
 title
 ISBN
 editor
 library
 zipcode

Peer 0Peer 1

Figure 3.3: Correspondences be-
tween the Schemas of Two Peers
(P0 and P1)

Peer 0

<literature >
 <author>
 <fullname constraint=“ ‘($b)=J.R.R. Tolkien’ ”/>
 <book>
 <title>{ $b/title}</title>
 <ISBN>{$b/ISBN}</ISBN>
 <library>{$b/library}</library>
 </book>
 </author>
 <library>
 <name>{$b/library}</name>
 <zip>{$b/zipcode}</zip>
 </library>
</literature>

context=“$b=JRRTolkien/book”

<JRRTolkien>
 <book context=“$a=literature/author,
 $b=$a/book,
 $l=literature/library
 where $b/library=$l/name and
 $a/fullname=‘J.R.R. Tolkien’ ”>
 <title>{$b/title}</title>
 <ISBN>{$b/ISBN}</ISBN>
 <library>{$b/library}</library>
 <zipcode>$l/zip</zipcode>
 </book>
</JRRTolkien>

Peer 1

Figure 3.4: Mappings between Two Peers (P0 and
P1)

Second, we define predicates to describe how the data is stored at the receiver.
They are also encoded within the context attribute. Our example mapping defines two
predicates $a/fullname=‘J.R.R. Tolkien’ and $b/library = $l/name. The latter
expresses a join and indicates that local structures of the rewriter are stored in a joined
format at the receiver. The first predicate in our example involves a constant and in-
dicates that the receiver’s local data is restricted to information about J.R.R. Tolkien.
In general, predicates have a restrictive effect and encode special conditions the rewrit-
ing process has to take care of, i.e., when rewriting a query these conditions have to
be compared to predicates of the query and other views. Predicates can also be used
to encode additional information. In our example, P1 only stores data about books of
J.R.R. Tolkien. However, this information is not encoded anywhere in its schema, rather
it represents additional information that P0 might use in a view definition. Thus, the
view definition contains the predicate: $a/fullname=‘J.R.R. Tolkien’.

Finally, a mapping definition also needs to encode the correspondences themselves.
This is realized by relating symbols (referring to a schema element of the rewriter) with
schema elements of the receiver. In our example <zipcode>{ $l/zip }</zipcode> ex-
presses the correspondence between P1’s element JRRTolkien/book/zipcode and P0’s
element literature/library/zip.

Finally, let us make some final remarks on view definitions. Nesting of views is not
allowed, i.e., in the descendent axis of an element with a context attribute there must not
exist any other node with a context attribute. However, the view definition might still
contain multiple context attributes if they are on the same hierarchical level. For example,
in the mapping that P0 holds for P1 (lower part of Figure 3.4) it would be possible that
the view definition contained a second context attribute assigned to a sibling node of
JRRTolkien/book. In this case, each context attribute would declare a view on its own,

62 Processing Rank-Aware Queries in Schema-Based P2P Systems

3.2 Mapping Definition Language

Term Example Definition
rewriter P0 peer that rewrites the query – query is

formulated in the schema of the rewriter
receiver P1 peer that receives the query – query is

rewritten into the schema of the receiver
rewriter schema P0’s schema schema of the rewriter
receiver schema P1’s schema schema of the receiver

rewriter context node literature/author XML node in the rewriter schema that
has been assigned to a variable

receiver context node JRRTolkien/book XML node in the schema of the receiver that
defines the root node of all insertions

variable/symbol $a variable representing a rewriter context node
symbol $a/book variable in conjunction with a path expression

exported symbol $b/title symbol that is exported into the receiver schema
constant J.R.R. Tolkien invariable value

condition/predicate $b/library = $l/name predicate using symbols, constants, and
arithmetic comparison operators

constraint ($b)=‘J.R.R. Tolkien’ predicate encoding additional non-structural
information in a view definition

Table 3.1: Terminology

i.e., P0 would know two view definitions it could use to rewrite a local query into the
schema of P1.
In general, all predicates can make use of the following comparison operators: <, ≤,
>,≥, =. We explicitly exclude negation because of the problems this entails for rewriting
[1]. If P0 sends a query to P1 it assumes that it only receives data corresponding to
J.R.R. Tolkien. On the other way round, if a user formulates a query on the schema
of P1, he/she also assumes to retrieve only data on books of J.R.R. Tolkien. Thus, the
queries that P1 forwards to neighboring peers (e.g., to P0) have to query data on books
written by J.R.R. Tolkien. However, as there is no corresponding element in the schema
of P1, it cannot encode this information in its local schema. Consequently, a mapping
from P1 to P0 (defined using the local schema of P0 as basis) must contain additional
information about the restriction on books written by J.R.R. Tolkien. For this purpose,
a constraint may be integrated into the mapping. The upper part of Figure 3.4 shows
the corresponding mapping. Remember that as a counterpart to this constraint P0 has
the following predicate in its view definition to P1: $a/fullname=‘J.R.R. Tolkien’. In
summary, view definitions consist of:

• variables defining context nodes ($a),

• symbols ($a/book),

• exported symbols ({$b/title}),
• constants (‘J.R.R. Tolkien’),

• conditions corresponding to predicates ($b/library = $l/name), and

• constraints (($b)=‘J.R.R. Tolkien’).

Thus, for each view V we distinguish between:

• the set of variables L(V),

• the set of symbols S(V),

• the set of exported symbols E(V),

Processing Rank-Aware Queries in Schema-Based P2P Systems 63

3.3 Query Formulation

• the set of constants C(V),

• the set of conditions/predicates P(V), and

• the set of constraints T (V).

Although we are aware that mappings might change (replaced or improved) over time,
we do not yet consider this aspect in our system. Future work might consider this
aspect and provide techniques for automatic schema matching [167] in conjunction with
schema composition and adaptation. In this context future work might also address
the consequences of information loss originating from incorrect or incomplete mappings.
However, for the time being we assume that mappings are correct and complete.

3.3 Query Formulation

In the introduction we have already formally defined the structure of a PDMS (Def-
inition 1.1.1) and discussed the main steps of query processing in these environments
(Section 1.2). The first step needs to be query formulation and parsing as highlighted
in Figure 3.1. As we assume peers to provide data in XML format, XQuery is a good
option to formulate queries. However, it lacks the support of rank-aware query opera-
tors. Basically, we could define an extension so that skyline queries might, for instance,
be formulated as follows:

for $l in fn:doc("libraries.xml")//library

skyline of MIN $l/nmbOfBooks

MAX $l/interLibraryLoanFee

return ...

In order to provide a high degree of flexibility and because it is not the contribution
of this dissertation to define formal extensions to existing query languages, we do not
introduce such an extension but regard queries on an algebraic level. Thus, queries are
formulated using a set of algebraic operators as defined below. In future work our system
might still be extended to support such extended query languages.

As building blocks of query formulation we make use of algebraic plan operators
(POPs). POPs can be combined into POP trees. Each such tree represents one query.
The result of a query is processed in a bottom-up fashion such that leaf nodes are com-
puted first. A parent POP uses the output of its children as input. Both input and
output are sequences of XML structures. The output of the tree’s root node represents
the answer to the query.

There are only a few basic rules that a query must adhere to. As mentioned above,
the query representation corresponds to a tree structure, i.e., each POP has exactly one
parent POP except the root node. The number of children depends on the POP’s type.
Leaf nodes of the tree are always select POPs because only these POPs can directly refer
to the local data of a peer. Thus, they select the data that all POPs on higher levels
operate on. They represent a starting point and define the selection expressions (XPath)
that are evaluated on the peers’ local data. The result of evaluating a select POP is
a sequence of XML structures whose root nodes are obtained by evaluating the XPath
expression on a peer’s local data (select POP on leaf level) or on the output of its child
POP. Table 3.2 summarizes the POPs we consider in this dissertation.

64 Processing Rank-Aware Queries in Schema-Based P2P Systems

3.3 Query Formulation

POP symbol alternative #children parameters
symbol

user-level

select/project σ select 0/1 1 XPath expression
union ∪ union 2 —
join �� join 2 1 condition

skyline Φ skyline 1 ≥ 2 ranking functions
topn Φ topn 1 integer n, 1 ranking function

construct κ construct 1 1 construct expression
system-level remote query r remote 1 neighborID

Table 3.2: List of Algebra Operators

There are only two POPs that require two child POPs: the union POP, which merges
the two result sets of its child POPs, and the join POP. The join POP receives two
sequences of XML structures as input and joins any two XML structures originating
from different sets that fulfill the join condition. All the other POPs may only have
one child POP, except a select POP on leaf level, which has none. The two matching
XML structures are combined by the join POP with an enclosing XML element named
<pair>. Let us assume a join has the following two input sets and the join predicate
literature/library/zip = book/zipcode.
First input set:

<literature>

<library>

<zip>D-98693</zip>

<town>Ilmenau</town>

</library>

</literature>

Second input set:
<book>

<title>The Lord of the Rings</title>

<zipcode>D-98693</zipcode>

<ISBN>0261103253</ISBN>

</book>

Based on this input the join POP produces the following output:

<pair>

<literature>

<library>

<zip>D-98693</zip>

<town>Ilmenau</town>

</library>

</literature>

<book>

<title>The Lord of the Rings</title>

Processing Rank-Aware Queries in Schema-Based P2P Systems 65

3.3 Query Formulation

<zipcode>D-98693</zipcode>

<ISBN>0261103253</ISBN>

</book>

</pair>

The join POP is the only operator that creates new elements and applies nesting auto-
matically, i.e., for each pair of matching XML structures, a new structure with pair as
root element and the two matching structures as children is created. We decided not
to merge the matching structures because by keeping both of them, XPath expressions
that are part of the definitions of operators on higher levels do not have to be adapted
much – only the pair element needs to be considered. Furthermore, from an algorithmic
point of view it is unclear how to correctly merge the two structures automatically. By
using a construct POP (see below) the query, or the user respectively, can still define
an operator with a description how to merge the structures correctly.

As the select POP is given an XPath expression as input, it performs not only selection
but also projection and may also occur as an inner node of a query POP tree. The
construct POP is used to restructure XML data according to the associated expression
(renaming, nesting, and unnesting). This expression encodes the new structure that the
input XML structures are to be transformed into. It defines the output structure with
XML tags and the data that is to be inserted into those tags by path expressions referring
to the input schema. Let us assume, for example, the following construct expression is
assigned to a construct POP – nesting (in this example we use an element named res),
unnesting, and labeling nodes are choices made by the user when formulating the query:

<res>

<writer>{ author/name }</writer>
<booktitle>{ author/book/title }</booktitle>

</res>

The result of an evaluation on the following document

<author>

<name>J.R.R. Tolkien</name>

<book>

<title>The Lord of the Rings</title>

<ISBN>0261103253</ISBN>

</book>

</author>

would be:
<res>

<writer>J.R.R. Tolkien</writer>

<booktitle>The Lord of the Rings</booktitle>

</res>

For each input XML structure the writer’s name and the title of his/her book is selected
and transformed into another structure with res as outer element, which has two child
elements writer (containing the author’s name) and booktitle containing the title of
the author’s book. The result set of this construct POP contains one such XML structure
for each input structure.

66 Processing Rank-Aware Queries in Schema-Based P2P Systems

3.3 Query Formulation

Top-N and skyline operators are represented by topn and skyline POPs – we use
the same symbol for both operators as they both represent query operators of the same
class (rank-aware operators). The topn POP expects an integer number n (n ≥ 1) as
input as well as a ranking function using standard mathematical operators as well as
aggregate functions such as SUM, MIN, and MAX. The skyline POP needs at least two
such functions as input because a skyline is always defined on multiple ranking functions.

In contrast to all other POPs the remote query POP cannot be used to formulate
queries by the user. Therefore, Table 3.2 distinguishes between POPs on user-level and
system-level. The remote POP is generated by the rewriting algorithm (Chapter 4) to
denote those query subtrees that are forwarded to neighboring peers.

So far we have only defined queries as tree structures consisting of POP trees whose
leaf nodes must be select POPs. However, this is only a representation, the same queries
can be issued in text format and formalized according to Definition 3.3.1.

Definition 3.3.1 (Query). A query Q is contained in query language LQ generated by

grammar GQ, i.e., Q ∈ LQ(GQ) with LQ(GQ) :=
{

w ∈ Σ∗|S ∗⇒ w
}
. Grammar GQ is a

quad-tuple (V ,Σ,S,P), with

• V being the finite set of non-terminal symbols: V = {A, B},
• Σ being the finite set of terminal symbols: Σ = S ∪ O ∪A,

which consists of symbols for structuring S = {(,), ‘,′ }, symbols for query opera-
tors O = {select, union, join, skyline, topn, construct, remote}, and symbols
representing arguments of the operators A = {condition, ranking, n, rankingList,
constExp, nID} as listed in Table 3.2,

• S ∈ V being the start symbol: S = A, and

• P being the set of production rules:
A �→ (B)
B �→ select ‘path′

B �→ select ‘path′ (B)
B �→ union ((B) (B))
B �→ join ‘condition′ (B) (B)
B �→ skyline ‘rankingList′ (B)
B �→ topn ‘n′ ‘ranking′ (B)
B �→ construct ‘constExp′ (B)
B �→ remote ‘nID′ (B)

In this definition, path denotes an XPath expression, condition denotes an equality
expression referring to schema elements of the operator’s child nodes (denoted using path
expressions), ranking denotes an annotated ranking function formulated on the child op-
erator’s schema elements, rankingList denotes a sequence of annotated ranking functions,
constExp denotes an expression defining the schema that the input XML structures are
to be transformed into, and nID denotes the ID of a neighboring peer.

Let us consider some example queries formulated in LQ that might be issued at P0

(Figure 3.2). First, let us formulate a query asking for the skyline on libraries that
provide many books but charge a minimum inter library loan fee. The corresponding
query is:

Processing Rank-Aware Queries in Schema-Based P2P Systems 67

3.4 Summary

(skyline ‘MAX("library/nmbOfBooks")’

‘MIN("library/interLibraryLoanFee")’

(select ‘literature/library’)

)

In the following we will often depict the query in the more illustrative format of a POP
tree. Figure 3.5(a) shows the POP tree corresponding to the skyline query defined above.
For the sake of clarity, the figure only shows the schema elements the query is defined on.
Another query issued at P0 might ask for works of J.R.R. Tolkien and libraries that pro-
vide his books. Assuming the query also restructures the result records with a construct
POP, the user might issue the following query (Figure 3.5(b) shows the corresponding
POP tree):

(construct ‘<entries>

<title>{author/book/title}</title>
<ISBN>{author/book/ISBN}</ISBN>
<library>{library/name}</library>
<location>{library/town}</location>

</entries>’

(join ‘author/book/library=library/name’

(select ‘literature/author[fullname="J.R.R. Tolkien"]’)

(select ‘literature/library’)

)

)

Ö
library/nmbOfBooks

library/interLibraryLoanFee

ó
literature/library

(a) Skyline Query

literature/author
[fullname=“J.R.R. Tolkien”]

ó ó
literature/library

ê

author/book/library
= library/name

<entries>
 <title>{author/book/title}</title>
 <ISBN>{author/book/ISBN}</ISBN>
 <library>{library/name}</library>
 <location>{library/town}</location>
</entries>

(b) Join Query

Figure 3.5: POP Tree Representation for Example Queries

3.4 Summary

In this section we have defined the environment that we are working with. We defined
the network model as an unstructured P2P system with each peer providing data in
XML format and maintaining LAV-style mappings to neighboring peers. Furthermore,

68 Processing Rank-Aware Queries in Schema-Based P2P Systems

3.4 Summary

we have shown how to define mappings and introduced the basic terminology that we
will use in the following. Another important issue we elaborated on in this chapter is
how we assume queries to be formulated. All these aspects have a great influence on
appropriate query rewriting algorithms. In particular the fact that we allow rank-aware
operators to be contained in a query definition has a great influence on query rewriting
and optimization as we will see in the following chapter.

Processing Rank-Aware Queries in Schema-Based P2P Systems 69

3.4 Summary

70 Processing Rank-Aware Queries in Schema-Based P2P Systems

Chapter 4

Rewriting Rank-Aware Queries for
XML Data

After having completed the first step of query processing (Figure 4.1), the peer holds an
appropriate POP tree representation of the query that refers to its local peer schema.
In the second step, the query is transformed in consideration of the global schema (nor-
malization, unnesting, simplification). In this dissertation, we do not go into details on
this aspect but assume the POP tree given as input is optimized with respect to the
techniques applicable in this step. Afterwards, in step three, the query is evaluated on
the peer’s local data. For simplicity, we assume the data is stored in the peer schema
so that local query evaluation is straightforward. The peer can additionally apply local
optimization techniques to minimize local execution costs. However, the local result can
be used as additional information in the fourth step (query optimization), which applies
a query processing strategy and utilizes distributed data summaries to identify neighbors
providing relevant data. After these neighbors have been identified, the query is rewrit-
ten (step five) in consideration of the schemas of relevant neighbors only. As we will see
later, using the local result as additional information in the fourth step is beneficial for
evaluating top-N and skyline queries. For other query types, e.g., exact match queries
or range queries, we can postpone the local execution step and execute it in parallel to
query processing at neighboring peers.

Obviously, there are two possible orders of execution for steps four and five. If routing
indexes are considered before rewriting, they have to be defined in the local schema of the
peer. In doing so, the number of relevant neighbors is reduced so that less mappings have
to be considered for rewriting. Alternatively, if rewriting is performed first, all neighbors
and thus all mappings need to be considered by the rewriting process. Afterwards, some
of the created subqueries are pruned if the routing indexes indicate their irrelevance.

In order to reduce rewriting costs, we decided to have peers consider routing indexes
first and perform rewriting afterwards. However, we still begin our discussion with query
rewriting because in the previous chapter we have already begun to discuss schema-
related topics and rewriting is a prerequisite for the techniques we present for routing
index construction and maintenance – just like queries, updates for routing indexes also
need to be rewritten.

In this chapter we build upon the model defined in the previous chapter and present
a distributed algorithm [94,165] for query rewriting (using LAV-style mappings) on XML

71

4.1 Subgoal Trees

Query Parsingstep 1

User Query

Query Transformationstep 2 Peer Schema

Local Evaluationstep 3 Local Data

Query Optimizationstep 4 Distributed Data
Summaries

Query Rewritingstep 5 Schema Mappings

Postprocessingstep 6

Local Optimizationstep 3.1

Local Executionstep 3.2

Local Schema,
Statistics

Query Initiator

P
a

rt
ic

ip
a

ti
n

g
P

e
e

rs

Query Result

Figure 4.1: Query Processing in PDMSs – Query Rewriting

data that also considers rank-aware query operators instead of being restricted to select-
project-join queries.

4.1 Subgoal Trees

In Section 2.6.3 we have studied the most important state-of-the-art query rewriting
algorithms. The solution we propose with respect to the model and requirements defined
in Chapter 3 is basically an extension and a combination of the Bucket Algorithm [74,123,
124] and MiniCon [162,163]. Our solution works on plan operator trees instead of datalog
rules and pays attention to all query operators that have been introduced in Section 3.3
including skyline and top-N . Just like MiniCon but unlike the Bucket Algorithm, we
pay attention to predicates at an early stage of the rewriting process. In contrast to the
Bucket Algorithm, subgoals are sorted into the buckets, not views. As identifying and
comparing subgoals is a crucial part of the rewriting algorithm, we need to discuss how
to identify subgoals of queries and views as well as how to represent them before going
into details on the rewriting algorithm itself.

4.1.1 Creating Subgoal Trees for Views

Working with XML data, rewriting has to deal with nesting and unnesting of elements
or structures, respectively. Hence, it is beneficial to represent subgoals in a tree-like
structure because nesting can be represented easily with trees. When a view contains
multiple subgoals, each subgoal corresponds to a semantically independent structure such
as a relation for relational data. Each subgoal contained in a view definition is represented
by a subgoal tree as defined in Definition 4.1.1 – remember the terminology summarized
in Table 3.1.

72 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.1 Subgoal Trees

Definition 4.1.1 (View Subgoal Tree). A view subgoal tree T consists of a set of anno-
tated nodes arranged in a tree structure according to the following rules:

• T has exactly one root node annotated with:
(i) the path to the rewriter context node and
(ii) the path to the receiver context node

• multiple inner nodes annotated with:
(i) the name of an element in the rewriter schema or
(ii) the name of an element in the receiver schema

• leaf nodes annotated with:
(i) the name of a text node in the rewriter schema,
(ii) the name of a text node in the receiver schema or a constant corresponding to

such a node, and
(iii) optional predicates.

This structure will help us find a symbol mapping between rewriter and receiver
schema elements. The root node of a subgoal tree contains the name or path of context
nodes in the rewriter and receiver schemas – such a context element is comparable to a
relation name in RDBMSs. Inner subgoal tree nodes represent the nesting of elements
at the view’s owner (rewriter) or at the receiver. Within a subgoal tree all symbols, or
rather all schema elements (schema nodes) referred to by the symbols contained in the
view definition, are represented.

In accordance with Section 3.2, we can determine for each subgoal s the set of corre-
sponding symbols (S(s)), the set of exported symbols (E(s)), the set of constants (C(s)),
the set of conditions/predicates (P(s)), and the set of constraints (T (s)). Thus, all
symbols in S(s), or rather the paths and schema elements referred to by them, are repre-
sented by nodes in the subgoal tree corresponding to subgoal s. All exported symbols in
E(s) are represented by leaf nodes. Likewise, all constants C(s) and conditions P(s) are
assigned to leaf nodes. Only constraints T (s) are not represented within the structure of
the tree but assigned as additional characteristics to the subgoal tree.

As an example let us consider the view definition between P0 and P1 (Figure 3.4)
that we have introduced in Chapter 3. There are two subgoals defined by the symbols
$a (literature/author) and $l (literature/library). Each of these paths defines a
rewriter context node and thus a subgoal tree. Both of them are depicted in Figure 4.2.

The algorithm that creates such subgoal trees with mapping definitions as input is
sketched in Algorithm 1. At first, the algorithm finds all nodes in the view definition
with context attributes (line 1) – receiver context nodes. For each context attribute a
separate view is initialized (line 2). For all symbols defined in the context attribute
we check (line 6) whether we need to create a new subgoal (lines 16–20) or add the
information to an existing one (lines 7–14). We do not create a new subgoal if the
symbol refers to another symbol or shares a common prefix path. In either case, nodes
are created in the subgoal tree for all those elements occurring in the path of any symbol
definition. Afterwards, we need to check and model the predicates defined in the context
attribute. As a first step the predicate factory collects all predicates contained in the
context attributes (lines 22–25), assigns them to the corresponding nodes in the subgoal
tree if they have already been created. For each variable contained in a predicate the

Processing Rank-Aware Queries in Schema-Based P2P Systems 73

4.1 Subgoal Trees

<JRRTolkien>
 <book context=“$a=literature/author,
 $b=$a/book,
 $l=literature/library
 where $b/library=$l/name and
 $a/fullname=‘J.R.R. Tolkien’ ”>
 <title>{$b/title}</title>
 <ISBN>{$b/ISBN}</ISBN>
 <library>{$b/library}</library>
 <zipcode>$l/zip</zipcode>
 </book>
</JRRTolkien>

JRRTolkien/book
literature/library

zipcode
zip

library
name

literature/library/name
= literature/author/book/library

JRRTolkien/book
literature/author

title
title

ISBN
ISBN

library
library

literature/library/name
= literature/author/book/library

book

fullname

literature/author/fullname
= ‘J.R.R. Tolkien’

Figure 4.2: Creating Subgoal Trees for the View Definition from P0 to P1. Each subgoal
tree node has two annotations: a receiver schema annotation (first row) and a rewriter
schema annotation (second row). Exported nodes are tagged (grey).

factory resolves and stores the absolute paths, e.g., for $b/library the factory stores
literature/author/book/library.

So far we have only created representative nodes for schema elements that have been
mentioned in any symbol declaration in the context attribute. This means that all nodes
of the subgoal trees so far only represent rewriter schema elements. The only exception
is the root node that has been assigned both a rewriter and a receiver path (line 17).
The receiver path of the root node is determined by the node in the view definition
that contains the context attribute (e.g., JRRTolkien/book) and the rewriter path of the
root node is determined by a symbol declaration (e.g., literature/author). In order
to create representations for receiver schema nodes within the subgoal tree, we need to
recursively traverse all child nodes of the view definition’s receiver context node (lines 26–
29). Method createNodes takes care of creating nodes for both receiver schema elements
(descendants of the receiver context node in the view definition) and rewriter schema
elements (referred to by exported symbols contained in receiver schema elements). When
creating a leaf node in the subgoal tree (e.g., for zipcode (receiver) and zip (rewriter)),
the node is marked as exported and the factory is asked if there exists any predicate
that involves the currently considered rewriter schema element – in Figure 4.2 exported
nodes are highlighted in grey. If so, the corresponding predicates are assigned to the leaf
node of the subgoal tree. If the rewriter element is involved in a join, i.e., it is part of a

74 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.1 Subgoal Trees

Algorithm 1 createQuerySubgoalsView(viewDef)
1: for all contextEl ∈ viewDef .getNodesWithContextAttribute() do
2: view = new View();
3: receiverPath = contextEl.getFullPath();
4: contextClause = contextEl.getContextClause();
5: for all variableBinding ∈ contextClause.getVariableBindings() do
6: if variableBinding.getRewriterPath.startsWith(‘$’) then
7: /* if rewriterPath belongs to a subgoal that has already been created */
8: node = findLastExistingNodeFor(rewriterPath);
9: for all element in rewriterPath after node do
10: /* create new nodes */ ;
11: newNode = new Node(element.getName(). ‘’);
12: node.addNode(newNode);
13: node = newNode;
14: end for
15: else
16: /* create a new subgoal tree with a new root node */
17: node = new Node(rewriterPath, recieverPath);
18: subgoal = new SubGoal(node);
19: view.add(subgoal);
20: end if
21: end for
22: /* collect and assign predicates */
23: for all predicate ∈ contextClause.getPredicates() do
24: factory.createPredicatesInView(predicate);
25: end for
26: /* create nodes representing rewriter/receiver schema elements */
27: for all child ∈ contextEl.getChildren() do
28: createNodes(child, new Vector(), factory);
29: end for
30: /* treat the predicates related to not exported symbols at the end */
31: treatLeftoverPredicates(factory);
32: end for

join predicate, it is necessary to clone all predicates that have been assigned to its join
partner and assign them to the leaf node.

Now all predicates are assigned to exported symbols (i.e., leaf nodes in the subgoal
tree). There is only one special case that we need to pay attention to: predicates not
involving any exported symbols or predicates that refer to elements to which the receiver
does not have a corresponding element, e.g., $a/fullname = ‘J.R.R. Tolkien’. In
this case, we need to create additional non-exported leaf nodes in the subgoal tree to
represent such predicates (line 31).

Algorithm 2 provides more details on how method createNodes creates inner nodes in
the subgoal tree. The initial input of the algorithm is a receiver node and the reference
to the predicate factory. At first, the algorithm checks if a constraint is assigned to the
input receiver node. If so (lines 1–4), this constraint is assigned to the whole subgoal
tree rather than to the receiver node that is involved. If the current receiver node is
an inner node, the node’s name is stored into a list of node names (nodeNames) and
createNodes is recursively invoked on its children (lines 5–10). This list of receiver node
names contains all nodes that have been visited so far – representing nodes on the path
between the receiver context node and the current node in the receiver schema.

If the currently considered node of the receiver schema is a leaf node in the view
definition, it contains an exported symbol. The path of the exported symbol is extracted
(line 13) and the predicate factory is asked, whether there are any join predicates involv-
ing this path (line 14). The reason is that both structures that are involved in a join have
to be treated equally and predicates involving either one of them have to be assigned to

Processing Rank-Aware Queries in Schema-Based P2P Systems 75

4.1 Subgoal Trees

Algorithm 2 createNodes(receiverNode,nodeNames,factory)
1: constraint = receiverNode.getConstraint();
2: if constraint �= null then
3: subgoal.setConstraint(constraint);
4: end if
5: if receiverNode.hasChildren() then
6: /* if receiverNode is an inner node in the view definition */
7: nodeNames.add(receiverNode.getName());
8: for all child ∈ receiverNode.getChildren() do
9: createNodes(child, nodeNames, factory);
10: end for
11: else
12: /* receiverNode is a leaf node in the view definition, i.e., exported symbol found */
13: rewriterSymbol = receiverNode.getExportedSymbolExpression();
14: partners = factory.getJoinPartners(rewriterSymbol);
15: partners.add(rewriterSymbol);
16: for all path ∈ partners do
17: /* find the node in the subgoal tree representing the variable of the exported symbol */
18: variable = path.getVariable();
19: node = subgoal.getNode(variable);
20: /* find or create inner nodes in the subgoal tree for receiver schema elements */
21: for all name ∈ nodeNames do
22: if subgoal.existsReceiverNode(name) then
23: node = subgoal.getReceiverNode(name);
24: else
25: newNode = new Node(‘’, name);
26: node.addNode(newNode);
27: node = newNode;
28: end if
29: end for
30: /* create inner nodes in the subgoal tree for rewriter schema elements, traversal from left to right */
31: for all element ∈ path.getInnerNodeNames() do
32: /* traversal from left to right */
33: if subgoal.existsRewriterNode(element) then
34: node = subgoal.getRewriterNode(element);
35: else
36: newNode = new Node(element, ‘’);
37: node.addNode(newNode);
38: node = newNode;
39: end if
40: end for
41: /* create leaf node in the subgoal tree */
42: leafName = path.getLeafName();
43: leafNode = new Node(leafName, receiverNode.getName());
44: leafNode.setExported();
45: node.addNode(leafNode);
46: node = leafNode;
47: /* look for predicates */
48: for all predicate ∈ factory.getPredicates(path) do
49: node.setPred(predicate);
50: end for
51: end for
52: end if

both structures. This information can be obtained from the predicate factory, which has
learned it through Algorithm 1. In the view definition of Figure 4.2 a leaf node in the
receiver schema is title. It contains the exported symbol $b/title.

For the so found path (corresponding to the rewriter schema) and its join partners
we need to create all nodes in the subgoal tree if they do not yet exist. For this purpose,
the exported symbol (rewriter schema) is divided into three parts: the variable, the inner
node path, and the leaf node, e.g., $a/book/title would be divided into (i) $a, (ii) book,
and (iii) title. At first, we consider the variable (lines 17–29). We need to find the node
within the subgoal tree that represents the variable, e.g., variable $a represents the path

76 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.1 Subgoal Trees

literature/author such that the node we need to locate is the one corresponding to
author. Such a node must exist since it has been created by Algorithm 1. As children
of the so found node in the subgoal tree we create inner nodes – if not yet existing –
for all receiver schema node names stored in nodeNames (first-in-first-out). Then, all
inner nodes corresponding to the inner node path (e.g., book) are created (lines 30–40).
Afterwards, a leaf node is created (lines 41–50), which contains both a receiver schema
element name (i.e., the node in the receiver schema that contained the exported symbol)
and a rewriter schema element name (i.e., the node in the rewriter schema referred to by
the exported symbol) – in our example both are named title. The leaf node is marked
as exported and if necessary assigned predicates (lines 48–50). In our example we obtain
a leaf node in the subgoal tree of Figure 4.2 that contains the receiver node name title

derived from JRRTolkien/book/title and the rewriter node name title derived from
$a/work/title.

4.1.2 Creating Subgoal Trees for Queries

In order to compare a view to a query, queries have to be transformed into a subgoal
tree representation as well. Such a tree is constructed in a similar manner. The main
difference is that in case of query subgoal trees there is no receiver schema and thus
there are no receiver nodes that need to be considered. Figures 4.3 and 4.4 illustrate the
subgoal trees created for the two example queries that we have introduced in Section 3.3
and illustrated as POP trees in Figure 3.5.

literature/library

nmbOfBooks

interLibraryLoanFee

Figure 4.3: Subgoal Trees for the Example Skyline Query. Exported nodes are tagged
(grey).

Algorithm 3 sketches the algorithm that creates subgoal trees given a query POP
tree as input. It begins with identifying all select POPs on leaf level (line 1). For each
of these select POPs (remember that a POP on leaf level is always a select POP) a
separate subgoal tree is created since such a POP directly corresponds to a subgoal.
In principle, we follow the path from the leaf POP to the root POP in the query tree
and simultaneously construct the subgoal tree (lines 3–29). At each visited POP we
consider its parameters (e.g., the path expressions used to define the ranking function
of a topn POP), its predicates, and the exported data. So, we first extract the POP’s
parameter paths (line 4). If the currently considered POP is a leaf level select POP, we
create and initialize a new subgoal tree (lines 6–9). The root node of this subgoal tree
is assigned the full path of the select expression (line 8), e.g., literature/library in
Figure 4.3. For non-leaf-level POPs we need to check whether the schema nodes referred
to by the paths of the parameters are already represented within the subgoal tree by
corresponding nodes. If necessary, such nodes are created and inserted into the subgoal

Processing Rank-Aware Queries in Schema-Based P2P Systems 77

4.1 Subgoal Trees

subgoal ID 0

literature/library/name
= literature/author/book/library

literature/library

name

town

subgoal ID 1

literature/library/name
= literature/author/book/library

“J.R.R. Tolkien”

literature/author

fullname

book

title

ISBN

library

Figure 4.4: Subgoal Trees for the Example Join Query. Exported nodes are tagged (grey).

tree (lines 12–20). In our example skyline query – after having created the root node –
the paths (library/nmbOfBooks and library/interLibraryLoanFee) referred to by
the definition of the skyline POP’s ranking functions entail the creation of the two nodes
nmbOfBooks and interLibraryLoanFee in the subgoal tree.

After having created and found all nodes to represent the currently considered path
expression, we need to decide whether to mark nodes of the path as exported or not
(line 23). This depends on the type of the currently considered POP as well as on the
query. In contrast to view subgoals, inner nodes of query subgoals might be marked
as exported. This happens if the query does not use any construct or select POPs to
specify the structure of the result with respect to the subgoal. In this case all nodes in
the subgoal tree are marked as exported (see Figure 4.3 for an example). In general we
need to consider what data is output as a result of a POP. Leaf nodes in the subgoal
tree referred to by topn and skyline POPs are always marked as exported (assuming of
course there is no other more restrictive POP above them in the query tree) because the
data contained in these nodes is used for ranking the records. Join POPs as well as union
POPs are considered neutral and do not cause any nodes to be marked as exported. In
case of a select POP p, a leaf node n is only marked as exported if there exists no other
construct or select POP on the path between p and the root node of the query POP tree
that prunes the schema element represented by n. In general, construct POPs always
result in marking the leaf nodes that their parameters refer to as exported. There is only
one exception: the leaf node is not marked as being exported if the construct POP using
it has been created due to rewriting and the original query had no construct POP. The
reason is that when the construct POP is the result of the rewriting process, the user did
not express his/her interest in those elements and thus might actually have no interest
in some of the referenced schema nodes.

As for creating subgoal trees for views, predicates have to be treated in a special
way (line 24). POPs may contain predicates in their XPath expressions. For exam-
ple, nmbOfBooks > ‘10000’ could be a predicate for literature/library denoted as

78 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.2 Query Rewriting Using Subgoal Trees

Algorithm 3 createQuerySubGoalsQuery(query)
1: leaves = query.getLeafPOPs(); /* find POPs on leaf level */
2: for all pop ∈ leaves do
3: while pop is not null do
4: parameterPaths = pop.getParameterPaths(); /* extract path expressions from the POP’s parameters */
5: for all path ∈ parameterPaths do
6: if pop ∈ leaves then
7: /* create new subgoal tree and root node */
8: node = new Node(path);
9: subgoalTrees.add(new Subgoal(node);
10: else
11: /* find/create a subgoal tree node for each element name in path, traversal from left to right */
12: for all element ∈ path do
13: if existsNodeInSubgoalTree(element,subgoalTrees) then
14: node = getExistingNodeInSubgoalTree(element,subgoalTrees);
15: else
16: newNode = new Node(‘’, element);
17: node.add(newNode);
18: node = newNode;
19: end if
20: end for
21: end if
22: /* mark subgoal tree node as exported if necessary */
23: node.setExported(pop.checkParametersAreExported());
24: predicate = pop.getPredicate();
25: /* collect and set predicates */
26: factory.createPredicatesInQuery(predicate);
27: end for
28: pop = pop.getParent();
29: end while
30: end for
31: /* consider joins when all subgoal tree nodes have been created */
32: factory.treatJoinPredicatesForQuery();
33: return subgoalTrees; /* return query subgoal trees */

literature/library[nmbOfBooks>‘1000’] in the XPath expression of a select POP.
Again, we use a predicate factory (line 26) to collect and assign predicates to nodes in the
query subgoal tree. Since predicates involved in join POPs also hold for the join partner,
we again need to treat this case separately at the end once all predicates are known
(line 32). The subgoal trees corresponding to our example join query are illustrated in
Figure 4.4. In order to distinguish the created subgoal trees, each of them is given a
subgoal ID, in the example “0” for the left and “1” for the right subgoal tree.

4.2 Query Rewriting Using Subgoal Trees

The algorithm we present in this section works in a completely decentralized manner and
pays attention to rank-aware query operators using the Bucket Algorithm (Section 2.6.3)
as basis. Given a query (formulated on a peer’s local schema), a set of neighbors, and
corresponding mappings, the algorithm generates a query plan that contains rewritings
combined by union POPs. Each rewriting is likely to contain remote queries representing
subqueries to be forwarded to neighboring peers. These subqueries are formulated on the
receiver’s local schema and contain construct POPs allowing the receiver to transform
its results into the schema of the sender so that the sender always receives results in its
local schema. In principle, the rewriting algorithm works in nine steps:

Processing Rank-Aware Queries in Schema-Based P2P Systems 79

4.2 Query Rewriting Using Subgoal Trees

1. receiving a query plan (POP tree)

2. preprocessing

3. creating buckets

4. sorting view subgoals into buckets

5. creating combinations of buckets

6. creating query snippets

7. creating initial rewritings

8. optimizing remote queries and rewritings

9. assembling the rewriting result (rewritten query plan)

We illustrate these steps using the two running examples introduced in Section 3.3: the
skyline query of Figure 3.5(a) and the join query of Figure 3.5(b). Both queries are issued
at P0 in our example network of Figure 3.2 and hence formulated on P0’s local schema.

4.2.1 Receiving a Query Plan

When the query is issued, the first step for P0 is to evaluate the query on its local data.
As we do not distinguish between the schema a peer makes accessible to other peers
in the network (peer schema) and the schema the data is actually stored in locally but
assume both are the same, no rewriting is necessary to answer the query locally. Thus,
the query plan that is given as input to the rewriting algorithm may already contain
intermediate results originating from local query processing – the local result of a skyline
computation is for example attached to the skyline POP. Depending on the strategy and
query operators (Chapter 6), it might be worthwhile to forward such intermediate results
along with the query to neighboring peers. These peers can use this information to prune
additional peers from consideration [92]. In principle, input query plans correspond to
queries formulated in LQ according to Definition 3.3.1 without remote query POPs. There
are only two more requirements that have to be fulfilled in order to apply our rewriting
algorithm:

1. If a query contains multiple joins, these joins have to be directly connected to each
other, i.e., no other POPs are allowed on the path between any two joins in the
query tree (step 8, Section 4.2.8).

2. If a query contains both joins and rank-aware operators, the join must be located
in the POP tree directly underneath the rank-aware operators or the rank-aware
operators must be direct children of the join POP (step 2, Section 4.2.2).

Note that these two requirements do not restrict the space of possible queries but only
influence the structure of a query plan tree – plans can be reorganized accordingly before
handing them to the rewriting component.

In general, the input POP tree is assigned a set of “relevant neighbors” that are to be
considered for rewriting. This set has been determined by data-level pruning (Chapter 5)
and is likely to contain fewer neighbors than the peer is connected to. As rewriting
costs strongly depend on the number of considered views, this information significantly
improves performance. However, for our two example queries we assume that none of
the neighbors has been pruned on data-level.

80 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.2 Query Rewriting Using Subgoal Trees

4.2.2 Preprocessing

If a query has been received from a neighboring peer, it has a remote query POP as root
node of the query tree. As this node only encodes the information to which peer the
result of the query is to be sent to, it is ignored by the rewriting component and not
considered in the following.

Both union POPs and rank-aware POPs need to be treated in a special way if we want
to use the Bucket Algorithm as basis. Queries containing union POPs can always be split
up into several subqueries, which can be processed separately and whose results simply
need to be merged at the peer that rewrites the query. Thus, before rewriting a query
that contains unions, subqueries not containing union POPs are extracted. In order
to distinguish between the subqueries, they are given unique identifiers. After having
rewritten the subqueries independently from each other, we assemble the rewriting result
for the original query. For this purpose, we use the original query and replace the subtrees
corresponding to the subqueries with their rewriting results. The resulting query may now
be processed to answer the query. This kind of preprocessing is illustrated in Figure 4.5.

ó

rewriting result for
subquery 1

rewriting result for
subquery 2

ó

subquery 1 subquery 2

Figure 4.5: Preprocessing of a Query with Union POPs. Left: Original Query, Right:
Rewritten Query

Rank-aware operators are not part of conjunctive queries either. With respect to
queries containing POPs such as topn and skyline, we basically proceed the same: we
split up such queries into several subqueries such that each can be treated as an individual
query without such operators. Assume we have a two-level POP tree with a skyline POP
as root and a select POP underneath (our example skyline query of Figure 4.3). Simply
rewriting the subquery underneath the skyline POP results in a situation in which the
initiating peer receives all data records from its neighbors corresponding to the select
expression. Doing so, the initiator has to bear all the computational load of computing
the skyline. Furthermore, network load would be enormous since all data records of
possibly all neighbors would be rewritten and sent to the initiator. Obviously, this is not
an efficient solution, especially when we consider that most of the effort is unnecessary
because only a small portion of the data is actually needed to answer the query.

An effective solution is sharing the information about the skyline operator with the
neighbors, i.e., considering the operator for rewriting. The decisive characteristic of rank-
aware operators, which we can use for this purpose, is their additivity that results from
the additivity of the aggregate functions they are defined on (MIN, MAX):

Processing Rank-Aware Queries in Schema-Based P2P Systems 81

4.2 Query Rewriting Using Subgoal Trees

Observation 4.2.1 (Additivity of Skyline and Top-N Operators). Let φ denote a skyline
or a top-N operator and let D1, . . . , Dn denote data sets that φ can be evaluated on. Then,
the following equation holds for all φ:

φ(D1, . . . , Dn) = φ(φ(D1), . . . , φ(Dn))

Thus, evaluating φ on the union of the individual data sets is the same as evaluating
φ on the data sets in separate and afterwards on the union of their results. Hence,
when neighbor peers receive a rewritten query that includes φ, network load as well as
computational load at the initiator can be reduced by having the neighbors evaluate φ.
Once the initiator has received the results from its neighbors, it once more evaluates φ
over the union of its local result and the results received from its neighbors.

Whenever a query is given as input that contains rank-aware operators, the pre-
processing step takes care of introducing such possibilities by cloning the operator and
inserting it on top of the rewriting result. More formally, we locate the bottommost
rank-aware operator and use all operators underneath for rewriting. The operator is
cloned and inserted on top of the rewriting result. The part of the original query above
the operator is computed locally at the peer that rewrites the query using the results
provided by the rewritings as input.

Ö
library/nmbOfBooks

library/interLibraryLoanFee

ó
literature/library Ö

library/nmbOfBooks

library/interLibraryLoanFee

Ö
library/nmbOfBooks

library/interLibraryLoanFee

ó
literature/library

rewritings

Figure 4.6: Preprocessing of a Skyline Query

Let us again consider our example skyline query of Figure 4.3. The query POP tree
corresponding to the rewriting result is sketched in Figure 4.6 – the original skyline POP
of the query is cloned and inserted as root node of the rewriting result. The union POP
underneath defines that the result of the local query (left child), i.e., the original input
query evaluated locally, is merged with the results of the neighbors (right child, dotted
line), i.e., the query rewritings. As this is only the preprocessing step, the right child of
the union POP is not yet known but computed in the following steps of the rewriting
process.

The considerations above only hold for rank-aware queries that do not contain join
POPs. Assuming we have a query that contains a skyline POP underneath a join POP
(Figure 4.7). In the preprocessing step we clone the skyline operator and insert it on

82 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.2 Query Rewriting Using Subgoal Trees

top of the join POP – in case there are multiple join POPs the clone is inserted on top
of the topmost join POP. For such queries we can consider the join POPs as well as all
operators underneath for rewriting. The reason is that joins do not make any projections,
i.e., it is not possible to “lose” any data that might be relevant to evaluate the rank-aware
operator.

literature/library
ó

ó
literature/author/book

ê

library/name
= book/library

<entries>
 <title>{book/title}</title>
 <ISBN>{book/ISBN}</ISBN>
 <library>
 {library/name}
 </library>
 <location>
 {library/town}
 </location>
</entries>

Ö
library/nmbOfBooks

library/interLibraryLoanFee

ê
<entries>
 <title>{book/title}</title>
 <ISBN>{book/ISBN}</ISBN>
 <library>
 {library/name}
 </library>
 <location>
 {library/town}
 </location>
</entries>

literature/author/book

literature/library
ó

ó

library/name
= book/library

Ö
library/nmbOfBooks

library/interLibraryLoanFee

Ö
library/nmbOfBooks

library/interLibraryLoanFee

rewritings

Figure 4.7: Preprocessing of a Skyline Query with Join

These considerations led to the requirement (step 1, Section 4.2.1) that in order to
consider queries containing both joins and rank-aware operators for rewriting, there must
not be any other POP that might perform any kind of projection or transformation of
the data in between join and rank-aware operator. However, it might make a difference
whether a rank-aware operator is located above the join or underneath.

We now consider the examples illustrated in Figures 4.7 and 4.8. These figures illus-
trate the preprocessing step for queries containing join and skyline POPs. Although both
queries are very similar, the result sets are not necessarily the same. It is only the same
if literature/library/name and literature/author/book/library are foreign keys,
i.e., for each library there exists at least one book element that fulfills the join condition.
The considerations that lead to this observation are as follows.

Assuming there was a library l in literature/library that had no join partner b
in literature/author/book. We further assume l is part of the skyline on libraries
directly computed on the output of the select operator (Figure 4.7). Therefore, l might
dominate and thus prune a set of other libraries L – see Section 2.1.2 and Definition 2.1.3
for details on skyline queries and the dominance relationship. After having processed the

Processing Rank-Aware Queries in Schema-Based P2P Systems 83

4.2 Query Rewriting Using Subgoal Trees

literature/library
ó ó

literature/author/book

library/name
= book/library

ê

<entries>
 <title>{book/title}</title>
 <ISBN>{book/ISBN}</ISBN>
 <library>
 {library/name}
 </library>
 <location>
 {library/town}
 </location>
</entries>

Ö
library/nmbOfBooks

library/interLibraryLoanFee

rewritingsliterature/library
ó ó

literature/author/book

library/name
= book/library

ê

<entries>
 <title>{book/title}</title>
 <ISBN>{book/ISBN}</ISBN>
 <library>
 {library/name}
 </library>
 <location>
 {library/town}
 </location>
</entries>

Ö
library/nmbOfBooks

library/interLibraryLoanFee

Figure 4.8: Preprocessing of a Skyline Query with Join – Alternative

join POP, l would not have any representative l′ in the join result and thus would not
be part of the result. In the query of Figure 4.8, where the skyline is processed after the
join, there is no l or l′ that could dominate any library in L. Thus, libraries in L could
still be part of the skyline. To guarantee the same result (no foreign key relationship)
in the query of Figure 4.7, in which the join is processed on top of the skyline result,
we would have to reconsider all libraries in L as they now, after the removal of l, could
actually be part of the skyline. The same considerations apply to the top-N operator in
a similar fashion. The query parser can be used to solve this problem by automatically
reordering the operators such that the join POP is always underneath the rank-aware
operator. As in this case some computational load is shifted to the peer that issues the
query, the user can explicitly configure the parser to arrange rank-aware POPs above or
underneath join POPs.

With respect to the preprocessing step, future work might also consider optimizations
for the problem of rank-aware query operators in conjunction with joins. For instance,
so far we only locate the bottommost rank-aware operator and use it with all operators
underneath for query rewriting. It might be possible to optimize our algorithm so that
it not only considers all operators underneath but also the operators above.

4.2.3 Creating Buckets

In this step we identify the subgoals that are contained in the query. For this purpose
we use the algorithm introduced in Section 4.1.2 and obtain one subgoal tree for each
subgoal. For each subgoal one bucket is created. Figures 4.3 and Figure 4.4 illustrate
the subgoal trees we obtain for the two running example queries.

We add some additional information to each bucket. First, each bucket is assigned a
subgoal ID indicating which of the query’s subgoals it belongs to. In the following, we

84 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.2 Query Rewriting Using Subgoal Trees

often refer to this subgoal ID as bucket ID as it also unambiguously identifies a bucket.
Furthermore, a bucket knows the total number of subgoals created for the query and
the query ID. This information will be necessary to create remote query POPs for query
snippets in step 6 (Section 4.2.6).

4.2.4 Sorting View Subgoals into Buckets

The goal of this step is to identify view subgoals that might be relevant to answer the
query and to sort them into “matching” buckets. For each peer contained in the list of
relevant neighbors the corresponding view subgoal trees are created according to Sec-
tion 4.1.1 and compared to the query subgoals of the buckets. If a view subgoal is able
to answer a query subgoal, i.e., if the query subgoal is contained in the view subgoal, the
view subgoal is sorted into the corresponding bucket.

We have already pointed out in Section 2.6.2 (Definition 2.6.3) that finding a symbol
mapping from the query to the view is a sufficient condition to decide on containment.
This is the case if a variable mapping (element mapping) between query subgoal and
view subgoal can be found. Intuitively, if the following conditions are fulfilled, then a
mapping exists:

1. All paths and element names that occur in the query subgoal tree need to have a
counterpart in the view subgoal tree.

2. Exported leaf nodes in the query subgoal tree must correspond to exported leaf
nodes in the view subgoal tree or to leaf nodes with constants.

3. Predicates in the query subgoal tree must be satisfiable in the view subgoal tree
because a query subgoal that cannot be fulfilled by the view subgoal would lead to
an empty answer.

4. Since for rewriting the input query the view subgoals have to be combined, the
view has to contain either the same join predicate or the view subgoal needs to
have exported nodes that the rewriter element involved in the query’s join can be
mapped to.

Deciding on containment of complex objects and XML trees [51, 125, 137, 187] is similar
to the problem of deciding on containment of subgoal trees. As subgoal trees basically
represent XML trees, the definitions of XML tree embedding and containment proposed
in [51,187] are very similar to our definition of subgoal tree containment and containment
mappings (Definition 4.2.2).

Definition 4.2.2 (Subgoal Tree Containment Mapping). A containment mapping from a
query subgoal tree TQ to a view subgoal tree TV is a node mapping (ψ : N (TQ) �→ N (TV))
such that:

• ψ maps the root node rQ of TQ to a node rV ∈ N (TV),

• if node n′
Q is a child node of nQ ∈ TQ, then ψ(n′

Q) is a child node of ψ(nQ),

• the rewriter path expression defined by the labels of nodes on the path from rQ to a
node nQ ∈ TQ corresponds to the rewriter path expression defined by nodes on the
path from rV to ψ(nQ),

• ψ maps each exported leaf node in TQ to an exported leaf node in TV or to a leaf
node with a constant in TV , i.e., ∀e ∈ E(TQ) : ψ(e) ∈ E(TV) ∨ ψ(e) ∈ C(TV),

Processing Rank-Aware Queries in Schema-Based P2P Systems 85

4.2 Query Rewriting Using Subgoal Trees

• predicates assigned to a node nQ ∈ N (TQ) imply predicates assigned to ψ(nQ) so
that P(TQ) =⇒ P(TV), and

• ψ maps a node nQ ∈ N (TQ) with an assigned join predicate either to a node ψ(nQ) ∈
E(TV) or to a node ψ(nQ) ∈ N (TV) with the same join predicate.

The fact that nodes in a view subgoal tree already encode mappings between rewriter
and receiver schema elements, makes finding a symbol mapping straightforward and
comes down to the problem of finding matches in the view subgoal tree for all nodes in
the query subgoal tree. This means all that needs to be done is recursively traversing
the view subgoal tree TV in correspondence to its rewriter schema element annotations
and the rewriter schema elements represented by nodes in TQ.

At first, we need to find the node in TV corresponding to TQ’s root node. This is
straightforward as only the path expression of TQ’s root node has to be compared to
the rewriter path expression of TV ’s root node. If the latter represents only a subpath,
we traverse the tree until we find the corresponding node. For this process intermediate
nodes exclusively representing nodes in the receiver schema are ignored. For all other
nodes in TQ we basically proceed the same to find their matches. If one of the conditions
stated above (Definition 4.2.2) is not fulfilled, we stop the matching process and do not
sort the view subgoal TV into the bucket corresponding to TQ.

Just like MiniCon [162] and unlike the Bucket Algorithm [84] we pay attention to
predicates at this early stage of the rewriting process in order to avoid a large-scale
containment test for rewritings of views that obviously do not yield any results. In
contrast to the Bucket Algorithm not views are sorted into buckets but view subgoals.

In a view subgoal tree that is inserted into a bucket all its nodes matching nodes in
the corresponding query subgoal tree are tagged so that non-tagged nodes do not have
to be considered in the following. A special tag is assigned to the node matching the
context node of the query subgoal tree (important for step 6, Section 4.2.6). Predicates,
e.g., join predicates, assigned to nodes in the query subgoal tree are also assigned to their
matches in the view subgoal tree (step 5, Section 4.2.5). Figure 4.9 shows a tagged view
subgoal tree corresponding to the mapping from P0 to P4, which is inserted into bucket
1 of the join query. The view itself is assigned a list of bucket IDs that at least one of
its subgoals has been sorted into. This list will be useful for reducing the number of
rewritings that need to be considered in step 5 (Section 4.2.5).

4.2.5 Creating Combinations of Buckets

The buckets and the view subgoal trees sorted into them only represent parts of the query.
The view subgoals within the buckets have to be combined into rewritings in order to
answer the query. In a first step, this is done by building the Cartesian product of the
view subgoals of all buckets – each resulting rewriting comprises exactly one subgoal
from each bucket.1 This Cartesian product may be rather large and may as well contain
a lot of redundant combinations. To remove redundant combinations, the bucket IDs
that have been assigned to the views in step 4 are consulted. These bucket IDs refer

1If there is an empty bucket, the rewriting process ends at this point because there exists no combi-
nation of view subgoals, i.e., no rewriting, that could answer the query.

86 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.2 Query Rewriting Using Subgoal Trees

libraries/library
literature/author

name
name

city
town

ILLF
interLibraryLoanFee

books
nmbOfBooks

context

literature/library/name
= literature/author/book/library

view subgoal

query subgoal

literature/library/name
= literature/author/book/library

literature/library

name

town

Figure 4.9: Sorting a View Subgoal of P4 into Bucket 1 of the Example Join Query and
Tagging Matching Elements (blue)

to all buckets which any subgoal of the corresponding view has been sorted into. All
combinations that do not fulfill the following requirement are pruned:

∀x �= y ∧ x is combined in a rewriting with y : Colors(x) ∩ Colors(y) = ∅ (4.1)

x and y are views and Colors(x) denotes the set of query subgoals (bucket IDs) that
view x fulfills. In case a view fulfills multiple query subgoals, it has been given multiple
bucket IDs. By checking the requirement above, the minimal set of additional views is
found to answer the whole query. All combinations that do not fulfill the requirement
can be pruned. This step works in a similar fashion as the MiniCon algorithm [162].

For the remaining combinations the algorithm checks whether the predicates of com-
bined subgoals originating from different views are contradictory. In order to consider
also predicates defined in the query, we have annotated nodes in the view subgoals with
predicates of their “matching” nodes in the query subgoals in step 4 (Section 4.2.4).
Since a combination of subgoals with contradictory predicates would yield empty result
sets, such combinations are removed.

For our join query two buckets have been created (Figure 4.4). View subgoals of P1

and P2 have been sorted into bucket 0 and view subgoals of P2 and P4 have been sorted
into bucket 1. The Cartesian product results in four combinations: (1,2),(1,4),(2,2), and
(2,4). But as the view of P2 is able to answer the whole query (i.e., both query subgoals),
all combinations of P2’s view and other views can be removed. In the end only the
combinations (1,4) and (2,2) remain. Note that the buckets contain view subgoals not
views. Thus, the combination (2,2) denotes that two subgoals both supported by P2 need
to be combined.

Although there are many situations which allow for pruning combinations of subgoals
in the way described above, there are some for which this kind of pruning may result in
a loss of completeness. We might lose answers whenever it is possible that the pruned
combination of any two subgoals yields records we do not obtain otherwise. An example is
the use of “null” values. Assuming P2 holds a null value for a library’s town/city attribute

Processing Rank-Aware Queries in Schema-Based P2P Systems 87

4.2 Query Rewriting Using Subgoal Trees

whereas P4 provides the correct value. In this case we should not prune combination (2,4)
although it can be considered redundant from a schema-level point of view. A similar
situation arises when P2 and P4 provide different values for the town/city attributes.
Without knowing which one is correct in advance, it might be worthwhile to retrieve
both. In summary, for our example join query this means that although P2 answers both
subgoals, we should not prune the combinations (1,2) and (2,4) if we want to obtain the
maximum set of result records and we cannot be sure whether P1 or P4 provide any join
partners with data not stored locally at P2. Moreover, in such situations it is not enough
to consider all combinations of the views, we also need to consider combinations with
subgoals of the rewriting peer’s local schema. As the query is formulated on the schema
of the rewriting peer, the algorithm can sort subgoals corresponding to the local schema
into each bucket. These subgoals have to be considered when building the Cartesian
product.

Obviously, this procedure, although it guarantees to compute the maximum set of
result records, is not efficient in a PDMS because of the large number of combinations
and the huge effort this entails for query processing. In addition, it is likely to produce
duplicates that should be identified and removed by applying duplicate detection [87,199]
or maybe additionally data fusion techniques [173,206]. However, if we assume the data
provided by the peers to be consistent and complete in the sense that attributes which can
be used to formulate a join can be considered foreign keys in the peer’s local database and
there are no join partners held by other peers with data that is not stored locally, we can
still perform the pruning as introduced above. We have to be aware that in some cases
by applying this kind of pruning we run the risk of missing some result records but in
consideration of the expected reduction in execution costs, we argue that taking the risk
is an acceptable solution. Thus, for our example join query we prune the combinations
(2,4) and (1,2) and consider only (1,4) and (2,2) in the following steps.

4.2.6 Creating Query Snippets

In the previous steps we have checked whether a view subgoal is useful for rewriting
the query (step 4, Section 4.2.6) and whether a combination of view subgoals would
possibly yield new and non-empty result sets (step 5, Section 4.2.6). In this step, we
create remote queries based on the tagged view subgoal trees. For each view subgoal
tree in a combination (output of step 5) we create one query snippet. A query snippet
is a linear POP tree that has the following base structure: a remote query POP as root
node, a construct POP as child of the remote query POP, and a select POP as child of
the construct POP.

The snippet POP tree is created in a bottom-up fashion. Thus, we begin with cre-
ating the select POP on leaf level. For this purpose, we start at the root node of the
view subgoal tree and traverse it downwards along tagged nodes until we find a node
with multiple tagged child nodes. The path from the root node to the one that we
stopped at determines the expression of the select POP, which may be extended by addi-
tional predicates (assigned to the tagged nodes) and/or constraints (assigned to the view
subgoal).

The next step is to create the construct POP. Based on the node in the view subgoal
tree that the query context node has been mapped to (this node has been marked in

88 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.2 Query Rewriting Using Subgoal Trees

step 4, Section 4.2.4), the expression of the construct POP is generated. The construct
expression is built using the rewriter schema as basis. As the view subgoal tree contains
the schema elements of both rewriter and receiver, we can obtain all necessary informa-
tion from the view subgoal. We only need to consider tagged elements because all others
have been identified as being unimportant to the query. At first, we extract the rewriter
XML structure of the tagged nodes (considering only the subtree with the context node
as root). For the tagged view subgoal tree of Figure 4.9 we obtain the following base
structure:

<author>

<name></name>

<town></name>

</author>

The nodes of the view subgoal tree themselves indicate the receiver schema elements that
the rewriter schema elements have to be mapped to. We obtain:

<author>

<name>{ library/name }</name>
<town>{ library/city }</name>

</author>

Finally, the remote query POP is created by exploiting the additional information we
have assigned to the buckets in step 3 (Section 4.2.3). in order to obtain this information,
we simply need to look it up in the bucket that the currently considered view subgoal
has been sorted into. The remote query POP contains the ID of the neighbor whose
view the view subgoal and thus the query snippet belongs to, the query subgoal ID (=
bucket ID of the bucket the view subgoal has been sorted into), the number of subgoals
the query contains, and the query ID (in case the original query has been partitioned
into multiple subqueries). This information will become important later when answers
from neighboring peers have to be inserted into the correct position in the query plan
that is obtained as the result of the rewriting process.

The result of this step is a rewritten linear query POP tree, i.e., a query snippet, for
each view subgoal involved in any combination. Note that if a view subgoal that has
been sorted into a particular bucket is used in multiple combinations, we only need to
create the query snippet once and replicate it for all other combinations. Figure 4.10
shows the query snippet corresponding to the tagged view subgoal of P4, which has been
inserted into bucket 1 of the join query (Figure 4.9).

4.2.7 Creating Initial Rewritings

The query snippets created in the previous step are remote queries performing selection,
projection, nesting, unnesting, and renaming of elements. In principle, it is already
possible to use them to generate rewritings as each query snippet corresponds to a select
POP on leaf level in the original query. Thus, we can already generate a rewriting for
each combination found in step 5 (Section 4.2.5) by using the original query as template
for a rewriting and replacing the select POPs with the corresponding query snippets.
By connecting the rewritings for all combinations with union POPs, we can obtain the
rewriting result.

Processing Rank-Aware Queries in Schema-Based P2P Systems 89

4.2 Query Rewriting Using Subgoal Trees

ó
literature/library

ê

r4

<author>
 <name>{library/name}</title>
 <town>{library/city}</town>
</author>

Figure 4.10: Creating Query Snippets from the Tagged Subgoal Tree of P4 (Join Query)

Ö
library/nmbOfBooks

library/interLibraryLoanFee

ó
libraries/library

r4

ê
<library>
 <name>{library/name}</title>
 <town>{library/city}</town>
 <nmbOfBooks>
 {library/books}
 </nmbOfBooks>
 <interLibraryLoanFee>
 {library/ILLF}
 </interLibraryLoanFee>
</library>

Ö
library/nmbOfBooks

library/interLibraryLoanFee

ó
literature/library

original query
rewriting

query snippet /
remote query

Figure 4.11: Generating Rewritings for the Example Skyline Query and a Query Snippet
Originating from P4

Hence, we begin the generation of rewritings for each combination (output of step
5) using the original query as template and replacing the select POPs on leaf level with
the corresponding query snippets. Figure 4.11 shows such a rewriting for the example
skyline query and a query snippet corresponding to the subgoal of P4. In the following,
we use the term remote query to denote subtrees with remote query POPs as root node
since they are meant to be sent to neighboring peers and processed there.

Figure 4.12 illustrates the two rewritings for the example join query corresponding
to the combinations (2,2) and (1,4). In order to create rewritings for queries involving
joins, we do not use the complete original query as template but only the subtree with
the join as root node. The reason is that all operators above the join POP are computed
at the peer rewriting the query because the remote queries are located underneath the
join. Thus, the operators above the join are not considered until step 9 (Section 4.2.9),
which assembles the rewriting result for the input query.

90 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.2 Query Rewriting Using Subgoal Trees

combination (2,2) combination (1,4)

author/book/library
= library/name

ó
readingList/
book[author=‘J.R.R. Tolkien’]

r2

ê<author>
 ...
</author>

ó
readingList/
book/availableAt

r2

ê<library>
 ...
</library>

author/book/library
= library/name

ó
JRRTolkien/book

r1

ê<author>
 ...
</author>

ó
libraries/library

r4

ê<library>
 ...
</library>

Figure 4.12: Generating Rewritings for the Example Join Query

4.2.8 Optimizing Remote Queries and Rewritings

After having generated these initial rewritings, we need to optimize them. The goal of
the optimization is to push as many operators (not only rank-aware operators) of the
original query POP tree down underneath the remote query POP and the construct POP
of the remote query. The expression of the construct POP provides all information that
is necessary to rewrite the path expressions contained in the parameters of such POPs. If
necessary, even records representing an intermediate local result can be rewritten using
the same technique such that the receiver can use those results for query processing
(Chapter 6).

In our example skyline query rewriting of Figure 4.11, the skyline POP can be pushed
down underneath the remote query POP and the construct POP such that the receiving
peer can already evaluate the skyline operator on its local data and thus reduce the size
of the result set. The result is shown in Figure 4.13 illustrating how the construct POP’s
expression is used to rewrite the ranking functions of the skyline POP.

Under certain circumstances it is possible to combine the remote queries of a rewriting,
which has been generated in the previous step, into just one remote query. Whenever
two remote queries of the same neighbor are “connected” via joins in a rewriting (the
connection might involve multiple joins), we reorganize the tree such that the remote
query POP can be pushed up above the join POP. Note that only a join POP might lead
to such rewritings – this is the reason why we have required (Section 4.2.1) that when a
query contains multiple joins, they must be directly connected to each other.

Combining two remote queries means that the join connecting them in the initial
rewriting is computed not by the rewriting peer but already at the neighbor that holds
the data. The resulting remote query contains the join POP with two children, each of
which containing one construct POP and one select POP. However, this is still subop-

Processing Rank-Aware Queries in Schema-Based P2P Systems 91

4.2 Query Rewriting Using Subgoal Trees

ó
libraries/library

r4

Ö
library/books

library/ILLF

ê
<library>
 <name>^
 {library/name}
 </title>
 <town>
 {library/city}
 </town>
 <nmbOfBooks>
 {library/books}
 </nmbOfBooks>
 <interLibraryLoanFee>
 {library/ILLF}
 </interLibraryLoanFee>
</library>

Ö
library/nmbOfBooks

library/interLibraryLoanFee

ó
libraries/library

r4

ê
<library>
 <name>
 {library/name}
 </title>
 <town>
 {library/city}
 </town>
 <nmbOfBooks>
 {library/books}
 </nmbOfBooks>
 <interLibraryLoanFee>
 {library/ILLF}
 </interLibraryLoanFee>
</library>

Figure 4.13: Optimizing Rewritings for the Example Skyline Query

timal because before evaluating the join, all records matching the two select POPs are
transformed by the construct POPs. As many of them will be pruned by evaluating the
join, it is worthwhile to combine the two construct POPs, adapt their construct expres-
sions accordingly, and push the resulting construct POP up above the join POP. We can
use the construct POPs’ expressions to rewrite the paths referred to by the join POP’s
join predicate. Figure 4.14 illustrates this principle with the example of the join query’s
rewriting corresponding to the combination (2,2) of Figure 4.12.

If the view definition to the neighbor that the resulting remote query is to be sent to
contains the same join as the query, then the data is already stored in the joined format
at the neighbor. Thus, we can remove the join. This is illustrated in Figure 4.15 for the
join query example and the combination (2,2) based on Figure 4.14.

For queries that contain multiple joins it might be necessary to reorder the joins so
that remote queries corresponding to the same neighbor can be combined. At first, bushy
trees are reordered into right oriented trees as illustrated in Figure 4.16. Afterwards, the
algorithm recursively tries to reorder the joins such that remote queries corresponding
to the same neighbor are children of the same join POP. Only then can we combine the
two remote queries into one. The principle is sketched in Figure 4.17. Note that as
this technique is applied recursively, in the end more than two remote queries might be
combined into one.

When we sorted the view subgoals into buckets in step 4 (Section 4.2.4), we already
checked whether a join predicate contained in the query is also contained in the view
definition or if there are at least exported nodes in the view subgoal trees that can be
mapped to the rewriter schema elements involved in the query’s join definition. Conse-
quently, step 5 (Section 4.2.5) in general only creates combinations of view subgoal trees
that provide results. There is only one exception. Assume both query and view have only
one join, then they have two subgoals each. Further assume the query’s join predicate

92 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.2 Query Rewriting Using Subgoal Trees

book/availableAt/library
= book/availableAt/library

ó
readingList/
book[author=‘J.R.R. Tolkien’]

<pair>
 <author>
 <book>
 <title>{book/title}</title>
 <ISBN>{book/ISBN}</ISBN>
 <library>
 {book/availableAt/library}
 </library>
 </book>
 <fullname>
 {book/author}
 </fullname>
 </author>
 <library>
 <name>
 {book/availableAt/library}
 </name>
 <town>
 {book/availableAt/city}
 </town>
 </library>
</pair>

ó
readingList/
book/availableAt

r2

ê

author/book/library
= library/name

r2

ó
readingList/
book[author=‘J.R.R. Tolkien’]

ê

<author>
 <book>
 <title>
 {book/title}
 </title>
 <ISBN>
 {book/ISBN}
 </ISBN>
 <library>
 {book/availableAt/library}
 </library>
 </book>
 <fullname>
 {book/author}
 </fullname>
</author>

ó
readingList/
book/availableAt

r2

ê
<library>
 <name>
 {book/availableAt/library}
 </name>
 <town>
 {book/availableAt/city}
 </town>
</library>

Figure 4.14: Combining Remote Queries of a Rewriting (Join Query)

is contained in the view. In that case we did not require the nodes in the view subgoal
tree – representing the elements used in the join predicate – to be exported nodes (Sec-
tion 4.2.4). It might be possible that only one of the two view subgoals fulfilled all the
other conditions. Thus, only one of the two view subgoals would have been sorted into
a bucket. This view subgoal might have been combined with a view subgoal originating
from another mapping – resulting in a combination that should be pruned. Remember
that if both view subgoals had been inserted, step 5 (Section 4.2.5) could have taken care
of pruning all combinations of the two view subgoals with view subgoals originating from
other mapping definitions.

To prune such combinations, we do an extra check on each rewriting that contains a
join involving two view subgoals originating from different views, i.e., two remote queries
corresponding to different neighbors. More precisely, we check whether the schema el-
ements that are necessary to perform the join are contained in both remote queries.
All we need to check is whether the two construct expressions of the construct POPs
contain an expression for each schema element that the join is defined on. Only if this
condition is not fulfilled, we additionally have to prune the corresponding rewriting, i.e.,
the corresponding view subgoal combination. For our example queries there are no such
combinations.

Processing Rank-Aware Queries in Schema-Based P2P Systems 93

4.2 Query Rewriting Using Subgoal Trees

ó
readingList/book[author=‘J.R.R. Tolkien’]

<pair>
 <author>
 <book>
 <title>{book/title}</title>
 <ISBN>{book/ISBN}</ISBN>
 <library>{book/availableAt/library}</library>
 </book>
 <fullname>{book/author}</fullname>
 </author>
 <library>
 <name>{book/availableAt/library}</name>
 <town>{book/availableAt/city}</town>
 </library>
</pair>

r2

ê

Figure 4.15: Removing a Join in a Rewriting when the Data is Stored in the Joined
Format at the Receiver (Join Query)

j/x=i/y

i/x=i/y

i/z=k/y

rj

ri

ri rk

i/x=i/y

ri

i/z=k/y

rk

j/x=i/y

rj ri

Figure 4.16: Reordering Joins in a Query

4.2.9 Assembling the Rewritten Query Plan

In the last two steps rewritings have been created and optimized. In this step the complete
query plan, which corresponds to the result of the rewriting process, is built by combining
the original query and all rewritings by means of union POPs. Figure 4.18 shows the
resulting final query plans as the rewriting result for our two example queries.

In order to assemble the rewriting result, we need to consider the preparations we
have made in the preprocessing step (Section 4.2.2). For the join query there were no
preparations, thus assembling the final query plan comes down to connecting the rewrit-
ings with union POPs (Figure 4.18(a)). However, for the skyline query we made the
preparations illustrated in Figure 4.6. These preparations sketched the final rewriting
result and introduced a skyline operator as its root node. The final output of the rewrit-
ing process is created based on the plan of Figure 4.6 and extended by the rewritings
connected with union POPs. The result is shown in Figure 4.18(b).

Although this is not the case for our two example queries, it is possible that the

94 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.3 Cycle Detection

j/x=i/y

i/x=i/y

i/z=k/y

rj

ri

ri rk

j/x=i/y

i/z=k/yrj

rk
i/x=i/y

ri ri

Figure 4.17: Combining Joins in a Query

rewriting result contains two or more remote queries that are sent to the same neighbor.
As each remote query is treated as an individual query, we could send all these remote
queries with separate messages. However, in order to reduce network traffic, we combine
all such remote queries into one message and send it to the neighbor.

Still, there is another important optimization issue. It is possible that the same
remote query (originating from the same query snippet) is contained multiple times in
the rewriting result. This is possible since the query snippet corresponding to a particular
view subgoal of a bucket may be involved in multiple rewritings. In that case we have to
identify such remote queries, have them computed by the neighbor only once, and insert
the result multiple times into the query plan in order to compute the final answer to the
query. To identify such remote queries we simply use the parameters of the remote query
POP that we assigned to it in step 6 (Section 4.2.6). We need to look up the neighbor
ID that the remote query is to be sent to and the list of subgoal/bucket IDs that the
remote query fulfills.

A final optimization issue, which we leave open to future work, is to check remote
queries corresponding to the same neighbor for query containment and derivability. It
is for example possible that the rewriting result contains a remote query corresponding
to a non-altered query snippet and a remote query originating from the same query
snippet but extended by an additional operator. For instance, assume the rewriting
result contains the remote query shown in Figure 4.13 and a remote query, where the
only difference is that the skyline operator is missing. The result of the former remote
query can be obtained from the result of the latter by evaluating the additional skyline
POP.

4.3 Cycle Detection

PDMSs just like P2P systems may contain cycles. Without taking any measures to avoid
or break such situations, queries could in principle be sent around cycles for eternity
(Figure 4.19(a)). A simple solution to this problem is to attach a time-to-live value to
a query, which limits the number of times the query can be rewritten and forwarded

Processing Rank-Aware Queries in Schema-Based P2P Systems 95

4.3 Cycle Detection

ê
<entries>
 <title>{pair/author/book/title}</title>
 <ISBN>{pair/author/book/ISBN}</ISBN>
 <fullname>{pair/author/fullname}</fullname>
 <library>{pair/library/name}</library>
 <location>{pair/library/town}</location>
</entries>

author/book/library
= library/name

literature/author
[fullname=“J.R.R. Tolkien”]

ó
ó

literature/library

author/book/library
= library/name

ó
readingList/book[author=‘J.R.R. Tolkien’]

<pair>
 <author>
 <book>
 <title>{book/title}</title>
 <ISBN>{book/ISBN}</ISBN>
 <library>{book/availableAt/library}</library>
 </book>
 <fullname>{book/author}</fullname>
 </author>
 <library>
 <name>{book/availableAt/library}</name>
 <town>{book/availableAt/city}</town>
 </library>
</pair>

r2

ê
ó

JRRTolkien/book

<author>
 <book>
 <title>
 {book/title}
 </title>
 <ISBN>
 {book/ISBN}
 </ISBN>
 <library>
 {book/library}
 </library>
 </book>
 <fullname>
 J.R.R. Tolkien
 </fullname>
</author>

r1

ê

ó
libraries/library

<library>
 <name>
 {library/name}
 </name>
 <town>
 {library/city}
 </town>
</library>

r4

ê

(a) Join Query

ó
libraries/library

r4

Ö
library/books

library/ILLF

ê
<library>
 <name>{library/name}</title>
 <town>{library/city}</town>
 <nmbOfBooks>{library/books}</nmbOfBooks>
 <interLibraryLoanFee>{library/ILLF}</interLibraryLoanFee>
</library>

Ö
library/nmbOfBooks

library/interLibraryLoanFee

Ö
library/nmbOfBooks

library/interLibraryLoanFee

ó
literature/library

(b) Skyline Query

Figure 4.18: Rewritten Query Plans as Results of the Rewriting Process

96 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.3 Cycle Detection

to neighboring peers, i.e., the number of hops a query might travel. However, this
should be considered only a backup solution if all other measures to detect cycles fail.
Actively detecting cycles not only reduces network load but also reduces the number of
duplicates contained in the answer to a query. In this section, we adopt the assumption
of local completeness that we have already used to prune subgoal combinations in step 5
(Section 4.2.5).

A simple solution to detect cycles is to use a unique identifier assigned to the query
message. Whenever the query is rewritten, the messages containing the remote queries
are assigned the same query ID as the original query. Detecting cycles comes down to
detecting whether two queries received from different neighbors have the same query ID.
If yes, the peer that has received the two queries has detected a cycle. The peer then
simply processes only the message received first and rejects all others with the same
ID. Rejecting a message means that the query is not processed or rewritten at the peer
and no answers are sent back to the sender of the query. However, the peer might still
acknowledge receipt of the query and send an answer message if the query processing
strategy requires to do so (e.g., Query Shipping, Section 2.5.1).

However, in PDMSs this alone is no practical solution, as the example illustrated
in Figure 4.19(b) reveals. When a peer (P0) rewrites the original query, the messages
forwarded to its neighbors (P1 and P2) do not necessarily have to contain all subgoals of
the original query. Rather, it is likely that they concern different subgoals (P1: subgoal
1, P2: subgoal 2). As both messages that P1 and P2 send to P3 have the same query
ID, P3 only processes the first one and rejects the other one. As P3 provides data for
both subgoals, it is simply wrong to reject the second message if it concerns a different
subgoal than the first one. Consequently, P3 cannot simply reject one of the messages
but instead has to answer both.

(a) Cycle (b) Different Remote Queries –
Distinct Sets of Queried Subgoals

(c) Different Remote Queries –
Overlap in Queried Subgoals

Figure 4.19: Cycle Detection

This is a little different for the example network illustrated in Figure 4.19(c). In this
network we have P4, which also receives a message from P0 querying both subgoals of
the query. P4 rewrites the query and sends a message concerning both subgoals to P3.
If P3 answers all three queries, there will be a high number of duplicates in the result
at P0 because the data originating from P3 is sent multiple times to P0. Furthermore,
local processing time at the peers and network load is unnecessarily high. To reduce

Processing Rank-Aware Queries in Schema-Based P2P Systems 97

4.3 Cycle Detection

this overhead, P3 would only have to answer the message received from P4 and reject
the other two since all data provided by P3 with respect to both subgoals reaches P0

via P4. Because of using LAV-style mappings, P3’s data cannot be combined at another
peer with a join that was not contained in the original query. Thus, by assuming local
completeness at P3, i.e., other peers do not provide join partners for the subgoals of P3

that it does not store locally, the query result at P0 would be correct.

If we cannot assume local completeness, the alternative is not to include the join in a
rewriting. Instead, we would have to process the join between all subgoal combinations
and all peers (as discussed in step 5, Section 4.2.5). Consequently, we would query the
data of all subgoals in separate (not in a joined format) – the cycle detection algorithm
would still be applicable as by using LAV-style mappings data cannot be combined with
“new” joins on the path between data origin and query initiator. So, if the mappings are
correct, it does not matter on which path the data is propagated to the initiator.

The problem that we still need to discuss is that in the absence of global knowledge
detecting cycles is difficult. Therefore, the order in which P3 receives the messages plays
a decisive role. If P4’s message arrives first, then it is safe to reject the messages received
from P1 and P2. In case one of the messages from P1 or P2 is received first, an optimal
solution is much more difficult because in absence of global knowledge P3 cannot know if it
will also receive a message from P4. Thus, it is, for instance, possible that P3 has already
processed the message from P2. Note that processing the query at P3 might involve some
of its neighbors – not illustrated in Figure 4.19. When P3 afterwards receives the message
from P4, it is likely that the same neighbors are queried again with respect to the same
data. The best solution to the problem is to reuse the answers that have already been
processed. This is possible by comparing the query of P4 to the cached query of P2 and
identifying common remote queries. The answers to these remote queries can directly be
used to answer the message received from P4.

In case P3 has already sent an answer to P2, then P0 would still have to be advised to
reject all answers received from P2 and use only those received from P4. Although this
reduces duplicates in the result set, it causes overhead. But if P3 has not yet sent an
answer to P2 when it receives the query from P4, then the answers (originally processed
for P2) might be redirected once they are received from the queried neighbors and used
to answer the query received from P4. P3 would declare the query from P2 rejected and
send only one answer message to P4.

However, so far we do not yet consider such sophisticated optimization techniques
in our current implementation. Nevertheless, it is optimal when the message from P4

arrives at P3 first. In this case the queries received from P1 and P2 are rejected. If the
messages arrive at P3 in any other order, the result may contain duplicates.

We still need to discuss how P3 might detect cycles and how it might learn that queries
received from different neighbors belong to the same original query but concern different
subgoals. In order to reconcile cycle detection using message IDs with the problems
that we have identified, we enhanced the concept of message IDs. Whenever the query
is rewritten into several remote queries, the message ID of the original query (OID) is
extended by the subgoals that the remote query, which is assigned the new message ID,
fulfills. A remote query is only assigned the original non-extended message ID if it fulfills
all subgoals of the original query. The remote query POPs contain all information that
is necessary to extend the message ID: the subgoal IDs, the total number of subgoals of

98 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.4 Evaluation

the original query, and the ID of the peer that receives the remote query. With respect
to this information, the message ID (MID) of remote queries is created as follows:

MID = OID + ”#” + PeerID + ” ” + subgoalID

Applied to the example of Figure 4.19(c) and an original message ID of 0 − 1 − 2, P0

would send messages with the following IDs:

0 − 1 − 2 # 0 1 (to P1),

0 − 1 − 2 # 0 2 (to P2), and

0 − 1 − 2 (to P4).

Consequently, P3 receives messages from its neighbors with different message IDs so that
the problem that we had with the original understanding of message IDs is solved. A
cycle can still be detected by comparing the message IDs of the received messages. Since
the original message ID is always preserved as a prefix, cycles can be detected by checking
if the cache stores (i) a message with the same ID or (ii) a message with the same prefix.
Assume P3 in Figure 4.19(c) receives two messages originating from P0 with the following
IDs: 0 − 1 − 2 # 0 1 and 0 − 1 − 2 # 0 2. P3 now checks if there are any messages
in its cache with the same IDs (there are no such messages). But there is one message
with ID 0− 1− 2 (received from P4). Since this is a prefix to both received messages, P3

has detected a cycle and rejects the received queries.

4.4 Evaluation

In the previous sections we presented a query rewriting strategy for use in PDMSs. In
this section we discuss our evaluation results [94, 165] that we obtained by integrating
the presented techniques into SmurfPDMS (Chapter 7). As this evaluation aims at query
rewriting, we did not apply any pre-selection of “relevant neighbors” based on routing
indexes. Thus, in our evaluation all mapping definitions to neighboring peers that a peer
knows are considered in the rewriting process.

4.4.1 Rewriting vs. Schema Indexing

In our first tests we examined the application of our techniques in comparison to a
network that does not use query rewriting. For this purpose, we used the network of
7 Peers of Figure 4.20 – providing altogether 42 data records in the schema of P0 but
distributed among peers in the network.

It is obvious that in such a scenario an approach that does not consider any rewriting
at all would never be able to find all result records. The reasons are heterogeneity
and the inability to exploit schema correspondences. Thus, the query would have to be
forwarded in its original form, which means formulated on the initiator’s schema. As
schema elements that refer to the same real world entity are named differently in the
network of Figure 4.20, we chose to run the non-rewriting strategy on a slightly adapted
network, which is depicted in Figure 4.21. In this network, all elements referring to the
same real-world entity are named the same among all peers. Furthermore, we decided
to give the non-rewriting strategy a little help in doing some schema-level pruning: each

Processing Rank-Aware Queries in Schema-Based P2P Systems 99

4.4 Evaluation

1

2

3

4

5

0

6

0: art

 artist*

 fullname

 work*

 title

 description

 location

 gallery*

 name

 street

 zip

 town

 paintings

 price

4: artloc

 item*

 title

 artist

 location

 gallname

 town

2: artists

 person*

 name

 birth

 date

 town

 work

 title

 exhibition

1: gallery

 painting*

 title

 description

 location

5: arts

 artist*

 name

 works

 tit

 descr

 town

3: ausstellungen

 galerie*

 titel

 strasse

 plz

 stadt

 exponate

 preis

6: art

kunstwerk*

 bezeichnung

 kuenstler

standort

gebaeude

stadt

eintritt

Figure 4.20: Example Network with Mappings

peer stores a routing index that indexes schema elements – indexing element names in
the sense of keywords. This means a peer has information about the existence of schema
elements that can be accessed by forwarding a query to a specific neighbor.

Thus, in summary we have two scenarios: (1) the network of Figure 4.20, where
we apply the rewriting techniques presented in this chapter and (2) the non-rewriting
approach on the adjusted network of Figure 4.21 with schema indexes. In total, we
issued 6 queries on P0, which are listed in Table 4.1. To give both test scenarios the same
chances, the queries only refer to schema elements shared by both networks.

QueryID Query Type #Levels in
POP tree

0 Projection 1
1 Projection and Transformation 2
2 Projection and Selection 2
3 Join with Transformation 3
4 Top-N with Transformation 3
5 Skyline with Transformation 3

Table 4.1: Evaluation Query Mix

The most important cost factors in distributed environments are network load (data
volume) and the number of messages that are necessary to answer a query. Thus, we
discuss our evaluation results using these two measures and neglect local execution costs.
Let us first consider a basic non-incremental query processing strategy (Query Shipping,
QS, Section 2.5.1). With respect to network load in terms of transferred data volume,

100 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.4 Evaluation

1

2

3

4

5

0

6

0: art

 artist*

 fullname

 work*

 title

 description

 location

 gallery*

 name

 street

 zip

 town

 paintings

 price

4: art

 artist*

 title

 fullname

 gallery

 name

 town

2: art

 artist*

 fullname

 birth

 date

 town

 work

 title

 location

1: artist

 work*

 title

 description

 location

5: art

 artist*

 fullname

 work

 title

 description

 town

3: art

 gallery*

 name

 street

 zip

 town

 paintings

 price

6: art

 artist*

 title

 fullname

 gallery

 name

 town

 price

Figure 4.21: Example Network without Mappings

the rewriting strategy should produce less load since in contrast to the non-rewriting
strategy only remote queries are sent to neighboring peers instead of the whole query.
With respect to the number of messages, we expect more or less the same results since
both scenarios use schema information to identify relevant neighbors.

The results of our tests are listed in Table 4.2. It shows the total volume and the total
number of messages that were necessary to answer all 6 queries of the query load. As we
have expected, data volume is reduced by our rewriting techniques. Furthermore, also
the number of messages is reduced. This is due to the fact that the rewriting strategy is
able to prune a few more neighbors because only those neighbors are queried that provide
all elements that are necessary to answer a query or a subgoal, respectively.

Scenario 1 – Scenario 2 – Difference
Rewriting No Rewriting

Total Number
of Messages 50 68 −26, 5%
Data Volume

in kByte 133.053 241.568 −44, 9%

Table 4.2: Results for Query Shipping

We did the same tests applying a basic incremental query processing strategy (Incre-
mental Message Shipping, IMS, Section 2.5.3). In contrast to QS, peers no longer have
an obligation to send an answer message for each received query message. Remember
the application of QS requires that each peer sends an answer message for each query

Processing Rank-Aware Queries in Schema-Based P2P Systems 101

4.4 Evaluation

message it receives such that the sender can stop waiting for answers. Thus, the dif-
ference between the two test scenarios should be less obvious than in the tests for QS.
Still, in scenario 2 more queries should be forwarded to neighboring peers due to the
same reasons as stated above. However, without the obligation to answer each received
query the impact of asking some additional peers (i.e., peers that do not contribute to
the result) should be smaller than in the QS tests. The data volume should show the
same tendencies as for QS.

The test results shown in Table 4.3 support our anticipation. The difference between
scenarios 1 and 2 is smaller than it is in Table 4.2. Furthermore, in comparison to QS,
IMS needs fewer messages to answer the query since there is no obligation to send answer
messages.

Scenario 1 – Scenario 2 – Difference
Rewriting No Rewriting

Total Number
of Messages 49 54 −9, 2%
Data Volume

in kByte 135.581 205.407 −34, 0%

Table 4.3: Results for Incremental Message Shipping

Our first results show that the rewriting method is preferable over a non-rewriting
strategy since the knowledge contained in the mappings allows for a more effective
schema-level pruning. Another positive effect of using mappings is that a peer is able to
query schemas differing from its own. In comparison, the schema index approach we used
in scenario 2 can only be used in rare situations. One of them is a scenario where the
local data of the peers participating in the network originates from vertical and horizontal
partitioning of a common source database. In that case all peers have the same naming
and structuring of elements so that a query formulated at one peer can be interpreted
correctly by other peers in the network. However, such a setup is not the usual case.

4.4.2 The Influence of the Choice of Neighbors

Query processing in PDMSs strongly depends on the choice of neighbors, i.e., it depends
on which neighbors a peer has established mappings to. The greater the distance to the
sources in the network that hold relevant data for a particular query, the higher is the
chance of missing such data. The reason is that mappings are often incomplete. Hence,
distant data that matches the query can only be considered for processing a particular
query if all elements referred to by the query are contained in all rewritings of peers
on the path between initiator and data provider. In order to show that our techniques
still work in a scenario where a query has to be rewritten more often than just once, we
created two networks each consisting of 20 peers (Figure 4.22). The data of these peers
(300 data records) can be divided into four topics: galleries, artists, art objects (paintings
or sculptures), and styles.

In scenario 1 (Figure 4.22(a)) the network structure corresponds to a star with P0

having connections to all other peers. Thus, scenario 1 represents a standard data inte-

102 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.4 Evaluation

(a) Network 1 – Data Integration (b) Network 2 – PDMS

Figure 4.22: Example Network with 20 Peers

gration system where P0 serves as mediator and provides a common global schema using
LAV-style mappings. In scenario 2 (Figure 4.22(b)) we arranged the peers in clusters
determined by a similarity measure, which is defined as the number of possible schema
element correspondences between the schemas of any two peers. For each link we defined
bidirectional mappings, i.e., if P0 has a mapping to P1, then P1 also has a mapping to P0.
While this increases data reachability, it also increases the number of cycles that have
to be dealt with. Because of the clusters, there are many links between peers providing
similar data, i.e., data of the same topic. Since some of the peers store data of more than
just one topic, clusters overlap. In order to answer queries that involve joins between
several topics correctly, we established additional links that interconnect clusters.

In both scenarios we issued 13 queries (two involving top-N and skyline operators)
with at most 4 subgoals at P0 applying Query Shipping (QS, Section 2.5.1). Although
queries need to be rewritten more than just once in scenario 2, results (disregarding
duplicates) in both scenarios should be the same due to the favorable choice of neighbors.
In addition, we expect duplicates in the result set of scenario 2 as it is possible that a
peer receives remote queries from different peers that belong to the same query but arrive
in an unfavorable order, as discussed in Section 4.3.

Table 4.4 shows our results with respect to the two scenarios, summarizing the results
for all test runs and queries. In both scenarios all answers to the query have been
retrieved. Since some data records are stored at multiple peers, both scenarios retrieve
a small number of duplicates that the rewriting strategy cannot detect. As anticipated,
in the second scenario we retrieve more duplicates due to the reasons indicated above.

As our tests have shown, when optimal neighbors are chosen with respect to (i)
the similarity of schemas and (ii) the combinability of neighbor data (subgoals) for join

Processing Rank-Aware Queries in Schema-Based P2P Systems 103

4.4 Evaluation

Result Size
Scenario Result Size after Removing

Duplicates
Data Integration 304 294

PDMS 353 294

Table 4.4: Comparison of Query Processing in Data Integration Systems and Distributed
Query Processing in PDMSs

operations, all the data in the system can be accessed. Performance can still be improved
by elaborating cycle detection and influencing the network topology.

4.4.3 Benefits of Considering Rank-Aware Query Operators for
Rewriting

In our tests we also examined the benefits of considering rank-aware query operators in
the rewriting process. Since we have designed our algorithms for the purpose of reducing
costs by considering such operators, we expect the costs to be lower in comparison to
a rewriting strategy that does not consider such options. For comparison, we used the
implementation of our rewriting strategy in SmurfPDMS and bypassed all optimizations
that consider rank-aware operators. For our tests we used the PDMS network of 20 peers
illustrated in Figure 4.22(b). We chose a 3-level top-N query (topn POP, construct POP,
and select POP) with N = 5 and issued it twice for each of the two modes at the same
peer (P0) – once using QS and once using IMS. In our tests, we also varied the number
of records whose structure fits the query: 20 and 300 data records distributed among all
peers.

The results of our tests are shown in Figure 4.23. As we have expected, in general
message volume (Figure 4.23(a)) is reduced when considering rank-aware operators for
rewriting. The savings for a low amount of relevant data is smaller than for high amounts.
The reason simply is that if the result size is larger, more records can be pruned at an
early stage at the peer providing the data so that they are not sent to the initiator just
to be pruned there. Consequently, data volume is reduced. In general, IMS performs
slightly better than QS in terms of data volume because of the lower number of messages
(Figure 4.23(b)).

The number of messages is primarily determined by the number of peers whose
schemas “match” the query. However, applying IMS a peer is not forced to send an-
swer messages to the peer it has received the query from. Thus, if a peer decides to
reject a message or if it has no local answers to the query, it does not send a message so
that the number of messages in comparison to QS is lower. This effect is amplified by
the application of rank-aware query operators. The reason causing this effect is that a
top-N operator contained in a remote query, which is sent to a neighboring peer, con-
tains the partial result of the sender or rather the worst record that is part of its local
result (Chapter 6). The receiver then uses the additional information to decide whether
it might contribute to the final result. If all its local data records are ranked worse than
those received along with the query, the peer does not send an answer message, which it

104 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.4 Evaluation

0

50000

100000

150000

200000

250000

300000

300 Data Records20 Data Records

D
at

a
V

ol
um

e
in

 k
B

yt
e

IMS − Cons. RA Ops
IMS − NOT Cons. RA Ops

QS − Cons. RA Ops
QS − NOT Cons. RA Ops

(a) Data Volume

QS − NOT Considering Rank−Aware Ops

10

20

30

40

50

60

300 Data Records20 Data Records

N
u

m
b

er
 o

f
M

es
sa

g
es

IMS − Considering Rank−Aware Ops
IMS − NOT Considering Rank−Aware Ops

QS − Considering Rank−Aware Ops

0

(b) Number of Messages

Figure 4.23: Benefits of Considering Rank-Aware Query Operators for Rewriting

would have done if it had not known about the local result of the query’s sender.

Finally, let us mention that, although we do not go into detail on the results, the
same findings not only hold for top-N operators but for skyline operators as well.

4.4.4 Costs for Rewriting

So far we have only considered network load and neglected the computational load caused
by query rewriting. In this section we examine all nine steps of our rewriting algorithm
(Section 4.2) with respect to their execution costs.

In the first step (receiving a query plan), we only need to traverse the query POP tree
once in order to check conformance to the requirements. As we need to visit each POP
of the tree at most once, this results in costs O(p) with p being the number of POPs
contained in the query POP tree. Note that we need to do this check only once at the
initiator of the query because all other peers receive queries generated by our algorithm
and those queries always fulfill the requirements. Thus, there is no need to check them
again. As a query usually consists of only a few POPs (p < 10), the costs for the first
step can be neglected resulting in O(1).

In the second step (preprocessing), we have to consider union POPs and rank-aware
POPs. In step one we have already visited all POPs and still remember all union and
rank-aware POPs contained in the query. Thus, locating them now is done in O(1).
Queries containing union POPs are split up into several subqueries such that none of them
contains union POPs. This can be done in O(1). Furthermore, preparing the rewriting
result for rank-aware operators, i.e., cloning the rank-aware operator and inserting it on
top of the rewriting result, is also done in O(1). As the number of union and rank-aware
POPs in a query is rather low, the costs for the second step can be neglected, too.

In the third step (creating buckets), we need to create buckets for each subgoal con-
tained in the query. Consequently, the effort is O(n) – with n denoting the number of
query subgoals.

In the fourth step (sorting view subgoals into buckets), we need to compare each view
subgoal to each query subgoal. The costs for a total of m view subgoals are:

O(n ∗ m)

Processing Rank-Aware Queries in Schema-Based P2P Systems 105

4.4 Evaluation

In the fifth step (creating combinations of buckets), we at first create the Cartesian
product between all view subgoals that have been sorted into the buckets: costs are
O(cmax) with cmax denoting the maximum number of combinations. We obtain the
maximum number of combinations cmax if all m view subgoals have been sorted into all
n buckets:

cmax = mn

A query as well as a view contains multiple subgoals only if it refers to different base
structures of the data. Thus, it is only possible that all view subgoals fulfill all query
subgoals if n = 1 and m = |sg(V)| – with sg(V) denoting the set of view subgoals of all
views that are considered for rewriting. In any other case, the number of combinations
is maximal if the view subgoals are uniformly distributed among all buckets:

cmax =
∏

i=1,...,n

mi, mi =
m

n

and thus:
cmax =

⌈m

n

⌉n

Afterwards, the number of combinations is reduced so that all combinations that do not
fulfill Equation 4.1 (removal of redundant subgoal combinations) are removed and not
considered any further. Thus, the remaining combinations consist of views whose sets
of fulfilled view subgoals do not overlap. In order to check this, we need to access each
subgoal of every combination. The costs are:

O(cmax ∗ n)

For all remaining combinations we need to check whether the predicates are contradictory
(O(1)). Checking this for every pair of view subgoals in a combination, we have to do

cmax ∗
(

n

2

)
= cmax ∗

(n − 1) ∗ n

2
= cmax ∗

n2 − n

2

comparisons. Note that we do not make any assumption on how many combinations get
pruned but use the worst case scenario for our estimations. In most cases, the costs are
lower as at least some of the combinations get pruned either because of contradictory
predicates or Equation 4.1. In total, the costs of step five amount to:

O

(⌈m

n

⌉n

+
⌈m

n

⌉n

∗ n +
⌈m

n

⌉n

∗ n2 − n

2

)
= O

(⌈m

n

⌉n

+
⌈m

n

⌉n

∗ n2 + n

2

)
= O

(⌈m

n

⌉n

∗ n2 + n

2

)
= O

(
(m + n)n

nn−2

)
In the sixth step (creating query snippets), one query snippet is created for each view

subgoal that has been sorted into a bucket. This only depends on the total number of
view subgoals m. However, it is unlikely that all view subgoals of all views are relevant
to a query. Nevertheless, the costs for this step are in O(m).

106 Processing Rank-Aware Queries in Schema-Based P2P Systems

4.5 Conclusion

In the seventh step (creating initial rewritings), a rewriting for each combination that
has not been pruned is created. Consequently, the costs are in O(cmax).

For each rewriting we try to optimize it (in the eighth step) and push as many
operators as possible down underneath the remote query POP. The costs for optimizing
a specific rewriting are determined by the number of operators that could be pushed down,
which again is determined by the number of POPs p the original query consists of. Thus,
the corresponding costs for optimizing a specific rewriting are in O(p). Consequently, the
costs for optimizing all rewritings are in: O(cmax ∗ p). As p is a constant factor, which
is only in very rare cases greater than 10, we can neglect p and state that the costs for
optimizing all rewritings are in O(cmax).

In the ninth and last step (assembling the rewriting result), the final output query
plan is assembled. For this purpose, we need to access each rewriting once. Consequently,
costs are in O(cmax).

In total, the worst case running time for rewriting a query are in the worst case in:

Costs = O(1) +

O(1) +

O(n) +

O(n ∗ m) +

O

(
(m + n)n

nn−2

)
+

O(m) +

O
((m

n
+ 1

)n)
+

O
((m

n
+ 1

)n)
+

O
((m

n
+ 1

)n)
+

= O

(
(m + n)n

nn−2

)
(4.2)

These costs seem to be rather high. However, in general there is only a small number of
query subgoals because a query is only in rare cases defined on more than just a few base
structures. Thus, the most important factor that determines costs is the number of view
subgoals that need to be considered for rewriting. As we have already discussed in the
beginning of this chapter, the application of routing indexes might help to prune several
neighbors from consideration. Hence, if we consider routing indexes before rewriting the
query, we can reduce the number of view subgoals that need to be considered by the
rewriting component. Consequently, we decided to have peers consider routing indexes
before rewriting the query.

4.5 Conclusion

In this chapter we presented a query rewriting strategy for use in PDMSs. It addresses
the problem of rewriting queries containing rank-aware operators formulated as POP

Processing Rank-Aware Queries in Schema-Based P2P Systems 107

4.5 Conclusion

trees in conjunction with LAV-style mappings and XML data. Our evaluation has shown
that by integrating rank-aware operators into rewritings, network load can considerably
be reduced. The higher the number of records that are relevant to a query, the more
reduction in execution costs can be achieved by applying our techniques.

Although our techniques perfectly solve the problem we designed them for, there are
several interesting aspects that might be considered in future work. One of them is
the integration of GLAV-style mappings and complex mappings in general that support
not only 1-1 correspondences but also 1-n, n-1, and perhaps even n-m correspondences.
Furthermore, the use of a query cache in conjunction with testing query containment
and issuing compensation queries is another option that has the capability to reduce
execution costs even more. Moreover, so far we consider only mappings (or view subgoals)
for rewriting that provide matches for all attributes defined in a query. In this context,
it might be worthwhile to develop a “best effort” rewriting strategy which also considers
view subgoals that do not provide matches for all queried attributes. This might be
an interesting strategy to counteract the problems we have to deal with in PDMSs,
e.g., incomplete mappings. Our evaluation has shown that the network topology affects
execution costs. Thus, the “right” choice of neighbors plays a decisive role. Therefore,
the application of peer clustering strategies and mapping composition [61, 210], maybe
even (semi-)automatic schema matching [167], seems to be a worthwhile effort.

108 Processing Rank-Aware Queries in Schema-Based P2P Systems

Chapter 5

Query Routing

As already pointed out in the introduction, efficient query routing is a crucial part of any
query processing strategy in P2P systems. Routing in this context does not mean finding
a route to a specific peer (peer-based) but routing queries to peers that hold relevant
data (data-based). The most primitive data-based routing approach in unstructured P2P
systems is flooding, i.e., forwarding the query to all the peers in the system and have
each peer send its local result directly to the initiator. Once the initiator has received
and aggregated all answers, the result can be output to the user. It is obvious that this
cannot be efficient in the general case since the initiator has to bear a very high workload.
Most important is the fact that this strategy is not applicable to PDMSs, where peers
can only communicate with peers they have already established mappings to. Still, this
technique can be improved and made applicable to PDMSs by routing the answers on
the same paths that the query has been forwarded on. By pre-aggregating the answers
on their way to the initiator, load at the initiator is reduced.

Nevertheless, there is another improvement that even avoids expensive flooding of the
network: routing indexes can be used to route queries to only those peers that provide
relevant data. For instance, if the routing indexes indicate that a specific peer does not
provide any relevant data to a given query, then it is reasonable to prune the peer from
consideration (data-level pruning). This reduces network load as well as the number
of involved peers and still provides the user with the correct answer. Each peer has
to decide independently from all the others and with the help of its routing indexes
(and information received along with the query) whether the data accessible via each of
its neighbors is relevant to the query or not. By identifying attributes and constraints
(formulated in the query) that describe relevant data, a peer can use its routing indexes
to identify relevant and irrelevant neighbors.

Another option to reduce query execution costs is to apply rank-aware query operators
(top-N and skyline) or approximation. However, their application can only be considered
by any query processing strategy if routing indexes are supported. As introduced in
Section 2.3, in their original sense routing indexes were used to index keywords. However,
in subsequent works this concept has been extended and applied to numerical data.
This is how we make use of routing indexes as well. In this dissertation we follow the
understanding of routing indexes as given in Definition 2.3.1 and identify a subclass of
such routing indexes – Distributed Data Summaries (DDSs). We limit our considerations
to compound routing indexes (CRIs) with respect to the classification of Figure 2.7. We

109

5.1 Distributed Data Summaries

will formally define DDSs in Section 5.1, propose a novel base structure for routing
indexes [90,213] in Section 5.2, and focus on its maintenance and construction [118,213]
in Section 5.3. Figure 5.1 illustrates the importance of routing indexes, or distributed
data summaries respectively, in the general steps of query processing in PDMSs that we
have identified in Section 1.2.

Query Parsingstep 1

User Query

Query Transformationstep 2 Peer Schema

Local Evaluationstep 3 Local Data

Query Optimizationstep 4 Distributed Data
Summaries

Query Rewritingstep 5 Schema Mappings

Postprocessingstep 6

Local Optimizationstep 3.1

Local Executionstep 3.2

Local Schema,
Statistics

Query Initiator

P
a

rt
ic

ip
a

ti
n

g
P

e
e

rs

Query Result

Figure 5.1: Query Processing in PDMSs – Distributed Data Summaries

5.1 Distributed Data Summaries

Each routing index at a peer represents information about the data provided by neigh-
boring peers. This information is not limited to the data the neighbors store locally but
also includes the data that can be accessed via their neighbors, e.g., data located several
hops away. Assume a routing index keeps the information for each neighbor in a separate
instance of a base structure so that it is possible to identify unambiguously what data
is accessible via each neighbor. Without loss of generality, assume that a routing index
complies with the structure illustrated in Figure 5.2.

The choice of the base structure is crucial to performance and usability of any routing
index. Appropriate base structures for use in our application scenario have to fulfill
several requirements. First of all, such a structure has to summarize the data in order to
minimize/limit memory consumption. This is important because there is only a limited
amount of memory space available. Furthermore, non-summarizing indexes such as B-
trees [13, 14] and R-trees [83, 143] would require far too much disk space and would be
hard to maintain efficiently when peers update their data. However, at the same time
the structure should minimize the approximation error, which is the logical consequence
of data summarization. Another requirement is that the base structure has to support
efficient lookups as this is what we will need it for. Furthermore, it should be possible to

110 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.1 Distributed Data Summaries

RoutingIndex

Base
Structure

Base
Structure

Base
Structure

P1 P2 P3

Peer 2

Peer 1

Peer 3

Peer 0

Figure 5.2: Structure of a Routing Index at P0

update the structure because in dynamic systems we have to assume that peers establish
new links or update their local data. It should be possible to perform incremental updates
without having to create a new instance of the structure whenever an update occurs.

As we have already pointed out in Section 2.3, it is very important to use a base
structure that captures attribute correlations. The reason is that in contrast to routing
indexes that only describe attributes in isolation, the number of false positive routing
decisions can be reduced by far – false positive in this context means that a peer is
classified as relevant to the query when actually it does not provide any relevant data.
As we aim at processing queries defined on multiple attributes (especially skyline queries),
this requirement is very important. Furthermore, routing indexes should never provide
information that might lead to false negative routing decisions, i.e., classifying a peer
as irrelevant although it provides relevant data. Finally, routing indexes should be all-
purpose. This means they should be useful to all queries that a peer might issue. Consider
for example skyline queries. If we precomputed a local skyline at each peer and indexed
only that data, we could very efficiently process and route skyline queries [196]. However,
we could not use the same structure to identify relevant peers for any other query type.
The alternative of holding several routing indexes for several query types is inefficient.
We argue that it is more worthwhile to use the additional disk space to create just one
but more detailed general-purpose routing index, e.g., by allowing a histogram-based
routing index to use more buckets. Thus, the last requirement, which should be fulfilled
by a routing index, is that it should be beneficial for all queries and not restricted to any
specialized type.

Routing indexes whose base structures fulfill these requirements are referred to as
Distributed Data Summaries (DDSs) according to Definition 5.1.1. In the following, we
use the terms routing index and DDS as synonyms.

Definition 5.1.1 (Distributed Data Summaries (DDSs)). A distributed data summary
is a data summarizing structure that captures information about the data accessible via
all neighboring peers. Each peer maintains exactly one such structure. A distributed data
summary holds one summarizing base structure for each neighbor such that it meets the
following characteristics:

• summarizing data while restricting memory consumption and minimizing the ap-
proximation error at the same time,

Processing Rank-Aware Queries in Schema-Based P2P Systems 111

5.2 QTree

• supporting efficient lookups,

• capturing attribute correlations to efficiently process multidimensional data and
queries defined on multiple dimensions (attributes),

• supporting (incremental) updates, and

• being all-purpose so that there is no restriction to any specialized query type.

As we have already discussed in Section 2.3, multidimensional histograms do sup-
port all these requirements. Thus, let us sketch an example for DDSs based on his-
tograms. Figure 5.3 illustrates how an equi-width histogram can be used to represent a
two-dimensional example data set. Figure 5.3(a) shows the data set that is to be indexed,
i.e., the data accessible via a particular neighbor. Figure 5.3(b) shows the corresponding
grid that originates from partitioning the data space into buckets. Finally, Figure 5.3(c)
shows the resulting two-dimensional array of statistical entries, i.e., the number of records
contained in the buckets.

(a) Example Data Set (b) Topology

15
15

16

1

0 0
0 0
0

(c) Array of Statistical
Entries

Figure 5.3: Equi-Width Histogram as Base Structure

There is another interesting class of structures that is often used to organize and
accelerate access to large data sets. Most of these approaches are based on the B-
tree [13, 14] or on the R-tree [83, 143] as its multidimensional extension. Although this
class fulfills most of the requirements, it lacks the support of one important requirement:
summarizing data. Traditional tree structures do not approximate the data, rather they
keep information about each single data record. Although this is necessary to accelerate
access to local data, in the context of routing indexes we need summarizing structures
as keeping detailed information requires too much memory space. Thus, we developed
the QTree [90, 213], which aims to combine the advantages of tree structures with those
of histograms.

5.2 QTree

As a combination of histograms and R-trees the QTree inherits not only the benefits
of histograms but also the beneficial characteristics of trees: indexing multidimensional
data, efficient look-ups, efficiently dealing with sparse data, and supporting incremental
construction and updates. In the following we first define the structure of a QTree. Then,
we describe how it is constructed. Although we are focusing on positive integer values,
the extension to negative values as well as to rational numbers is straightforward and not
discussed in the following.

112 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.2 QTree

5.2.1 Definition

In principle, the QTree is similar to an R-Tree where subtrees have been replaced with
statistical nodes. Thus, a QTree is a tree structure that consists of nodes, each of
which being defined by a minimal bounding box. Such a minimal bounding box (MBB)
describes the region in the data space that is represented by a node and the subtree
underneath. Consequently, a child node’s bounding box is completely enclosed by the box
of its parent. As a standard configuration we assume bounding boxes to be rectangular.
However, in principle other shapes could be used as well.

In order to limit memory and disk space, we replace subtrees with special nodes –
called buckets in analogy to histogram buckets. Buckets are always leaf nodes and leaf
nodes are always buckets. Only buckets contain statistical information about the data
records contained in their MBBs. The smallest possible bucket consists of only one
record. Consequently, its MBB has no extension. Although buckets may contain almost
any kind of statistical data, we will only consider buckets capturing the number of data
records contained in their MBBs. Each QTree is defined by two parameters:

• fmax: the maximum fanout (number of child nodes) an inner tree node may have

• bmax: the maximum number of buckets in a QTree – limiting the total number of
buckets that a QTree might use to approximate the data and thus limiting the size
and memory consumption

Definition 5.2.1 formally defines a QTree.

Definition 5.2.1 (QTree). A QTree is a tree structure that consists of nodes. Each node

• is defined by a multidimensional bounding box (MBB) describing a region in the
data space. The MBB of an inner node n completely encloses all MBBs of all
descendants.

• has at most fmax children but only one parent node (except of course the root node).

• that has no children is called bucket and contains statistical information, e.g., the
number of records contained in its MBB.

A QTree may use at most bmax buckets.

Note that the size of a QTree (O(bmax)) is independent from the number of represented
records, it only depends on bmax (and fmax). In the following, we describe how a QTree
is constructed and which heuristics we use to prevent it from degenerating into a linear
list.

5.2.2 Construction

The construction of a QTree relies on three basic algorithms that we want to discuss in
the following, these are:

• inserting a data record,

• reducing the number of buckets, and

• reducing the fanout of inner nodes.

Processing Rank-Aware Queries in Schema-Based P2P Systems 113

5.2 QTree

Inserting a Data Record

The QTree is constructed incrementally by inserting one data record after another. At
first, we need to check whether data record p could be inserted into an already existing
bucket. Thus, if a bucket is found whose MBB encloses p’s coordinates, p is inserted
into the bucket by incrementing its statistical entry by 1. If such a bucket does not
exist, method insertDataRecord (Algorithm 4) is called at the root node of the QTree.
By following the algorithm, the node at which the method has been called determines
a child node c whose MBB encloses p’s coordinates. If such a child node can be found,
Algorithm 4 is recursively called at c (lines 2–3). In contrast to R-trees, we are looking
only for a child node whose MBB encloses p’s coordinates. If there is no such child
node, we do not try to enlarge the MBB of an existing node. Instead, we create a new
bucket (with no extension and representing only p) and insert it as a a new child node
(lines 5–7). As we have created a new bucket, we need to update the QTree’s bucket
counter, which keeps track of the number of buckets the QTree currently uses (line 8).
Afterwards, the node’s MBB is enlarged to enclose p’s coordinates (line 9). This is only
necessary if the bucket has been inserted as a direct child of the root node. Finally, we
have to check if the constraints defined by fmax and bmax are still met and enforce them
if necessary (lines 10–17). For this purpose, a QTree maintains a priority queue, which
has to be updated each time a bucket is added or removed (line 13). As the algorithms
that enforce the constraints take care of updating the priority queue, it only needs to be
updated explicitly in Algorithm 4 if these constraints are not violated.

Algorithm 4 insertDataRecord(p)
1: c = getMostResponsibleChild(self.childNodes, p);
2: if c �= null then
3: c.insertDataRecord(p);
4: else
5: /* insert p as a new bucket */
6: newBucket = new QTreeBucket(p);
7: self.addToChildren(newBucket);
8: root.cntBuckets++; /* update statistical entry */
9: adaptMBB();
10: if #self.childNodes > fmax then
11: reduceFanout(newBucket);
12: else
13: self.updatePQ(); /* update this node’s entry in the priority queue /*
14: end if
15: if root.cntBuckets > bmax then
16: root.reduceBuckets();
17: end if
18: end if

Before we discuss how to enforce the two constraints and how to use the priority
queue for this purpose, we need to pay attention to another issue. Because bounding
boxes are allowed to overlap, it is possible that there are several child nodes whose MBBs
contain p’s coordinates (line 1). In such cases we have to decide which of these child nodes
M = {N1, N2, . . . , Nn} ⊆ childNodes would be the best choice, i.e., the most responsible
for p. We define that node to be most responsible whose bounding box center has the
least distance to p. Hence, for each N ∈ M we compute a responsibility coefficient cr

according to Equation 5.1 and choose that N that minimizes cr. N.low[i] and N.high[i]
(N.low[i] ≤ N.high[i]) represent the lower and upper boundaries of node N ’s bounding
box in dimension i. cr represents the distance of p to the center of the MBB normalized

114 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.2 QTree

by the MBB’s extension. If there are multiple nodes with the same minimum coefficient,
we randomly choose one of them. In case the bounding box has no extension in dimension
i (i.e., N.low[i] = N.high[i]), dimension i does not have any impact on the value of cr.

cr(N, p) :=
∑

d ∈ {1, ..., dmax}
N.low[d] �= N.high[d]

|1
2
(N.low[d] + N.high[d]) − p[d]|

N.high[d] − N.low[d]
(5.1)

Note that buckets do not necessarily need to have extensions in all dimensions. It is,
for example, even possible that a bucket has no extension at all. This happens when we
insert new records as buckets. For such a bucket the responsibility coefficient cr would
be 0.

The reason why we allow regions to overlap is simple. In order to avoid the overlap,
we would have to split existing buckets and reassign the contained records to the new
buckets. As we do not keep detailed information about already inserted data records,
we cannot split existing regions and rearrange the membership of already inserted data
records. In order to split regions nonetheless, we would have to assume a uniform data
distribution of records within a bucket. This would lead to errors in the estimation of
result cardinality. In order to keep these estimation errors as minimal as possible, we try
to find an existing bucket whose MBB contains the coordinates of the new data record p
before calling method insertDataRecord. If we did not do so, it would be possible that,
despite following Algorithm 4, we would not find an existing bucket that contains p even
though it might exist.

Another consequence of summarizing records is that we cannot easily balance the
QTree by applying the same or similar strategies that are used for the R-tree. The reasons
are the same as stated above: splitting buckets cannot be realized without approximation
errors, which should be avoided. Nevertheless, we can apply several heuristics that still
prevent the QTree from degenerating into a linear list. We discuss them in the following.

Reducing the Number of Buckets

Whenever the number of buckets exceeds bmax, method reduceBuckets - sketched in Al-
gorithm 5 - is called to merge some of the QTree’s buckets. This might be necessary after
having inserted a new data record or when the amount of space the QTree is allowed to
allocate is reduced during runtime.

We apply a greedy strategy and always choose those two sibling buckets (of the whole
QTree) for merging that minimize the penalty function defined by Equation 5.2. For two
buckets (B1,B2) τ denotes the penalty for merging them.

PMBucket
: (B1, B2) �→ τ B1, B2 : Buckets, 0 < τ ∈ R (5.2)

A näıve strategy to find the best pair of buckets would be to compute the penalty
function for each possible pair of sibling buckets and merge the pair that minimizes τ .
As this is a very expensive solution to the problem, a QTree maintains a priority queue.1

1This is what gave the QTree its name: we named the tree structure after the priority queue that we
use for its implementation.

Processing Rank-Aware Queries in Schema-Based P2P Systems 115

5.2 QTree

Its entries are key-value pairs sorted in ascending key order: key = PMBucket
(B1, B2),

value = parent.getReference() with B1 and B2 being children of node parent. Thus,
the priority queue provides links to nodes (value) with a pair of children whose mergence
would cause a certain penalty (key). As the priority queue only contains links to the
parent node, the node itself keeps links to the pair of its child nodes that minimizes the
penalty function. As we only consider this pair, each node has at most one entry in the
priority queue.

The penalty function PMBucket
, as introduced above, is a measure for the approxima-

tion error caused by merging buckets. We determine the penalty based on the MBB that
the bucket resulting from the mergence would have. Since we want to use the QTree as
base structure for routing indexes, we are interested in “small” bounding boxes. Thus, we
use the penalty function defined by Equation 5.3, which is defined on the maximum ex-
tension in any dimension of the MBB resulting from the mergence. This leads to buckets
that have a similar extension in all dimensions. Such buckets are well-suited for routing
indexes as we will see later. As dimensions/attributes often have different ranges of values,
for example the values of one dimension could be restricted to the interval [0, 10] whereas
another dimension could be restricted to [0, 1000], Equation 5.3 uses an appropriate nor-
malization based on these intervals denoted as [DimSpec[d].low, DimSpec[d].high] for
dimension d.

PMaxBound(B1, B2) := max
d ∈ {1, ..., dmax}

{
max {B1.high[d], B2.high[d]} − min {B1.low[d], B2.low[d]}

scale(d)

}
(5.3)

scale(d) :=

{
DimSpec[d].high − DimSpec[d].low, if DimSpec[d].low �= DimSpec[d].high

1, otherwise

Note that even if dimensions cannot be specified by minimum and maximum values in
advance, we can still use the measure defined in Equation 5.3 by adapting minimum and
maximum values per dimension based on the attribute values of inserted data records.
If the interval changes in a considerable manner (e.g., the growth exceeds a predefined
threshold), we can still recompute the penalties for the priority queue.

Let us get back to method reduceBuckets and Algorithm 5. At first, the method is
called at the root node of the QTree (lines 1–5). As it is in principle possible that bmax is
not only exceeded by 1 but by n, we reduce the number of buckets until bmax is no longer
exceeded. Each time we need to obtain the node with the least merge penalty from the
priority queue. Having found such a node (node), method reduceBuckets is called at
that node. Note that Algorithm 5 only sketches the algorithm and does not consider all
special cases such as a tree only consisting of the root node and several buckets.

If the node has only two child nodes (buckets), it itself is converted into a bucket
that subsumes the former two (line 7–11). This step includes (i) merging the two buckets
by combining their statistics, (ii) determining an MBB that comprises those of the two
buckets, (iii) updating the QTree’s global bucket counter, (iv) removing the node’s entry
from the priority queue, (v) replacing the node with the newly created bucket, and
finally (vi) updating the priority queue with respect to the entry of its parent node
(line 9). Afterwards, we can exit method reduceBuckets since two buckets have been

116 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.2 QTree

Algorithm 5 reduceBuckets()
1: if self is root then
2: while root.cntBuckets > bmax do
3: node = priorityQueue.pop();
4: node.reduceBuckets();
5: end while
6: else
7: if #self.childNodes = 2 then
8: self.convertToBucket();
9: parent.updatePQ();
10: return;
11: end if
12: (c1,c2) = self.getLocalNextToMerge();
13: mergedBucket = createNewBucket(c1,c2);
14: self.childNodes = self.childNodes \ {c1, c2} ∪ {mergedBucket};
15: destroyed = self.tryToRemoveNode();
16: if destroyed = false then
17: self.updatePQ();
18: end if
19: end if

merged successfully.
If the node has more than two child nodes, we have to consider the two children (c1,c2)

whose penalty is the lowest (line 12). c1 and c2 are then merged into a single bucket by
creating a new bucket node whose statistics and MBB emerge from those of c1 and c2

(line 13). Subsequently, c1 and c2 are removed as children and the new merged bucket is
added as a child (line 14). Since the node has now less children than before, we try to
remove it (line 15). Only if this is impossible, the priority queue has to be updated with
respect to the parent node (as there was a change in its child buckets).

Algorithm 6 tryToRemoveNode()
1: if self is root or self is bucket then
2: return false;
3: end if
4: if #parent.children + #self.children − 1 ≤ fmax then
5: parent.addToChildren(self.children);
6: parent.removeFromChildren(self);
7: removeFromPQ(self);
8: parent.updatePQ();
9: destroy(self);
10: return true;
11: else
12: return false;
13: end if

Method tryToRemoveNode (Algorithm 6) removes an inner node if all its children
can be added to its parent node without violating the fanout constraint. Hence, if this
constraint is not violated (line 4), all children are removed and added as children to the
parent node (line 5). Of course, this is not possible if the method is called at the root
node of the QTree (lines 1–3). Before finally destroying the node (line 9), its entry has
to be removed from the priority queue (line 7) and the entry of its parent node has to be
updated (lines 8).

Reducing the Fanout of Inner Nodes

As we insert a data record p with a new bucket whenever we cannot find a bucket with
an MBB that contains p’s coordinates, it is possible that after the insertion the number

Processing Rank-Aware Queries in Schema-Based P2P Systems 117

5.2 QTree

of children of an inner node exceeds fmax. In that case, we need to merge some of its
children using method reduceFanout (Algorithm 7).

In order to reduce the fanout of a node self , we need to find the pair of sibling child
nodes (not only buckets) (c1, c2) that yields the minimum penalty (line 1). A penalty
function we can use in this context is defined by Equation 5.4.

PMNode
: (N1, N2) �→ τ N1, N2 : Buckets ∪ Inner Nodes, 0 < τ ∈ R (5.4)

As this is only a generalized version of Equation 5.2 we can use Equation 5.3 to compute
the penalty. Thus, we compute the penalty for each pair of self ’s children disregarding
whether the children are buckets or inner nodes. Since this method is called only when a
new bucket (newBucket) has been inserted, we have a reference to that bucket as input
and distinguish two situations: (i) newBucket ∈ {c1, c2} and (ii) newBucket /∈ {c1, c2}.

Algorithm 7 reduceFanout(newBucket)
1: (c1, c2) = getChildrenMinimizingPenalty();
2: if newBucket ∈ {c1, c2} then
3: cbase = {c1, c2} \ newBucket;
4: if cbase is an inner node then
5: self.childNodes = self.childNodes \ newBucket;
6: cbase.addToChildren(newBucket);
7: cbase.adaptMBB();
8: if #cbase.childNodes > fmax then
9: cbase.reduceFanout(newBucket);
10: else
11: cbase.updatePQ();
12: end if
13: return;
14: end if
15: end if
16: newInnerNode = createNewInnerNode(c1,c2);
17: self.childNodes = self.childNodes \ {c1, c2} ∪ {newInnerNode};
18: destroyed = false;
19: for n ∈ newInnerNode.childNodes do
20: destroyed = destroyed OR n.tryToRemoveNode();
21: end for
22: if destroyed = false then
23: newInnerNode.updatePQ();
24: end if
25: self.updatePQ();

The former case demands special attention (lines 2–15): if newBucket ∈ {c1, c2}, then
let cbase denote the node that has been chosen to be merged with newBucket (line 3). In
case cbase is not a bucket, i.e., it has further child nodes, newBucket is removed as child
from the current node (self) and attached as a child to cbase (lines 5–6) – this may cause
the adaption of cbase’s MBB (line 7). If this results in a situation where cbase now has
more than fmax children, method reduceFanout is recursively called at node cbase (lines
8–9). Otherwise, if cbase does not have more than fmax children (lines 10–12), its entry
in the priority queue has to be updated by explicitly calling method updatePQ. This is
necessary because cbase now has a new child node whose mergence with one of the other
children could result in a lower penalty value than the mergence of any two of the old
ones. If newBucket ∈ {c1, c2} and if cbase is no bucket, then method reduceFanout ends
at this point because newBucket has been inserted successfully.

In all other cases, we have to create a new inner node (newInnerNode) with c1 and
c2 as children (line 16-17). In order to prevent the tree structure from degenerating

118 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.2 QTree

into a list, we try to remove newInnerNode’s child nodes (lines 19–21) by applying the
heuristic sketched in Algorithm 6. If none of these child nodes could be removed, we need
to explicitly update the priority queue entry for newInnerNode (lines 22-24). Finally,
self ’s entry in the priority queue has to be updated since there have been changes to its
children (line 25).

Note that this approach has another effect: we obtain a QTree whose nodes have
as many children as possible but at most fmax. As we only consider sibling buckets for
merging, having as many children as possible permits our algorithm to find a good pair
of child buckets that minimizes PMBucket

. Furthermore, the tree has less levels and less
inner nodes, which reduces not only lookup time but also memory consumption.

Inserting Buckets and Merging QTrees

In order to construct routing indexes, it is necessary to combine the information of their
base structures. As we consider QTrees as base structures, we need to find a way to merge
the information of QTrees. This can be realized by simply inserting the information of
one QTree into the another. For this purpose, we only need to pay attention to the
buckets of the tree whose information we want to insert because inner nodes do not
provide any information about represented data. However, so far we have only discussed
how to insert data records into a QTree, let us now briefly discuss how to insert buckets.

For this purpose, we can use the same principles that we use to insert data records.
At first, we look for a bucket in the tree whose MBB is large enough to completely
enclose the MBB of the bucket we want to insert (Binsert). If we can find such a bucket,
we update its statistics (by adding the number of records contained in Binsert) and have
successfully inserted Binsert into the tree.

If we cannot find such a bucket, we call a slightly modified version of method insert-
DataRecord (Algorithm 4). We need to determine when a node is responsible for Binsert.
This is the case when it completely encloses Binsert’s MBB. In case there is more than
just one such node, we use the center coordinates of Binsert’s MBB as p in Equation 5.1.
According to the responsibility coefficient, we can now decide which node is responsible
for Binsert and recursively call the method at that node. If we do not find such a respon-
sible node, we insert Binsert as a new child and proceed as indicated in lines 4 through
20 (except that we do not have to create a new bucket).

5.2.3 Lookups

After having introduced how to construct QTrees, let us briefly review how they can
be used to determine whether a peer holds relevant data to a particular query or not.
At this point, we only focus on range queries since we discuss the usage of DDSs for
skyline and top-N queries later in Chapter 6. Remember that the reason for applying
routing indexes is to identify neighbors that do not provide relevant data to a query.
Furthermore, false negative routing decisions, i.e., a neighbor is classified as irrelevant
although it provides relevant data, should be avoided at any cost. False positive routing
decisions in contrast, can be accepted although their number should be minimized as
they unnecessarily increase query execution costs.

Processing Rank-Aware Queries in Schema-Based P2P Systems 119

5.2 QTree

With respect to QTree-based distributed data summaries, identifying relevant neigh-
bors with respect to a particular query means to compare the constraints defined by the
query (e.g., attribute1 < 20, attribute2 > 10, etc.) to the buckets’ MBBs. If the region
defined by the constraints overlaps the MBB of any bucket within the QTree, the cor-
responding neighbor is classified as relevant to the query and will be considered by the
query processing strategy. Thus, the following steps sketch the corresponding algorithm:

1. parse the query expression and extract constraints,

2. start at the root node of the QTree and identify all child nodes whose MBBs support
the constraints, i.e., those that do not contradict,

3. proceed recursively with the child nodes until we arrive at the bucket level or no
more relevant children can be identified, and

4. once we have found a bucket whose MBB supports the constraints, the correspond-
ing neighbor is classified as relevant since the index describes data that should be
considered for processing the query.

An advanced version of this algorithm can also determine the expected number of results
by taking all buckets into account that support the constraints. For all these buckets we
simply need to determine the degree of overlap between their MBBs and the region defined
by the constraints. Assuming a uniform distribution of records within an MBB, the size
of the overlapping region multiplied by the factor statistical entry

sizeOf(MBB)
describes the number of

records that are provided by the neighbor with respect to a particular bucket. This
estimation can be improved by adding additional information to a bucket that describes
the distribution of records within its MBB.

5.2.4 Deletions

We have already discussed how to insert records into a QTree (Section 5.2.2). In addition,
we need to consider how to remove records. As we will see later, it might be possible that
we do not receive detailed information about the deletion of single data records but only
the information that in a specific subspace of the data space a certain number of records
has been deleted. Although we are only discussing this kind of deletions in the following,
the same algorithms can be applied to the deletion of individual records as they can also
be treated as regions.

As input to the algorithm we receive a region Bd and a number Bd.count – meaning
that in region Bd Bd.count records are deleted. In principle, the algorithm runs in three
steps:

1. find a responsible bucket,

2. decrement its statistical entry, and

3. propagate changes within the tree.

At first, we need to find a bucket that represents Bd. In the simplest case, we compare Bd

to all buckets and find a bucket B that completely encloses Bd. Once we have determined
such a bucket, its statistical entry is reduced by Bd.count. If the count value is reduced
to 0, B is removed and heuristics are applied to balance the tree and to minimize the

120 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.2 QTree

(a) Deleting Single Records (b) Deleting an Enclosed Region (c) Deleting a Partially Overlap-
ping Region

Figure 5.4: Deletions in QTrees with Overlapping Buckets

MBBs of the nodes on the way from Bd to the root – these MBBs might become smaller
as they do no longer represent the MBB of the deleted bucket.

However, as Figure 5.4 illustrates, deletion is not always that straightforward. The
problem is that regions and thus buckets are allowed to overlap. In that case it is much
harder to determine a responsible bucket. Figure 5.4(a) shows two buckets and the
records they represent. If we now want to delete any of the records contained in the
overlapping region, we cannot know due to the approximation into which of the two
buckets we have inserted them in the first place. The same problem is illustrated in
Figure 5.4(b). The difference is that now we do not want to delete single records but a
region that is completely contained in two buckets. Thus, it is hard to determine which
bucket is responsible. Finally, Figure 5.4(c) shows another problem we need to consider:
we want to delete a region that is not completely contained in any bucket but partially
overlaps several buckets.

As deleting a single record and deleting a region can be reduced to the same problem,
we only need to distinguish between two cases: (i) there is only one bucket that intersects
the region defined by Bd and (ii) there are several such buckets. To solve this problem,
we consider three strategies.

Strategy 1: Merging Overlapping Buckets

Algorithm 8 sketches one strategy that aims at solving the problem of deleting a region
Bd when we have multiple buckets that at least partially overlap. In the first step, we
need to find the set (respBuckets) of all buckets that at least partially overlap Bd (line 1).
Thus, respBuckets contains all buckets that completely enclose Bd as well as all those
buckets that only partially overlap Bd. Next, we have to distinguish whether we have
found only one such bucket or multiple buckets. Note that if we cannot find such a
bucket at all, this means that something shall be deleted from the tree that has never
been inserted. Algorithm 8 does not go into details on how to handle such special cases.

If there is only one bucket that at least partially overlaps Bd (lines 2–3), method
removeFromBucket removes Bd from that bucket by decrementing its statistical entry
by the number of records to delete in Bd. If there are multiple buckets that overlap Bd

Processing Rank-Aware Queries in Schema-Based P2P Systems 121

5.2 QTree

Algorithm 8 deleteRegionMerge(Bd)
1: respBuckets = getAllOverlappingBuckets(Bd);
2: if respBuckets.size() = 1 then
3: removeFromBucket(respBuckets[0], Bd);
4: else
5: if respBuckets.size() > 1 then
6: mergeBucket = new Bucket();
7: for b ∈ respBuckets do
8: removeFromBucket(b,b);
9: mergeBucket.enlargeBounds(b);
10: mergeBucket.count += b.count;
11: end for
12: root.insertDataRegion(Bd);
13: removeFromBucket(mergeBucket,Bd);
14: end if
15: end if

(lines 4–14), we first merge them all into one bucket (mergeBucket) and remove them
from the tree. Once we have inserted mergeBucket into the tree (line 12), we can delete
Bd from mergeBucket without committing any approximation errors (line 13) because
it represents all records within Bd’s MBB that have ever been inserted into the tree.

Method removeFromBucket (Algorithm 9) takes care of “deleting entries” from a
bucket. The algorithm we present here does not show every detail such as ensuring that
the two buckets that are given as parameters are compatible to each other. However, we
have to distinguish whether the count of the bucket B, which the data is to be deleted
from, is greater than the count of Bd. If B.count is greater, then B.count is decremented
by Bd.count (lines 15–17).

Algorithm 9 removeFromBucket(Bucket B, BucketToDelete Bd)
1: if B.count ≤ Bd.count then
2: removeBucketAsChildFromParent(B);
3: decrementGlobalBucketCounter();
4: B.parent.adaptMBBPropagateBottumUp();
5: removed = false;
6: /* case 1 */
7: for QTreeNode n ∈ B.getFormerSiblings() do
8: removed = removed OR n.tryToRemoveNode();
9: end for
10: /* case 2 */
11: removed = removed or B.parent.tryToRemoveNode();
12: if removed = false then
13: B.parent.updatePQ();
14: end if
15: else
16: B.count -= Bd.count;
17: end if

In any other case (B.count ≤ Bd.count), we need to remove bucket B from the tree
(lines 2–14) because after the deletion it is empty. At first, B is detached, i.e., removed
from the list of children of its parent (line 2), the number of buckets in the QTree is
decremented by 1 (line 3), and the MBB of its former parent node as well as the MBBs
of all nodes on the way from the parent to the root node are adapted (line 4) – as it is
possible that the MBBs may now be reduced in size. Finally, we apply some heuristics
that prevent the tree from degenerating into a linear list. For this purpose, we call
method tryToRemoveNode (Algorithm 6) at each of B’s former siblings (lines 7–9) and
at its former parent node (line 11). As that method takes care of updating the priority

122 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.2 QTree

queue if any node is removed, we need to update the priority queue explicitly only if no
node has been removed (lines 12-14).

N1

N2

B4B3

B2B1

(a) Before

N1

B4B3B2

(b) After

Figure 5.5: Deletion of Buckets - Remov-
ing a Sibling Node

N1

N2

B4B3

B2B1

(a) Before

N1

B4B2B1

(b) After

Figure 5.6: Deletion of Buckets - Remov-
ing the Parent Node

Figures 5.5 and 5.6 illustrate the two cases of possible degeneration that we have to
counteract. Assume we have a QTree with fmax = 3. Figure 5.5 illustrates why we have
to call method tryToRemoveNode at each sibling of the deleted bucket B1. By calling
that method at N2, N2 is destroyed and its child nodes (buckets) are added as children
of N1. After the removal of B1, this is possible without violating the fmax constraint. As
a result the height of the QTree has been reduced by one.

Figure 5.6 illustrates the second case that we have to consider. In this example bucket
B3 is deleted. If we did not try to rebalance the tree, N2 would only have one child node,
i.e., there is no need to keep N2. Thus, by calling method tryToRemoveNode at B3’s
parent we can remove N2 and again obtain a QTree with decreased height.

Strategy 2: Minimum Distance

This variant, sketched in Algorithm 10, deletes records from buckets in dependence on
their distance to Bd. At first, we again need to find all buckets that at least partially
overlap the region defined by Bd (line 1). If there exists at least one such bucket, the list
of buckets (respBuckts) is sorted in ascending order by their distance to Bd (line 3) –
applying Equation 5.1 and the two center coordinates of the bucket and Bd. Next, the
algorithm iteratively runs through the list of overlapping buckets starting at the bucket
with the minimum distance to Bd. For each bucket we test whether its statistical entry
is higher than the number of records that still need to be removed (line 6). If it is higher
(lines 10–13), we simply decrease the bucket’s statistical entry accordingly and exit the
method. If the bucket has a statistical entry smaller than or equal to the number of
records that still need to be deleted (lines 6–9), the bucket is removed and the algorithm
proceeds with other buckets until all Bd.count records are deleted.

As Figure 5.7 illustrates, it is possible that when applying this strategy records are
deleted from the “wrong” bucket. Assume we intend to delete the white records within
the highlighted region. As B1’s center is closest to the center of the highlighted region,
B1 would be removed although the original records have not been inserted into it. This
is impossible for the first strategy where all candidate buckets are merged into a larger
bucket that the records are deleted from.

However, when we later on want to delete records from a bucket that no longer exists,
we need to determine some other buckets to effectuate the deletion. Thus, we restart the

Processing Rank-Aware Queries in Schema-Based P2P Systems 123

5.2 QTree

Algorithm 10 deleteRegionMinimumDistance(Bd)
1: respBuckets = getAllOverlappingBuckets(Bd);
2: if respBuckets.size() ≥ 1 then
3: sortByDistance(respBuckets,Bd);
4: i = 0;
5: while Bd.count > 0 and i < respBuckets.size() do
6: if Bd.count ≥ respBuckets[i].count then
7: count = respBuckets[i].count;
8: removeFromBucket(respBuckets[i], respBuckets[i]);
9: Bd.count -= count;
10: else
11: removeFromBucket(respBuckets[i],Bd);
12: Bd.count = 0;
13: end if
14: i = i + 1;
15: end while
16: end if

algorithm and adapt line 1: respBuckets now is the set of all buckets that exist in the
QTree. By sorting them according to their distance to Bd and deleting the remaining
records from regions close-by, we have a good chance to compensate the mistakes made
by previous deletions.

B1

B2

B3
B4

Figure 5.7: Problem for Deletion Strategy 2: 5 records (white) are to be deleted from the
highlighted region. Applying deletion strategy 2, B1 is wrongly decremented by 5 and thus
removed.

Strategy 3: Percentage of Overlap

A third strategy we can use to remove data from the QTree is sketched in Algorithm 11.
The principle is to adapt the buckets’ statistical entries in dependence on their degree
of overlap with Bd. This means that the more a bucket overlaps Bd, the higher is the
decrease of its statistical entry.

At first, we determine the set of buckets that at least partially overlap Bd (line 1). If
there is at least one such bucket, we need to compute the overlap (volume) between each
of these buckets b and Bd. Then, Bd.count is split up according Equation 5.5 (line 3):

d(b) =
Bd.count∑

b∈respBuckets(volume(b, Bd))
× volume(b, Bd) (5.5)

Thus, we can determine a specific number of deletions for each bucket individually
in dependence on the degree of overlap with Bd. It might be possible that d(b) is higher
than b.count. In that case the algorithm reduces the assigned deletion value to b.count

124 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.2 QTree

Algorithm 11 deleteRegionPercentageOverlap(Bd)
1: respBuckets = getAllOverlappingBuckets(Bd);
2: if respBuckets.size() > 0 then
3: computeOverlapDeletionPerBucket(respBuckets);
4: for b ∈ respBuckets do
5: if deletion(b) > b.count then
6: deletion(b) = b.count;
7: end if
8: end for
9: for b ∈ respBuckets do
10: removeFromBucket(b,new Region(Bd.MBB,deletion(b)));
11: Bd.count -= deletion(b);
12: end for
13: if Bd.count > 0 then
14: deleteRegionPercentageOverlap(Bd);
15: end if
16: else
17: deleteRegionMinimumDistance(Bd);
18: end if

(lines 4–8). Then, the deletion of d(b) is performed at each bucket (lines 9–12). In that
process, buckets are removed from the tree if their statistical entry is reduced to 0. It
is possible that for several buckets b not all d(b) records could be deleted (if b.count
< d(b)). Thus, not all Bd.count records could have been deleted. In that case (lines
13–15), the remaining deletion value is distributed among the remaining overlapping
buckets by recursively invoking Algorithm 11. However, we might still encounter the
same problem that we had with strategy 2: there might be no buckets that overlap Bd’s
MBB. Thus, Algorithm 10 is called to solve this problem (lines 16–18).

Another weakness of this strategy is that updating just one record might cause changes
in multiple buckets. Applying Equation 5.5 it is possible that the statistical value of a
bucket is reduced by only 0.1111. With respect to query processing we need to decide
what a bucket with a count below 1 means. Does it represent a record or does it not?
In order to avoid missing relevant data to a query, the query processing strategy should
pay attention to such buckets.

The most important problem is that we might delete records from buckets into which
the records have never been inserted. This is the same problem that we have already
encountered in strategy 2. It means that the information represented by the routing
indexes cannot be completely relied on by the query processing strategy (false negative
routing decisions). Thus, from the query processing strategy’s point of view the best
solution to the deletion problem is strategy 1, where this problem cannot occur.

We are aware that the basic strategies for deletion can be improved. Alternative
strategies could introduce buckets with negative statistical values, for example realized
by two QTrees (one representing insertions, one representing deletions). This would shift
the decision which records can assumed to be deleted to the query processing strategy.
Although this might be an interesting strategy, discussing and elaborating it would go
beyond the scope of this dissertation. Thus, in the following we apply the first strategy
if not explicitly stated otherwise.

Processing Rank-Aware Queries in Schema-Based P2P Systems 125

5.2 QTree

5.2.5 Penalty Functions

In Section 5.2.2 we have defined a penalty function PMBucket
(Equation 5.2) to determine

the penalty for merging two buckets. As instance of this definition we have presented
a penalty function defined on the maximum extension of a bucket’s dimensions (Equa-
tion 5.3):

PMaxBound(B1, B2) := max
d ∈ {1, ..., dmax}

{
max {B1.high[d], B2.high[d]} − min {B1.low[d], B2.low[d]}

scale(d)

}

scale(d) :=

{
DimSpec[d].high − DimSpec[d].low, if DimSpec[d].low �= DimSpec[d].high

1, otherwise

In this section we discuss further variants of penalty functions. In order to compare
them, let us introduce the example data set illustrated in Figure 5.8. It consists of 1000
two-dimensional data records, each attribute value, i.e., each dimension, is restricted to
the interval [0, 1000]. The attribute values of each record are chosen randomly in the
interval. The data records are inserted in random order into a QTree with fmax = 4 and
bmax = 150. However, the order of insertion is the same for all tests discussed in this
section. The buckets we obtain by applying PMaxBound are illustrated in Figure 5.9. They
have a relatively equal extension in all dimensions, which is – as we will see later – most
beneficial for routing indexes.

 0

 200

 400

 600

 800

1000

 0 200 400 600 800 1000

Figure 5.8: Random Test Data

 0

 200

 400

 600

 800

1000

 0 200 400 600 800 1000

Figure 5.9: Random Test Data in
a QTree Using PMaxBound as Penalty
Function

At first, let us consider some variations defined on the sum of a buckets’ extensions
in all dimensions (Equation 5.6) and the average of these extensions (Equation 5.7).

PSumDim(B1, B2) :=
dmax∑
d = 1

max {B1.high[d], B2.high[d]} − min {B1.low[d], B2.low[d]}
scale

(5.6)

126 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.2 QTree

PAvgDim(B1, B2) :=
1
d

dmax∑
d = 1

max {B1.high[d], B2.high[d]} − min {B1.low[d], B2.low[d]}
scale

(5.7)

Just as similar as Equations 5.6 and 5.7 look like are the results that we obtain by
applying them. Thus, Figures 5.10 and 5.11 look very similar. In comparison to Figure 5.9
we can see that the buckets created when applying these two penalty functions have a
slightly higher tendency to vary in their dimensional extensions.

 0

 200

 400

 600

 800

1000

 0 200 400 600 800 1000

Figure 5.10: Random Test Data in a
QTree Using PSumDim as Penalty Func-
tion

 0

 200

 400

 600

 800

1000

 0 200 400 600 800 1000

Figure 5.11: Random Test Data in a
QTree Using PAvgDim as Penalty Func-
tion

Another measure we can use as penalty function is based on the diameter of a bucket.
By applying the Euclidean Distance and a normalization by the dimensions’ attribute
ranges, we obtain:

PDiameter(B1, B2) :=

√√√√√√ dmax∑
d = 1

(
max {B1.high[d], B2.high[d]} − min {B1.low[d], B2.low[d]}

scale

)2

(5.8)

Figure 5.12 illustrates the QTree buckets we obtain by applying PDiameter on the
QTree test data of Figure 5.8. The resulting buckets are similar in size and shape to the
ones that we obtain by applying PMaxDim. However, there is still a small tendency to
create buckets with a higher extension in some of the dimensions.

We can also define measures based on the volume of buckets. Equation 5.9 defines a
corresponding measure.

PV olume(B1, B2) :=
d∏

i = 1
DimSpec[d].high �= DimSpec[d].low

(max {B1.high[d], B2.high[d]} − min {B1.low[d], B2.low[d]})

(5.9)

Processing Rank-Aware Queries in Schema-Based P2P Systems 127

5.2 QTree

The problem we have to solve is that buckets do not necessarily need to have an
extension in each dimension (e.g., buckets representing one single record). Thus in order
to avoid the multiplication by 0, PV olume only considers dimensions with extensions.
However, in case a bucket has no extension in any dimension, the volume is 0 (not
expressed by Equation 5.9). Figure 5.13 shows the result we obtain by applying PV olume

on our example data. There are many buckets with a large extension in one dimension
and a short extension in other dimensions. With respect to query routing, we should avoid
such buckets. Assume we have a range query, then the chance that such a “long” bucket
intersects the queried range is higher than for a bucket with relatively equal extensions
in all dimensions. As the routing strategy would have to consider peers providing such
data, we should avoid such buckets.

 0

 200

 400

 600

 800

1000

 0 200 400 600 800 1000

Figure 5.12: Random Test Data in a
QTree Using PDiameter as Penalty Func-
tion

 0

 200

 400

 600

 800

1000

 0 200 400 600 800 1000

Figure 5.13: Random Test Data in a
QTree Using PV olume as Penalty Func-
tion

In future work, more sophisticated penalty functions could be developed that take
other aspects of buckets into account, e.g., how their MBBs overlap. Furthermore, it
is an interesting approach to use different penalty functions for merging buckets (when
reducing the number of buckets) and for merging inner nodes (when reducing the fanout
of an inner node).

Comparison of Penalty Functions

We have presented several variants of penalty functions that we can use to build a QTree.
So far, we have only illustrated how the resulting buckets look like. This only shows on
an intuitive basis what penalty functions construct small buckets. In order to compare
the penalty functions on an objective basis, we introduce the “average bucket density”
(Equation 5.10) as an appropriate measure. It is defined on the ratio between the number
of records contained in a bucket and its size. The higher the density, the better is the
representation.

128 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.2 QTree

Density(B) =
avg

B ∈ QTree

⎧⎪⎪⎪⎨⎪⎪⎪⎩
B.count

d∏
i=1

(B.high[i] − B.low[i] + 1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.10)

Figure 5.14 shows the results for the application of the penalty functions discussed
above on the random data set. It shows how the average density of all buckets changes
when more and more data is inserted into the QTree. For each test run we inserted the
data records in the same random order (fmax = 4, bmax = 150). Note that the average
bucket density in Figure 5.14 is displayed in logscale.

Our results with respect to inserting the random data of Figure 5.8 show that until
we we have inserted 150 records into the tree, the bucket density is 1, which means
each bucket is filled optimally. This is not astonishing because each of those 150 records
is represented by its own bucket (a bucket without extension). When we insert the
151st record, for the first time two records need to be represented by the same bucket.
Consequently, the average bucket density decreases for all penalty functions.

 0.01

 0.1

 1

 0 200 400 600 800 1000

A
ve

ra
ge

 B
uc

ke
t D

en
si

ty

Number of Inserted Data Records

MaxBound
Diameter
SumDim
Volume

AvgDim

Figure 5.14: Comparison of Penalty Functions – Random Data

PV olume results in the worst results because the buckets cover rather large regions that
do not contain records in the original data set. As we have already anticipated from the
buckets shown in Figures 5.10 and 5.11 as well as from Equations 5.6 and 5.7, penalty
functions PSumDim and PAvgDim produce buckets that are similar if not even the same.
In most cases PMaxBound produces the best results in comparison to all the other penalty
functions. However, with large numbers of inserted records PDiameter performs actually
better than PMaxBound.

Of course, we also tested other data distributions such as clustered data. The example
data set that we used as a representative for our tests is illustrated in Figures 5.15. It is
restricted to the same data space as the random test data of Figure 5.8, i.e., all attribute
values are restricted to the interval [0, 1000]. The clustered data set consists of 100
clusters with 10 data records each (thus 1000 in total). The attribute values of a record
have a random Euclidean Distance to the cluster center of at most 30.

For this data set we ran the same test runs with the same QTree parameters (fmax = 4
and bmax = 150). For each test run the records were again inserted in the same random
order. The results we obtained for the clustered data set are shown in Figure 5.16.
For this data set we see that in general PMaxBound creates QTrees with the best average

Processing Rank-Aware Queries in Schema-Based P2P Systems 129

5.2 QTree

 0

 200

 400

 600

 800

1000

 0 200 400 600 800 1000

Figure 5.15: Cluster Test Data

 0.01

 0.1

 1

 0 200 400 600 800 1000

A
ve

ra
ge

 B
uc

ke
t D

en
si

ty

Number of Inserted Data Records

MaxBound
Diameter
SumDim
Volume

AvgDim

Figure 5.16: Comparison of Penalty
Functions – Clustered Data

bucket density. PSumDim and PAvgDim again create QTrees with the same bucket densities,
their results are sometimes even a little better than the results of all the other penalty
functions. In contrast to the random data set, PV olume performs better but nevertheless
PMaxBound and PDiameter provide better results.

In summary, PMaxBound yields the best results for both tested data sets. Although
PSumDim/PAvgDim and PDiameter are slightly better if many records are inserted into the
QTree, we prefer PMaxBound because it performs best in the average case.

5.2.6 Evaluation

In this section we evaluate some more aspects of the QTree. As PMaxBound seems to be
a good penalty function, we used PMaxBound in all the tests we discuss in the following.
However, the general tendencies of our findings are still the same no matter what penalty
function we use. At first, we examine the influence of the fmax and bmax constraints and
the number of represented records on the approximation quality of a QTree. Afterwards,
we examine the influence of the data distribution and the number of indexed dimensions.
Furthermore, we discuss the influence of the order in which data records are inserted into
the tree. And finally, we evaluate the deletion strategies we have proposed for the QTree.

Influence of fmax, bmax, and the Number of Inserted Data Records

Intuitively, the approximation error should grow for higher numbers of inserted data
records due to the bigger buckets that are necessary to represent all records. But how to
measure such an approximation error? The key concept is to use the sizes of the buckets’
MBBs as a measure. The greater the MBBs the greater is the approximation error of a
record that is represented. Thus, we can measure the approximation error of a QTree by
evaluating the maximum extension of any of its buckets. As an appropriate measure we
use the Maximum Bucket Extension (MBE) in a QTree, which is computed as defined
in Equation 5.11.

130 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.2 QTree

MBE(QTree) :=

max
B ∈ QTree

⎧⎪⎪⎪⎨⎪⎪⎪⎩ max
d ∈ {1, ..., dmax}

DimSpec[d].high �= DimSpec[d].low

{
B.high − B.low

DimSpec[d].high − DimSpec[d].low

}⎫⎪⎪⎪⎬⎪⎪⎪⎭
(5.11)

To illustrate the influence of the number of records that are inserted into a QTree,
we did several tests with data sets of different sizes. For this purpose, we used two-
dimensional random data sets (attribute values restricted to the interval [0, 1000]). We
created three data sets consisting of 1000, 3000, and 5000 data records. We set fmax to 4,
varied bmax, and measured MBE after inserting all records. The results that we obtained
are illustrated in Figure 5.17(a). The general tendency is: the higher the number of data
records, the higher is the approximation error. Although not shown here, we did the
same tests for other data sets as well and observed that the effect we found for random
data is negligible for other data sets such as clustered data if we only increase the number
of records within a cluster but not the number of clusters themselves. The reason is that
the approximation error is not influenced by the number of records a cluster consists of
but by the number and size of the clusters – we will discuss this issue in more detail
below.

The general tendency illustrated in Figure 5.17(a) is as logical as anticipated and
holds for all data sets: the higher bmax, the lower is the approximation error. The reason
is obvious and commonly known for all data summarizing structures: the more memory
consumption (in case of the QTree determined by bmax) the lower the approximation
error and thus the higher the approximation quality. If the number of buckets is equal
or even higher than the number of records, the approximation error (MBE) is 0 because
each record is represented by its own bucket.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

M
ax

im
um

 B
uc

ke
t E

xt
en

si
on

bmax

50 data records
500 data records

1000 data records
5000 data records

(a) Influence of the Number of Data Records

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700 800

M
ax

im
um

 B
uc

ke
t E

xt
en

si
on

bmax

fmax = 2
fmax = 4
fmax = 8

(b) Influence of fmax

Figure 5.17: Influence of fmax and bmax on Random Data

We also examined the influence of fmax on the approximation error. The results for the
random data set consisting of 5000 records and varying bmax are shown in Figure 5.17(b).
The general tendency is that the approximation error is lower the more siblings a bucket
may have. The reason is that we only consider sibling buckets for merging. Thus, the

Processing Rank-Aware Queries in Schema-Based P2P Systems 131

5.2 QTree

higher fmax the better is the chance of finding a pair of sibling buckets whose mergence
causes a minimal increase in the approximation error. Consequently, the approximation
error tends to be lower for a higher fanout.

As indicated in Figure 5.17(b), another effect we found in our evaluation is that fmax

should be greater than the number of indexed attributes of a data record, i.e., greater
than the number of dimensions. Although we do not illustrate it in further diagrams,
tests with other data sets support this finding. For the two-dimensional random data set
the approximation error is clearly smaller for fmax ≥ 3. The reason is that each node
may have multiple children that “specialize” in different indexed dimensions.

Data Distribution and Dimensionality

In further tests we examined the influence of the data distribution on the approximation
quality. We used the random data set with 5000 records that we have already used above.
Furthermore, we used several clustered data sets. Two of the clustered data sets consist of
100 clusters and 50 data records per cluster (5000 records per data set). Each record was
created by adding a random offset of [−dist, +dist] to the cluster center’s coordinates –
attribute values are again limited to the interval [0, 1000]. The difference between the
two data sets is the dist value (10,30) that determines the extension (diameter) of the
clusters. The third clustered data set that we consider in this section has the same
number of records (5000) as the other two sets but fewer clusters: 50 clusters with 100
records each.

Figure 5.18(a) shows the results we obtained for these four data sets and varying
bmax (fmax = 4). These results show that the characteristics of the data set have a
strong influence on the approximation quality. Clusters with a small diameter can easily
be represented by one bucket without resulting in a large MBB. The larger the cluster
diameter the larger has to be the MBB of the representing bucket – compare the lines
for the data sets with 100 clusters and different cluster diameters: dist 10 and dist
30. The higher the cluster diameter, the bigger must be the buckets that represent the
clusters and thus the higher is the approximation error. Random data has the highest
approximation error because there simply are no clusters that could be summarized with
low approximation error.

Figure 5.18(a) also shows the influence of the number of clusters on the approximation
error: the higher the number of clusters, the higher is the approximation error. The
reason is that in case there are fewer clusters, there is less space that has to be described
and represented by buckets. For example, if there are 100 clusters we need at least
100 buckets to represent each cluster with low approximation error. If we have only
50 clusters, we can represent each cluster with 2 buckets instead of only 1. Thus, the
buckets are smaller and the approximation error is lower. In summary, as we have already
pointed out above, the approximation quality does not depend on the number of records
contained in the clusters but on their number and extensions.

We also examined the influence of the number of indexed dimensions on the approxi-
mation error. For these tests we used a random data set (5000 records) with 8 dimensions
(restriction of attribute values again to the interval [0, 1000]) and indexed for each test a
subset of them (2, 3, . . . , 8) – fmax = 4. Figure 5.18(b) presents the results. The general
tendency is clear: the higher the number of indexed dimensions, the higher is the approx-

132 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.2 QTree

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700 800

M
ax

im
um

 B
uc

ke
t E

xt
en

si
on

bmax

random data
clustered data, 100 clusters, dist 10
clustered data, 100 clusters, dist 30
clustered data, 50 clusters, dist 10

(a) Influence of the Data Distribution

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700 800

M
ax

im
um

 B
uc

ke
t E

xt
en

si
on

bmax

2 dimensions
3 dimensions
4 dimensions
8 dimensions

(b) Influence of Dimensionality

Figure 5.18: Influences of Data Distribution and Dimensionality

imation error. The reason simply is that the data space grows with higher dimensionality
and the buckets need to be larger in order to still summarize the data records.

Order of Insertion

As a QTree is constructed incrementally by inserting one data record after another and
the buckets grow to encompass the inserted data records, the locations and sizes of the
buckets’ MBBs depend on the order in which records are inserted. We also examined the
influence of the insertion order with respect to varying bmax and fmax. For each setup
we ran 1000 test runs and measured the maximum bucket extension (MBE) after the
insertion of all 5000 records of the two-dimensional random test data set. We used bmax =
150 and fmax = 4 as parametric setup. Figure 5.19 shows two lines, one representing the
worst MBE values we obtained in the 1000 test runs and the other one representing the
best MBE values. By picturing both in the same diagram, we obtain a visualization of
the fluctuation in the approximation error caused by the order of insertion.

Figure 5.19(a) shows our results with respect to varying bmax and Figure 5.19(b) the
results with respect to varying fmax. In these results we again see the tendency that we
have already found above: the higher bmax, the better is the approximation quality and
if fmax is higher than the dimensionality, we obtain better approximations. Furthermore,
we see that the approximation error up to a certain extent depends on the order of
insertion. The variation is smaller for high numbers of buckets because there are more
buckets that cover the data space and the influence of each single data record is smaller.
As further tests have shown, these findings do not only hold for random data but also
for other data sets such as clustered data.

Although the dependency of the approximation quality on the order of insertion can
be considered a weakness, remember that bucket boundaries are variable and chosen in
dependence on the data that is represented.

Influence of Deletion

Finally, let us discuss the performance of the update strategies we propose for deletion
(Section 5.2.4). For these tests we used the random data set and the clustered data
set (100 clusters, dist = 10) with 5000 records that we have already used in previous

Processing Rank-Aware Queries in Schema-Based P2P Systems 133

5.2 QTree

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500

M
ax

im
um

 B
uc

ke
t E

xt
en

si
on

bmax

Minimum MBE
Maximum MBE

(a) Random Data – Varying bmax

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

M
ax

im
um

 B
uc

ke
t E

xt
en

si
on

fmax

Minimum MBE
Maximum MBE

(b) Random Data – Varying fmax

Figure 5.19: Influence of the Order of Insertion on the Approximation Error

tests. The QTree parameters were set to fmax = 4 and bmax = 150. In our first tests
we created a QTree and then deleted one record after another. We evaluated all three
deletion strategies we have discussed in Section 5.2.4. The results we obtained for the
two data sets are presented in Figures 5.20 and 5.21.

Let us first consider the results for the random data set (Figure 5.20(a)). The max-
imum bucket extension (Equation 5.11) grows only if we apply the “merging” strategy
because this is the only strategy that merges buckets upon deletion. The other two strate-
gies do not affect the buckets’ MBBs but only their statistical entries. Figure 5.20(b)
shows how the number of buckets used by the QTree changes when deleting records. For
the merging-based strategy the number of buckets is reduced much faster than for the
other two strategies. The reason is again that buckets are merged in order to execute a
deletion. Applying the other two strategies, buckets are only deleted when their statis-
tical entries are reduced to 0. Thus, it takes much longer for these strategies to reduce
the number of buckets. In comparison of these two, the distance-based deletion strategy
reduces the number of buckets faster than the overlap-based strategy.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000 2000 3000 4000 5000

M
ax

im
um

 B
uc

ke
t E

xt
en

si
on

Number of Deleted Data Records

Merging
Distance
Overlap

(a) Maximum Bucket Extension

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

N
um

be
r

of
 B

uc
ke

ts

Number of Deleted Data Records

Merging
Distance
Overlap

(b) Number of Buckets

Figure 5.20: Influence of the Deletion Strategy – Deleting Single Records from the Ran-
dom Data Set

Figure 5.21 shows the results we obtained for the same test runs on the clustered data
set. Again, the maximum bucket extension only changes for the merging-based strategy
and remains the same for the other strategies. Note that the y-axes of Figures 5.20(a)

134 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.2 QTree

and 5.21(a) have different scales and the growth in the maximum bucket extension for
clustered data is still low. Figure 5.21(b) illustrates the reduction in the number of
buckets. Again, the distance-based strategy shows a faster reduction in the number
of buckets than the overlap-based strategy and the merging-based strategy the highest
reduction.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 1000 2000 3000 4000 5000

M
ax

im
um

 B
uc

ke
t E

xt
en

si
on

Number of Deleted Data Records

Merging
Distance
Overlap

(a) Maximum Bucket Extension

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

N
um

be
r

of
 B

uc
ke

ts

Number of Deleted Data Records

Merging
Distance
Overlap

(b) Number of Buckets

Figure 5.21: Influence of the Deletion Strategy – Deleting Single Records from the Clus-
tered Data Set

So far we have only considered the influences of deletion on the maximum bucket
extension and the number of buckets. As an increase in the maximum bucket extension
is in general disadvantageous for the performance of the query processing strategy, one
might tend to prefer the distance-based strategy. However, the reduction in the number
of buckets should also be taken into account. But the most important issue has so far
been left out: are all records still represented correctly after executing deletions? To
illustrate the answer to this question, Figure 5.22 depicts the QTrees after the deletion
of 4800 records.

 0

 200

 400

 600

 800

1000

 0 200 400 600 800 1000

(a) Distance-Based Deletion

 0

 200

 400

 600

 800

1000

 0 200 400 600 800 1000

(b) Overlap-Based Deletion

 0

 200

 400

 600

 800

1000

 0 200 400 600 800 1000

(c) Merging-Based Deletion

Figure 5.22: QTree after Deletion of 4800 of 5000 Records – Random Data

After having deleted so many records from the tree, the side-effects of the deletion
strategies are most obvious. Figures 5.22(a) and 5.22(b) reveal that both, the distance-
based and the overlap-based strategy, sometimes delete records from the “wrong” buckets.
As a consequence, both figures show that some records (that have not yet been removed

Processing Rank-Aware Queries in Schema-Based P2P Systems 135

5.2 QTree

from the tree) are not represented by any bucket. This is the worst case for any query
processing strategy that relies on the correctness of the information provided by the
routing indexes. Were these QTrees part of a routing index, we would retrieve incomplete
results if the corresponding neighbor was wrongly pruned from consideration due to false
negative routing decisions. With respect to this notion of correctness, the merging-based
strategy (Figure 5.22(c)) performs best. Applying this strategy, it is impossible that
records are not correctly represented by any bucket. We have conducted several test
runs with other data distributions and larger regions that are deleted instead of single
records. For all these tests we found the same tendencies.

Since we want to use the QTree to build routing indexes, we have to insist on absolute
correctness and discard the overlap-based and distance-based strategies. However, we are
aware that especially in the case of random data this could lead to difficulties that we
have to compensate, e.g., by increasing bmax and thus reducing the degree of overlap
between buckets. But nevertheless, we have a routing index whose correctness we can
rely on.

5.2.7 Extension to Support String Attributes

To complete our discussion on base structures for routing indexes and the QTree, let us
briefly discuss how to index string attributes. Whereas for numerical data it is straight-
forward how to define similarity between attribute values, this is not the case for string
attributes. For the latter a widely used similarity function is the edit distance, or the
Levensthein distance [121] respectively, so that the distance between two strings is de-
fined by the minimum number of edit operations (update, deletion, insertion) that are
necessary to transform one string into the other.

In order to capture string data, the literature proposes several approaches, e.g.,
tries [45,65] and patricia tries [139]. Both approaches are prefix tree variants, the charac-
ters of a string are represented by inner nodes and the string itself is stored in a leaf node.
A specific string can be found by traversing the tree in dependence on the sequence of its
characters. There are also some approaches that consider approximate string matching
based on the edit distance for tries, e.g., [175] using dynamic programming. Unfortu-
nately, prefix trees and their variants do not summarize/aggregate data, which means
they cannot be used as a base structure for routing indexes. However, we could still
introduce aggregation by replacing subtrees with statistical nodes – similar to the QTree
in comparison to the R-Tree. If we did so, we could no longer determine the edit distance
for the represented strings but only for their prefixes represented by nodes that have not
been replaced.

Another approach to represent strings are (positional) q-grams [181, 192, 195]. The
principle is to determine all possible q-elemental substrings of a string, e.g., the set of
q-grams of length 3 (q = 3) for the string “house” would be: h, ho, hou, ous, use, se ,
e or in case of positional q-grams (1, h), (2, ho), (3, hou), (4, ous), (5, use), (6, se),
(7, e) with the number denoting the position of the q-gram in the original string. The
similarity with respect to the edit distance between two strings can be determined based
on their sets of q-grams [181,182]. The intuition is that strings with small edit distances
share a large number of q-grams. A detailed comparison of positional and non-positional
q-grams for selection and join queries in RDBMSs is given by Gravano et al. [75,76]. It is

136 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.2 QTree

possible to use q-grams to build routing indexes by merging the q-gram sets of multiple
strings. The resulting superset can be used in conjunction with the edit distance to
determine if it is possible that a specific string (or one with a specific edit distance
similarity) was among the original strings whose q-gram sets have been merged. Due to
the merging, similar to indexes for numerical data, this kind of routing index yields the
possibility of false positive routing decisions but not false negatives.

For our application scenario it would be worthwhile not only to index string attributes
and numerical attributes in isolation but also to capture the correlations between them.
In order to use histograms or QTrees for this purpose, a straightforward solution is to
transform strings into numerical space. One basic approach would be to use the ASCII
code of the characters and use one dimension for each position in the string. This means
we would have one dimension for each numerical attribute and multiple dimensions (their
number determined by the maximum number of characters of a string) for each string
attribute. As using this technique for string attributes would require a high number
of dimensions, it would be hard to find any clusters (curse of dimensionality [16]) and
structures such as the QTree and histograms would not be efficient.

An alternative would be the application of hash functions on the strings to obtain
numerical values. The problem with hash functions is that although there are some that
are neighborhood preserving with respect to the lexicographic order of strings, we do not
know of any hash function that preserves neighborhood with respect to the edit distance.
Thus, the edit distance would not be applicable as distance function.

The solution we propose [113] to index numerical and string attributes within the
same structure – capturing correlations between them – is based on q-grams. Additional
information about string attributes is added to a bucket, i.e., for each indexed string
attribute a a bucket b holds a set of q-grams that represents the union of all q-gram
sets generated with respect to a for the records represented by b. As it is likely to be
inefficient to store the q-grams themselves within a bucket, we propose to use a bitvector
representation. In the simplest case, a specific bit exclusively represents a specific q-
gram. Alternatively, hash functions can be used to reduce the size of the bitvectors –
the consequence is an increase in the number of false positive routing decisions as one bit
might represent multiple q-grams and there is no indication which one of them actually
caused the bit to be set to 1.

This solution can be optimized in several ways. First, as the buckets of the QTree are
constructed in consideration of only the numerical attributes, the string attribute values
of the inserted records can be very different. Consequently, there are many different
q-grams and thus there is a higher risk of making false positive routing decisions. Fur-
thermore, whereas it is straightforward how to adapt the bitvectors for the insertion of
records, the deletion is impossible as we do not know if a specific q-gram was exclusively
contained in the q-gram set of the deleted record or also by other q-gram sets of records
that are still represented – reconstruction or storing additionally the number of records
whose q-gram sets contain a specific q-gram are possible but expensive solutions to the
problem.

In the context of this dissertation, we do not go into details on how to index string
data and the combination of numerical and string attributes. Our intention was to sketch
a possible solution to the problem. Improving this basic approach or finding even better
solutions to the problem is part of our future work and not considered in the following.

Processing Rank-Aware Queries in Schema-Based P2P Systems 137

5.3 Maintenance

5.2.8 Summary

In summary, in this section we found out that the QTree does efficiently what we devel-
oped it for: representing data with “small” buckets. Subspaces that do not contain any
data records are left out such that the query processing strategy can efficiently make use
of the DDSs’s information (Chapter 6). We found out that the merging-based deletion
strategy is most suitable for our purposes.

We have already mentioned and discussed several improvements of the QTree such as
the extension to string attributes. Moreover, we have reviewed several variants of penalty
functions that can be used to determine which pair of buckets causes the least penalty
when merged. We found out that PMaxBound is the best solution for our requirements.
However, so far we have limited our considerations to only sibling buckets. In future work
we might extend this concept to merging non-sibling buckets. This should minimize the
influence of fmax on the approximation quality and allow us to find optimal pairs of
buckets for merging. Another issue that might be worth being considered in future work
is to allow QTree nodes (their MBBs resp.) to assume other more intricate shapes –
so far we focus on rectangular bounding boxes, which makes it low-effort to determine
whether two MBBs overlap.

5.3 Maintenance

After having introduced the notion of Distributed Data Summaries (DDSs) and an exam-
ple based on the QTree in the previous sections, let us now focus on the often neglected
problem of keeping routing indexes up-to-date. The reason why we need to face such
problems is that due to the inherent dynamic behavior of P2P-based systems the net-
work structure as well as the peers’ local data might change over time. Consequently, the
data described by the routing indexes, i.e., the data accessible via neighboring peers, is
likely to change after having created the initial set of summaries. Overreliance on their
correctness without taking any measures to keep them up-to-date sooner or later results
in false routing decisions. For example, if for a given query a peer decides – based on
the information provided by its routing index – not to forward the query to a specific
neighbor, data that is relevant to the query might be missed if the neighbor acquired
relevant data in the meantime (false negative routing decision). Hence, the result set
for a query might be incomplete. On the other hand, if a peer queries a neighbor that
no longer provides relevant data, query execution costs are unnecessarily increased (false
positive routing decisions). Therefore, when peers change their local data or the set of
neighbors, it is necessary to have all neighbors (that hold summaries describing their
data) update their routing indexes. The question is how to do that efficiently.

To solve this problem, there are basically two straightforward extremes that are both
unacceptable: first, not updating routing indexes at all but minimizing network load
and second, creating a new set of routing indexes for all peers whenever an update
occurs [41,53]. Hence, we identify two contrary goals: (i) keeping routing indexes up-to-
date and (ii) minimizing network load. In the remainder of this chapter, we try to find
an acceptable tradeoff between these two goals. However, as peers might have different
schemas, we begin with a description of how updates can be encoded and how they
can be rewritten from one schema into another. We then proceed with a discussion

138 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.3 Maintenance

on how to efficiently construct routing indexes. Furthermore, we propose and classify
several strategies that can be used to solve the problem of updating them for numerical
data. Although we focus on DDSs based on QTrees and equi-width multidimensional
histograms, most of the techniques we present can be extended and applied to the general
case. In the following we use the terms DDS and routing index interchangeably.

5.3.1 Update Representation and Rewriting Updates as well as
Summaries

There are only three types of updates to data records that need to be considered: dele-
tions, insertions, and changes of attribute values – each is defined by a set of indexed
attribute values and a keyword indicating the update type (if the order of attributes
is fixed, we do not need to include the attribute names). To encode such updates, we
only need deletions and insertions. Changes of attribute values are encoded as a dele-
tion followed by an insertion. A list of such deletions and insertions is referred to as
Add-Remove-List (ARList).

Updates can be merged into a more compact representation defined by a region r
and a correction value indicating the number of updated records within. However, we
should not use arbitrary regions for this purpose because such a region would most likely
overlap multiple buckets of the neighbor’s routing index – splitting up the correction
value among these overlapping buckets would only lead to approximation errors. Thus,
we determine the regions in dependence on the buckets of the routing index so that
each updated region r is completely contained in one of the neighbor’s buckets. For this
purpose, each peer maintains a summary of its local data that has the same structure as
the base structure of the neighbors’ routing indexes. This local index can be obtained as
a by-product from the construction phase (Sections 2.3 and 5.3.2), in which these local
summaries are propagated through the network as a description of the data provided by
the peers.2 By adapting that local summary whenever local updates occur, we need to
distinguish four cases:

1. a new bucket has been created,
2. an existing bucket has been deleted,
3. an existing bucket has been changed, and
4. a bucket has not been changed.

In the context of equi-width multidimensional histograms a new bucket is said to be
created if it has been empty before. Likewise, a bucket is said to be deleted if it is empty
in the new version but not in the original version. For each bucket that corresponds
to any of the first three cases we create one update entry that describes the bucket’s
boundaries and difference in the number of represented elements (positive value for case
1, negative value for case 2, and positive or negative value for case 3).

Updates are merged only if the merged version reduces the volume of the correspond-
ing update message. Otherwise, an ARList is used. Furthermore, note that by merging

2As the regions of this index have been used to construct the neighbors’ routing indexes, the update
region is always completely contained in one of the routing indexes’ buckets. Thus, in the case of the
QTree and deletion applying the merge strategy (Section 5.2.4), we only need to merge buckets that
completely enclose the updated region instead of all buckets that at least partially overlap. In case of
equi-width multidimensional histograms, the bucket boundaries are the same for all peers, anyway.

Processing Rank-Aware Queries in Schema-Based P2P Systems 139

5.3 Maintenance

updates it is possible that two updates compensate each other. Whenever this is the case,
we can safely prune the set of compensating updates. The same technique can be used to
merge updates originating from neighboring peers. In the case of establishing new links
or removing old ones, all buckets in the local routing index that describe affected data
are sent as updates to all the other neighbors.

Still, there is another problem we have to deal with in PDMSs: as peers are allowed
to use different local schemas, not only queries need to be rewritten but also updates that
are propagated from one peer to another. In order to decide efficiently which neighbors
provide relevant data to a query (Chapter 6) (based on the routing indexes and the
evaluation result of the query on the local data), we assume a routing index to be defined
on the local schema of the peer that holds it. This means data summaries as well as
data updates need to be rewritten from the local schema into the schema of the receiving
peer.

<database>
 <item context=”$r in record”>
 <attr1>{$r/attribute1}</attr1>
 <attr2>{$r/attribute2}</attr2>
 </item>
</database>

<database>
 <item>
 <attr1>10</attr1>
 <attr2>15</attr2>
 </item>
</database>

deletion
<record>
 <attribute1>10</attribute1>
 <attribute2>15</attribute2>
</record>

órecord

<record>
 <attribute1>{item/attr1}</attribute1>
 <attribute2>{item/attr2}</attribute2>
</record>

ê

ódatabase/item

<record>
 <attribute1>{item/attr1}</attribute1>
 <attribute2>{item/attr2}</attribute2>
</record>

ê

ódatabase/item

Peer 2Peer 1
record*
 attribute1
 attribute2

database
 item*
 attr1
 attr2

Figure 5.23: Rewriting Updates in the Presence of LAV Mappings

Assume we face the abstract example situation sketched in Figure 5.23 and P2 deletes
one of its local data records. In this example there is only a mapping from P1 to P2.
This means P1’s routing index describes the data stored at P2 but not the other way
around. Consequently, P2 needs to send updates to P1 even though it does not hold an
appropriate mapping. To solve this problem in the presence of LAV-style mappings, we
introduce the concept of permanent update request queries (PURQs). They should be
installed already when mappings between two peers are defined. Assume P1 has issued
such a query and has sent it to P2. A PURQ is a simple selection query that selects
all elements that P1’s routing index is defined on. In contrast to standard queries, it is
issued only once but evaluated at the receiver every time it updates its local data.

A PURQ is rewritten using the mapping (Figure 5.23). The rewritten PURQ describes
how to transform updates from the schema of P2 into the schema of P1 and is consequently

140 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.3 Maintenance

used for this purpose any time P1 updates its local data. Note that an update received
from another neighbor of P2 can be rewritten using the same technique because the
records contained in the update message use P2’s local schema. In contrast to standard
query processing, the rewritten PURQ is only evaluated on the portion of the data that
has been updated instead of evaluating it on all the local data of P2. If an update at P2

does not affect any of the attributes the rewritten PURQ refers to, it does not have to
be evaluated at all because there cannot be any changes to the data summarized by P1’s
routing index.

In order to construct routing indexes, peers only need to forward the buckets de-
scribing the data, i.e., in the case of QTrees there is no need to send inner nodes. Each
region/bucket is defined by a set of attributes and a set of intervals (each corresponding
to one of the attributes). We can rewrite these attributes using the techniques discussed
above. Since our mappings do not contain any functions or data transformations, we do
not need to adapt the buckets’ regions.

5.3.2 Constructing Distributed Data Summaries from Scratch

A problem we have to deal with in unstructured P2P networks is that arbitrary networks
might contain cycles. If we index the data nevertheless, the data of a peer P0 might
be contained multiple times in the routing index of a peer P3, for example once for
its neighbor P1 and once for its neighbor P2 – if P0 is reachable via both neighbors.
With respect to the strategies for distributed query processing, which we propose in
Chapter 6, this is not a problem for skyline queries as the decisive characteristic for them
is the dominance relation (Section 2.1.2, Definition 2.1.3) and all relevant neighbors are
queried. Thus, the worst thing that could happen is that the result set contains duplicates
(false positive routing decisions).

In case of selection queries or range queries P3 would possibly also make false positive
routing decisions, e.g., forwarding the query to both P1 and P2 although it only needs to
retrieve the data from P0 once. However, as P3 relies on its routing indexes, it will not be
able to identify duplicates before it receives the results from both neighbors. Thus, again
despite false positive routing decisions the correct and complete answer to the query
would be retrieved.

For top-N queries we need to estimate the number of records that each neighbor
provides. Based on this information, P3 determines the minimum number of neighbors
that need to be queried in order to answer the query. The problem is that when consid-
ering the same data twice, it is possible that a neighbor P4 is not queried although after
having removed all duplicates in the result set, it is clear that the data of P4 should have
been considered (false negative routing decision). In that case P3 needs to rerun query
optimization and forward the query to additional peers such as P4. With respect to the
general steps of query processing (Figure 5.1) this means that P3 needs to go back from
step 6 (postprocessing) to step 4 (optimization).

As we will see later in Chapter 6, the same considerations hold for the application
of relaxation, i.e., cycles lead to false positive routing decisions for skyline queries and
to false negative and false positive routing decisions for top-N queries. Although the
techniques for cycle detection that we have discussed in the context of query rewriting
in Section 4.3 might help identify false positive routing decisions and reduce the number

Processing Rank-Aware Queries in Schema-Based P2P Systems 141

5.3 Maintenance

of duplicates, they cannot entirely solve the problem. Thus, although in principle our
algorithms can deal with cycles, we try to avoid them and index the data in a cycle-free
network.

In a network that has not yet established DDSs or routing indexes, in general the only
way of creating them is to flood the network in a strategic way. However, gossiping [42,47]
could be an alternative, which we do not consider in this context because it might take
a long time until routing index construction is completed and peers highly rely on the
freshness of their routing indexes in order to process queries efficiently (Chapter 6). A
basic strategy to construct routing indexes is to have one peer decide when it is time to
(re)create all summaries in the network. At first, let us consider an acyclic network where
we have bidirectional mappings for each link between peers. The principle is to flood
the network and have the peers exchange information about the data they store locally.
For this purpose, we have to distinguish between three message types: Update Request
Messages, Update Answer Messages, and Update Compensation Messages. The goal is
to send information through the network that describes what data can be retrieved by
which neighbor.

Figure 5.24 illustrates the principle with an example. Assume peer P1 initiates the
process. Then, it computes a summary of its local data and sends it to all its neighbors.
Such a neighbor, in this case only P2, in turn computes a summary of the received infor-
mation with its local index (aggregating both summaries into just one) and propagates
the result with an update request message to all its neighbors (flooding) – Figures 5.24(a)
and 5.24(b). P2 can already construct a part of its routing index by using the summary
received from P1 to describe the data it can retrieve by forwarding a message to P1. All
summaries that are sent through the network adhere to the same base structure (e.g., an
equi-width histogram) with the same parametric configuration (e.g., the number of buck-
ets per dimension). This guarantees that the summaries contained in different messages
can be combined and do not provide insufficiently detailed information.

Each peer that receives an update request message and has no other neighbors, e.g.,
P3 in Figure 5.24(b), sends an update answer message containing a summary of its local
data in response. These answer messages are also propagated through the network –
albeit in a slightly different fashion: a peer starts propagation only if all its neighbors
except one have already sent answer messages. In Step 5 (Figure 5.24(d)) P10 receives
answer messages from all its neighbors except one and consequently sends an own answer
message to P4. This message contains a combined summary of its local data and all the
data provided by its neighbors, i.e., all the data that can be accessed by P4 via P10.
Consequently, the summary represents part of P4’s routing index. At the same time P10

sends update compensation messages (Figure 5.24(e)) to all its other neighbors. These
messages contain information about the data that can be accessed via P10 and has not
yet been propagated with the update request message. After all peers have received such
update compensation messages, the (re)creation process ends and all the peers in the
network have up-to-date distributed data summaries.

Considering arbitrary networks we have to deal with cycles and consequently with the
problem of termination. To solve this problem, we could use a time-to-live (TTL) value
that determines the maximum number of hops that are indexed (horizon) for each peer.
This means that for the construction process we can no longer aggregate all summaries
that describe the data accessible via a specific peer before propagating it to its neighbors.

142 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.3 Maintenance

2

3

4

5
6

7

8

9

10

11
12

13
1

1

1,2

1,2

(a) Steps 1 and 2

2

3

4

5
6

7

8

9

10

11
12

13
1

3

1,2,4

1,2,4

1,2,4

1,2,4

(b) Step 3

2

3

4

5
6

7

8

9

10

11
12

13
1

9

3

8
1,2,4,5

1,2,4,5

1,2,4,10 1,2,4,10

1,2,4,10

(c) Step 4

2

3

4

5
6

7

8

9

10

11
12

13
1

11

7

6
12

13

(d) Step 5

2

3

4

5
6

7

8

9

10

11
12

13
1

12,13

6

7
5,6,7

10,11,12,13

11,13

11,12

(e) Step 6

2

3

4

5
6

7

8

9

10

11
12

13
1

3,5,6,7,8,9

3,5,6,7,9,

10,11,12,13

3,8,9,10,11,12,13

4,5,6,7,

8,9,10,

11,12,13

2,3,4,5,6,

7,8,9,10,

11,12,13

4,5,6,7,8,9,10,11,12,13

3,8,9,10,

11,12,13

3,8,9,10,11,12,13

3,5,6,7,8,9

3,5,6,7,8,9

3,5,6,7,8,9

3,5,6,7,8,

10,11,12,13

(f) Steps 7 and 8

Figure 5.24: DDS Construction with P1 as Initiator. 3 Message Types: Update Request
Messages (blue), Update Answer Messages (red), Update Compensation Messages (green)

In contrast, at each peer we need to prune some of the summaries because the distance of
the peers they correspond to could exceed the TTL value of the neighbor. Consequently,
the construction process would be more expensive because update propagation messages
would have to contain multiple summaries (instead of only one aggregated summary) so
that according to the horizon summaries can be pruned. A second solution to solve the
problem could be the application of a spanning tree algorithm that eliminates cycles or
rather the integration of a spanning tree algorithm into the construction process. In that
case, when a peer receives an update request message from two of its neighbors, it could
simply answer the second request with a denial message so that its data is only indexed
for one of the two routes. As it took longer for the second request to arrive at the peer,
“deactivating” the link does not impair query processing because the other link should
be favored for query processing anyway. However, in consideration of information loss
caused by different mapping paths, more sophisticated criteria could be considered to
choose the best mapping path. In any case, if the favored link fails, the peer could still
“remember” the deactivated link and the existence of the cycle. Because of the simplicity
and low execution costs, we favor the spanning tree-based variant over the horizon-based
variant.

As mentioned above, we assume each peer to have installed a permanent update
request message (PURQ) to all peers that it holds mappings to. Hence, in the case of
bidirectional mappings we can simply use the rewritten PURQs to rewrite the summaries
and run the algorithm as described above. What we still need to discuss is whether this
also works for unidirectional mappings. Under the assumption that we have unidirec-
tional mappings but still an adjacent network, the main difference is that update request
messages do not necessarily contain summaries, they only do so if the receiver holds a
mapping to the local schema of the sender. Figure 5.25 shows an example.

Processing Rank-Aware Queries in Schema-Based P2P Systems 143

5.3 Maintenance

2

3

4

5
6

7

8

9

10

11
12

13
- (1)

- (2)

- (2)

1

(a) Steps 1 and 2

2

3

4

5
6

7

8

9

10

11
12

13

3

- (4)

4

4

4

1

(b) Step 3

2

3

4

5
6

7

8

9

10

11
12

13
1

- (5)
10

10

10

4,5

-

-

(c) Step 4

1

2

3

4

5
6

7

8

9

10

11
12

13

-

-
6

-

-

(d) Step 5

1

2

3

4

5
6

7

8

9

10

11
12

13

6

-

10

(e) Step 6

1

2

3

4

5
6

7

8

9

10

11
12

13

1010

10

10

10

10

(f) Steps 7 and 8

Figure 5.25: DDS Construction in the Presence of Unidirectional Mappings with Peer P1

as Initiator. 3 Message Types: Update Request Messages (blue), Update Answer Messages
(red), Update Compensation Messages (green)

In this example, again P1 initiates the construction process. If it is aware that P2 has
no mapping to P1, the update request message does not contain P1’s local summary. If
P1 is not aware, it sends the summary along with the message. In any case P2 is aware
that it has no mapping to P1, hence it does not forward P1’s summary along with its
update request message to P3 and P4. The second difference for the unidirectional case
is that update answer messages, too, do not necessarily contain summaries, e.g., it would
not make sense for P8 to send its local summary to P4 (Figure 5.25(c)) as P4 does not
have a mapping to P8 – the received update request message has already contained this
information. If all peers are aware whether their neighbors hold a mapping to their local
schema, all update answer messages that do not contain a summary can be saved. After
having processed the last update compensation messages, each peer holds a routing index
that correctly describes the data accessible via the neighbors it holds mappings to.

We are aware that this strategy can be improved in several ways. One of them is
called 2-Phase-Flooding. It is based on the assumption that multiple peers begin with
the construction process at the same time – assuming that the network is cycle-free.
This is for example possible when the index (re)creation takes place on a regular basis.
In the following we focus on bidirectional mappings as the adaptation to unidirectional
mappings is straightforward and similar to the ones we have already discussed for the
baseline algorithm above.

Applying 2-phase-flooding each peer that has only one neighbor begins with sending
its local data summary to its neighbor (using an update request message). Each peer that
receives such a message uses the summary to construct its local routing index. Once a peer
has received such messages from all its neighbors except one, it computes a summary of its
local data and the summaries received along with the messages. The peer then forwards

144 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.3 Maintenance

the result to the one neighbor that has not yet sent a request message. Figure 5.26(a)
shows an example. When a peer has received request messages from all its neighbors,
the second phase, in which update compensation messages are sent (Figure 5.26(b)),
begins. These messages again contain information that could not be forwarded in the
first phase. Once all peers in the network have received such compensation messages,
the construction process ends and each peer has a set of up-to-date summaries of the
data that can be accessed by neighboring peers, i.e., each peer has an up-to-date routing
index.

(a) Phase 1 (b) Phase 2

Figure 5.26: DDS Construction – 2-Phase-Flooding

5.3.3 Classification of Maintenance Strategies

After having created the initial set of routing indexes, peers might update their data.
Consequently, routing indexes need to be updated. We assume updates to be encoded as
described in Section 5.3.1. However, note that this is only possible for routing indexes
whose base structures support incremental maintenance, i.e., it is possible to encode an
update and adapt the summary accordingly. The alternative, as proposed by Crespo
et al. [41] (Section 2.3), is a partial reconstruction of the routing indexes, i.e., update
messages do not only contain an encoded update but a complete summary describing the
data that can be accessed via the sender. This means that both the computational effort
as well as the size of an update propagation message is clearly higher in comparison to
the alternative.

However, in the following we assume that the base structure of the routing index
supports incremental maintenance. If so, we still have to solve the problem of multiple
possibly simultaneous updates. If each peer in a network of n peers with bidirectional
mappings updates its local data only once, then by following a simple flooding approach
n2 messages have to be processed in the network, i.e., n per peer. If peers update their
local data even more often, we have to assume considerable temporal delays because
messages need to wait in the waiting queue of a peer before they can be processed.
Remember that in parallel to handling updates, queries have to be processed. Thus,
when updates do not occur only rarely, the network is primarily occupied with processing
update messages instead of processing queries.

Update propagation in P2P systems can be regarded as a replication problem where
some peers have replicas of other peers’ data. In this case replicas are not exact repli-
cas but only summaries of the original data. A lot of techniques have been proposed

Processing Rank-Aware Queries in Schema-Based P2P Systems 145

5.3 Maintenance

for traditional replication problems in distributed environments [172]. Although the un-
derstanding of a replica is not the same, the update strategy is a similar problem that
has to be solved in absence of any kind of global knowledge. Traditional synchronous
solutions to manage distributed data usually handle only a small number of peers and
are not suitable for widely distributed environments such as P2P systems, where net-
work connections are unreliable and peers are temporarily unavailable [77]. Epidemic
algorithms [57] seem to be a good solution for distributed environments since they work
asynchronously, are robust against peer failures, do not make any assumptions on the
network structure, and do not need any central instance for coordination. Using epidemic
algorithms, each peer propagates the updates to a random subset of its neighbors. In
contrast, in a PDMS peers should receive update messages with a minimal delay so that
the routing indexes of all peers are as up-to-date as possible. Thus, for PDMSs, we prefer
a more explicit strategy that enables to control or to guarantee when and to what degree
routing indexes are updated.

However, neither propagating each single update by flooding nor not propagating
updates at all can be an appropriate and efficient solution. In contrast, the freshness
of routing indexes is vital for distributed query routing and thus for query processing
(Chapter 6) so that we need to find a tradeoff between the two extremes. For this
purpose, we identify three classes of maintenance strategies:

Update-Driven Propagation: A straightforward solution to the problem is to prop-
agate each update through the network as soon as it is performed (immediate
propagation strategy). An alternative is to accumulate a certain number of updates
before propagating them to neighboring peers (threshold propagation strategy) or to
compare the current data distribution of a sample to the distribution represented by
the routing index in order to determine a discrepancy that requires an update [4].
Thus, the distinguishing characteristic of strategies in this class is that peers ac-
tively propagate updates through the network when a strategy-specific criterion is
fulfilled.

Query-Driven Propagation: An alternative to propagating updates triggered by
(accumulated) updates is to propagate them triggered by queries. A corresponding
strategy can for example estimate the result cardinality based on the information
provided by the DDSs. If the number of expected records is forwarded along with
the query to a neighboring peer, the receiver can compare it to its answer and
decide whether it is necessary to have the sender’s routing index updated or not –
the updates can directly be attached to the answer message (query estimation
strategy). Alternatively, the sender of the query could directly use the query results
received from its neighbors to update its routing index by applying query feedback
(query feedback strategy).

Update Propagation on Demand: For propagation strategies of this class, a peer
actively demands updates from its neighbors by sending demand messages. This
might be triggered for example by a time interval so that updates are demanded in
predefined time intervals.

In the following, we provide detailed information and examples of strategies for the
first two classes, i.e., update-driven propagation and query-driven propagation. We do

146 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.3 Maintenance

not elaborate on the third one because it is straightforward and relatively inflexible.
Furthermore, it requires sending additional messages (demand and update) and a peer
would likely send demand messages more often than necessary as it has no indication
whether neighbors hold updates or not.

5.3.4 Update-Driven Strategies

As already mentioned above, when applying update-driven maintenance strategies update
propagation is triggered by updates. These are either updates of a peer’s local data or
updates received from neighboring peers. The main difference between the strategies in
this class is when to propagate these updates. In the following, we present two strategies:
a näıve strategy that propagates updates as soon as they are known and an advanced
strategy that uses thresholds to reduce the number of update messages. Finally, we
discuss some measures that peers adhering to the latter strategy might use to decide
whether to propagate updates or not.

Immediate Propagation Strategy (IPS)

Propagating updates immediately is the most primitive strategy. When a peer updates
its local data, the update is encoded and instantaneously forwarded to all neighbors. The
same procedure is applied to incoming update messages from neighbors: routing indexes
are updated and the updates are immediately forwarded to all other neighboring peers.
The only difference is that now the peer needs to take care not to send the updates to the
neighbor that they have been received from in the first place. Algorithm 12 summarizes
this basic algorithm for IPS.

Algorithm 12 processUpdatesIPS(Index index, updates, neighbors)
1: index.insert(updates);
2: for neighbor ∈ neighbors do
3: if neighbor.getPeerID() != updates.getSenderID() then
4: neighbor.sendUpdateMessage(updates);
5: end if
6: end for

Even without any experimental evaluation it is clear that this strategy is not efficient
in a network with high update rates. But in networks with low update rates and the
requirement that indexes should be as up-to-date as possible, this strategy might never-
theless be an alternative. Another advantage, apart from being up-to-date and simplicity,
is that we only require a minimum of local memory since in contrast to the threshold
strategies, which we discuss below, this strategy does not need to remember any past
updates or compare the current index to any previous versions. Furthermore, applying
this strategy a peer does not need and consequently does not hold an index for its local
data. As a consequence, local updates are not merged (Section 5.3.1).

Threshold Propagation Strategy (TPS)

In contrast to IPS, threshold-based strategies forward updates not until a certain amount
of them has been accumulated. To decide whether to forward updates or not, a peer uses

Processing Rank-Aware Queries in Schema-Based P2P Systems 147

5.3 Maintenance

a set of propagation rules that determine when enough updates have been accumulated.
Such a rule may for example be defined on the special characteristics of the base structure
of the routing index, e.g., in case of a QTree on the extensions of the buckets that are
affected by the updates. Assume we have two neighboring peers P1 and P2. Then,
the summaries that are part of P1’s routing index have been used in the construction
process to build the summary of P2’s routing index that describes the data accessible
via P1. Thus, it is a good idea to define propagation rules with respect to the change
in the local routing index. However, a peer not only needs to consider the change in
its routing index but also the changes made to its local data. To enable the use of
the same propagation rules to local data updates as well as on updates to a peer’s
routing index, each peer maintains a local summary of its local data. This summary uses
the same base structure as the routing index and can be obtained as a relict from the
construction process (Section 5.3.2). It is the same structure that we use for merging
updates (Section 5.3.1).

The main advantage of threshold-based strategies in comparison to IPS is the obvious
accumulation of updates, which results in a lower number of update messages and thus
network load. The disadvantages are higher memory consumption and computational
load as well as a higher number of false routing decisions due to the delayed update
propagation. In principle, applying threshold-based strategies each peer reacts the same
on update events – may they be updates to the local data or updates to the routing
index that have been received from a neighbor. The course of action is the same for both
threshold-based strategies that we present below. The basic steps are:

1. At first, the updates need to be applied to the routing index or to the local index
and the local data.

2. Some measures that the propagation rules may be defined on need to determine
to what extent an index has been changed. For this reason, we need to compare
the original index to the updated one. Thus, a peer needs a backup of the original
version (i.e., the version that existed right before the first non-propagated update
arrived) so that the peer can compare later versions to the backup.

3. Updates that affect the same bucket might compensate each other (incrementing
and decrementing the bucket count). Such compensating updates can be identified
and eliminated.

4. Thereafter, a peer needs to decide whether to propagate its current set of non-
propagated updates – consisting of local updates as well as of updates received from
neighbors. This decision solely depends on the applied strategy and the propagation
rules. In order to reduce network load, it is possible to combine updates into a more
compact format before their propagation.

5. Finally, all propagated updates and their corresponding index backups are deleted
in order to release memory.

Simple Threshold Propagation Strategy (STPS)

Applying STPS the decision whether to propagate updates or not is made for all neighbors
altogether. Thus, when the threshold is exceeded, all neighbors receive updates even

148 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.3 Maintenance

though this means some of them receive only a small number. Figure 5.27 shows an
example for STPS – for simplicity neglecting local data updates, i.e., changes to the local
index, and using a simple propagation rule, i.e., propagation is triggered once more than
one update has been accumulated.

Peer 1

Peer 2

Peer 3

Peer 4

(a) Update Accumulation

Peer 1

Peer 2

Peer 3

Peer 4

number of

non-propagated

updates: 2

2

1,2

1

(b) Update Propagation

Figure 5.27: Example for Update Propagation Using the Simple Threshold Propagation
Strategy (STPS). Propagation Rule: Number of Non-Propagated Updates > 1

In Figure 5.27(a) P4 receives two updates, one from P1 and another one from P2.
Not until P4 has received the second update, does it begin propagation (Figure 5.27(b))
because only then the threshold defined by the propagation rule is exceeded. Updates are
propagated to all of P4’s neighbors: P1 and P2 each receive one update and P3 receives
two.

The complete workflow of STPS is sketched in Algorithm 13. First, the new updates
are incorporated into the index (lines 2–10). As mentioned above, updates are only
stored if they have caused a detectable change in the index. Afterwards, the change rate
over all indexes (local index and routing indexes) is determined (line 12) and compared
to the given threshold. If the threshold is not exceeded, the algorithm ends (line 19).
If it is exceeded, the updates are optionally merged (lines 20–24) and then propagated
(lines 26–34). Finally, the propagated updates and index copies are deleted from the
local storage (lines 36–41).

Advanced Threshold Propagation Strategy (ATPS)

In contrast to STPS, this strategy decides for each neighbor in separate whether to for-
ward updates or not. The advantage is that a neighbor only receives updates if they
represent a major change to the current state of its routing index. The disadvantage
that comes along is a higher consumption of main memory and increased costs for main-
taining backups. To illustrate the difference between ATPS and STPS, the example of
Figure 5.28 makes use of the same scenario and the same propagation rule as the example
of Figure 5.27.

In principle, ATPS uses the same routines as STPS to determine change rates, i.e.,
the degree of change between the current state of the routing index and a previous state.

Processing Rank-Aware Queries in Schema-Based P2P Systems 149

5.3 Maintenance

Algorithm 13 processUpdatesSTPS(index, updates)
1: /* 1. update local index or routing index */
2: index.createBackupIfNecessary();
3: oldChangeInfo = index.computeChangeInfo();
4: index.insert(updates);
5: newChangeInfo = index.computeChangeInfo();
6: if newChangeInfo! = oldChangeInfo then
7: index.store(updates);
8: else
9: return;
10: end if
11: /* 2. compute change measures for all indexes altogether */
12: totalChangeInfo = computeTotalChangeInfo()
13: /* 3. check if threshold is exceeded */
14: for measure ∈ getMeasures() do
15: if totalChangeInfo[measure] ≥ measure.getThreshold() then
16: goto PROPAGATE;
17: end if
18: end for
19: return;
20: PROPAGATE: /* 4. merging updates */
21: getLI().aggregateUpdates();
22: for neighbor ∈ getNeighbors() do
23: neighbor.getRI().aggregateUpdates();
24: end for
25: /* 5. propagating updates */
26: for currentNeighbor ∈ getNeighbors() do
27: updatesToSend = getLI().getRecentUpdates();
28: for neighbor ∈ getNeighbors() do
29: if currentNeighbor.getPeerID() != neighbor.getPeerID() then
30: updatesToSend.add(neighbor.getRI().getRecentUpdates());
31: end if
32: end for
33: currentNeighbor.sendUpdateMessage(updatesToSend);
34: end for
35: /* 6. cleaning up */
36: getLI().clearRecentUpdates();
37: getLI().removeBackup();
38: for neighbor ∈ getNeighbors() do
39: neighbor.getRI().clearRecentUpdates();
40: neighbor.getRI().removeBackup();
41: end for

Whereas STPS performs this comparison for all neighbors altogether, ATPS performs it
for each neighbor in isolation. Hence, each neighbor might receive updates at different
times. In contrast to STPS, it is no longer possible to have only one backup of the
routing index (in comparison to which the current change rate can be determined) but
to have one backup for each neighbor (corresponding to the state of the routing index
when the neighbor has last been propagated updates). However, for the simple measure
that we use in the example of Figure 5.28, P4 is able to determine the change rates even
without maintaining any backups of its routing index. In this example only the change
rate for neighbor P3 exceeds the given threshold. Thus, only P3 receives the two updates
originating from P1 and P2.

Algorithm 14 summarizes the procedure for ATPS in more detail. At first, the set
of neighbors that might possibly receive updates is determined (lines 2–3) – if the local
index has been changed, this set contains all the peer’s neighbors. Afterwards, for each
of these neighbors one copy of the indexes is generated if not yet existing (line 5). Then,
the updates are inserted into the current version of the index (line 7). Just as for STPS
updates are discarded when no changes with respect to the given measures can be detected

150 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.3 Maintenance

Peer 1

Peer 2

Peer 3

Peer 4

(a) Update Accumulation

Peer 1

Peer 2

Peer 3

Peer 4

number of non-

propagated updates:

P : 11

P : 12

P : 23

1,2

(b) Update Propagation

Figure 5.28: Example for Update Propagation Using the Advanced Threshold Propaga-
tion Strategy (ATPS) Propagation Rule: Number of Non-Propagated Updates > 1

(lines 10–11). The total change rate (in consideration of both routing index and local
index) is determined for each neighbor in isolation using the corresponding index copies
and the current version of the index (line 17). The resulting change rates are compared to
the corresponding thresholds (lines 19–20). Only if a threshold is exceeded, updates are
propagated to the corresponding neighbor (lines 30–36). Before doing so, the updates
may be merged (lines 25–28). Finally, all propagated updates are removed and index
copies are deleted if possible (lines 38–43).

Measures for Change Detection

So far, we have only considered a very simple propagation rule based on the number of
non-propagated updates whereas in the following we discuss more complex measures that
can be used as well. It is even possible to combine them so that a peer may use multiple
propagation rules. Depending on the configuration either all rules must be fulfilled to
trigger propagation or only one. However, in the following we assume that already one
propagation rule triggers propagation if not stated otherwise.

Definition 5.3.1 (Propagation Rule, Propagation Measure, Change Rate, Goodness
Measure). A propagation rule determines if a peer needs to propagate updates to neigh-
boring peers. It consists of a propagation measure and a threshold. Such a propagation
measure determines the degree of change between two versions of a routing index, in
general the current version and a backup version. A propagation rule has the form:

rule(x, y) :=

{
true, if measure(x, y) > threshold
false, otherwise.

with x and y representing two versions of a routing index and threshold ∈ R+
0 . The term

change rate refers to a concrete computation of a propagation measure given two routing
index instances, i.e., measure(x, y). The basic building blocks of a propagation measure
are termed goodness measures and express comparisons between indexes.

Processing Rank-Aware Queries in Schema-Based P2P Systems 151

5.3 Maintenance

Algorithm 14 processUpdatesATPS(index, updates)
1: /* 1. determine neighbors to propagate updates to */
2: neighbors = getNeighbors();
3: neighbors.remove(updates.getSender());
4: /* 2. update local index or routing index */
5: index.createBackupsIfNecessaryFor(neighbors);
6: oldChangeInfos = index.computeChangeInfosFor(neighbors);
7: index.insert(updates);
8: newChangeInfos = index.computeChangeInfosFor(neighbors);
9: for n in neighbors do
10: if newChangeInfosFor(n) != oldChangeInfosFor(n) then
11: index.storeUpdatesForNeighbor(n, updates);
12: end if
13: end for
14: /* for each neighbor in isolation */
15: for n ∈ getNeighbors() do
16: // 3. compute change measures for all indexes altogether
17: totalChangeInfo = computeTotalChangeInfoFor(n);
18: // 4. check if any threshold is exceeded
19: for measure ∈ localPer.getMeasures() do
20: if totalChangeInfo[measure] ≥ measure.getThreshold() then
21: goto PROPAGATE;
22: end if
23: end for
24: /* 5. merging updates */
25: getLI().aggregateUpdatesFor(n);
26: for neighbor ∈ getNeighbors() do
27: neighbor.getRI().aggregateUpdatesFor(n);
28: end for
29: /* 6. propagating updates */
30: updatesToSend = getLI().getRecentUpdatesFor(n);
31: for neighbor ∈ getNeighbors() do
32: if n.getPeerID() != neighbor.getPeerID() then
33: updatesToSend.add(neighbor.getRI().getRecentUpdatesFor(n));
34: end if
35: end for
36: n.sendUpdateMessage(updatesToSend);
37: /* 7. cleaning up */
38: getLI().clearRecentUpdatesFor(n);
39: getLI().removeBackupFor(n);
40: for neighbor ∈ getNeighbors() do
41: neighbor.getRI().clearRecentUpdatesFor(n);
42: neighbor.getRI().removeBackupFor(n);
43: end for
44: end for

We distinguish between three approaches to define propagation measures: (i) index-
level comparison, (ii) bucket-level comparison, and (iii) index-independent comparison.
Let us begin with measures based on index-level comparisons. They use two goodness
measures to determine the change rate: one goodness measure for each of the two rout-
ing index versions (current and backup). This kind of goodness measures is computed
for each index in isolation, independently from the other. The following basic defini-
tions illustrate some example goodness measures that can be used to define appropriate
propagation measures for bucket-based routing indexes such as the QTree and multidi-
mensional histograms. |Bold| denotes the number of buckets in the backup copy, |Bnew|
the number of buckets in the current updated version of the index, |D| the number of
indexed dimensions (attributes), and b.low (b.high) the lower (upper) boundary of a
bucket b:

152 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.3 Maintenance

• the average extension of all buckets in the old (resp. new) index:

Eavg,old =
P

b∈Bold
eavg(b)

|Bold| , Eavg,new =
P

b∈Bnew
eavg(b)

|Bnew| with

eavg(b) =
P

d∈D(b.high[d]−b.low[d]+1)

|D| denoting the average extension of a bucket b

• the maximum extension of all buckets in the old (resp. new) index:

Emax,old =
P

b∈Bold
emax(b)

|Bold| , Emax,new =
P

b∈Bnew
emax(b)

|Bnew| with

emax(b) = maxd∈D {b.high[d] − b.low[d] + 1} denoting the max. extension of a
bucket b

Examples for index-level propagation measures using these goodness measures are:

• MEavg =
max(Eavg,new, Eavg,old)

min(Eavg,new, Eavg,old)
based on the average bucket extension

• MEmax =
max(Emax,new, Emax,old)

min(Emax,new, Emax,old)
based on the maximum bucket extension

As we have stated above, propagation measures need to consider changes to both the
routing index and the local data. As we maintain a summary of the local data using the
same structure as the summaries that are part of the routing index, a simple solution to
the problem is to treat the summary of the local data as part of the routing index. Doing
so, we can easily determine the change rate based on both routing index and local data
without any adaptations to the propagation measures defined above (and below).

Propagation measures of the second class (based on bucket-level comparisons) do
not use goodness measures on index-level but goodness measures on bucket-level that
compare different versions of the buckets that a routing index consists of. Thus, the sets
of buckets of both index versions are determined (Bold and Bnew) and compared to each
other. For this purpose, the index has to provide a means to unambiguously identify
corresponding buckets in different index versions, e.g., by applying IDs. If a bucket b is
only contained in one of the two sets, then it has either been deleted (b ∈ Bold∧b /∈ Bnew)
or newly created (b /∈ Bold ∧ b ∈ Bnew).

Let us again define some helpful goodness measures that provide fundamental defini-
tions, based on which propagation measures using bucket-level comparisons can be de-
fined. |Ball| denotes the number of all buckets (added, deleted, changed, or unchanged)
and |Bchanged| the number of all buckets that have been affected by updates (added,
deleted, or changed). The term count refers to the number of records that a bucket
represents.

• weighted change in the count of a bucket b:

ĉ(b) =

{
max(bnew.count, bold.count)
min(bnew.count, bold.count)

, if b ∈ Bold ∧ b ∈ Bnew

b.count, otherwise

• weighted change in bucket b’s average extension:

êavg(b) =

{
max(eavg(bnew), eavg(bold))

min(eavg(bnew), eavg(bold))
, if b ∈ Bold ∧ b ∈ Bnew

eavg(b), otherwise

Processing Rank-Aware Queries in Schema-Based P2P Systems 153

5.3 Maintenance

• weighted change in bucket b’s maximum extension:

êmax(b) =

{
max(emax(bnew), emax(bold))
min(emax(bnew), emax(bold))

, if b ∈ Bold ∧ b ∈ Bnew

emax(b), otherwise

With the help of these goodness measures we can now define some concrete propagation
measures based on bucket-level comparisons:

• ratio of the number of changed buckets and the total number of buckets:

Mbchange
=

|Bchanged|
|Ball|

• average change based on the weighted changes of the bucket counts:

MĈ =
P

b∈Ball
ĉ(b)

|Ball|

• average change based on the average extension of buckets:

MÊavg
=

P
b∈Ball

êavg(b)

|Ball|

• average change based on the maximum extension of buckets:

MÊmax
=

P
b∈Ball

êmax(b)

|Ball|

Finally, let us consider the third class of propagation measures (index-independent).
The main characteristic is that they are defined independently from the index. We have
already used an example of this class to illustrate the principle of STPS and ATPS:

• the number of updates that have not yet been propagated:
MNonProp = #non-propagated updates

When selecting propagation measures, it is important to be aware of the fact whether it
is possible that the index changes the size of its buckets or not. For example, the region
of a QTree bucket can be adapted in its size whereas this is impossible for equi-width
multidimensional histograms. In general, the set of propagation rules should be built
upon measures that not only concentrate on the size of the buckets but also consider the
number of values they represent or the number of non-propagated updates.

5.3.5 Query-Driven Strategies

Strategies of this class update routing indexes triggered by queries. One possibility
to implement such a strategy is to send updates piggyback along with query answers.
Another one is to use query feedback. In the following, we present two corresponding
strategies. The problem that all query-driven strategies have to deal with is that a peer
only forwards queries to neighbors that it expects to hold relevant data. But if a peer is
not queried with respect to a certain region in the data space, there is no feedback that
could be used to update the routing index with respect to the region. Thus, query-driven
update strategies should provide a solution to this problem. The advantage of these
strategies is that they do not require any backup copies of indexes. They only need to
remember which updates have been sent to which neighbors.

154 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.3 Maintenance

Query Estimation Strategy (QES)

Remember the steps of query processing that we have illustrated in Figure 5.1. In the
optimization step, a peer needs to determine which of its neighbors provide relevant
data. It does so by estimating the size of the result (estn) for each neighbor n based on
the overlap of the queried region with buckets of its routing index describing the data
accessible via n – estn is defined as:

estn(rangeq) =
∑

b ∈ RIn

estb(rangeq) with

estb(rangeq) =
sizeOf(overlap(b, rangeq))

sizeOf(b)
· b.count (5.12)

RIn denotes the set of buckets in the routing index for neighbor n, rangeq the queried
region, and b.count the number of elements represented by bucket b. If a neighbor n holds
relevant data according to the routing index (i.e., estn > 0) and the query processing
strategy (Chapter 6) also identifies n to be relevant, n is queried and the expected number
of results estn is forwarded to n along with the query.

After having computed the answer to the query, the neighbor compares the expected
number of records (resest=̂ estn) to the actual number (resact). If they differ in a sub-
stantial way (i.e., the difference exceeds a threshold), the receiver sends all its updates
piggyback along with its answer message. The measure we use to make this decision is
defined as:

δ =
max(resact, resest)

min(resact, resest)
> threshold

If the threshold is set to 0, this means that always all available updates are sent along with
an answer message. Note that again the set of updates that is forwarded to a particular
neighbor has to be determined individually for each neighbor and that in order to reduce
network bandwidth the updates can optionally be merged before propagation.

Still, the problem that some portions of a routing index will never be updated remains
to be solved. The standard solution we use is to explicitly send update messages to a
neighbor if it has not sent a query within a time period of length tx. Alternatively, we
could apply techniques similar to the ones used by the threshold propagation strategies,
i.e., active propagation of updates when a certain change rate is exceeded.

The advantage of this strategy is that none respectively only a few explicit update
messages have to be sent. It is important to note that even though the indexes might
correctly represent the data, the result size estimation might be incorrect due to the
approximating characteristic of the summary. A disadvantage of this strategy is the
delay that occurs when peers that are not queried frequently update their data – even
though they might change their data into a range that is queried frequently. Furthermore,
incremental query processing strategies (e.g., IMS, Section 2.5.3) are not applicable in
conjunction with this strategy as a peer has to wait until all result records are received
to decide whether the threshold is exceeded or not. The problem is that when applying
incremental strategies the peer does know when the last message has been received, i.e.,
it does not know when the answer is complete.

Processing Rank-Aware Queries in Schema-Based P2P Systems 155

5.3 Maintenance

Algorithms 15 and 16 summarize how to adapt query and answer messages when
applying QES. Assume the query processing strategy has already determined the set of
neighbors (relevantNeighbors) that the query is to be forwarded to – in an efficient
implementation both tasks (query processing and the QES maintenance strategy) are
more closely intertwined so that the result size would be estimated only once. Then,
Algorithm 15 is called to add additional information to the query and send the query
to the neighbors. Thus, for each neighbor the estimated number of records with respect
to the queried region is determined based on the routing index as described above (lines
2–8). If the estimate is greater than 0, it is sent along with the query to the neighbor
(lines 10–14).

Algorithm 15 sendQuery QES(query, relevantNeighbors)
1: for neighbor ∈ relevantNeighbors do
2: estimated = 0.0;
3: buckets = getRIFor(neighbor).getAllBucketsInQueriedSpace(query);
4: /* 1. estimate result size for current neighbor */
5: for bucket ∈ buckets do
6: intersection = intersect(bucket, query);
7: estimated += intersection.getRatio() * bucket.getCount());
8: end for
9: /* 2. query neighbor only if it can contribute */
10: if estimated > 0.0 then
11: query.setEstimatedNmbOfResults(estimated);
12: cache.rememberEstimate(estimated,neighbor,query);
13: sendQuery(neighbor,query);
14: end if
15: end for

When a peer receives an answer message (Algorithm 16), the updates received along
with the answer are applied to the corresponding routing index and stored locally for
future propagation to other neighbors (line 3–4). When the last answer message from
the peers the query has been forwarded to has been received, the peer tests whether
updates need to be sent along with the answer message to the peer that the query has
been received from in the first place (lines 6–16). Updates are only attached to the answer
message if the error between estimation and result exceeds the configured threshold (lines
13–15) or if the number of result records is 0 (lines 8–10). To reduce network load, updates
again can be merged before propagation.

Algorithm 16 receiveAnswer QES(answer)
1: neighbor = answer.getSender();
2: /* 1. update routing index according to the received updates */
3: getRIFor(neighbor).applyUpdates(answer.getUpdates());
4: cache.storeUpdates(neighbor, answer.getUpdates());
5: /* 2. if all queried neighbors have answered */
6: if answers have been received now from all queried neighbors and this is not the initiator of the query then
7: actual = cache.getResults(answer.ID).getCount();
8: if actual == 0.0 then
9: attachToOwnAnswer(getNonPropagatedUpdatesForQuerySender(cache.getSenderOfQuery(answer)));
10: end if
11: estimated = cache.getEstimatedNmbOfResults(answer.ID,neighbor);
12: error = max(actual, estimated) / min(actual, estimated);
13: if error > getThresholdForError() then
14: attachToOwnAnswer(getNonPropagatedUpdatesForQuerySender(cache.getSenderOfQuery(answer)));
15: end if
16: end if

156 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.3 Maintenance

Query Feedback Strategy (QFS)

In Section 2.4 we have already discussed several approaches towards histogram mainte-
nance using query feedback. Although these approaches work efficiently for histograms
in the context of selectivity estimation, they produce histograms that are not applicable,
or rather not recommendable, for use as base structures of routing indexes. But we can
still use the principle of query feedback to update routing indexes.

In contrast to all strategies discussed so far, there is no situation in which QFS sends
explicit update messages. Instead, it only uses the answers to a query to adapt the
routing indexes. After having received the answer message to the query from a neighbor
n, all buckets of the routing index’ summary corresponding to n that overlap the queried
region are identified. Then, the algorithm assigns each received answer record to one
of the buckets – in this way determining the number of records (actb) that have been
received for a bucket b. Afterwards, in a similar manner as defined above for the query
estimation strategy (Equation 5.12), the estimated number of results (estb) for each of
these buckets is determined in consideration of the overlap with the queried region.

If a bucket is completely enclosed by the queried region, it is either deleted if no result
records could be assigned to it (actb = 0) or its count is set to actb. In order to improve
approximation quality for the QTree, which works with variable bucket sizes, the old
bucket can be removed and a new smaller bucket containing the result records can be
inserted instead.

If a bucket only partially overlaps the queried region, the number of records that it
represents (b.count) is updated. The correction value (correctb) for each such bucket is
determined as:

correctb = actb − estb

Then, the new number of represented records for bucket b, i.e., a new value for b.count,
is determined as

b.countnew = b.countold + correctb

If the resulting new bucket count has a rounded value of 0, the corresponding bucket is
deleted. Finally, it is possible that the answer message contains records that cannot be
associated with any existing bucket, i.e., records that have been added to the neighbor’s
data. To update the routing index, these result records are inserted using standard
insertion algorithms that have been used for construction.

Figure 5.29 shows an example for updating a summary using query feedback. Fig-
ure 5.29(a) depicts buckets (B1 through B4), the queried region for a query q (high-
lighted in blue), and the result records received from the corresponding neighbor. The
estimated number of records for each bucket are: estB1 = 1

2
· 12 = 6, estB2 = 1 · 4 = 4,

estB3 = 1
4
·8 = 2, estB4 = 1 ·5 = 5. Therefore, the total number of expected result records

for the corresponding neighbor n is estn(q) = 17. The result set that has actually been
received consists of only 14 records.

Using this result set to update the routing index, we compare the estimated number
of records per bucket actb to the number estb that has actually been received: actB1 = 6,
actB2 = 0, actB3 = 3, and actB4 = 3. As actB1 = estB1 , B1 is not updated. B2 is removed
because actB2 = 0 and it is completely contained in the queried region. Thus, if the
records that it represents still existed, they would be part of the result set. B3’s count
is updated because the expected number is not the same as the actual number of result

Processing Rank-Aware Queries in Schema-Based P2P Systems 157

5.3 Maintenance

B1

B2

B3

B4 5

12

8

4

(a) Buckets Before Applying Query Feedback

B1

B3

B4 B53

12

9

2

(b) Buckets After Applying Query Feedback

Figure 5.29: Example for Updating Routing Indexes Using Query Feedback – Queried
Region Highlighted in Blue

records. B4 is updated in both, the number of records and its region. And finally, we
need to create a new bucket B5 to capture the two records that are part of the result
set but could not be assigned to any existing bucket. Figure 5.29(b) shows the updated
summary.

We are aware that this represents only a basic strategy that can be optimized in
several ways. For example, so far we do not take any measures to avoid oscillating
bucket counts, i.e., for one query the bucket count is increased whereas it is decreased for
the next query. Furthermore, the influence of temporary peer crashes should be narrowed
down as applying QFS without further adaptations would mean that all summary entries
of the temporarily non-available peer would be removed. To simplify matters, we assume
in the following that these problems do not occur and leave the improvements to future
work.

To solve the problem that a peer is not queried if the routing index does not indicate
that it could contribute to the result, QFS maintains a query cache for each neighbor. In
this cache the last c queried regions are stored, it only contains queries that are not older
than tp time steps. Queries whose regions are completely enclosed by those of more recent
queries are replaced. Before a peer forwards a query to a neighbor, it determines the
degree of overlap between the queried region and the regions in the cache – applying the
sieve formula [8]. If the overlap γ is too small (i.e., smaller than a threshold of for instance
90%), the query is sent to the corresponding peer – ignoring the information provided
by the routing index since it is considered to be out-of-date. A possible extension is to
exploit partial results of the cache by determining compensating queries addressing only
the non-overlapping regions [44].

Figure 5.30 shows an example query cache with three entries and two queries: Q1

(Figure 5.30(a)) and Q2 (Figure 5.30(b)). When processing Q1, the routing index is
considered for making routing decisions because the queried region has a sufficient overlap
with the cached regions, i.e., the index is assumed to be up-to-date with respect to the
queried region. In contrast, in case of Q2 the degree of overlap between Q2 and the cached
regions is insufficient. Thus, the information provided by the routing index concerning
the currently considered neighbor is not considered for query routing.

The algorithm corresponding to QFS is sketched in Algorithm 17. At first, all buckets
that overlap the queried region and correspond to the part of the routing index describing

158 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.3 Maintenance

Q1

(a) Sufficient Overlap

Q2

(b) Insufficient Overlap

Figure 5.30: Exploiting Cached Knowledge about Queried Regions – Cache Entries
(blue), Query (grey)

the sender’s data are identified (lines 2–3). Then, the algorithm iterates through the list
of these buckets. First, it determines how many records of the received answer message
are contained in the currently considered bucket (lines 5–13). Afterwards, the algorithm
determines the intersection ratio of the bucket’s region with the queried region (line 15).
If a bucket is completely enclosed by the queried region, it is either removed (line 20) if
it contains no result records or its count is replaced with the number of contained result
records (line 22). In order to improve approximation quality for indexes that do not
work with fixed bucket sizes (e.g., the QTree), the old bucket can be removed and a new
smaller bucket containing the result records can be inserted instead. If a bucket only
partially overlaps the queried region, the number of elements in the overlap has to be
estimated (overlap ratio multiplied by bucket count – line 26) and the corresponding error
(difference of received and estimated number of records) has to be determined (line 27).
Then, a new number of represented records, i.e., a new value for count, is computed for
the bucket using the estimation and the error (line 28). The new bucket count value is
set to the sum of the old count value and the error (line 33) or if the resulting new bucket
count has a rounded value of 0, the corresponding bucket is removed (line 31). Finally,
all result records that could not be associated with any existing bucket are inserted into
the index (line 38).

The main advantage of this strategy is that there is no need to send explicit update
messages, which minimizes network load. The application of QFS is particularly useful
in situations where the computation of an initial routing index is too expensive or simply
impossible. This strategy can also be used as an alternative algorithm to construct
routing indexes. However, without any routing indexes the first queries in the network
have to be routed to all peers anyway (flooding) in order to obtain the complete result
set. Thus, combining such queries with a construction algorithm still is an appropriate
alternative and leads to the construction algorithm we have discussed in Section 5.3.2.
On the other hand, it is disadvantageous that the accuracy of the routing indexes strongly
depends on the number as well as on the queried ranges of issued queries. The need to
send queries to neighbors in order to update routing indexes is a direct intervention into
the query processing strategy and might complicate the design of an efficient strategy.
Besides, the choice of parameters (cache size, maximum age of cache entries, and degree
of overlap) is complex and has to be made for each system individually. Of course, we
could again have peers send explicit update messages after a predefined time interval,
but this would forfeit the advantage of not having to send explicit update messages.

Processing Rank-Aware Queries in Schema-Based P2P Systems 159

5.3 Maintenance

Algorithm 17 receiveAnswer QFS(answer)
1: /* 1. identify all buckets that overlap the queried region */
2: index = getRIFor(answer.getSender());
3: buckets = index.getAllBucketsInQueriedSpace(cache.getQuery(answer.ID));
4: results = answer.getResults();
5: for bucket ∈ buckets do
6: /* 2. determine the number of result elements that lie in the current bucket */
7: currentCount = 0.0;
8: for element ∈ results do
9: if bucket.contains(element) then
10: currentCount++;
11: results.remove(element);
12: end if
13: end for
14: /* 3. compute overlap with queried region */
15: intersectionRatio = intersect(bucket, cache.getQuery(answer.ID));
16: /* 4a. if bucket is completely enclosed in the queried region */
17: if intersectionRatio == 1.0 then
18: /* delete bucket if empty */
19: if currentCount == 0.0 then
20: index.remove(bucket);
21: else
22: bucket.setCount(currentCount);
23: end if
24: else
25: /* 4b. if bucket is only partially enclosed in the queried region */
26: estimated += intersectionRatio * bucket.getCount());
27: error = currentCount − estimated;
28: newCount = bucket.getCount() + error;
29: /* remove bucket if the rounded number of records within is 0 */
30: if newCount < 0.5 then
31: index.remove(bucket);
32: else
33: bucket.setCount(newCount);
34: end if
35: end if
36: end for
37: /* 5. insert elements that could not be assigned to any bucket */
38: index.insert(results);

Another disadvantage of the query feedback strategy is that sometimes we do not
know which buckets to “blame” for the wrong estimation of result records. Assume we
have a range query whose range overlaps two buckets corresponding to neighbor n (b1

and b2, 50% overlap each), both with a count value of 1. Thus, estn = 1 and estb1 =
estb2 = 0.5. The neighbor does not send any result records: actn = actb1 = actb2 = 0.
QFS would adapt both bucket counts to 0.5 – resulting in non-integer counts. We have
shared the “blame” between two buckets although the originally deleted record can only
be contained in one of them. Eventually, we can never safely delete buckets because we
can never be sure that all records it represents have been deleted. This can easily lead
to estimation errors when issuing the next query. We do not have to face these problems
using the other strategies because they receive more detailed information about updates.

Both query-driven strategies strongly depend on the queried region, which is crucial
to determine both estn and actn. Whereas determining the queried region for range
queries is straightforward, this is more complicated for top-N and skyline queries. For
top-N queries the queried region can be defined as the region that all neighbors have
considered to answer the query. An example for such a region is highlighted in Figure 2.1
by the circle that contains all result records. However, if additional pruning information
is sent along with the query (depending on the query processing strategy, Section 6.1),

160 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.3 Maintenance

this region might actually become very small. For skyline queries the application of
query-driven strategies is even more restricted because it is not only complicated to
determine the queried region but also impossible to determine actest since the answer to
the query never represents all records within a bucket (only those that do not dominate
each other). Thus, the only way of applying update-driven strategies in conjunction with
skyline queries is to attach additional information to the query and answer messages.
In this case, however, we can just as well attach updates to the answer message, which
means applying another strategy for index maintenance.

5.3.6 Comparison

Before going into details on the evaluation of the proposed strategies, let us recapitu-
late the advantages and disadvantages that we have already identified in the previous
sections – they are summarized in Table 5.1.

IPS STPS ATPS QES QFS
number of update messages - - + - + + + +

update data volume - - + - + + + +
memory consumption + - - - + + +

merging updates - + + + -
freshness / completeness + + + + - - - -

Table 5.1: Advantages and Disadvantages of the Strategies Discussed in this Section

With respect to the update costs, we identify two aspects: the number of update
messages and the network load caused by exchanging updates (update data volume). Of
course, QFS performs best in this category because it neither encodes nor propagates
updates. IPS, on the other hand, performs worst because it propagates each update
(without merging them) through the network resulting in a very high routing index
freshness and result completeness3 whereas QFS has deficiencies in this respect because
updates are not explicitly encoded, the “wrong” buckets may have been adapted, and
routing index freshness strongly depends on query load and query distribution. Memory
consumption for QFS is minimal because no information in addition to the routing in-
dexes themselves need to be held. As there are no explicit updates, merging them is not
possible/necessary using QFS.

As QES incorporates techniques from both, QFS and IPS, we expect the update costs
to be clearly better than IPS but a little worse than QFS. With respect to routing index
freshness, QES should be better than QFS (but clearly worse than IPS) because updates
are explicitly encoded. As STPS propagates updates to all neighbors once a threshold is
exceeded and as ATPS makes this decision for each neighbor in separate, routing index
freshness should be slightly better for STPS. As a consequence, update propagation
costs should be slightly higher for STPS. With respect to memory consumption, ATPS
performs worst because it needs more information about already propagated updates and
change rates (for each neighbor) than STPS.

3Result completeness strongly depends on routing index freshness as false negative routing decisions
based on out-dated routing indexes lead to a loss in completeness.

Processing Rank-Aware Queries in Schema-Based P2P Systems 161

5.3 Maintenance

Because the behavior of the maintenance strategies is influenced by many parameters,
it is difficult to give guarantees. Moreover, apart from the strategy’s parameters there
are many more influencing factors: the update rate, update characteristics (e.g., small
changes in attribute values, deletions, or insertions), peer crashes, the data distribution,
the number of provided records per peer, the amount of assigned memory space for the
routing indexes, the layout of the P2P overlay network and its diameter, the existence
and the number of cycles, the number of peers, the query rate, queried ranges, query
selectivity, etc. As there are so many of them, we argue that in such a scenario it is hard
to provide a complete theoretical analysis without making rigorous assumptions, e.g., on
the update rate. Thus, we limit our theoretical analysis to aspects we can guarantee
without making such assumptions on the influencing factors.

In case of IPS, the routing index is as up-to-date as possible because updates are
propagated as soon as they occur. For all threshold-based update-driven strategies, we
can give guarantees based on the applied propagation rules. For example, when we use
MNonProp in conjunction with a threshold of 4. Then, the worst case scenario is that
each peer in a network of n peers has collected 3 updates but not yet propagated them.
Thus, the maximum number of missed updates at an arbitrary peer is

#missed updates = (n − 1) · (threshold − 1)

Similar conclusions can be drawn based on all the other propagation measures proposed
in Section 5.3.4.

For query-driven strategies, we cannot derive the same kind of guarantees. But for
QES we can distinguish between two categories of neighboring peers: those that have
been recently queried and those that have not. For the former we can guarantee that if
the deviation between result size estimation and query result exceeded the QES thresh-
old parameter, we have already updated the routing index or if the threshold was not
exceeded, the deviation with respect to recently queried regions is smaller than the thresh-
old. For peers that have not been queried recently, we can guarantee that they do not
have collected updates for any longer than a time period of tw (QES parameter) without
propagating them. Finally, for QFS we cannot guarantee much because of the problems
we have already discussed. We can only guarantee that all those regions of the data space
still contained in the query cache, have recently been updated – we cannot guarantee the
indexes’ freshness.

With respect to update propagation times, we can determine the minimum/maximum
update propagation time for one update in a network of n peers:

Tmin = �diameter

2
�, Tmax = n

Further aspects need to be considered in order to give a good estimation. Whereas
the consideration of transfer and processing time is straightforward, an extension to
aspects such as query and update rates (to estimate query/update load and delays), the
network structure (cycles), data distribution, and all the other aspects mentioned above
is a very complex task. However, even if we discussed these extensions in more detail,
we cannot make use of the estimation without making rigorous assumptions on the input
parameters, e.g., in P2P networks exact details on the current query load with respect to
all participating peers are very hard if not impossible to obtain. Thus, we argue that the

162 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.3 Maintenance

effort required to set up a precise equation is better used for an extensive experimental
evaluation – the main results of our evaluation are discussed in the following section.

5.3.7 Evaluation

For our evaluation – in that we wanted to experimentally prove the hypotheses (Ta-
ble 5.1) – we implemented all strategies in SmurfPDMS (Chapter 7) but set the rewrit-
ing issue aside, i.e., all peers had the same schema and bidirectional mappings such that
rewriting queries was not necessary. We simulated the behavior of an acyclic unstructured
P2P system with 100 peers, each holding distributed data summaries based on multidi-
mensional equi-width histograms (10 buckets per indexed dimension) for its neighboring
peers. Although we only present our results obtained for equi-width histograms, the
general tendencies are the same for the QTree. However, due to overlapping regions,
QTree-based routing indexes have additional problems to deal with as we have already
pointed out in Section 5.2.6.

The data provided by each peer represents a cluster of 50 four-dimensional data
records with attribute values restricted to the interval [0, 1000]. All four attributes are
indexed, i.e., the histograms use a total number of 104 buckets. Clusters are located at
random positions in the data space. Each attribute value has a random deviation to the
cluster center coordinates of at most 10. We chose clustered data because in general it
can be summarized by the routing indexes with low approximation error. Consequently,
indexes are very selective and only a small portion of peers is involved in processing a
query. Hence, it is the best scenario to examine the effects of out-dated routing indexes.
Nevertheless, we have also performed experiments with other setups (number of peers,
data distribution, change rate, base structure, etc.) but observed the same tendencies.

To evaluate the influence of dynamic behavior, we simulated updates of the peers’
local data. For this purpose, we generated two different data distributions that both
adhere to the characteristics stated above. Each peer is assigned one cluster of each
distribution. The data distribution slowly changes from the initial distribution to the
target distribution: in each time step 1% of the data in the network is changed and in
total 25% at the end of the simulation. The average number of updated records per peer
during a simulation is the same for all 100 peers. Note that the peers do not completely
change their local data but on average 25%, i.e., in the end providing data in 2 clusters.
In all our tests we merged updates when possible.

Let us consider the two most important evaluation criteria for update strategies (Ta-
ble 5.1): costs and benefit/freshness. As a measure for execution costs we chose the
additional network load (i.e., update volume in kByte) caused by updating routing in-
dexes. This refers either to the volume of update messages or to the extra volume caused
by attaching updates to answer messages. As an appropriate measure for the routing
indexes’ freshness we chose result completeness (recall) measured by comparing the re-
trieved query answer to the “best possible” answer. To measure completeness, we defined
a set of 9 “control queries”. These range queries are defined on two of the four indexed
dimensions and partition the two-dimensional queried projection of the data space into 9
quadratic subspaces of equal sizes. These control queries are issued every 10 time steps
at a particular peer. Their result set (resact obtained by using the routing indexes in
their current state) is compared to the result that would be retrieved if the indexes were

Processing Rank-Aware Queries in Schema-Based P2P Systems 163

5.3 Maintenance

up-to-date (resopt obtained by flooding the network). Completeness is defined as:

completeness =
|{x|x ∈ resact ∧ x ∈ resopt}|

|resopt|

Note that there cannot exist any x ∈ resact such that x /∈ resopt. The completeness
values of all figures below refers to the average completeness of all control queries in a
test run. In addition, we consider the number of false positive/negative routing decisions
displayed as the average values of all issued control queries.

Update-Driven Strategies

Let us begin with the update-driven strategies, Figures 5.31 and 5.32 illustrate the results
for our tests using the setup described above. At first, we compared the immediate
propagation strategy (IPS) to the threshold strategies (STPS and ATPS). In accordance
to the examples that we used to introduce these strategies (Figures 5.27 and 5.28), we
first applied MNonProp (number of non-propagated updates) as propagation measure and
varied the threshold from 0 to 50.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000
 24000
 26000
 28000

 0 5 10 15 20 25 30 35 40 45 50

U
pd

at
e

V
ol

um
e

in
 k

B
yt

e

Threshold

IPS
STPS
ATPS

(a) Update Volume for a Propagation Rule
Based on MNonProp

 1.00
 1.01

 1.02
 1.03

 1.04
 1.05

1.00
1.06

1.12
1.18

1.24
1.30

 1.36 1.06

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

Update Volume kByte

 0
 2000
 4000
 6000
 8000
 10000
 12000
 14000
 16000

MEavg
M

Ĉ

(b) Update Volume for STPS Applying a Combina-
tion of 2 Propagation Rules (MEavg

and MĈ)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

 0 5 10 15 20 25 30 35 40 45 50

C
om

pl
et

en
es

s

Threshold

IPS
STPS
ATPS

(c) Completeness for a Propagation Rule
Based on MNonProp

Completeness

1.00 1.01 1.02 1.03 1.04 1.05 1.06

1.00

1.06

1.12

1.18

1.24

1.30

1.36

0.993

0.995
0.996

MEavg

M
Ĉ

(d) Completeness for STPS Applying a Combination
of 2 Propagation Rules (MEavg

and MĈ)

Figure 5.31: Evaluation Results for Update-Driven Strategies (IPS, STPS, and ATPS)

164 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.3 Maintenance

0

1

2

3

4

 0 5 10 15 20 25 30 35 40 45 50

Fa
ls

e
N

eg
at

iv
es

Threshold

IPS
STPS
ATPS

(a) False Negative Routing Decisions

0

1

2

3

4

5

6

 0 5 10 15 20 25 30 35 40 45 50

Fa
ls

e
Po

si
tiv

es

Threshold

IPS
STPS
ATPS

(b) False Positive Routing Decisions

Figure 5.32: False Routing Decisions for Update-Driven Strategies and a Propagation
Rule Based on MNonProp

As the network load (update volume) for these three update-driven strategies (Fig-
ure 5.31(a)) and the corresponding completeness (Figure. 5.31(c)) show, STPS and ATPS
cause a lower network load than IPS but consequently have deficiencies with regard to
result completeness because routing indexes are updated less frequently. Although a
threshold of 0 means that updates are propagated as soon as they are known, neither
IPS nor the threshold strategies achieve a completeness of 1 because in any case it takes
some time until the update messages reach all peers whose routing indexes are affected.
Even with thresholds of 0 the threshold strategies cause less network load than IPS. The
reason is that IPS does not merge updates to a peer’s local data.

Applying STPS, updates are propagated to all neighbors once the threshold is ex-
ceeded for an arbitrary neighbor. Using ATPS the decision is made for each neighbor in
separate. Thus, we expected STPS to propagate more updates on average – resulting in
a higher network load and a higher completeness (Table 5.1). Fig. 5.31(c) supports our
anticipation. Note that in the worst case still 93% of the optimum result set is retrieved.
Thus, the difference in performance between STPS and ATPS is low but the tradeoff for
STPS between completeness and network load is slightly better than for ATPS because
STPS achieves a higher completeness with causing only a little more network load.

Figure 5.32 shows details on false positive and false negative routing decisions. Of
course, the number of false negative routing decisions (resulting in missing relevant peers)
correlates with the loss in result completeness. IPS results in the lowest number of false
negative routing decisions because the very first update indicating that a peer now also
provides data in a different cluster than before is propagated through the network right
upon performing the first update – threshold propagation strategies using thresholds
greater than 0 propagate this information later and so have to deal with a higher number
of false negative routing decisions. On the other hand, as IPS sends many update mes-
sages, this might cause delays. Thus, in contrast to the other two strategies it sometimes
takes longer until the routing indexes correctly represent the information that a peer does
no longer provide data within its old region – resulting in false positive routing decisions
in the meantime.

We also conducted experiments for combinations of multiple propagation rules – ei-
ther one of them may alone trigger propagation. Figures 5.31(b) and 5.31(d) show our
results for the application of STPS in conjunction with MEavg (average change in the

Processing Rank-Aware Queries in Schema-Based P2P Systems 165

5.3 Maintenance

buckets’ extensions) and MĈ (average change in the buckets’ counts) – we found the
same tendencies applying ATPS. Using a threshold of 1 in conjunction with either one
of these two propagation measures means that even if no change has occurred, the prop-
agation rule’s condition is always fulfilled. The two figures again show that the higher
the thresholds, the less updates are propagated, i.e., the less network load is generated.
But they also show another interesting aspect: sending too many updates through the
network may cause delays so that routing indexes are not adapted with an optimum time
efficiency – thus, completeness may be slightly reduced. The optimal threshold value is
big enough to reduce network load but small enough to propagate important updates
with little delays. However, the effects in completeness are so small that the general
tendency (the higher the thresholds the higher the loss in completeness), which we have
identified above, still holds for the average case. As the two figures show, the MEavg

measure does not have any influence on update propagation in our experimental setup.
The reason is that the sizes of the regions represented by the buckets in equi-width his-
tograms never change whereas they would if we used a different base structure, e.g., the
QTree. These results reveal the importance of taking the structure of routing indexes
into account when defining propagation rules.

We also evaluated all other proposed propagation measures. Due to space con-
straints, we only state the results and omit the presentation of the diagrams. Prop-
agation measures can be ranked according to their sensitivity to updates (descending
order): MNonProp, Mbchange

, MĈ , MÊavg
, and MEavg . The more sensitive a measure

is, the higher is the resulting network load and the achieved completeness. We found
out that measures defined on the maximum bucket extension (i.e., MÊmax

and MEmax)
should not be used because they only consider the maximum extension of buckets in any
dimension. Thus, changes in other dimensions are not detected by this measure. We also
tested other data distributions and update patterns and found the same tendencies.

Query-Driven Strategies

The results of our experiments with respect to QFS are shown in Fig. 5.33. As this strat-
egy does not explicitly encode updates, there is no network load caused by propagating
updates that we could measure. Instead, QFS increases query load if peers have not been
queried recently. However, QFS strongly depends on the frequency of queries as well as
on the queried ranges. Thus, in contrast to the previous experiments we needed to issue
queries to give the indexes a chance of being updated. We used the 9 control queries as
query load and issued them at time steps 0, 10, 20, and 30. The size of the query cache is
9. Since we have only 9 queries in the query load, this means queries are never removed
from the cache because of its limited size but only when a newer query with the same
region is issued. Thus, we gave QFS optimal premises. We also tested other parametric
setups and query loads but in this paper we limit our discussion to the setup introduced
above as it represents the best case and all other setups and query patterns may only
result in worse results.

For the tests, whose results are shown in Fig. 5.33, we varied the maximum age of
cache entries. A maximum age of 0 time steps means there are no cache entries and
hence routing indexes are never used. Instead, the network is always flooded in order to
process a query – resulting in a very high network load for query processing and a high

166 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.3 Maintenance

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 50 100 150 200 250

Q
ue

ry
 V

ol
um

e
in

 k
B

yt
e

Maximum Age of Cache Entries

(a) Message Volume

 0.95
 0.955
 0.96

 0.965
 0.97

 0.975
 0.98

 0.985
 0.99

 0.995
 1

 0 50 100 150 200 250

C
om

pl
et

en
es

s

Maximum Age of Cache Entries

(b) Completeness

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250

Fa
ls

e
N

eg
at

iv
es

Maximum Age of Cache Entries

(c) False Negative Routing Decisions

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250

Fa
ls

e
Po

si
tiv

es

Maximum Age of Cache Entries

(d) False Positive Routing Decisions

Figure 5.33: Evaluation Results for QFS

number of false positive routing decisions. By considering routing indexes (max. age of
cache entries greater than 0), the number of false positive routing decisions is reduced
as the network no longer needs to be flooded for each query. However, by considering
routing indexes, it is possible that false negative routing decisions are made if relevant
data updates were made in the meantime since the last update.

With cache entry ages of about 200 time steps and more, indexes are only updated
once for each range query in the beginning of the simulation. Afterwards, the routing
indexes already contain information about the new data distribution. For the rest of the
simulation, the cache entries are considered up-to-date with the consequences that indexes
are not updated and the result is often incomplete. For lower maximum cache entry ages,
entries are discarded during runtime such that queries are sent to additional neighbors
than only to those indicated by the routing indexes. Hence, indexes are updated using
query feedback resulting in fewer false negative routing decisions.

Fig. 5.34 shows our evaluation results with respect to the application of QES using the
same query load as for QFS and varying the threshold for the estimation error, which is
responsible for the decision whether to send updates along with a query answer or not. As
we have expected, network load as well as completeness decrease with a higher threshold
for the approximation error since updates are forwarded less frequently. The update load
illustrated in Fig. 5.34(a) is the sum of (i) the volume of updates forwarded along with
query messages and (ii) the volume caused by explicit update messages. Fig. 5.34(b)
shows the network load caused by query processing in total – this again includes the
volume of updates attached to query answers. In comparison to QFS (Fig. 5.33(a)),

Processing Rank-Aware Queries in Schema-Based P2P Systems 167

5.3 Maintenance

 200

 400

 600

 800

 1000

 1200

 1400

 1 1.5 2 2.5 3 3.5 4

U
pd

at
e

V
ol

um
e

in
 k

B
yt

e

Estimation Error

time period 50
time period 150

(a) Update Volume

 78000

 79000

 80000

 81000

 82000

 83000

 84000

 85000

 86000

 1 1.5 2 2.5 3 3.5 4

Q
ue

ry
 V

ol
um

e
in

 k
B

yt
e

Estimation Error

time period 50
time period 150

(b) Query Volume

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1 1.5 2 2.5 3 3.5 4

C
om

pl
et

en
es

s

Estimation Error

time period 50
time period 150

(c) Completeness

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3 3.5 4

Fa
ls

e
N

eg
at

iv
es

Estimation Error

time period 50
time period 150

(d) False Negative Routing Decisions

 0

 1

 2

 3

 4

 5

 6

 1 1.5 2 2.5 3 3.5 4

Fa
ls

e
Po

si
tiv

es

Estimation Error

time period 50
time period 150

(e) False Positive Routing Decisions

Figure 5.34: Evaluation Results for QES

network load is lower because queries are sent to fewer peers as routing indexes are
considered to route queries (supporting Table 5.1). This results in considerably fewer
false positive routing decisions. As we have also varied the time period tw that a peer
waits before actively propagating updates with explicit update messages, we see that
the lower tw is, the higher are result completeness, network load, and the lower is the
number of false negative routing decisions. However, the number of false positive routing
decisions is slightly higher for the lower value of tw because as routing indexes are updated
(reflecting information about the newly available data), more peers are queried and due
to the approximation error resulting from summarizing the data, a higher number of
queried peers might result in a higher number of false positive routing decisions.

As already mentioned above, we did the same tests with other setups, e.g., network
structures, data distributions (e.g., no clusters but data uniformly distributed in the
data space), and update rates. We have only presented our results for one setup as they

168 Processing Rank-Aware Queries in Schema-Based P2P Systems

5.4 Conclusion

are representative for the others. In general, however, the network structure determines
the minimum costs and benefits that are achievable. The data distribution and the
applied base structure for routing indexes determines the quality of the indexes in terms
of approximation error – random data, for instance, is harder to summarize than clustered
data. In dependence on this quality, a high number of peers might be queried even though
the indexes are up-to-date. Thus, the achievable benefit of updating routing indexes is
lower. Finally, the update rate (the frequency of updates) influences the offset of benefits
and costs, i.e., if more updates occur, more updates need to be propagated and thus
maintenance costs increase. Of course, the query pattern is a very important aspect
for query-driven strategies. However, in the tests we have discussed above, we gave the
strategies optimal premises so that other setups perform worse.

In summary, the test results support our anticipations (Table 5.1). Unfortunately,
there is no strategy that performs best with respect to all aspects listed in Table 5.1.
So, it still depends on the application and on the user’s requirements which strategy to
choose. Nevertheless, we conclude that IPS should be applied in relatively static net-
works, where updates occur only rarely. In such situations the threshold strategies would
not propagate the updates soon enough since it may take too much time until the thresh-
olds are exceeded. ATPS should be preferred over STPS in networks with low network
bandwidths. Because the application of QFS might lead to failures in the representation
of the data by the routing indexes and because QFS strongly depends on the query load,
it is only applicable to a small range of applications. QES, on the contrary, propagates
updates using explicit update messages and counteracts the problems of QFS. As QES
does not solely depend on the query load, it also shows aspects of update-driven propa-
gation strategies. Furthermore, QES can be used in a great variety of applications where
defining explicit propagation measures is impossible. Moreover, although not discussed
above, it is possible to combine QES with threshold propagation strategies such that
updates are actively propagated not only considering a time period but also the accumu-
lation of updates. Thus, in summary, when there are no specific requirements posed by
the application and/or exact statistics such as the update rate cannot be obtained, QES
is a good choice.

5.4 Conclusion

In this chapter, we defined distributed data summaries (DDSs) as a subclass of routing
indexes that fulfill some additional requirements, which make DDSs most beneficial for
distributed query processing strategies and systems with dynamic behavior. As our
contribution, we presented the QTree as an example base structure for DDSs in addition
to multidimensional equi-width histograms and appropriate maintenance strategies for
DDSs.

In contrast to histograms that cover the whole data space (defined by the indexed
attributes), the QTree only captures subregions that contain data records. Thus, a
peer can use the QTree to efficiently identify peers that do not provide relevant data
with respect to the query. After having discussed and evaluated some implementational
aspects of QTrees, we have also discussed how to keep routing indexes, or rather DDSs,
up-to-date. The strategies we have proposed can also be used in conjunction with other
base structures. Among these strategies we have identified QFS to be problematic with

Processing Rank-Aware Queries in Schema-Based P2P Systems 169

5.4 Conclusion

respect not only to rank-aware queries but also to the required query load. Thus, we
prefer update-driven strategies or QES as they work (almost) independently from the
query load. However, if we wanted to use routing indexes specialized on skylines and
top-N queries only, we could use more efficient indexes, e.g., based on the approaches
recently proposed in [197]. The great disadvantage would be that we would need further
indexes to support range queries. Thus, we decided to focus on a more general solution
to the problem that can be used for a broad range of query types.

We are aware that the solutions we propose can still be improved in several ways
that we plan to investigate in future work. One of them is the analysis whether it is
possible to give guarantees for the freshness of routing indexes without making rigorous
assumptions. However, this is a difficult problem and might be impossible to solve for
the general case. Furthermore, a combination of the strategies could be beneficial, e.g.,
switching between strategies automatically in dependence on the current query load.

170 Processing Rank-Aware Queries in Schema-Based P2P Systems

Chapter 6

Query Processing

In the previous chapters we have already discussed the first steps of query processing
in PDMSs. We have also already introduced DDSs as well as several strategies to keep
them up-to-date. In this chapter, we finally show how all these pieces work together in
order to efficiently process rank-aware queries. Note that these techniques are not only
useful for PDMSs but can also be applied to unstructured P2P systems in conjunction
with DDSs in general. For simplicity we assume the optimizer follows a strategy which
plans that a peer waits for all answers from neighbors it has forwarded the query to (QS,
Section 2.5.1). Still, the optimizer might just as well follow an incremental strategy (IMS,
Section 2.5.3) so that results are forwarded to the initiator as soon as they have been
identified. However, implementing such a strategy affects not only step 4 with respect to
Figure 6.1 (by identifying relevant neighbors) but also step 6 (postprocessing), which is
responsible for the decision of sending answer messages incrementally or not. Besides, in
addition to merging the results received from queried neighbors the postprocessing step
also includes performing some rewriting tasks that cannot be performed at a neighbor,
e.g., computing a join. However, in this chapter we focus on efficient query processing
and assume that the remaining operations from rewriting are computed transparently to
the query processing strategy.

Although in comparison to a basic flooding approach the mere application of routing
indexes already reduces execution costs by far, we consider further options. One of them
is the application of rank-aware query operators such as top-N (Definition 2.1.1) and
skyline (Definition 2.1.3). Before considering query optimization, we assume a peer to
have evaluated the query based on its local data (corresponding to step 3 in Figure 6.1).
Hence, we obtain an intermediate result that we can use to prune neighboring peers
from consideration. With respect to rank-aware queries, it is for example possible that
although a neighbor provides data matching the query predicates, all its data records
cannot be ranked better than those of the local result set. As a consequence, this par-
ticular neighbor does not have to be queried as none of its records could be part of the
final result.

Another possibility to reduce the amount of relevant data in addition to rank-aware
query operators is the application of constraints [93]. Assume a user issues a skyline
query (Definition 2.1.3) and is not interested in the whole data space, e.g., he/she is not
interested in all the libraries but only in those that provide a minimum of 10, 000 books.
This kind of restriction conforms to constrained skylines as introduced in Section 2.1.2

171

CHAPTER 6. QUERY PROCESSING

Query Parsingstep 1

User Query

Query Transformationstep 2 Peer Schema

Local Evaluationstep 3 Local Data

Query Optimizationstep 4 Distributed Data
Summaries

Query Rewritingstep 5 Schema Mappings

Postprocessingstep 6

Local Optimizationstep 3.1

Local Executionstep 3.2

Local Schema,
Statistics

Query Initiator

P
a

rt
ic

ip
a

ti
n

g
P

e
e

rs

Query Result

Figure 6.1: Query Processing in PDMSs – Query Optimization

and obviously reduces the relevant data space to only a small portion.

Still, there is another option to reduce the amount of relevant data and thus execution
costs: relaxing the completeness/exactness requirements, which are usually posed on the
query result, by allowing a controlled amount of relaxation. In this dissertation, inspired
by [104], we allow one data record to represent a set of others. By allowing this kind of
fuzzy results, query execution costs can be reduced while the user is still provided with the
information he/she was looking for. In comparison to the classification of approximation
techniques for rank-aware queries of Figure 2.6, our approach [92, 213] is classified as
representation-based.

Although this chapter focuses on how to process top-N and skyline queries efficiently,
note that our techniques also support simple selection queries, queries involving joins, and
all queries that can be formulated on the set of algebra operators presented in Section 3.3.
The basic principle for all queries is the same: we exploit the information provided by
the POPs that the query tree consists of in conjunction with the information provided by
the routing indexes. For select POPs, for example, we can extract constraints and path
expressions and identify which neighbors provide relevant data – in case of a QTree-based
routing index using the lookup algorithm sketched in Section 5.2.3. The lookup algorithm
can also estimate the number of records provided by a neighbor in consideration of the
queried region and the buckets of the QTree/histogram that summarizes the neighbor’s
data. If a neighbor does not provide any relevant data, we can safely prune it from
consideration as it cannot contribute to the result. Based on these considerations on
the select POPs, we can make some additional considerations for other operators that
might be contained in a query. Additional select POPs on higher levels of the query tree,
for example, represent additional restrictions of the query space that might help identify
irrelevant neighbors. Let us consider a join POP with two select POPs underneath.
Due to the above considerations, we have information about what data is provided by a

172 Processing Rank-Aware Queries in Schema-Based P2P Systems

6.1 Processing Top-N Queries Using DDSs

neighbor with respect to the underlying select POPs. As the buckets of a histogram or
a QTree describe the distribution of the records’ attribute values, we can even estimate
the result size of the join. It is also possible that the attribute values are so different
that there cannot be any join result. Thus, in this case neighbors can be pruned because
they cannot contribute to the result.

Likewise, we can exploit the special characteristics of other POPs to determine the
relevance of neighboring peers. As we will discuss in this chapter in more detail, for top-
N and skyline queries we can exploit the pruning characteristic of the ranking functions.
Thus, in the following we first introduce the baseline algorithms for processing top-N and
skyline queries, which consider a peer’s local intermediate result as well as the information
provided by DDSs. Then, we extend these algorithms to support constraints and finally
extend them once more to support relaxation as well.

6.1 Processing Top-N Queries Using DDSs

In distributed environments query execution costs are only to a small extent determined
by local execution factors such as IO/CPU costs or main memory consumption but mainly
by the number of peers that are involved in answering a query. Thus, the main goal of
an efficient query processing strategy is to enable a peer to identify neighbors providing
relevant data with respect to a particular query. The question is how to identify such
neighbors without querying them. We have already learned that routing indexes, or DDSs
respectively, provide a solution to this problem as they summarize the data accessible via
neighboring peers. We have already illustrated how to use this knowledge for selection
and range queries in Section 5.2.3 with the QTree as an example structure.

As top-N queries are based on ranking functions, it is not straightforward how to
use DDSs to identify relevant neighbors. Thus, we first describe how to achieve this
goal before presenting an appropriate algorithm for distributed top-N query processing.
Without loss of generality, we assume that the information provided by the DDSs can
be represented as regions being defined by a data subspace, a number of represented
records, and a corresponding neighbor peer.

6.1.1 Top-N Queries on Regions

A peer processing a top-N query uses its local data Brec (or rather its local intermediate
result Blocal ⊆ Brec) and the information provided by its routing index as input (BRI).
This means the input consists of (i) a set of regions BRI and (ii) a set of records Blocal

that can be generalized and treated as regions without extensions. Based on this input
(Bin = BRI ∪Blocal) the peer needs to identify which neighbors provide relevant data. As
each DDS region is assigned an ID that identifies a particular neighbor, the main idea is
to decide which regions provide relevant data.

On a set of records, a top-N query is defined by a ranking function r that assigns a
score r(p) to each record p. This score is used to rank the records in ascending (MIN
annotation) or descending (MAX annotation) order. The result set consists of those N
records with the lowest (MIN) or highest (MAX) scores. Without loss of generality, we
assume in the following that the top-N query asks for those N records with the lowest

Processing Rank-Aware Queries in Schema-Based P2P Systems 173

6.1 Processing Top-N Queries Using DDSs

scores with respect to ranking function r (MIN annotation). Whereas it is straightforward
to determine the score for a record, a region represents a set of records and thus a set of
scores. But we nevertheless need to find a ranking of regions in order to identify those
that are relevant to the query. For each region B ∈ Bin we can determine a lowest score
smin(B) and a highest score smax(B) denoting the lowest and highest score values that
any record p ∈ B with respect to r might have. Figure 6.2 illustrates this issue with an
example, in which pmin and pmax represent fictitious records that would be scored lowest
and highest (smin, smax) with respect to the query. Using these fictitious records does
not mean we assume that they actually exist, their attribute values are determined based
on the region’s boundaries.

In order to identify the set of regions that are relevant to answer the query, we begin
with those N elements of Brec with the lowest scores (MIN annotation), i.e., we begin
with the local answer to the query Blocal that we have received as input. The score slocal

of the record with the highest score (MIN annotation) that is still part of the local result
is defined as:

slocal = max
B∈Blocal

smax(B) = max
B∈Blocal

r(B)

Based on slocal we can determine the set of relevant DDS regions. For this purpose, we
first compute smin(B) (MIN annotation) for each DDS region B ∈ BRI with respect to
ranking function r. We only need to consider all regions B ∈ BRI for which smin(B) ≤
slocal holds (MIN annotation) because only they can represent records that might be
ranked better than any record of the local result Blocal. Then, these regions are ranked
together with the records contained in Blocal according to their smax values in ascending
order (MIN annotation). In case of a record p, smin and smax have the same value:
smin(p) = smax(p) = r(p).

The set of regions that provides a sufficient number of records to answer the query
Bsuff ⊆ Bin is determined by traversing the ranked list of regions and records until all yet
visited regions altogether provide at least N records such that the following statement
holds: ∑

B∈Bsuff

B.count ≥ N , sworst := max
B∈Bsuff

smax(B) (6.1)

sworst denotes the highest (MIN annotation) possible score of a record that might be
represented by any region contained in Bsuff , pworst denotes the corresponding fictitious
record, i.e., r(pworst) = sworst. Based on sworst we can determine all regions Badd ⊆ BRI \
Bsuff that might represent records with a score smaller than sworst (MIN annotation),
i.e.:

Badd := {B ∈ BRI \ Bsuff | smin(B) < sworst} (6.2)

Finally, the peer determines the set of relevant regions BtopN (containing records and
regions) as:

BtopN := Bsuff ∪ Badd (6.3)

All peers that do not provide data corresponding to any region in BtopN are irrelevant
and do not need to participate in answering the query.

Figure 6.2 shows an example scenario in which the user is looking for the top 10
records located closest to the asterisk. In this example, Bsuff consists of the grey shaded
regions (3 local data records and 2 DDS regions) that altogether represent 10 records.

174 Processing Rank-Aware Queries in Schema-Based P2P Systems

6.1 Processing Top-N Queries Using DDSs

The worst score that any of these regions might provide with regard to the query is
determined by the fictitious record pworst. It defines the maximum distance sworst of the
worst record that would be part of the result if only Bsuff was considered to answer the
query. There are regions that might represent records scored better than pworst. Badd is
the set of these regions. In Figure 6.2 they can easily be identified because they overlap
the circle around the asterisk defined by pworst. Thus, in the example Badd consists of only
one region highlighted in blue. Only those peers that provide data for regions contained
in BtopN = Bsuff ∪ Badd have to be queried.

*

pmax

pmin

3

4

9
5

7

pworst
local data record

DDS region

Figure 6.2: Top-N Query Evaluation on Regions. Query asking for the top 10 records
located closest to the asterisk

6.1.2 Distributed Processing of Top-N Queries

Based on the definition of top-N queries on regions, each peer follows the same basic
steps to process the query:

• compute the top-N query result on regions considering the local data, DDS regions,
and additional information received along with the query,

• forward a top-K query with additional information to each neighboring peer p that
provides data of regions in BtopN , with

Kp := min

⎧⎨⎩N,
∑

B ∈ BtopN , B.ID=p

B.count

⎫⎬⎭ , and (6.4)

• receive all answers and combine the results into a preliminary top-N result, which
is either displayed to the user or sent to the peer the query has been received from.

Based on the definition of top-N queries on regions, Algorithm 18 shows how these steps
can be implemented. Peers use caches to remember intermediate results and distinguish
between query and answer messages. The algorithm consists of three parts: (i) local
query processing at the query initiator, (ii) local query processing at a peer that receives
a top-N query from a neighbor, and (iii) processing answer messages.

Local query processing at the query’s initiator is straightforward and follows the
evaluation of a top-N query on regions, which we have discussed in Section 6.1.1. This

Processing Rank-Aware Queries in Schema-Based P2P Systems 175

6.1 Processing Top-N Queries Using DDSs

Algorithm 18 Top-N Query Processing
1: I. initiate a top-N query
2: sworst,BtopN = topN(BRI ,Blocal);
3: askNeighborsTopN(BtopN ,sworst,BRI);
4: self.cache.storeResult(BtopN ∩ Brec);
5:
6: II. receive a top-N query (sworstsender)
7: BRI = {B ∈ BRI |B not provided by sender};
8: BRI = removeEntries(BRI ,sworstsender);
9: Blocal = removeEntries(Blocal,sworstsender);
10: sworst,BtopN = topN(BRI ,Blocal);
11: sworst = getBestScore(sworst, sworstsender);
12: askNeighborsTopN(BtopN ,sworst,BRI);
13: self.cache.storeResult(BtopN ∩ Brec);
14:
15: III. receive a top-N answer (Banswer)
16: BtopN = topN(self.cache.getResult() ∪ Banswer);
17: if all queried neighbors have answered then
18: if self is initiator then
19: outputResultToTheUser(BtopN);
20: else
21: sendTopNAnswer(BtopN);
22: end if
23: else
24: self.cache.storeResult(BtopN);
25: end if

means that the peer processes the query locally based on its local result and the DDS
regions, it forwards the query to those neighbors that have been identified as relevant,
and it stores the intermediate result BtopN without DDS regions into its local cache.
Algorithm 19 provides more details on how to identify and query relevant neighbors
given the result of the local computation BtopN . In case there are no relevant neighbors,
the initiator outputs BtopN to the user as the answer to the query. A query that is
forwarded to neighboring peers is adapted as described above (K in Equation 6.4) and
attached the score of pworst, i.e., sworst.

Algorithm 19 askNeighborsTopN(BtopN , sworst,BRI)
1: Pask = {n ∈ self.neighbors | ∃ a ∈ BtopN ∩ BRI ∧ a ∈ self.index.getRegionsFor(n)};
2: if Pask = ∅ then
3: if self is initiator then
4: outputFinalResult(self.cache.getResult());
5: else
6: sendAnswer(self.cache.getResult());
7: end if
8: else
9: for all n ∈ Pask do

10: Kn = min
n

N,
P

B ∈ BtopN , B.ID=p B.count
o

;

11: forwardQuery(n, Kn, sworst);
12: end for
13: end if

Part II of Algorithm 18 summarizes how any peer in the network reacts upon receiving
a top-N query from another peer. In contrast to the initiator, such a peer has to ignore
all regions of its DDS describing the data of the query’s sender. Furthermore, the peer
can ignore all local data records and DDS regions that may not provide records with a
“better” score than sworstsender

(received along with the query). The reason is that all
records provided by regions with smin greater than sworstsender

(MIN annotation), would be
pruned by the sender of the query once it receives them. After removing all these records

176 Processing Rank-Aware Queries in Schema-Based P2P Systems

6.2 Skyline Query Processing

and regions, the peer computes the top-N result on regions based on the remaining
data (Section 6.1.1). Thus, the peer obtains a result set BtopN of local records and
regions and a new highest (MIN annotation) record sworst. By using again Algorithm 19,
MIN(sworst, sworstsender

) (MIN annotation) is forwarded along with the query to all those
neighbors providing data in regions contained in BtopN . Finally, the intermediate result
is stored into the cache.

When a peer receives an answer message (part III of Algorithm 18), it recomputes the
top-N query based on the received result and the data that has been stored into the cache.
This result is either again stored into the cache or, in case all queried neighbors have
already answered, forwarded to the sender of the query. Finally, the initiator receives
all answers from these neighbors that it has forwarded the query to, computes the final
result, and outputs it to the user.

6.2 Skyline Query Processing

Similar to the previous section we first define the skyline on regions, which allows us
to consider DDS information for processing skyline queries. Afterwards, we sketch a
distributed query processing strategy that exploits this concept and aims at minimizing
the number of involved peers and thus execution costs.

6.2.1 Skylines on Regions

Remember the definition of skyline queries and the dominance relation ≺R (Defini-
tion 2.1.3). The decisive characteristic of a skyline is that it consists of only those records
that are not dominated by any other record. A record p dominates another record q with
respect to the set of ranking functions R that the skyline is defined on (p ≺R q) if p
is ranked as good as or better than q in all dimensions and ranked better than q in at
least one dimension – each dimension corresponds to a ranking function. However, so
far this relation is only defined on records. In order to identify relevant DDS regions
and neighbors for skyline computation, we need to generalize ≺R in a way that makes
it applicable to regions as well. Intuitively, a region B1 dominates another region B2

if all records p ∈ B1 dominate all records q ∈ B2. Thus, an appropriate generalization
is ≺RReg

:
B1 ≺RReg

B2 ⇔ p ≺R q ∀ p ∈ B1,∀ q ∈ B2 (6.5)

Since data records can be considered as regions without extensions, ≺RReg
can be applied

to regions, records as well as to their combination. As we do not know the exact set of
records represented by a DDS region, we still need to find an efficient way to decide
whether a region is dominated or not. For this purpose, we again consider two fictitious
records (pmin and pmax) with respect to the set of ranking functions R – attribute values
are again determined based on the region’s boundaries. For region B, pmin and pmax are
defined as the two fictitious records for that

∀p ∈ B, p �= pmax(B) : p ≺R pmax(B) and ∀q ∈ B, q �= pmin(B) : pmin(B) ≺R q (6.6)

holds. Figure 6.3 shows an example on a two-dimensional data set. In this example and
in the following we assume that all ranking functions are annotated with MIN.

Processing Rank-Aware Queries in Schema-Based P2P Systems 177

6.2 Skyline Query Processing

Based on pmin and pmax we can efficiently determine whether a region dominates an-
other one. A region B1 dominates a region B2 if and only if pmax(B1) dominates pmin(B2):

B1 ≺RReg
B2 ⇔ pmax(B1) ≺R pmin(B2) (6.7)

Thus, in oder to identify relevant DDS regions, we need to evaluate ≺RReg
on the union

of the local intermediate result Blocal (obtained by computing the skyline based on the
peer’s local data Brec) and the DDS regions BRI . This result, in comparison to the result
BglobalSkyline that we would obtain if we evaluated ≺R directly on the data of all the
peers in the network, contains all regions that might represent any record which would
be element of BglobalSkyline. This means that the evaluation principle introduced above
guarantees that (i) each region B1 which could represent a record p ∈ BglobalSkyline is
contained in the skyline on regions and (ii) there does not exist any region or record B2

dominating B1.
Assuming we have two regions B1 and B2, B1 dominating B2 (B1 ≺RReg

B2), each
region represents at least one record, i.e., there exists at least one record p ∈ B1 and
at least one record q ∈ B2. We have determined the dominance B1 ≺RReg

B2 by us-
ing pmax(B1) and pmin(B2), i.e., pmax(B1) ≺R pmin(B2). pmin(B2) by definition (Equa-
tion 6.6) dominates all records q ∈ B2 and pmax(B1) is dominated by all records p ∈ B1,
i.e., ∀p ∈ B1, p �= pmax(B1) : p ≺R pmax(B1) and ∀q ∈ B2, q �= pmin(B2) : pmin(B2) ≺R q.
Thus, ∀p ∈ B1, p �= pmax(B1),∀q ∈ B2, q �= pmin(B2) : p ≺R pmax(B1) ≺R pmin(B2) ≺R q.
It follows that ∀p ∈ B1,∀q ∈ B2 : p ≺R q. Hence, there cannot exist any record q ∈ B2

that could be part of the skyline.
In summary, the result of a skyline on regions with Bin = BRI ∪Blocal as input is Bsky:

Bsky :=
{
B1 ∈ Bin|�B2 ∈ Bin : B2 ≺RReg

B1

}
(6.8)

In order to answer the query correctly, the query has to be forwarded only to those
neighbors that provide data for any region B ∈ Bsky.

Let us again consider a two-dimensional example (Figure 6.3). We have several local
data records and DDS regions. The skyline query is defined on both dimensions and the
ranking functions are annotated with MIN. For region B9, Figure 6.3 illustrates pmin and
pmax with respect to the skyline definition. All records and regions that are part of the
skyline are highlighted in grey. Note that B3 dominates both B4 and B5 but not B7, i.e.,
B3 ≺ B4, B3 ≺ B5, and B3 ⊀ B7. Furthermore, B7 is neither dominated by B3 nor by
B4 but by a local data record. After the evaluation of the skyline on regions, only B3

and B9 have been identified as being relevant to answer the query. Thus, only neighbors
that provide data concerning these two regions need to be queried.

As a final remark on the skyline on regions, let us consider what happens if we cannot
determine pmin and pmax easily or unambiguously. For the DDS variants and ranking
functions we have discussed so far, regions are always rectangular in shape in terms of
the data space defined by the query’s ranking functions. This is a handy characteristic
since for these regions we can always determine pmin and pmax unambiguously as defined in
Equation 6.6. However, as we allow ranking functions to be defined on multiple attributes,
it is possible that (e.g., due to dimension reduction) a region is no longer rectangular in
shape. Such regions might represent multiple records that together dominate all other
records (which are possibly represented by the region) but not each other – in contrast,

178 Processing Rank-Aware Queries in Schema-Based P2P Systems

6.2 Skyline Query Processing

pmax

pmin

3

4

9
5

7

local data record

DDS region

B9

B4

B3
B7

B5

Figure 6.3: Skyline on Regions. Skyline asking for records that minimize both dimensions

for rectangular shapes and basic ranking functions there is always only one such fictitious
record. In this case we need to represent a region either by multiple pmin and pmax records
or use virtual records.

Assuming we have discovered that in consideration of the ranking functions a region
B possibly represents two records that do not dominate each other (pmin1 , pmin2 ∈ B,
pmin1 ⊀R pmin2 , pmin2 ⊀R pmin1) but together dominate all other records represented
by B (∀p ∈ B, p /∈ {pmin1 , pmin2} : pmin1 ≺R p ∨ pmin2 ≺R p), then we could still use
a pmin /∈ B such that pmin ≺R pmin1 ∧ pmin ≺R pmin2 to represent the region so that
the above considerations for computing the skyline on regions hold even for the general
case. These considerations can easily be extended to arbitrary regions with arbitrary
numbers of records that do not dominate each other: pmin1 , pmin2 , . . . , pminn , n ∈ N. The
same considerations also hold for pmax so that given the sets pmin1 , pmin2 , . . . , pminn and
pmax1 , pmax2 , . . . , pmaxm we can define pmin based on the set of ranking functions R as the
fictitious record for that

∀r ∈ R : r(pmin) = min
i=1...n

{r(pmini
)} (6.9)

holds and pmax as the fictitious record for that

∀r ∈ R : r(pmax) = max
i=1...m

{r(pmaxi
)} (6.10)

holds. Based on these definitions, we can use the algorithms introduced so far also for
arbitrary regions and ranking functions.

6.2.2 Distributed Processing of Skyline Queries

Based on the generalized dominance relation introduced above, we can define an algo-
rithm that each peer adheres to when processing a skyline query. The main steps for
each peer are:

• computing the skyline in consideration of the local data, all regions provided by
the DDS, and additional information, which might have been received along with
the query,

• forwarding the query to all neighboring peers that provide data in regions which are
part of the result computed in the previous step, sending additional information
along with the query that might help prune more neighbors from consideration,
and

Processing Rank-Aware Queries in Schema-Based P2P Systems 179

6.2 Skyline Query Processing

• receiving all answers and combining the results into a preliminary skyline, which is
either output to the user or sent to the peer the query has been received from.

Just like the algorithm for processing top-N queries, this algorithm again uses two kinds
of messages (query and answer messages) and each peer maintains a cache to manage
intermediate results. We again distinguish between three parts: (i) a peer initiates a
query, (ii) a peer receives a query from a neighbor, and (iii) a peer receives an answer
message from one of its neighbors. Algorithm 20 sketches this procedure in more detail.

At first (part I), the initiator computes the skyline result Bsky on the union of its
local result Blocal and the information provided by its routing index BRI – using the
generalized dominance relation ≺RReg

of Section 6.2.1. Afterwards, the initiator forwards
the query to neighbors providing relevant data, i.e., those peers that provide data for
any region contained in Bsky. Finally, the local records contained in Bsky are stored as
an intermediate result into the cache (Bsky ∩ Brec). Algorithm 21 shows more details on
how to query neighbors. It works analogously to Algorithm 19 for top-N queries. The
main difference is the kind of information that is forwarded along with the query. In
case of skyline queries, this is the set of records contained in Bsky, i.e., Bsky \ BRI . The
ranking scores of these records might help to reduce execution costs – the initiator might
already know local records dominating a large part of the data space. Not forwarding
the information about the dominated space along with the query means the receiver does
not know that it can safely neglect some of its neighbors which only provide data in the
dominated subspace. Thus, peers would be queried whose result records would be pruned
later on.

Algorithm 20 Skyline Query Processing
1: I. initiate a skyline query
2: Bsky = skyline(BRI ∪ Blocal);
3: askNeighborsSkyline(Bsky , BRI);
4: self.cache.storeResult(Bsky ∩ Brec);
5:
6: II. receive a skyline query (Bsender)
7: BRI = {B ∈ BRI |B not provided by sender};
8: Bsky = skyline(BRI ∪ Blocal ∪ Bsender);
9: askNeighborsSkyline(Bsky , BRI);
10: self.cache.storeResult(Bsky ∩ Brec);
11:
12: III. receive a skyline answer (Banswer)
13: Bsky = skyline(self.cache.getResult() ∪ Banswer);
14: if all queried neighbors have answered then
15: if self is initiator then
16: outputResultToTheUser(Bsky);;
17: else
18: sendSkylineAnswer(Bsky);
19: end if
20: else
21: self.cache.storeResult(Bsky);
22: end if

Part II of Algorithm 20 sketches how any peer in the system reacts upon receiving
a query from one of its neighbors. There are only a few differences in comparison to
part I. One of them is that an arbitrary peer has to exclude those DDS regions from
consideration that describe the data of the query’s sender. The second difference is that
for processing the skyline on regions the peer does not only consider its local data and
the information provided by its routing index but also the records received along with

180 Processing Rank-Aware Queries in Schema-Based P2P Systems

6.3 Constraints

the query as they might help to prune further regions and records from consideration.
When the peer forwards the query to relevant neighbors, it attaches all those records to
the query that are contained in the result of its local computation (Bsky \BRI). Thus, this
set of forwarded records might contain records of local origin but also records originating
from the peer the query has been received from. As intermediate result the peer stores
only records into the cache that are of local origin (Bsky ∩ Brec). Those that have been
received along with the query and that are still contained in the local computation of
Bsky do not have to be remembered because (i) there will be no need to send them
back towards the initiator as it is their origin and (ii) all answer records received from
queried neighbors will have been checked for dominance by those records as they have
been forwarded along with the query.

Algorithm 21 askNeighborsSkyline(Bsky, BRI)
1: Pask = {n ∈ self.neighbors | ∃ a ∈ Bsky ∩ BRI ∧ a ∈ self.index.getRegionsFor(n)};
2: if Pask = ∅ then
3: if self is initiator then
4: outputFinalResult(self.cache.getResult());
5: else
6: sendAnswer(self.cache.getResult());
7: end if
8: else
9: for all n ∈ Pask do
10: forwardQuery(n, Bsky \ BRI);
11: end for
12: end if

Finally, part III describes how to process answer messages. At first, the peer checks
the received answer records for dominance with the intermediate result stored in the
cache and obtains Bsky. In case the answer messages from all queried neighbors have
been received, the final result Bsky is either output to the user or sent with an answer
message to the peer the query has been received from in the first place. If not all queried
peers have answered yet, the intermediate result Bsky is stored into the cache.

6.3 Constraints

In the previous sections we have discussed how to process top-N and skyline queries
based on local data records and DDS regions. This already reduces execution costs by
reducing the number of peers that the query needs to be forwarded to. What these
algorithms do not yet consider are constraints. For this purpose, we need to extend the
algorithms we have presented so far. We also need to extend the plan operators that we
use to represent the queries (Definition 3.3.1). For simplicity, let us assume constraints
are defined as part of skyline and top-N POPs.

Let Arec denote the set of indexed attributes, then the user-defined set of constraints
Cuser consists of constraints that adhere to Definition 6.3.1.

Definition 6.3.1 (Constraint). A constraint c is a triple 〈a, low, high〉, where

– a ∈ Arec is an attribute and

– low ∈ R and high ∈ R define the interval [low, high] that constrains attribute a.

Processing Rank-Aware Queries in Schema-Based P2P Systems 181

6.4 Relaxation

With Cuser, only data records whose attribute values lie in the defined intervals have
to be considered and processed in order to answer the query. Attributes for which no
constraints are given are not tested.

In order to extend the algorithms presented in the previous section to work with
constraints, all we need to do is adapting the set of data records the algorithms consider
as input for processing the query. So far the algorithm uses Blocal computed on Brec as
input. Thus, we simply need to redefine Brec before evaluating the query on the local data
(step 2 of query processing, Figure 6.1) so that each of its elements meets the constraints.
The resulting set is denoted as:

Brec := {r ∈ Brecold
|∀c ∈ Cuser : r[c.a] ≥ c.low ∧ r[c.a] ≤ c.high} (6.11)

The same needs to be done for BRI :

BRI := {B ∈ BRIold
|∀c ∈ Cuser : B.high[c.a] ≥ c.low ∧ B.low[c.a] ≤ c.high} (6.12)

Thus, BRI now is the set of DDS regions that at least partially overlap the data space
defined by the constraints, i.e., all elements have been removed that do not fulfill the
constraints. Both the top-N and the skyline algorithm are working with the same data
as input. If we replace BRI and Brec as indicated above for both algorithms, we have
successfully extended them to consider constraints.

6.4 Relaxation

After having discussed how to process top-N and skyline queries with and without con-
straints in the previous sections, let us now consider how to reduce execution costs even
further by introducing representation-based approximation. We first discuss how to ex-
tend the top-N query processing strategy in an appropriate fashion and proceed with
skyline queries.

6.4.1 Top-N

Let us at first consider an example to illustrate the principle of the kind of relaxation we
propose. We use the same scenario that we have already introduced in Figure 6.2. Thus,
assume a top-N query TN

r asks for the top 10 elements near the asterisk (Figure 6.4).
Figure 6.4(a) shows the answer to the query (grey circles) we would obtain if we computed
the query on a global database that covered all the data in the network. To illustrate
what data records the initiator would have considered, Figure 6.4(a) shows them as well
(white circles). Figure 6.4(b) shows the result records (grey circles) that we would obtain
if we used the algorithm for processing top-N queries in consideration of DDS regions.
Of course, the result records are the same. However, the number of considered non-result
records (white circles), which have been received at the initiator from neighboring peers,
is low – only 2 in this example. Finally, Figure 6.4(c) illustrates the relaxed answer
to the same query: the blue shaded record of local origin represents all records within
the blue shaded region and the green shaded record of local origin represents all records
within the green shaded region. As this example illustrates, the number of records that

182 Processing Rank-Aware Queries in Schema-Based P2P Systems

6.4 Relaxation

have to be considered by the initiator is even lower than in Figure 6.4(b). The key idea
in reducing execution costs by applying relaxation is that all relevant regions that can
be represented by local data records do not have to be considered for forwarding the
query. Thus, peers that only provide data with respect to those regions do not have to
be queried and execution costs are reduced.

*

(a) Top-N on Global Database

pmax

pmin

3

4

9
5

7

pworst

*

(b) Top-N on Regions

7
*3

4

9
5

(c) Relaxed Top-N on Regions

Figure 6.4: Relaxed Top-N Query Example

This kind of relaxation is especially useful when peers provide data clusters, i.e.,
most of the records that a peer provides have similar attribute values. These records
can efficiently be summarized by DDSs with low approximation error. Thus, it is likely
that a neighbor with similar data finds local records which can represent the data of its
neighbor.

After having introduced the concept of relaxation with an example, let us now give a
formal definition (Definition 6.4.1).

Definition 6.4.1 (Representative, Representing Record, Represented Region). A repre-
sentative R is a pair 〈p, B〉, where

– B is the subspace of the data space (denoted as the represented region) containing
all records q that can be represented by R and

– p is the representing record that represents B and all possible records within.

There are two possibilities to define the represented region B:

– B is defined by explicitly given boundaries as a subspace in the data space or

– B is defined by distance function da : D ×D → R and a maximum distance ε ∈ R,
i.e., B is the region containing all records q for that da(q) ≤ ε holds.

Based on this definition we can define the relaxed result of a top-N query according
to Definition 6.4.2.

Definition 6.4.2 (Relaxed Top-N Query Result). Given a set D of data records, a top-N
query TN

r , and a set of representatives SR, then any subset BtopN of D ∪ SR for that

∀p ∈ TN
r (D) ∃q ∈ BtopN : q = p ∨ q ∈ SR ∧ q represents p

holds is called a relaxed top-N query result.

Processing Rank-Aware Queries in Schema-Based P2P Systems 183

6.4 Relaxation

Given these definitions, a relaxed top-N query result is a set BtopN containing either a
representative for each top-N result record that would be part of the non-relaxed (exact)
answer to the query or the record itself. The distance function da (in the example of
Figure 6.4(c) we used the Euclidean Distance) describes how to determine the distance
between a representing record p and a record q that is represented. Finally, ε repre-
sents the maximum distance that p and q in dependence on da might have. It is often
possible that a record can be represented by multiple representatives. Thus, there are
usually multiple result sets containing different representatives that nevertheless fulfill
Definition 6.4.2 and correctly represent each record that would be contained in the exact
answer to the query.

Distributed Processing of Relaxed Top-N Queries

Since the ε parameter in conjunction with the distance function da limits the maximum
approximation the algorithm is allowed to use, both have to be specified in advance
and added to the query definition. The algorithm for processing relaxed top-N queries is
based on Algorithm 18 and optionally considers constraints. In order to apply relaxation,
we need an additional step that tries to find representatives after having evaluated the
query in consideration of the regions. In analogy to Section 6.1.2 Algorithm 22 sketches
how each peer reacts upon receiving a query. It can be summarized by the following
steps:

• computing the top-N query result BtopN on regions in consideration of the local
data, DDS regions, the constraints, and sworstsender

,

• trying to find representatives for all regions B ∈ BtopN using distance function da

and the maximum approximation ε,

• forwarding a top-K query containing sworst to all neighbors providing data for
regions that could not be represented by representatives,

• receiving all answers and combining them with the result obtained from local com-
putation (containing representatives) into a preliminary top-N result, and

• trying to minimize the number of representatives and forwarding the result to the
peer the query has been received from (or output the result to the user).

Some of these steps are straightforward, others are not. One of the more complex steps is
how to find representatives. Furthermore, a peer needs to combine the results of multiple
neighbors. As these partial results might contain representatives, we have to define how
to evaluate a top-N query on representatives. Finally, a peer might try to minimize the
number of representatives. Thus, these are the aspects we will discuss on the following
pages.

Determine Representatives

In order to reduce the number of neighbors that a query has to be forwarded to, we need to
find representatives for relevant regions. According to Definition 6.4.1 a representative
consists of a representing record and a represented region. To determine representing
records, a peer considers all data records it stores locally. In the ideal case, all regions

184 Processing Rank-Aware Queries in Schema-Based P2P Systems

6.4 Relaxation

Algorithm 22 Relaxed Top-N Query Processing
1: I. initiate a top-N query (Blocal,Cuser,da,ε)
2: BRI = removeEntries(BRI ,Cuser);
3: sworst,BtopN = topN(BRI ,Blocal);
4: BtopN = tryToReplaceRegionsWithRepresentatives(Brec,da,ε,BtopN);
5: askNeighborsTopN(BtopN ,sworst,BRI);
6: self.cache.storeResult(BtopN \ BRI);
7:
8: II. receive a top-N query (Blocal,sworstsender ,Cuser,da,ε)
9: BRI = {B ∈ BRI |B not provided by sender};
10: BRI = removeEntries(BRI ,sworstsender);
11: BRI = removeEntries(BRI ,Cuser);
12: Blocal = removeEntries(Blocal,sworstsender);
13: sworst,BtopN = topN(BRI ,Blocal);
14: BtopN = tryToReplaceRegionsWithRepresentatives(Brec,da,ε,BtopN);
15: askNeighborsTopN(BtopN ,sworst,BRI);
16: self.cache.storeResult(BtopN \ BRI);
17:
18: III. receive a top-N answer (Banswer)
19: BtopN = topN(self.cache.getResult() ∪ Banswer);
20: if all queried neighbors have answered then
21: if self is initiator then
22: outputResultToTheUser(BtopN);
23: else
24: BtopN = minimizeRepresentatives(BtopN);
25: sendTopNAnswer(BtopN);
26: end if
27: else
28: self.cache.storeResult(BtopN);
29: end if

B in BtopN can be replaced with representatives such that the query does not have to be
forwarded at all.

Thus, for each region B ∈ BtopN the peer tries to define representatives with respect to
the query definition (ranking function r, distance function da, and maximum distance ε).
Since due to the approximation we do not know the exact attribute values of the records
located within and represented by B, it is not sufficient to define only one representative
for the best record pmin that is possibly represented by region B. Figure 6.5(a) illustrates
this issue with an example. Let us assume region B (upper left corner) has been identified
as relevant, we have chosen to represent it with pmin(B), and we have found a local data
record whose attribute values correspond to the ones of pmin(B). Then, the part of B
that would actually be represented by pmin(B) is the intersection with the blue circle,
whose radius is defined by da and ε and whose location is determined by pmin(B) as its
center. However, the part of B that is represented does not contain any data record in
the real data set. Thus, choosing pmin as representing record is incorrect. However, if we
increased ε so that the circle defined by it around pmin(B) completely contained region
B, representing B with a representative based on pmin would be correct.

However, it is still possible to represent the region although we do not increase ε.
Figure 6.5(b) illustrates the ideal solution. If we allow a representative to consist of
multiple representing records and the regions defined by ε, da, and the records completely
enclose region B, then each record that is possibly contained in B is correctly represented.
As it is a hard problem to find an optimal set of representing records, we favor a heuristic
that defines a representative based on only one data record whose ε-region completely
encloses the represented region B (Figure 6.5(c)).

Processing Rank-Aware Queries in Schema-Based P2P Systems 185

6.4 Relaxation

*

pmax

pmin

å

(a) One Representing Record, Par-
tial Overlap

*

(b) Multiple Representing
Records, Complete Overlap

*

(c) One Representing Record,
Complete Overlap

Figure 6.5: Finding Representatives for Regions

Figure 6.5(c) also illustrates that the maximum region (big circle highlighted in blue)
that could be represented by the representing record (small circle highlighted in blue) is
much larger than the actually represented region (rectangle highlighted in blue). Thus,
informing the user only about the representing record, da, and ε (that altogether de-
termine the maximum region) makes the result more fuzzy than necessary. A better
description of the represented data can be given by explicitly specifying the represented
region, which has to be completely contained in the maximum region defined by the
representing record, da, and ε. For this purpose, we can simply use the boundaries of
the DDS region that we want to represent – applying Definition 6.4.1’s second option to
define the represented region.

Top-N Computation on Representatives

Having received all the answer messages from all queried neighbors, a peer needs to evalu-
ate the top-N query on the union of the received partial results and its local intermediate
result. As both result sets might contain representatives, we need to define how to evalu-
ate a top-N query on the union of data records and representatives. As a representative
is defined as a pair 〈p, B〉, we can use B to determine a lowest and a highest score (smin

and smax) for a representative. In doing so, we can use the same algorithms as introduced
above with only negligible adaptations to consider p and B.

Minimizing the Number of Representatives

In order to reduce network traffic, a peer tries to minimize the number of representatives
before forwarding its own answer to a neighbor. For this purpose, we split up the repre-
sentatives. We obtain two lists: the first one F consists of all representing records and
the second one G consists of all represented regions. The goal is to find a minimal subset
of F that correctly represents all regions in G. As this is the NP-complete problem Set-

Cover, we use the heuristic sketched in Algorithm 23 to efficiently compute a solution
to this problem.

At first, the set of representing records F is sorted in descending order by the number
of regions B ∈ G that each p ∈ F could represent with respect to the distance function
da and the maximum approximation ε. For each region B ∈ G we first try to choose a
representative 〈p′, B′〉 that was already found in previous iterations and that with respect

186 Processing Rank-Aware Queries in Schema-Based P2P Systems

6.4 Relaxation

to da and ε is able to represent B as well. In case we can find such a representative,
we adapt its represented region so that both B and B′ are represented by p′. If we
cannot find such a representative, we define a new representative (p, B) and choose an
appropriate p ∈ F by traversing F from top to bottom. As F has been sorted according
to the number of regions a record might represent, the records that can represent the
most regions are considered first and thus favored. After having found representatives
for all regions B ∈ G, the number of representatives has hopefully been reduced.

Algorithm 23 minimizeRepresentatives(representatives)
1: F = extractRecords(representatives);
2: G = extractRegions(representatives);
3: sort(F); // in descending order by the number of regions each p ∈ F could represent
4: chosen = ∅; // set of pairs (p, B) so that p represents B
5: for all B ∈ G do
6: if ∃ (p′, B′) ∈ chosen, so that p′ represents B ∪ B′ then
7: (p′,B′) = (p′,B ∪ B′);
8: else
9: find p ∈ F , so that p represents B;
10: chosen.add((p, B));
11: end if
12: end for
13: return chosen;

6.4.2 Skylines

Before we give a formal definition of relaxed skylines, let us first consider an example
based on Figure 6.3. Assuming the skyline query SR is defined on two ranking functions
that are both annotated with MIN, then Figure 6.6(a) shows the answer to the query
(grey highlighted circles) that would be obtained if we had a global database consisting
of all data records provided by all peers altogether. Figure 6.6(b) shows the result that
would be obtained in consideration of DDS regions – result records and relevant regions
are again highlighted in grey. Furthermore, the figure shows all further non-result records
the query initiator would have received from neighboring peers and considered for local
evaluation. In comparison to Figure 6.6(a) we see that the number of records considered
by the initiator is reduced due to the consideration of DDS regions. Finally, Figure 6.6(c)
shows how the result in consideration of regions and representatives might look like. As
already described in the context of top-N queries, the goal is to replace relevant regions
with representatives so that the respective neighbors do not have to be queried. In
this example, we have one representative (highlighted in blue). As a consequence, the
number of records and regions that have to be considered is reduced in comparison to
Figure 6.6(b).

Definition 6.4.3 (Relaxed Skyline Query Result). Given a set D of data records, a
skyline query SR, and a set of representatives SR, then any subset Bsky of D ∪ SR for
that

∀p ∈ SR(D) ∃q ∈ Bsky : q = p ∨ q ∈ SR ∧ q represents p

holds is called a relaxed skyline query result.

Given Definition 6.4.3, a relaxed skyline query result is a set Bsky ⊆ D ∪ SR that
either contains a representative for each record p ∈ SR(D) that would be part of the

Processing Rank-Aware Queries in Schema-Based P2P Systems 187

6.4 Relaxation

(a) Skyline on Global Database

pmax

pmin

3

4

9
5

7

(b) Skyline on Regions

3

4

9
5

7

(c) Relaxed Skyline on Regions

Figure 6.6: Relaxed Skyline Query Example

skyline evaluated on all data records or p itself. The definition of representatives follows
Definition 6.4.1. Just as for relaxed top-N queries, there are often multiple records that
could represent a region and the same record can represent multiple regions. This is an
advantage in comparison to classic skyline computation as especially for the anticorrelated
data set (as shown in [19]) the result set consists of a very high number of records. By
introducing relaxed skylines the result size can considerably be reduced and the user is
still provided with the “big picture”.

The general tendency is obvious, the higher the user-defined maximum relaxation ε,
the bigger are the regions that can be represented by representatives and thus the lower
are query execution costs. In general, the loss in detail due to the application of approx-
imation can be neglected. A user most likely issues a skyline query to find out about
his/her options without having to define which ranking function r ∈ R is more important
to him/her in advance. Thus, the relaxed skyline result might help him/her to come to
a decision. Afterwards, in case the user needs more detailed information about a specific
represented region, he/she can still issue a more specific query. The overview, however,
was computed efficiently and presented already after a short time in comparison to the
exact computation.

Distributed Processing of Relaxed Skylines

The algorithm for processing relaxed skyline queries (sketched in Algorithm 24) is based
on the baseline algorithm of Algorithm 20 and optionally considers constraints. Just as
for relaxed top-N queries we assume that the distance function da as well as the maximum
approximation ε are part of the query’s definition. The main difference to the baseline
algorithm is the introduction of an additional step, which tries to find representatives for
the regions identified as being relevant to the query. The algorithm can be summarized
by the following steps that are executed at each peer:

• computing the skyline on regions Bsky on the union of the peer’s local data, DDS
regions, and the records received along with the query,

• trying to find representatives for all regions B ∈ Bsky using distance function da,
the maximum approximation ε, all local records, and the records received along
with the query,

188 Processing Rank-Aware Queries in Schema-Based P2P Systems

6.4 Relaxation

• forwarding the query to all peers providing data in regions that could not be repre-
sented by representatives, all records p ∈ Bsky (no regions and representatives) are
forwarded along with the query,

• receiving the answers from all queried neighbors and determining the skyline on
the union of the partial results received from the neighbors and the local result –
the latter containing representatives for the data of neighbors that have not been
queried, and

• trying to minimize the number of representatives that are part of the skyline com-
puted in the previous step and forwarding the resulting skyline to the query’s sender
or outputting it to the user.

In the context of processing top-N queries we have already described how to determine
representatives and how to combine them. We can use the same algorithms without
further adaptations in the context of skyline queries. However, what we still need to
discuss is how to compute a skyline on representatives.

Algorithm 24 Relaxed Skyline Query Processing
1: I. initiate a skyline query (Blocal,Cuser,da,ε)
2: BRI = removeEntries(BRI ,Cuser);
3: Bsky = skyline(BRI ∪ Blocal);
4: Bsky = tryToReplaceRegionsWithRepresentatives(Brec,da,ε,Bsky);
5: askNeighborsSkyline(Bsky , BRI);
6: self.cache.storeResult(Bsky \ BRI);
7:
8: II. receive a skyline query (Blocal,Bsender,Cuser,da,ε)
9: BRI = {B ∈ BRI |B not provided by sender};
10: BRI = removeEntries(BRI ,Cuser);
11: Bsky = skyline(BRI ∪ Blocal ∪ Bsender);
12: Bsky = tryToReplaceRegionsWithRepresentatives(Brec ∪ Bsender,da,ε,Bsky);
13: askNeighborsSkyline(Bsky , BRI);
14: self.cache.storeResult(Bsky \ BRI);
15:
16: III. receive a skyline answer (Banswer)
17: Bsky = skyline(self.cache.getResult() ∪ Banswer);
18: if all queried neighbors have answered then
19: if self is initiator then
20: outputResultToTheUser(Bsky);;
21: else
22: Bsky = minimizeRepresentatives(Bsky);
23: sendSkylineAnswer(Bsky);
24: end if
25: else
26: self.cache.storeResult(Bsky);
27: end if

Skyline Computation on Representatives

So far we use ≺RReg
, as defined in Equations 6.5 through 6.8, to compute the skyline on

data records and regions. In order to compute a skyline in consideration of representa-
tives, we extend the dominance relation once more to ≺RRep

. As we do not know exactly
what records are represented (i.e., we do not know their attribute values) but only the
region that is represented, we can again use pmin and pmax to decide on dominance. Given

Processing Rank-Aware Queries in Schema-Based P2P Systems 189

6.5 Evaluation

two representatives R1 = (p1, B1) and R2 = (p2, B2), then R1 dominates R2 if pmax(B1)
dominates pmin(B2), thus:

pmax(B1) ≺R pmin(B2) ⇒ B1 ≺RReg
B2 ⇒ R1 ≺RRep

R2 (6.13)

Furthermore R1 dominates R2 if the representing record of R1 dominates the region
represented by R2, thus:

p1 ≺RReg
B2 ⇒ R1 ≺RRep

R2 (6.14)

Consequently, in order to determine if a representative dominates another representative,
we simply need to evaluate the conditions defined in Equations 6.13 and 6.14. For
combinations of representatives and regions/records, we simply extract the information
about the represented region and determine the dominance relationship according to
Equations 6.5 through 6.8.

6.5 Evaluation

In this chapter we have introduced techniques and algorithms for efficiently processing
rank-aware queries based on DDSs. In order to evaluate their performance, we imple-
mented all these algorithms in SmurfPDMS (Chapter 7). In order to eliminate interfering
side-effects of the rewriting component, we performed all tests in a network with peers
using the same schema. We focused on four different setups, each is based on the same
cycle-free topology of 100 peers but uses different data sets. We also performed the
same tests in bigger and smaller networks but, as expected, found the same tendencies.
Thus, in the following we focus on our results for the network of 100 peers with each
peer providing 50 four-dimensional data records and having 1 to 3 neighbors. All dimen-
sions/attribute values are restricted to the interval [0, 1000] and indexed by DDSs with
four-dimensional base structures. The four setups that we consider are:

1. Random Data, Random Distribution: For each peer 50 data records are created.
The attribute values of each data record and for all dimensions are chosen ran-
domly but restricted to the interval [0, 1000]. Each attribute value is determined
independently from the others. Figure 6.7(a) depicts the data that all 100 peers
provide altogether.

2. Clustered Data, Random Distribution: 100 cluster centers are chosen in the style of
random data. 5000 data records are created (50 per cluster) by offsetting each of
the cluster center’s four attribute values by adding a random value of the interval
[−10, 10]. The resulting 5000 records are distributed randomly among all 100 peers
so that each peer is assigned a set of 50 records, which are likely to originate from
different clusters. Figure 6.7(b) shows the set of 5000 records.

3. Clustered Data, Clustered Distribution: The same data set is used as in the previous
scenario but distributed differently among the peers. In this setup each peer is
assigned one of the 100 clusters so that each peer provides all 50 records of one
cluster.

190 Processing Rank-Aware Queries in Schema-Based P2P Systems

6.5 Evaluation

4. Anticorrelated Data, Random Distribution: 5000 records are created by randomly
choosing a point for each record on the straight line through p1(1000, 0, 0, 1000)
and p2(0, 1000, 1000, 0). This randomly chosen point is offset by a random value of
[−10, 10] for each dimension. Each peer is assigned a set of 50 records. Figure 6.7(c)
shows the corresponding data that all peers provide altogether.

The DDSs used in our tests were defined on all four attributes/dimensions. In our
tests we used QTree-based DDSs as well as multidimensional equi-width histogram-based
DDSs – in the following referred to as QDDSs and HDDSs. The parameters for QDDSs
were bmax = 50 and fmax = 4. HDDSs were allowed five buckets per dimension, i.e.,
625 in total for each neighbor. In all our tests we varied the relaxation parameter ε
from 0 to 1100 and applied the Euclidean Distance as distance function da. To enable
comparability, in each test the same peer issued the same query. In order to make use
of our multidimensional index structures, the top-N (N = 500) test query is defined on
two attributes by the following ranking function: attribute1 + attribute2. Likewise, the
skyline test query is defined as MIN(attribute1) and MIN(attribute2).

(a) Random (b) Clustered (c) Anticorrelated

Figure 6.7: Two-Dimensional Projection of the Four-Dimensional Test Data Sets

6.5.1 Top-N Queries

To evaluate our techniques for top-N query processing, let us first discuss Figures 6.8(a),
6.8(b), and 6.8(c) in that we used QDDSs with bmax = 50. These three figures show
how (a) the number of messages (answer and query), (b) the message volume, and (c)
the deviation from the exact answer to the query change with increasing values for the
approximation parameter ε. As the general reduction of the number of messages for all
four scenarios in Figure 6.8(a) indicates, in accordance with our intention, the application
of relaxation reduces query execution costs, i.e., the higher ε the greater is the cost
reduction in terms of the number of messages. Since the message volume is closely
related to the number of messages, it is reduced as well with increasing ε – Figure 6.8(b).

Apart from this general tendency, these results permit drawing conclusions concerning
the amount of cost reduction that originates from the mere use of DDSs: the test run with
ε set to 0 corresponds to the exact algorithm, i.e., DDSs are considered but relaxation is
not applied. In case of scenario 3 (clustered data in a clustered distribution), by the mere
use of DDSs the number of messages necessary to answer the query is reduced to less
than 15% in comparison to the alternative of flooding. The reason for this effect is that
this is the best scenario for any DDS since each peer provides data in only one cluster

Processing Rank-Aware Queries in Schema-Based P2P Systems 191

6.5 Evaluation

so that these clusters can be represented easily with low approximation error. Using this
information enables the strategy to prune many peers from consideration, which results
in the reduction in the number of messages and also in the reduction of data volume.
Thus, cost reduction depends not only on the applied degree of approximation but also
on the data distribution and the quality of DDS summarization.

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

N
um

be
r

of
 M

es
sa

ge
s

Epsilon

random data, random distribution

clustered data, random distribution
clustered data, clustered distribution

flooding

anticorrelated data, random distribution

(a) Number of Messages, QDDSs 50

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0 200 400 600 800 1000M
es

sa
ge

 V
ol

um
e

in
 k

B

Epsilon
random data, random distribution

clustered data, random distribution
clustered data, clustered distribution

flooding

anticorrelated data, random distribution

(b) Message Volume, QDDSs 50

 0
 50

 100
 150
 200
 250
 300
 350

 0 200 400 600 800 1000

D
ev

ia
tio

n

Epsilon
random data, random distribution

clustered data, random distribution
clustered data, clustered distribution

flooding

anticorrelated data, random distribution

(c) Deviation from Exact Result, QDDSs 50

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

N
um

be
r

of
 M

es
sa

ge
s

Epsilon

random data, random distribution

clustered data, random distribution
clustered data, clustered distribution

flooding

anticorrelated data, random distribution

(d) Number of Messages, HDDSs 625

Figure 6.8: Distributed Processing of Relaxed Top-N Queries

Another question we want to answer is: how does the application of approximation
influence result quality? Figure 6.8(c) answers this question. It shows the average devi-
ation (Euclidean distance) of each record of the exact result (ε = 0) to its corresponding
representing record that has been output to the user. Note that this does not mean the
algorithm has made an error. It is only the consequence of the allowed relaxation that
has been seized. In comparison to Figures 6.8(a) and 6.8(b) we see that the reduction of
execution costs achieved by applying approximation is directly connected to the increase
in the average deviation to the exact result.

In order to compare QDDSs and HDDSs, we performed the same tests with HDDSs
as well – Figure 6.8(d) shows our results with respect to the number of messages. The
QDDSs that we used in the previous tests were allowed 50 buckets to summarize the data
of all neighbors altogether whereas the HDDSs in these tests were allowed 625 buckets
for each neighbor. However, we still consider this to be a fair comparison as in our
implementation and in our network the overall consumption of memory space that both
(QDDSs 50 and HDDSs 625) require is about the same. By comparing Figures 6.8(a)
and 6.8(d) we see that no matter what DDS variant we use the general tendency of
message reduction with increasing ε remains the same. QDDSs are the best choice for

192 Processing Rank-Aware Queries in Schema-Based P2P Systems

6.5 Evaluation

several setups. But there are some scenarios for that HDDSs are the better choice:
scenarios 1 (random data in a random distribution) and 2 (clustered data in a random
distribution). The reason for this effect is that for random data there are no clusters that
can be summarized easily by QDDSs. Clustered data distributed in a random fashion
among all peers is likewise difficult to summarize by QDDSs – especially if we consider
that each peer might provide data of 50 different clusters and a peer is only allowed to
use 50 buckets to describe the data of all neighbors altogether. Thus, buckets have to
be very big in order to cover the whole data space and a high value for ε is necessary
to replace relevant regions with representatives. As HDDSs were allowed much more
buckets, despite the firm grid of buckets that is not adapted no matter what the data
distribution looks like, the buckets’ regions are much smaller and hence can be replaced
by representatives with lower values for ε. Increasing the number of QDDS buckets also
counteracts this problem, as illustrated in Figure 6.9.

 0

 50

 100

 150

 0 20 40 60 80 100 120

N
um

be
r

of
 M

es
sa

ge
s no index

QTree 50
QTree 100

hist 625
hist 10000

 200

Space Consumption in kB

(a) anticorrelated data, random distribution

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

N
um

be
r

of
 M

es
sa

ge
s no index

QTree 50
QTree 100

hist 625
hist 10000

Space Consumption in kB

(b) clustered data, clustered distribution

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

N
um

be
r

of
 M

es
sa

ge
s no index

QTree 50
QTree 100

hist 625
hist 10000

Space Consumption in kB

(c) clustered data, random distribution

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

N
um

be
r

of
 M

es
sa

ge
s

no index
QTree 50

QTree 100
hist 625

hist 10000

Space Consumption in kB

(d) random data, random distribution

Figure 6.9: Cost-Benefit-Analysis for Top-N Query Processing in Conjunction with Dif-
ferent Types of DDSs. ε = 400, skyline points red, non-skyline points blue

Figure 6.9 shows the dependency of execution costs (i.e., the number of messages) on
the memory space required to manage DDSs. It shows some examples for QDDSs and
HDDSs in our four network setups – note that the memory space strongly depends on
the implementation and may therefore differ between implementations. But given our
two implementations, the question we need to answer is: what is the best choice? As all
too often, it depends. . .

Let us regard this as an optimization problem. We want to minimize two criteria:
memory space and execution costs. And we want to find good combinations with accept-
able values for both criteria. Since we cannot yet specify any reasonable boundaries for

Processing Rank-Aware Queries in Schema-Based P2P Systems 193

6.5 Evaluation

these two criteria nor importance rankings, we have a situation where the computation of
a skyline might help: the red points in Figure 6.9 represent the skylines that reveal what
DDSs represent “good combinations” for both criteria using an ε of 400 in conjunction
with QDDSs (bmax = 50 and bmax = 100), HDDSs (625 buckets and 10000 buckets),
and a flooding approach. Of course, the point representing the absence of any index
is always in the skyline because it requires no memory space at all, i.e., representing a
minimal value for one of the two dimensions. In Figures 6.9(a) and 6.9(b) QDDSs clearly
dominate HDDSs. However, as we have already concluded by means of Figures 6.8(a)
and 6.8(d), HDDSs are the better choice for other scenarios – Figures 6.9(c) and 6.9(d).
For random data (Figure 6.9(d)) we have to invest much memory space to obtain only a
small reduction in execution costs.

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

N
um

be
r

of
 M

es
sa

ge
s

Epsilon

random data, random distribution

clustered data, random distribution
clustered data, clustered distribution

flooding

anticorrelated data, random distribution

(a) Number of Messages, Constrained
Top-N , QDDSs 50

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

N
um

be
r

of
 M

es
sa

ge
s

Epsilon

random data, random distribution

clustered data, random distribution
clustered data, clustered distribution

flooding

anticorrelated data, random distribution

(b) Number of Messages, Constrained
Top-N , HDDSs 625

Figure 6.10: Distributed Processing of Relaxed Constrained Top-N Queries

Finally, let us point out what happens if we additionally apply constraints. The
constraints we applied restrict all attribute values to the interval [500, 1000]. One might
expect that reducing the query space to a quarter might reduce execution costs since there
is less relevant data in the network and thus less peers providing relevant data. However,
our results illustrated in Figures 6.10(a) and 6.10(b) teach us otherwise. In comparison to
full space queries, execution costs slightly increase with the application of constraints or
stay more or less the same for three out of four test scenarios and for both kinds of DDSs.
The reason is that for these three scenarios the set of records representing the answer to
the query in the constrained space is different from the set of records representing the
answer to the full space query. In fact, it is possible that they share not even a single
record. Thus, many regions that have not been relevant before, suddenly become relevant
and peers are queried that would not be queried for the full space query. Furthermore,
as the relevant data space is reduced, the set of local records that could be used to define
representatives decreases so that the chance of finding representatives is lower.

This is different for the anticorrelated data setup. In this case by defining the con-
straints as explained above, the network no longer provides N records that fulfill the
constraints. Thus, the amount of relevant data is reduced. As QDDSs offer a very good
summarization of anticorrelated data, the application of QDDSs leads to a cost reduc-
tion for constrained queries. This is supported by the fact that even without applying
approximation (ε = 0), query execution costs are reduced – Figure 6.10(a). However,

194 Processing Rank-Aware Queries in Schema-Based P2P Systems

6.5 Evaluation

when applying HDDSs we can hardly notice this effect. In contrast, we can even notice
a slight increase in execution costs because of a contrary effect. There are only a few
records and regions left that are relevant to answer the query. In conjunction with the
worse approximation quality of HDDSs, i.e., regions tend to be larger in comparison to
QDDSs, it is harder for a peer to define representatives based on its local data for relevant
regions that neighboring peers provide data for.

6.5.2 Skyline Queries

With respect to skyline queries we basically found the same tendencies that we have
already found for top-N queries:

• applying DDSs alone without relaxation already reduces execution costs – Fig-
ure 6.11(a),

• for all four scenarios the number of messages and the corresponding data volume
decrease for higher values of ε – Figures 6.11(a) and 6.11(b),

• while query execution costs decrease with increasing ε, the deviation to the exact
answer increases – Figure 6.11(c), and

• all these tendencies are the same for QDDSs and HDDSs – Figures 6.11(a) and
6.11(d).

We also examined the influence of the data distribution on performance. The anticor-
related data setup in particular is expected to cause high execution costs. However,
especially for this kind of data our techniques show the greatest increase in performance,
although of all setups this is usually the worst case scenario for any skyline algorithm be-
cause of the potentially high number of result records [19]. As Figures 6.11(a) and 6.11(d)
show, for this setup the number of messages is already low even for small values of ε in
comparison to the other scenarios. This is because even a small ε allows the algorithm
to represent data provided by neighboring peers. Thus, both the number of messages
and the data volume are reduced. With respect to the other setups Figures 6.11(a) and
6.11(d) show the same tendencies as for top-N queries: HDDSs again allow for a better
performance for higher ε in the cases of the “clustered data, random distribution” and
“random data, random distribution” scenarios because QDDSs have less buckets at their
disposal to summarize the data.

Figures 6.12(a) and 6.12(b) answer the question what happens when we additionally
introduce constraints. In these tests we again applied constraints restricting relevant
attribute values to the interval [500, 1000]. As these results again show, applying con-
straints is not always an appropriate means to reduce execution costs. On the contrary,
for some scenarios query execution costs are increased. The reason is that the skyline
of a constrained data space consists of different records than the full space query and
thus peers that have not been relevant before become relevant and have to be considered.
Furthermore, with less records being relevant it is harder to define representatives based
on local data records for relevant data (regions) of neighboring peers. However, for the
anticorrelated data set we again benefit from the fact that the size of the result set is
smaller in comparison to the full space query. In contrast to top-N queries we also note
this effect for the clustered data set in the clustered distribution: the size of the result
set decreases and as a consequence of the distribution also the number of relevant peers.

Processing Rank-Aware Queries in Schema-Based P2P Systems 195

6.6 Conclusion

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

N
um

be
r

of
 M

es
sa

ge
s

Epsilon

random data, random distribution

clustered data, random distribution
clustered data, clustered distribution

flooding

anticorrelated data, random distribution

(a) Number of Messages, QDDSs 50

 0

 2000

 4000

 6000

 8000

 10000

 0 200 400 600 800 1000M
es

sa
ge

 V
ol

um
e

in
 k

B

Epsilon
random data, random distribution

clustered data, random distribution
clustered data, clustered distribution

flooding

anticorrelated data, random distribution

(b) Message Volume, QDDSs 50

 0
 50

 100
 150
 200
 250
 300
 350

 0 200 400 600 800 1000

D
ev

ia
tio

n

Epsilon
random data, random distribution

clustered data, random distribution
clustered data, clustered distribution

flooding

anticorrelated data, random distribution

(c) Deviation from Exact Result, QDDSs 50

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

N
um

be
r

of
 M

es
sa

ge
s

Epsilon

random data, random distribution

clustered data, random distribution
clustered data, clustered distribution

flooding

anticorrelated data, random distribution

(d) Number of Messages, HDDSs 625

Figure 6.11: Distributed Processing of Relaxed Skylines

Finally, Figure 6.13 helps us identify what DDS structures provide a good combination
of space consumption and cost reduction. With respect to skyline queries QDDSs are the
best choice for the anticorrelated data, random data, and the “clustered data, clustered
distribution” scenario. For a setup that corresponds to the clustered data in a random
distribution scenario, with respect to skyline queries QDDSs as well as HDDSs might be
preferred depending on the available space because all DDSs we tested represent good
combinations of both criteria (query execution costs and space consumption).

6.6 Conclusion

In this chapter, we have introduced efficient strategies for processing rank-aware queries
(top-N and skyline) in distributed environments (PDMSs as well as unstructured P2P
systems in general). These strategies exploit the information provided by DDSs and may
additionally consider relaxation and constraints. Our evaluation results show that there
are various aspects influencing query execution costs. One of the main aspects is the
data distribution. It primarily determines the quality of DDSs, i.e., in general clustered
data can be summarized more efficiently than random data. Of course, the chosen DDS
variant (e.g., QDDSs or HDDSs) also influences the quality of the summarization by im-
plementation specific characteristics. Furthermore, the data distribution also influences
the number of result records and thus also the amount of relevant data (and peers) that
needs to be considered in order to answer a query correctly.

Another aspect influencing execution costs is the application of relaxation. Our eval-

196 Processing Rank-Aware Queries in Schema-Based P2P Systems

6.6 Conclusion

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

N
um

be
r

of
 M

es
sa

ge
s

Epsilon

random data, random distribution

clustered data, random distribution
clustered data, clustered distribution

flooding

anticorrelated data, random distribution

(a) Number of Messages, Constrained Sky-
lines, QDDSs 50

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

N
um

be
r

of
 M

es
sa

ge
s

Epsilon

random data, random distribution

clustered data, random distribution
clustered data, clustered distribution

flooding

anticorrelated data, random distribution

(b) Number of Messages, Constrained Sky-
lines, HDDSs 625

Figure 6.12: Distributed Processing of Relaxed Constrained Skylines

uation has shown, as it was our intention, that relaxation may help to reduce costs in
terms of the number of sent messages and data volume. This is especially true for the
anticorrelated data set in conjunction with skyline queries although most algorithms,
also those for centralized systems, in general perform poorly for this kind of data. Hence,
considering this technique for centralized systems could be an interesting aspect of future
work.

The algorithms proposed in this chapter optionally consider constraints. With respect
to rank-aware queries, the application of constraints does not necessarily mean the query
load is reduced. The reason is that due to the restriction the result most likely contains
totally different records in comparison to the non-restricted case. Thus, in conjunction
with rank-aware queries, constraints cannot be considered an appropriate means to reduce
execution costs.

Although we have only presented our results with respect to the basic query shipping
approach (Section 2.5.1), i.e., each peer waits for the answers from all queried neighbors
before it sends an own answer, the tendencies we found also hold for incremental strate-
gies (IMS Section 2.5.3), i.e., each peer sends answer messages as soon as it identifies
new result records, for example upon having received an answer message from one of its
neighbors. In future work we might consider optimizing both strategies, e.g., by repre-
senting regions not only with single records but with a set of records as illustrated in
Figure 6.5(b) or by using a query cache to reuse the result sets of previous queries and
issue only compensation queries to retrieve the data that cannot be obtained from the
cache.

The strategies we have proposed in this chapter forward additional information along
with the query in order to help the receiving peer prune records and peers from consid-
eration (Sections 6.1.2 and 6.2.2). So far this additional information is determined only
based on data records that are guaranteed to be available, i.e., local data records of the
peer forwarding the query and local data records of peers on the path to the initiator that
the query has been propagated on. Extended variants of our strategies could consider
not only guaranteed data but also data a peer hopes to receive from neighboring peers.
In doing so, a peer acts on the assumption that it will receive the data represented by the
routing indexes from its neighbors. However, peers might have left the network and the

Processing Rank-Aware Queries in Schema-Based P2P Systems 197

6.6 Conclusion

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

N
um

be
r

of
 M

es
sa

ge
s no index

QTree 50
QTree 100

hist 625
hist 10000

Space Consumption in kB

(a) anticorr data, random distribution

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

N
um

be
r

of
 M

es
sa

ge
s no index

QTree 50
QTree 100

hist 625
hist 10000

Space Consumption in kB

(b) clustered data, clustered distribution

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

N
um

be
r

of
 M

es
sa

ge
s no index

QTree 50
QTree 100

hist 625
hist 10000

Space Consumption in kB

(c) clustered data, random distribution

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

N
um

be
r

of
 M

es
sa

ge
s

no index
QTree 50

QTree 100
hist 625

hist 10000

Space Consumption in kB

(d) random data, random distribution

Figure 6.13: Cost Benefit Analysis for Skyline Query Processing in Conjunction with
Different Types of DDSs. ε = 400, skyline points red, non-skyline points blue

routing indexes might not have been updated yet. If the information added to forwarded
queries is based on such incorrect data, it is possible that the obtained result records
do not meet the expectations. In that case, a peer needs to issue compensation queries
in order to obtain the missing result records. As issuing such compensation queries is
expensive, the strategies proposed in this chapter consider only guaranteed data to refine
the forwarded query.

198 Processing Rank-Aware Queries in Schema-Based P2P Systems

Chapter 7

SmurfPDMS

In this dissertation we have proposed techniques that extend PDMS functionality to
support rank-aware query operators and approximation in conjunction with XML data.
In order to evaluate our approaches, we needed to implement these techniques. As we
have already pointed out in Section 2.7, existing PDMS implementations are hard to
extend to support our techniques and strategies. Furthermore, most existing simulators
such as ns-2 [148] are too low-level to simulate PDMSs. Thus, we decided to create a new
environment that supports all the techniques we have discussed in the previous chapters.

The main requirements an appropriate environment has to fulfill are the support of
XML data, heterogeneity, mappings, query rewriting algorithms, routing indexes and
corresponding maintenance strategies, and query processing strategies considering rank-
aware query operators and approximation/relaxation. Furthermore, as our ambition was
to create an environment to help us evaluate our techniques, the resulting environment
should be extensible in several ways so that in the future we can add additional strategies
and compare them to others. For evaluation, the environment has to be able to use
different network topologies, data distributions, and query loads. In this sense, it should
be able to simulate arbitrary large-scale networks. In order to evaluate the influence of
individual parameters, the environment should be able to reproduce exactly the same
initial configurations of a PDMS for multiple test runs (repeatability). On a higher level,
it should be platform independent and provide tools to support the user in creating initial
setups and conducting experiments. Finally, a graphical user interface could visualize the
simulated PDMS.

In this chapter, we present SmurfPDMS (SiMUlating enviRonment For PDMSs)1 [88,
91,105], a simulator that fulfills all these requirements and incorporates all the techniques
we have proposed in this dissertation. We decided to implement a simulator instead of
a real system as in a simulator we can control external influences on the system and
better measure the performance of our strategies. In this chapter, we first present the
system architecture of SmurfPDMS and proceed with discussing its main components.
Afterwards, we illustrate the workflow of a simulation and then go into details on some
implementational issues.

1Only recently, we have learned that there is another project at UC Berkeley named SMURF [102],
which is an approach for RFID data cleaning. The similarity in the projects’ names is purely coincidental.

199

7.1 System Architecture

7.1 System Architecture

For simulating large networks (especially with a lot of data provided by the peers) the
capacities of one computer might not be enough. Thus, we decided to optionally com-
bine the resources of multiple computers, e.g., a number of PlanetLab [160] nodes. Each
computer runs an instance of SmurfPDMS and simulates a partition of the simulated net-
work. In this context, we have to distinguish between a (simulated) peer and a computer,
which might possibly run multiple SmurfPDMS instances. When multiple instances are
involved in a simulation, one of them takes on a special role: it serves as the simulation
coordinator, which synchronizes all other instances (participants). Note that this coordi-
nator is only used to run a simulation of a simulated PDMS on multiple computers and
does in no way correspond to a mediator in data integration systems. However, using
the simplest configuration, one computer simulates a whole network of peers and their
interactions. An important task of the coordinator while running a simulation is synchro-
nizing all participants. For this purpose, we introduced discrete time steps and a central
simulation clock at the coordinator. The coordinator synchronizes all participants so
that they are always in the same simulation step. In each time step at most one message
is processed for each simulated peer, e.g., processing a query and possibly forwarding it
to neighboring peers. In order to simulate processing time and communication delays,
messages are assigned arrival times indicating the earliest time step in the future at which
the message can be processed.

This kind of synchronization enables the elimination of all random delays that might
occur when transferring data from one computer to another. Instead, we can “control”
communication delays between peers and processing time at the peers by simulating this
behavior. Furthermore, the application of discrete time steps enables repeatability, e.g.,
queries can be issued at exactly the same time and with exactly the same communication
delays and processing times. Besides, the influence of communication delays can even be
completely switched off.

The requirements stated above led to the system architecture illustrated in Figure 7.1:
SmurfPDMS consists of three independent layers. The bottom layer is the network layer,
which enables communication between SmurfPDMS instances. The middle layer (simu-
lation layer) is responsible for running a simulation. Finally, the top layer (GUI layer)
provides a graphical user interface that enables configuration, monitoring, and interac-
tion with the system. We designed SmurfPDMS with the intention to make it extensible
with respect not only to the strategies we have proposed but also to the layers. Thus, we
can easily exchange the communication protocol of the network layer – we have already
done so by replacing JXTA [106, 149] with TCP/IP communication. Furthermore, the
simulation layer is completely independent from the GUI layer such that we can even
run simulations without the graphical component. To ensure platform independence we
chose Java as programming language.

In the remainder of this section, we discuss some more details on the three layers
and their main components shown in Figure 7.1. Our current implementation consists
of about 700 classes (about 120, 000 lines of code) organized in multiple packages. For
the sake of brevity, we discuss only the most important classes – leaving out details on
aspects such as exception/error handling and thread implementation.

200 Processing Rank-Aware Queries in Schema-Based P2P Systems

7.1 System Architecture

Statistics

Manager

Peer Init

Manager

Rewriting

Manager

Startup

Manager
Simulation

Manager

LocalPeer

Manager

Remote P.

Manager
PeerObjects

9

3

8

1

5

Simulation Coordinator

Diagrams

Configuration

Files

User Interface

Swing

JGraph

PeerObjects

7

2

6

0

4

Simulation Participant

Simulation
Layer

GUI
Layer

User Interface

Swing

JGraph

Diagram

Creator

Simulation

Core

Simulation

Core

Statistics

Manager

LocalPeer

Manager

Remote P.

Manager

Network

Manager

Communication

Coordinator Participant

Network

Manager

Communication

Network
Layer

Rewriting

Manager

Statistics

Remote

Instance

Remote

Instance

Remote

Instance
Remote

Instance

Remote

Instance

Remote

Instance

Startup

Manager
Simulation

Manager

Evaluation

Component

Figure 7.1: SmurfPDMS System Architecture

7.1.1 Network Layer

The network layer, which in our current implementation uses TCP/IP, is responsible for
all communication between SmurfPDMS instances. Communication is necessary due to
various reasons, e.g., finding further SmurfPDMS instances to participate in a simulation,
communication between coordinator and participants to set up the initial configuration,
synchronization, and collecting statistics at the end of a test run.

The network layer is independent from the simulation layer and all direct communi-
cation between SmurfPDMS instances is effectuated by the Remote Instance class that
manages the connection to another SmurfPDMS instance. Thus, we can replace the
communication protocol and still use the same interface without having to adapt the
simulation layer. The only components in the simulation layer directly interacting with
the communication layer, i.e., with Remote Instance, are the Simulation Manager, the
Remote Peer Manager, and the Remote Peer – as illustrated in Figure 7.2 and discussed
below.

7.1.2 Simulation Layer

The simulation layer incorporates all classes necessary to run a simulation. It contains
the implementation of all techniques and strategies we have discussed in this dissertation
(referred to as Simulation Core). Within the simulation layer we payed attention to allow
extensibility so that a direct comparison between different approaches is possible. For
instance, in this dissertation we have discussed and evaluated two types of distributed
data summaries (QTree-based and histogram-based), but nevertheless SmurfPDMS can

Processing Rank-Aware Queries in Schema-Based P2P Systems 201

7.1 System Architecture

Network Manager Remote Instance

Peer Manager

Remote Peer Manager
Local Peer Manager

Peer

Local Peer

Remote Peer

Message Queue Cache

Neighbor

Index

Simulation Manager

Simulation Coordinator

Simulation Participant

Simulation Clock

Simulation Layer

Network Layer

Figure 7.2: SmurfPDMS – Class Diagram: Associations between Simulation Layer and
Network Layer

be extended by even more variants. This is also true for other techniques such as main-
tenance strategies, query processing strategies, and rewriting algorithms. In addition to
extensibility we also set a high value on repeatability: that is why we enabled Smurf-
PDMS to retrieve aspects such as the simulated network and events from configuration
files.

In addition to the Simulation Core, the simulation layer contains multiple managers
(Figure 7.1) and components performing special tasks. The Simulation Manager imple-
ments the main routines of SmurfPDMS and is responsible for instantiating all other
managers and running the simulation. It synchronizes SmurfPDMS instances and simu-
lates query processing as well as dynamic behavior (Section 7.4.3). The Startup Manager
and the Peer Initialization Manager implement all tasks necessary to start a simulation,
e.g., determining the initial setup of the simulated PDMS, query load, partitioning the
simulated network, and assigning the partitions to participating SmurfPDMS instances
(Section 7.4.2).

The Local Peer Manager manages and simulates the behavior of the peers contained in
the partition of the simulated network that has been assigned to a SmurfPDMS instance.
As during a simulation it is necessary to exchange data between SmurfPDMS instances,
e.g., queries might be sent from peers of the local partition to peers assigned to other
partitions, the Remote Peer Manager transparently manages all communication to non-

202 Processing Rank-Aware Queries in Schema-Based P2P Systems

7.1 System Architecture

locally simulated peers in conjunction with the network layer (Section 7.4.3).
While running a simulation the Statistics Manager collects statistics that, after the

simulation has ended, can be used to create diagrams (using the Diagram Generator).
In most cases the user may have to run multiple simulations to evaluate an approach
properly. Thus, to enable the user to run such test series in an automated fashion, the
Evaluation Component offers a variety of preconfigured test series, which can still be
extended to support additional ones (Section 7.4.4).

7.1.3 GUI Layer

In order to make configuring and controlling a simulation more convenient, SmurfPDMS
provides a graphical user interface [105], whose main window is shown in Figure 7.3.
Using this GUI, the user can specify all configuration parameters necessary to run a
simulation. To start a simulation the user selects some of the displayed SmurfPDMS
instances and presses the start button (Section 7.4.1).

pcdb13.prakinf.tu-ilmenau.de 141.24.33.18 10
planetlab02.mpi-sws.mpg.de 139.19.142.2 20
bonnie.idbs.uka.de 141.3.41.242 20

planet1.prakinf.tu-ilmenau.de 141.24.33.161 10

Figure 7.3: SmurfPDMS GUI – Main Window

Once the simulation is started, all GUI buttons are disabled for all participants.
However, at the coordinator’s site the simulation window, which enables the user to
control the simulation, becomes available (Figure 7.4). It shows the simulated network
of peers and the communication links between them. If a message is sent between any
two peers, a message symbol is attached to the link. By double-clicking on a peer symbol,
additional information about the peer such as the peer’s local data, routing index, and
mappings is displayed. Likewise, by double-clicking on a message symbol, additional
information about the message is displayed, e.g., its type (answer, query, or update) and
its contents (query POP tree, data records, ARLists, etc.).

Processing Rank-Aware Queries in Schema-Based P2P Systems 203

7.1 System Architecture

Peer

Message

Link

Control Panel

Figure 7.4: SmurfPDMS GUI – Simulation Windows: Simulation Window (center),
Rewriting Info Window (top left), Message Info Window (top right), Query Initiation
Window (bottom right), and Peer Info Window (bottom left).

In order to display the network topology we use JGraph [103], which is based on
Java Swing. Although it provides a variety of features, its open source version provides
only premature layout algorithms to display network graphs. Thus, we implemented two
additional layout algorithms (Radial Tree [200, 207] and the Spring Model [67]), which
we use in our current implementation to arrange the peers of the simulated network in
the simulation window.

In addition to displaying the simulated network and the messages sent from one peer
to another, the simulation window also provides a control panel. Its buttons allow the
user to start, halt, or end the simulation without having to wait for any predefined
stop criteria such as a maximum runtime for the simulation. Furthermore, the user is
given the opportunity to decide if the simulation shall proceed automatically to the next
simulation step once the previous is completed on all participants. An alternative is that
the simulator processes only a user-defined number of steps and afterwards waits for the
next user instruction. The user might also decide to issue a query. Figure 7.4 shows the
corresponding window that enables the definition of a time step, a query, and a simulated
peer to issue the query at.

If rewriting is activated, the user might want to access additional information about
how a query is rewritten from one schema into another during runtime. Thus, Smurf-
PDMS also provides a rewriting window (Figure 7.4) displaying the rewritings of pro-

204 Processing Rank-Aware Queries in Schema-Based P2P Systems

7.2 Simulation Core

cessed queries, which is updated whenever a peer rewrites a query. After the simulation
has ended and the coordinator has collected all necessary statistics from the participants,
some immediate statistics for the simulation are displayed to the user – Figure 7.5.

Figure 7.5: SmurfPDMS GUI – Statistics Window

7.2 Simulation Core

After having discussed the basic architecture of our system, let us now focus on how we
integrated our techniques so that the simulator is still extensible. The main classes of
the Simulation Core are sketched in Figure 7.6.

Routing Indexes and their Maintenance

Each simulated peer is represented by a Local Peer instance, which references one instance
of Neighbor for each of the peer’s neighbors in the simulated network. Each Neighbor in-
stance unambiguously identifies a neighboring peer and has a reference to a routing index
(instance of a class derived from Compound Routing Index – Figure 7.6). In Chapter 5
we have stated that in order to construct routing indexes each peer needs to compute a
local summary of its local data (Local Index). Furthermore, this local summary plays an
important role for index maintenance strategies and update merging. The need for both,
a local index and a routing index, both using the same base structure, results in the class
hierarchy depicted in Figure 7.6. Both classes Local Index and Compound Routing Index
are derived from the same base class Index. Both are extended by QTree-based index

Processing Rank-Aware Queries in Schema-Based P2P Systems 205

7.2 Simulation Core

Skyline POPTopN POP

Union POP

Select POP

Join POP

Query

POP

Local Peer

Neighbor

Extended Bucket
Algorithm

QueryRewriting
Algorithm

Mapping
Definition

Incremental
Message
Shipping

Query
Shipping

QueryProcessing
Strategy

Construct POPRelaxed POP

Remote Query
POP

Index

Compound
Routing IndexLocal Index

XPath LI
Bucket Based

LI
Bucket Based

CRI
XPath RI

QTree RI
Multidimensional

Histogram RI

Multidimensional
Equi Width
Histogram

QTree

Event
Logoff

Logon

Logon
Compensate

Logon Answer

Update Update Request

RI Maintenance
Strategy

TPS
Propagation
on Demand

QFSQES

ATPSSTPS

Figure 7.6: SmurfPDMS – Simulation Core Architecture. For the sake of clarity, we
display only the most important associations between the displayed classes.

classes (QTree, QTreeRI), histogram-based index classes (MultidimensionalEquiWidth-
Histogram, MultidimensionalHistogramRI), and XPath-based index classes (XPathIndex,
XPathRI).

In the context of index maintenance, peers exchange different types of messages (Sec-
tion 5.3) that are processed according to a maintenance strategy (QES, STPS, ATPS,
QFS, Propagation on Demand). All these message types (Update, UpdateRequest, Logoff,
Logon, LogonAnswer, and LogonCompensate) are derived from the same base class named
Event and contain information the receiver peer of the message needs to process, e.g., a
Logon message contains a local index summarizing the data of the peer that logs on.

Query Processing

As introduced in Section 3.3, queries in SmurfPDMS are represented as POP (plan op-
erator) trees. These POP trees consist of algebraic plan operators encoding operations
that are necessary to answer a query. Thus, our implementation contains one class for
each supported plan operator (SelectPOP, UnionPOP, JoinPOP, ConstructPOP, Re-
moteQueryPOP, TopNPOP, and SkylinePOP, each derived from class POP). The algo-
rithms that define how to process the input XML structures are part of these classes.

In Chapter 6 we have discussed how to exploit the result of a query’s evaluation on
a peer’s local data in conjunction with routing indexes to identify relevant neighbors.

206 Processing Rank-Aware Queries in Schema-Based P2P Systems

7.3 Simulation Workflow

Furthermore, we have discussed how to use relaxation and constraints. We have im-
plemented two strategies considering all these techniques: an incremental variant and a
non-incremental variant (Incremental Message Shipping and Query Shipping).

Query Rewriting

In our current implementation there is only one strategy available to rewrite queries (Ex-
tended Bucket Algorithm). However, in order to rewrite queries, each Neighbor instance
has not only a reference to a routing index but also a reference to a Mapping Definition,
which encodes the mapping between the two peer schemas. According to the steps of
query processing in SmurfPDMS (Section 1.2) a query is rewritten in the last step after
having identified relevant neighbors. Thus, the Extended Bucket Algorithm is given the
set of relevant neighbors (relevant on data-level) and the corresponding mapping defini-
tions as input. The rewriting result is split up into remote queries, which are sent to the
corresponding neighbors. As the answers to the queries are already rewritten into the
schema of the rewriting peer, all further tasks are realized by the applied query processing
strategy and not by the rewriting component.

7.3 Simulation Workflow

After having introduced the system architecture in the previous sections, this section
gives on overview of the general steps a simulation adheres to (Figure 7.7). If multiple
SmurfPDMS instances are participating in a simulation, the instance serving as coor-
dinator fulfills several tasks that are crucial for running a simulation. The coordinator
is determined implicitly at the beginning of a simulation – it is always that instance at
which the user initiates the simulation.

Once the user has started the simulation, the coordinator invites the subset of de-
tected instances, having been chosen by the user, to join the simulation. Afterwards, the
coordinator determines the initial setup by reading a set of configuration files or receiving
these parameters from the graphical user interface. This information might specify the
complete configuration of the simulated PDMS or only a parametrical setup describing
how SmurfPDMS shall create such a network. In any case, the configuration also com-
prises parameters for distributed data summaries, query processing strategies, routing
index maintenance, etc. The coordinator also partitions the simulated network and as-
signs one partition to each participant and one to itself. When starting a simulation, all
the parameters as well as the partitions are sent to the participants. While running the
simulation, the coordinator, just as all other participants, simulates the behavior of its
assigned partition and collects statistics. Furthermore, the coordinator synchronizes all
participants and initiates events such as queries, peer crashes, and data updates.

A simulation automatically ends when either a maximum number of time steps (pa-
rameter of the coordinator) is reached or for a certain (configurable) number of time
steps no peer has performed any actions and there is no message waiting in any message
queue of any simulated peer. Alternatively, the user may end a simulation by clicking
on the corresponding button in the graphical user interface. After the simulation ended,
the coordinator collects the statistics from the participants and stores them along with
its local statistics into a statistics file, which can be used to create diagrams later on.

Processing Rank-Aware Queries in Schema-Based P2P Systems 207

7.3 Simulation Workflow

1. Start Instance

2. Detect Instances

[End Program]

3. Initialize Simulation

[Start Simulation]

4. Run Simulation

5. Shutdown Simulation

6. Evaluate Statistics / Create Diagrams

[End Program]

Figure 7.7: SmurfPDMS – General Steps of Running a Simulation

In summary, the most important tasks of the coordinator, distinguishing it from
participants, are:

• invite participants to join the simulation,

• determine the initial setup and initialize participants,

• simulate a partition of the simulated network locally and collect statistics,

• synchronize all participants,

• choose queries and determine peers to initiate them,

• simulate dynamic behavior: local data updates, peer joins, and peer crashes,

• log events to ensure repeatability,

• end the simulation when a stop criterion is fulfilled,

• collect statistics from all participants,

• evaluate statistics and create diagrams, and

• shutdown the simulation by sending the participants a termination signal.

208 Processing Rank-Aware Queries in Schema-Based P2P Systems

7.4 Important Steps of Simulating a PDMS

In contrast to the various tasks of the coordinator, participants only need to meet the
following:

• answer an invitation to join a simulation,

• receive the configuration from the coordinator,

• wait for instructions from the coordinator and execute them (including synchro-
nization), and

• simulate a partition of the simulated network locally and collect statistics.

7.4 Important Steps of Simulating a PDMS

So far we have only sketched the main steps a simulation adheres to. In this section
we review some of these steps in more detail, these are: step 2 (detecting other Smurf-
PDMS instances), step 3 (initializing a simulation), step 4 (running a simulation), and
step 6 (evaluating statistics and creating diagrams). Figure 7.8 illustrates the most im-
portant classes in the simulation layer that are instantiated at the coordinator and the
participants to run a simulation.

Statistics

Manager

Simulation

Core

Rewriting

Manager

Startup

Manager

Simulation

Manager

Simulation

Coordinator

LocalPeer

Manager

PeerObjects

Topology

Generator

Query Mix

Generator

Simulation

Clock

Remote Peer

Manager

Remote Peer

Manager

Peer Init

Manager

Configuration

Files

Participant 2

Statistics

Manager

Rewriting

Manager

Startup

Manager

Simulation

Manager

Simulation

Participant

LocalPeer

Manager

PeerObjects

Remote Peer

Manager

Remote Peer

Manager

Coordinator

Statistics

Manager

Rewriting

Manager

Startup

Manager

Simulation

Manager

Simulation

Participant

LocalPeer

Manager

PeerObjects

Remote Peer

Manager

Remote Peer

Manager

Participant 1

6
0

1

2

3

4

5

Simulation

Core

Simulation

Core

Figure 7.8: SmurfPDMS – Important Classes of the Simulation Layer Instantiated During
Runtime. Communication channels between SmurfPDMS instances are indicated by blue
arrows.

Processing Rank-Aware Queries in Schema-Based P2P Systems 209

7.4 Important Steps of Simulating a PDMS

7.4.1 Detecting SmurfPDMS Instances

As mentioned above, SmurfPDMS uses several managers to group all actions that are
necessary to perform a specific task. One of these managers is the Network Manager
(Figures 7.1 and 7.2), which takes care of all tasks necessary to initialize communication
between instances – step 2. Each SmurfPDMS instance is running only one Network
Manager instance. Each Network Manager instance listens on a specific port for messages
from other instances. It is instantiated with an IP address, a listening port, and an
instance name.

Already on startup, a SmurfPDMS instance might know some other instances, either
specified by the user or known from previous simulations. Thus, on startup the Network
Manager tries to contact each of these instances. If an instance answers, both instances
exchange their contact details (IP, name, and port) as well as details on all other already
contacted instances. Furthermore, a new instance of Remote Instance (as already men-
tioned in Section 7.1.1) is instantiated, which will effect all direct communication with
the newly-discovered SmurfPDMS instance.

All found SmurfPDMS instances are displayed in the graphical user interface (Sec-
tion 7.1.3, Figure 7.3). The Network Manager periodically sends ping messages to all
these instances and removes them from the list if they no longer answer. Based on the list
of displayed instances, the user can finally select those instances that shall participate in
the simulation. In addition to trying to contact instances directly, SmurfPDMS also sup-
ports multicast (given multicast address and multicast port), i.e., in regular time intervals
the Network Manager sends a multicast message and adds all answering instances to the
list that is displayed to the user and creates corresponding Remote Instance instances.

If, while running a simulation, the communication between coordinator and partic-
ipant fails (after multiple attempts), the simulation coordinator aborts the simulation
and sends abortion signals to all participants. As a consequence, the coordinator and all
participants are reset so that a new simulation can be started.

7.4.2 Initializing a Simulation

Another important manager necessary to start a simulation is the Startup Manager. It
takes care of starting the simulation – this includes starting all other managers. Although
coordinator and participants both use the Startup Manager, it has to perform different
tasks. In order to start and initialize a simulation (concerning step 3 of the simulation
workflow introduced in Section 7.3), the Startup Manager at the coordinator has to:

• read all parameters from configuration files or receive them from the GUI,

• initiate collecting statistics (Statistics Manager),

• create the simulated network (Peer Initialization Manager),

• compute query load (Peer Initialization Manager),

• create Peer instances (Peer Initialization Manager),

• partition the simulated network and send the configuration to all participants,

• start all other managers necessary to run the simulation, and especially

• start the simulation by starting the coordinator’s Simulation Manager instance: the
Simulation Coordinator.

210 Processing Rank-Aware Queries in Schema-Based P2P Systems

7.4 Important Steps of Simulating a PDMS

In contrast, the Startup Manager running at a participant only needs to:

• receive the configuration from the coordinator,

• initiate collecting statistics (Statistics Manager),

• start all other managers necessary to run the simulation, and especially

• start the local Simulation Manager instance: the Simulation Participant.

After having started the simulation, the Startup Manager at the coordinator’s site takes
care of determining the initial configuration. All necessary parameters can be read from
configuration files or retrieved from the graphical user interface. Most of these parameters
are one-valued, i.e., a string, a number, or a boolean value, indicating for example the
threshold for an STPS propagation measure (Section 5.3.4). However, there are some
aspects that, especially with respect to repeatability, cannot be configured that easily
but have to be determined on startup: network topology and query load. Thus, in order
to use the same simulated network or query load for multiple simulations, SmurfPDMS
uses configuration files defining not only the topology of the simulated network but
also aspects such as the data each peer provides and the set of queries issued during
a simulation. Such configuration files can either be generated by external applications,
manually by the user, or by SmurfPDMS itself. Therefore, SmurfPDMS knows several
algorithms, we will sketch a few of them below. The produced configurations can be
stored into configuration files and used for future simulations.

Topology/Data Generation

After having read the configuration files, the Peer Initialization Manager at the coordi-
nator is started to create a network of peers. In order to create such a network, the Peer
Initialization Manager first needs to determine the topology. If the network definition
cannot be read from an existing configuration file, the Peer Initialization Manager needs
to create a topology according to a set of input parameters – most of them are depicted
in Figure 7.9. Some of these parameters are: the total number of peers, the minimum
and maximum numbers of links per peer, and the number of peers that shall not provide
any local data. Furthermore, the user can specify that a certain number of peers shall
not be connected to other peers on startup so that they might join the network later on
when the simulation is running. In addition to these parameters, the user can choose
between several algorithms to create topologies with different characteristics.

The first distinction with respect to these algorithms is the choice whether the network
should be cycle-free or not. Another distinction concerns the data assigned to the peers:
the data can be generated or an existing data file can be read so that its content can be
distributed among all simulated peers. If the data is to be created by the simulator, the
user needs to decide what kind of data shall be represented by each peer: in addition
to the number of data records per peer, also the number of attributes per record and
their value ranges are defined by parameters. In the simplest case, the data records are
generated randomly in the defined data space and assigned to the peers. However, the
Peer Initialization Manager, given some additional parameters, can also generate all the
other distributions we have used to evaluate our techniques in Section 6.5: clustered data
in a clustered distribution, clustered data in a random distribution, and anticorrelated

Processing Rank-Aware Queries in Schema-Based P2P Systems 211

7.4 Important Steps of Simulating a PDMS

data. If the data is not to be generated but read from an input file (XML format,
processed using Saxon2), the input data is split up into fragments by applying alternately
vertical and horizontal fragmentation so that the obtained fragments can be assigned as
local data to the peers. The data of each peer is defined by XPath expressions that
unambiguously designate a portion of the data file exclusively represented by the peer.

However, although this works fine for creating setups resembling unstructured P2P
networks, these algorithms do not yet consider heterogeneity. Thus, neither peers with
different local schemas nor corresponding mappings are created automatically. Never-
theless, such networks can still be used in conjunction with SmurfPDMS if their specifics
are defined in configuration files created by an external component or manually by the
user.

(a) Topology Generation Dialog (b) Data Generation Dialog

Figure 7.9: SmurfPDMS – Topology and Data Generation

Query Load

In order to simulate query processing, the coordinator needs to determine a set of queries
to be issued during runtime. This set of queries can either be read from an existing
configuration file or determined automatically on startup by the Peer Initialization Man-
ager at the coordinator. Only queries contained in this initial query load can be issued
automatically during runtime. Configuration parameters (some of them are illustrated
in Figure 7.10) determine when which query is issued at which peer.

In order to generate the query load on startup, the Peer Initialization Manager con-
siders another set of parameters specifying the composition of the query load, e.g., these
parameters could specify that the query load should contain 3 level-1-queries (query POP
trees with only one level, i.e., queries consisting of only one select POP) and 3 level-2-
queries (for instance, a query consisting of a select POP and a construct POP). If it is

2http://saxon.sourceforge.net/

212 Processing Rank-Aware Queries in Schema-Based P2P Systems

7.4 Important Steps of Simulating a PDMS

possible to load all necessary queries from the configuration files, these queries are used
as query load for the simulation without having to generate additional ones. If there are
not enough queries in the configuration files, the Peer Initialization Manager needs to
create some additional queries to meet the specifications. Additional level-1-queries are
created by taking the schema of the peers’ data into account and defining select POPs
with appropriate XPath expressions. Creating queries of higher levels is more difficult.
As defining sensible joins, top-N , and skyline POPs automatically is complicated, we
apply a straightforward heuristic that allows for creating queries of arbitrary levels: we
simply combine two level-1-queries by means of a union POP to obtain a level-2-query,
we combine two level-2-queries to obtain a level-3-query, and so on.

However, the query load generator is used only rarely because in most cases the
user wants to evaluate specific queries that he/she specifies in advance. By specifying
both queries and initiating peers in advance in the configuration files, it is possible to
selectively issue queries at specific peers.

Figure 7.10: SmurfPDMS – Query Processing Parameters

Determining Partitions

As we are working with XML data and a Java implementation, handling such data
requires much main memory space. In order to share resources, especially main memory,
we decided to have multiple instances of SmurfPDMS, running on different machines,
collaborate and share the load. For this purpose, the coordinator’s Startup Manager
has to partition the PDMS we want to simulate into several partitions and assign each
partition to an instance.

In principle, we could randomly assign peers to instances. However, this solution
would likely result in a high communication overhead between instances. As peers only
send messages to neighboring peers, the partitioning algorithm should consider these re-
lationships. Thus, the algorithm used by the Startup Manager tries to group neighboring

Processing Rank-Aware Queries in Schema-Based P2P Systems 213

7.4 Important Steps of Simulating a PDMS

peers within the same partition. Each created partition has approximately the same size:
#peers

#participants+1

Figure 7.11 shows an example of partitioning peers. The peers of the simulated net-
work (Figure 7.11(a)) are to be assigned to three SmurfPDMS instances (coordinator
and two participants). All participants have direct communication links to the coordina-
tor (Figure 7.11(b)). Furthermore, in dependence on the connections between simulated
peers, instances might also communicate directly with each other to exchange messages,
e.g., query messages from peer 3 to peer 5 are sent from participant 1 directly to partic-
ipant 2 without taking the detour to the coordinator.

In our current implementation, each instance needs to receive the initial setup (in-
cluding the partition and the parameters) from the initiator. In future work we plan to
extend our system with a decentralized startup procedure so that the coordinator’s load
is reduced.

0
1

4
2

5

6

3

(a) Simulated Network

6
0

1

coordinator

2

3

4

5

participant 2participant 1

(b) SmurfPDMS Instances

Figure 7.11: SmurfPDMS – Communication Connections between SmurfPDMS Instances

7.4.3 Running a Simulation

After having completed the startup process, the Simulation Coordinator begins the actual
simulation (step 4), which simulates the behavior of the simulated PDMS in the presence
of queries and dynamic behavior (local data updates, peer joins, and crashes) – requiring
communication between coordinator and participants.

Issuing Queries

We have already mentioned above that the query load, i.e., the set of queries issued
automatically by the system, is determined already on startup. The coordinator chooses
a peer, a query, and a time step and “orders the peer” to issue a query. Queries, peers,
and time steps can either be specified in configuration files to achieve repeatability of
simulations or the coordinator can be configured to randomly choose a query and a peer
and have it issue the query in an arbitrary time step. Alternatively, the user might use
the graphical component to issue a query, which does not have to be predefined in a
configuration file, during runtime.

214 Processing Rank-Aware Queries in Schema-Based P2P Systems

7.4 Important Steps of Simulating a PDMS

Dynamic Behavior

The simulation of dynamic behavior is controlled by a set of parameters – the subset
concerning data updates is shown in Figure 7.12. Alternatively, these events can also be
read as input from a configuration file created by a previous simulation.

In order to have SmurfPDMS induce dynamic behavior, the user can for example
specify a probability that a peer updates its local data in a time step. Moreover, he/she
can limit the number of peers allowed to update their local data per time step and in
total. Further parameters controlling dynamic behavior are the number of local data
records that are to be updated and the definition to what extent attribute values shall be
changed (assuming all peers adhere to the same schema). As an alternative to having the
coordinator randomly decide to what extent a data record shall be changed, SmurfPDMS
provides an alternative: the user can specify a second preconfigured network setup that
uses the same topology but assigns different data to the peers. While running the simula-
tion, the data distribution is slowly converted from the first into the second distribution
according to the user-defined parameters.

Figure 7.12: SmurfPDMS – Data Updates Parameters

Synchronization

While running a simulation, communication between simulation coordinator and partici-
pants is necessary, for instance, for synchronization. Figure 7.13 illustrates which classes

Processing Rank-Aware Queries in Schema-Based P2P Systems 215

7.4 Important Steps of Simulating a PDMS

in the simulation layer and in the network layer realize communication. The coordinator
needs to signal all participants to proceed to the next time step, i.e., to compute one
of the received messages for each simulated peer. To make this as transparent as possi-
ble, the coordinator holds a Peer Manager instance for each participating SmurfPDMS
instance (including itself) and invokes the same method at each Peer Manager. In this
context, we distinguish between Local Peer Manager and Remote Peer Manager – both
derived from Peer Manager. Each SmurfPDMS instance holds exactly one Local Peer
Manager instance with references to all Peer instances (Local Peer) – representing peers
that are part of the partition of the simulated network simulated locally – and multiple
Remote Peer Manager instances for peers simulated by other SmurfPDMS instances.

Because of the inheritance, the coordinator only needs to call the same method at
each Peer Manager in order to have each SmurfPDMS instance proceed to the next
time step. Then, the Peer Managers take care of all further actions that need to be
performed in order to proceed to the next time step. A Local Peer Manager instance can
easily realize message processing for each of its Local Peer instances as it holds direct
references to them. In contrast, a Remote Peer Manager needs to communicate with
another SmurfPDMS instance, or with the Local Peer Manager of another SmurfPDMS
instance respectively. In order to realize this kind of communication, each Remote Peer
Manager holds a reference to the Remote Instance in the network layer that enables
communication to the SmurfPDMS instance whose peers it represents. Thus, when the
coordinator signals to proceed to the next time step, a Remote Peer Manager at the
coordinator contacts the corresponding SmurfPDMS instance via the Remote Instance,
which in turn takes care of transmitting the signal to the SmurfPDMS instance (via its
Remote Instance, its Simulation Participant, and its Local Peer Manager). Figure 7.13
illustrates this process and the classes involved.

A simulation step is completed when all participating SmurfPDMS instances have
completed the simulation step. The coordinator starts the next simulation step once all
participants have signaled the completion of the previous step.

Exchanging Messages between Peers

As discussed above, when the coordinator asks a participating instance to proceed to the
next time step, the participant’s Local Peer Manager instance computes one message for
each peer simulated locally. To process these message, we use a thread-based solution so
that the overall processing time at the corresponding computer may be reduced. However,
processing messages for simulated peers often entails sending messages from one simulated
peer to another. “Sending” such messages is managed by the Simulation Manager by
identifying the Peer Manager that is “responsible” for the receiver peer. If that Peer
Manager is a Local Peer Manager, no communication between SmurfPDMS instances is
necessary. If the responsible Peer Manager is a Remote Peer Manager, the message is
transferred via the Remote Instance of the communication layer to the corresponding
SmurfPDMS instance. Upon reception and deserialization by the Simulation Manager
at the receiving SmurfPDMS instance, its Local Peer Manager is instructed to “deliver”
the message to the receiver peer. Hence, the procedure of sending a message from one
simulated peer to another follows the pattern illustrated in Figure 7.13.

216 Processing Rank-Aware Queries in Schema-Based P2P Systems

7.4 Important Steps of Simulating a PDMS

Remote

Instance

Remote

Instance

Simulation

Coordinator

LocalPeer

Manager

PeerObjects

6
0

1

Remote

Instance

Remote

Instance

Simulation

Participant

LocalPeer

Manager

PeerObjects

2

3

Simulation

Participant

LocalPeer

Manager

PeerObjects

4

5Remote Peer

Manager

Remote Peer

Manager

Coordinator

Participant 1

Participant 2

Figure 7.13: SmurfPDMS – Interactions between Classes for Synchronization

Retrieving Up-to-Date Information for the GUI

Still, there is another situation that requires communication between SmurfPDMS in-
stances. The graphical user interface at the coordinator provides the user with a simula-
tion window (Section 7.1.3), which displays detailed information about the current state
of the simulated network. In order to provide the user with this kind of information,
it is necessary to retrieve those details during runtime from the SmurfPDMS instances
that simulate the peers. To make this as transparent as possible to the GUI layer, the
coordinator holds Peer instances (Figure 7.2) for each peer being part of the simulated
network (including both Local Peer and Remote Peer instances, the latter representing
peers simulated by participants). The simulation window implementation does not need
to distinguish between Local Peer instances and Remote Peer instances as both provide
the same interface for retrieving information about the simulated peer. If detailed in-
formation, for instance about a peer’s current entries in its message queue, is requested,
the coordinator can easily obtain that information from the peers simulated locally by
directly accessing the Local Peer instance. If detailed information is requested for a peer
simulated by another SmurfPDMS instance, i.e., if the same method is called at a Remote
Peer instance, the request is forwarded to the SmurfPDMS instance simulating the peer.
In doing so, the request is forwarded to the correct SmurfPDMS instance (via its Remote
Instance, Simulation Participant, and Local Peer Manager) so that the requested data
can be retrieved from participants and displayed to the user.

Processing Rank-Aware Queries in Schema-Based P2P Systems 217

7.4 Important Steps of Simulating a PDMS

7.4.4 Evaluating Statistics and Creating Diagrams

We created SmurfPDMS to help us evaluate our approaches. Collecting statistics, cre-
ating diagrams, and running test series are important and useful features whose details
are discussed in the following.

Collecting Statistics

In order to use statistics after having run a simulation or a test series to create diagrams,
they have to be collected during runtime by the Statistics Manager. SmurfPDMS dis-
tinguishes between a variety of different statistics that are collected in dependence on
the configuration. For tests of query processing strategies it is, for instance, adequate to
remember the number and the volume of messages sent between peers in order to process
a query. For other tests, e.g., for tests with respect to index maintenance strategies, we
need to measure correctness and the network traffic caused by the updates instead of
query load. Thus, in dependence on the aspect we want to examine, we need to collect
different kinds of statistics and configure SmurfPDMS accordingly.

On startup, each participant is informed by the coordinator what statistics to collect
locally. After the simulation, the coordinator collects all statistics from all participants,
aggregates them if necessary and stores them into a statistics file on disk. As we discuss
below, these statistics can be used to create diagrams later on.

Running and Configuring Test Series

SmurfPDMS can be configured to run multiple tests in a row without requiring any user
interaction. With respect to the activity diagram of Figure 7.7 this means that, once
a simulation ends, all participating SmurfPDMS instances go back to the initial state
and the coordinator automatically proceeds to the next simulation. In oder to accelerate
the simulations, the simulation window of the graphical user interface (Section 7.1.3) is
switched off as it would only unnecessarily slow down the simulation progress.

Running a test series means that the majority of parameters are the same and only
a few are adapted to examine their influence. Figure 7.14 shows an example dialog
that configures a test series to evaluate the influence of the relaxation parameter ε on
processing a specific top-N query. In this dialog the user specifies ε for the first test
run and the last test run as well as by what value to successively increase ε for all other
test runs in between. This dialog further provides the option to vary between routing
index implementations (QTree and multidimensional equi-width histogram) and different
numbers of buckets. This means for each specified number of buckets for the QTree and
for each specified number of buckets for the histogram one test series is run varying ε as
described above.

Generating Diagrams for Test Series

After having completed all test runs, SmurfPDMS also provides several algorithms that
use the collected statistics of all test runs as input to create diagrams illustrating the in-
fluence of the varied parameters. In dependence on the test series, the diagram generator

218 Processing Rank-Aware Queries in Schema-Based P2P Systems

7.5 Evaluation

Figure 7.14: SmurfPDMS – Evaluation Environment

component (Figure 7.15(a)) offers applicable diagram types and initiates the computa-
tion of those that are chosen by the user. The standard output format is either Gnuplot3

or Asymptote4. Both output formats are by default automatically converted to PS or
PDF.

Figure 7.15(b) illustrates some example diagrams created using the diagram generator.
Besides, most diagrams in this dissertation, which we used to illustrate our evaluation
results, were generated by this component.

7.5 Evaluation

In order to illustrate the benefits of sharing the simulation load among multiple comput-
ers, we illustrate the results of some tests with up to 5 computers – all with the same
hardware setup (1 GHz Pentium IV processors, 1 GB main memory) running SuSE Linux
10.0 (kernel v. 2.6.13-15.16) and Java v. 1.6.0 07. We simulated the behavior of a net-
work of 1000 peers with cycles – each peer having 5 to 10 neighbors. We chose a simple
setup for our evaluation, i.e., all peers in the network had the same schema and we did
not simulate dynamic behavior. The query load consisted of 6 queries (simple selection
queries) and was issued at the same time steps at the same peers in each simulation.

3http://www.gnuplot.info
4http://asymptote.sourceforge.net

Processing Rank-Aware Queries in Schema-Based P2P Systems 219

7.6 Conclusion

(a) Diagram Generation Dialog (b) Diagrams

Figure 7.15: SmurfPDMS – Diagram Generation

In addition to the number of computers, we varied the number of records provided by
each peer (50 and 100, each record consisting of 4 random value numerical attributes
restricted to the same ranges).

For each simulation we measured the absolute time the simulation was running (cor-
responding to 100 simulated time steps). The results we obtained are illustrated in
Figure 7.16(a). For both configurations (50 and 100 records per peer) we see that by
sharing load among multiple computers, the total simulation time can be reduced. Obvi-
ously, one factor that influences the computational load caused by running a simulation
is the amount of data a query has to be evaluated on. If multiple peers share this load,
the absolute time it takes to run a simulation is reduced.

Another factor influencing query load is query complexity. Figure 7.16(b) shows
the results we obtained for simulating the same networks while issuing more complicated
queries (again six). These queries make use of all operators supported by our system, i.e.,
select-project-join queries, relaxed skyline and top-N queries, and also queries involving
union and construct operators. Our results show that evaluating such queries on the
data increases the absolute simulation time by a factor of almost four. In comparison
to Figure 7.16(a) the difference between the two setups (50 and 100 records provided
by each peer) is smaller. Nevertheless, the basic tendency that sharing load among
multiple computers reduces absolute simulation time remains. Of course, if there are
too many computers participating in a simulation, the communication overhead between
them counteracts the benefits so that the simulation time cannot be reduced by adding
further computers.

7.6 Conclusion

In the beginning of this chapter, we have formulated several requirements that a sim-
ulating environment should fulfill. Due to its architecture and the use of inheritance
and appropriate base classes, SmurfPDMS fulfills them all and can easily be extended
by future strategies with respect to query rewriting, query processing, approximation,
POPs, routing indexes, and index maintenance. SmurfPDMS supports XML as native

220 Processing Rank-Aware Queries in Schema-Based P2P Systems

7.6 Conclusion

 105
 110
 115
 120
 125
 130
 135
 140
 145
 150

 1 2 3 4 5

T
im

e
in

 S
ec

on
ds

Number of Peers

50 records per peer
100 records per peer

(a) Selection Queries Dialog

 400
 410
 420
 430
 440
 450
 460
 470
 480
 490

 1 2 3 4 5

T
im

e
in

 S
ec

on
ds

Number of Peers

50 records per peer
100 records per peer

(b) Time-Consuming Queries

Figure 7.16: SmurfPDMS – Performance of Distributed Simulations

data format and is implemented in Java so that it is platform independent.

Each simulation is repeatable since the initial setup as well as dynamic behavior and
issuing queries can be configured with reusable configuration files. This also enables
the user to examine the influence of individual parameters. Furthermore, SmurfPDMS
provides a set of tools helping the user in creating configurations. These configurations
support arbitrary network topologies that can be created by SmurfPDMS, by an external
component, or manually by the user. As simulating the behavior of large networks
might exceed the capacities of a single computer (or increase the time it takes to run
a simulation), we decided to allow multiple computers share their resources – leading
to the distinction between coordinator and participants. Let us again emphasize that
the coordinator does not correspond to a mediator in a data integration system but
only synchronizes participating SmurfPDMS instances and ensures repeatability of a
simulation.

The ability to run whole test series without requiring any user interaction is another
feature helping the user in conducting experiments. Collecting statistics during runtime
and providing routines to create diagrams automatically is another feature that distin-
guishes SmurfPDMS from other systems. We used these features to conduct most of the
experiments that evaluated the techniques proposed in this dissertation. Thus, we have
already implemented a variety of test series and diagram generators, which can easily be
extended in the future. The 3-layered architecture ensures independence from network
communication and the graphical user interface. The latter, however, provides a handy
tool to monitor and control a simulation in a very comfortable manner. Finally, let us
mention that we can completely switch off the rewriting component so that SmurfPDMS
can also be used to simulate the behavior of unstructured P2P networks in which all
peers use the same schema.

Making SmurfPDMS a Real Application

So far we have only considered how to run a simulation. As this is exactly what we
needed to evaluate the techniques discussed in this dissertation, there actually was no
need to implement a real application. However, in order to turn SmurfPDMS into a real
application, we need to dispose of the distinction between coordinator and participant.
Furthermore, so far each SmurfPDMS instance represents multiple peers that participate

Processing Rank-Aware Queries in Schema-Based P2P Systems 221

7.6 Conclusion

in the simulated network. In a real application, each instance has to represent only
one peer and the network topology has to be determined implicitly by the connections
between participating computers.

Especially the tasks that distinguish a coordinator from a participant are no longer
required, e.g., synchronization and discrete time steps are no longer necessary. Further-
more, aspects such as initial configuration, network topologies, dynamic behavior, and
issuing queries do no longer have to be propagated and controlled by the coordinator.
Instead, each participant has to be able to decide on its own when it issues queries or
leaves the network. Thus, the startup procedure has to be realized in a decentralized fash-
ion so that the provided data is not determined by a coordinator but by the computers
providing it.

Hence, in order to turn SmurfPDMS into a real application, we need to cut down
on the functionality that SmurfPDMS provides for simulations, but the basic imple-
mentation, especially of the Simulation Core, could still be used. However, although
SmurfPDMS started as a simulation environment and as it incorporates several specifics
and techniques that a real application would also have to support, we refer to the result-
ing PDMS variant as SmurfPDMS – referring not only to the simulation environment
but also to the whole concept of a PDMS that incorporates the techniques presented in
this dissertation.

222 Processing Rank-Aware Queries in Schema-Based P2P Systems

Chapter 8

Conclusion and Future Work

As we have seen in this dissertation, the PDMS approach is a promising technique to
share data amongst autonomous peers. The underlying network model can be considered
as an unstructured P2P system, which means there are no requirements on the topology
and peers are free to choose any subset of participating peers as neighbors in the PDMS
overlay network. Our aim was to extend PDMS functionality to support rank-aware query
operators and to enable efficient query processing of queries involving such operators
based on XML data and LAV-style mappings.

However, the autonomy, especially schema heterogeneity, of peers in a PDMS entails
several complications with respect to query processing. One of them is the need to rewrite
queries so that in order to answer a particular query formulated in a peer’s schema, data
provided by other peers in the system can be considered. This entails two immediate
problems: how to describe correlations between the data provided by peers using different
schemas and how to rewrite the queries efficiently. The answers to these problems strongly
depend on the data model and the query language. The solutions we have proposed
work on XML data and consider queries on an algebraic level. Consequently, each query
language that allows for formulating the supported operations can be used. Using LAV-
style mappings to encode correlations between schema elements, we extended the Bucket
Algorithm to support queries containing rank-aware operators and XML data.

As we assume PDMSs to be based on unstructured P2P networks of autonomous
peers, there is no central component we could use for query optimization. This means
that global reasoning in the context of query rewriting is impossible. In contrast, each
peer has to optimize a query with only the information being available locally. Although
we can add additional information to query messages (e.g., a query ID), which might
help identify cycles, it is possible that a peer is queried multiple times concerning the
same original query. As a consequence, the result possibly contains duplicates and query
execution costs might be higher than actually necessary.

In large networks with high numbers of peers providing data, queries may have a
large number of result records. The user, however, is in most cases only interested in
a small subset of them. A good option to make the result set more precise is to rank
the result tuples according to a user-defined ranking function and display only the top
N result records. Sometimes the user is not able to define just one ranking function
but wishes the result to be ranked by multiple criteria. Thus, given multiple ranking
functions skyline queries are an option that should be available to the user. Both kinds

223

CHAPTER 8. CONCLUSION AND FUTURE WORK

of queries offer a great potential for optimization because if only a small portion of the
complete result set is actually relevant to the user, there is no reason to retrieve all the
other irrelevant records.

In order to exploit this observation for distributed query processing, a peer can add
additional information to the query about highly ranked records that are already known
to the peer. The receiver peer of such a query can use the additional information to send
only those records with an answer message that are ranked better. Although this already
reduces network traffic, another optimization goal must be to reduce the number of peers
involved in answering a query. Thus, a peer needs to identify relevant and irrelevant
neighbors.

Our solution considers two techniques a peer can use to identify relevant neighbors.
First, a query is only forwarded to a particular neighbor peer if its schema has correspon-
dences to the schema elements referred to by the query (schema-level). Second, a query is
only forwarded to a neighbor if it provides data that is relevant to the query with respect
to the attribute values (data-level). Whereas the first technique is a direct consequence
of applying a query rewriting algorithm, the second technique requires further knowledge
about the data stored at a neighbor that exceeds schema correspondences but describes
the attribute values of records accessible via the neighbor.

Routing indexes, or distributed data summaries respectively, are appropriate struc-
tures that provide such information. In the context of this dissertation, we have identified
histograms (QTrees) as a good base structure for routing indexes as they fulfill several
beneficial requirements. Especially the QTree summarizes records with similar attribute
values with a low approximation error. Furthermore, because of their multidimensional-
ity, distributed data summaries capture attribute correlations so that the number of false
positive routing decisions can be minimized. Further important fulfilled requirements are
the support of efficient lookups and the fact that these structures are not only beneficial
for rank-aware queries but also useful for other query types such as range and selection
queries.

Routing indexes are well-known in P2P systems. Their application in the context
of PDMSs is a contribution of this dissertation. We have proposed efficient strategies
exploiting routing indexes to identify neighboring peers that are relevant to a particu-
lar query. In this context, we focused on rank-aware query operators and extended our
considerations to support approximation. The approximate query processing techniques
we propose reduce query execution costs even more by representing data provided by a
neighbor with data records a peer has already processed. The degree of applied approx-
imation is defined and limited by the user so that the obtained results meet the user’s
needs.

Another consequence, resulting from peer autonomy, is that peers are free to up-
date their local data or leave/join the network at will. Consequently, routing indexes
might become out-of-date. Since efficient techniques for query processing rely on the
information provided by the routing indexes, we have to apply appropriate maintenance
strategies to keep them up-to-date. We have discussed several approaches which might be
used to achieve this goal. The bottom line is that we have to find an acceptable tradeoff
between network load and freshness. In favor of freshness we in general prefer update
propagation strategies that actively propagate updates to their neighbors according to
some user-defined parameters with the aim of minimizing the total amount of network

224 Processing Rank-Aware Queries in Schema-Based P2P Systems

CHAPTER 8. CONCLUSION AND FUTURE WORK

load caused by the propagation.
In summary, in this dissertation we have extended PDMS functionality to support

rank-aware queries. In particular, to the best of our knowledge we are the first to having
discussed how to efficiently process rank-aware queries in PDMSs using routing indexes
and relaxation. Furthermore, we have proposed a novel variant of routing indexes as
well as several maintenance strategies to keep them up-to-date. To the best of our
knowledge, we are the first to consider the maintenance problem on a level that goes
beyond reconstruction. Moreover, we are not aware of any related work that applies
routing indexes and approximation in PDMSs and unstructured P2P networks. Finally,
we have also proposed an extension of the Bucket Algorithm considering rank-aware
operators and referring to XML data.

Future Work

Regarding future work we identify three main sectors:

1. optimization and incorporation of state-of-the-art techniques

2. loosely-coupled data integration

3. uncertain data

We have already mentioned several extensions and optimizations of the techniques pre-
sented in this dissertation, e.g., supporting non-rectangular bounding boxes for the
QTree, indexing string and numerical attributes, integration of GLAV-style mappings,
etc. Furthermore, aspects that are out of the focus of this dissertation could be considered
by future work, e.g., integrating security policies to establish mutual trust or improve-
ments of cycle detection in conjunction with query rewriting. Especially the integration
of state-of-the-art techniques for distributed query processing exceeding optimizations
for rank-aware query operators is an interesting aspect. Although our strategies so far
already support join queries, they do not yet provide any specialized optimizations that
the literature proposes.

One of the problems we have to deal with in our current implementation is that
pruning a peer on data-level based on routing indexes is very difficult in the presence of
a join because estimating the join cardinality is not straightforward. A join is always
formulated on two base structures of a peer’s local schema. As the data is not stored in
a joined format, the join attributes are not indexed by the same summarizing structure.
Thus, the routing index can only provide information about each subgoal (base structure,
e.g., libraries and books) in isolated summaries. Because of the separation it is difficult
to estimate the result cardinality as there is no information about correlation of the join
attributes. Thus, in our current implementation we only prune peers on data-level in
conjunction with join queries if a peer does not provide any data with respect to the join
attributes.

This can be optimized in future work by considering the data provided by each peer
with respect to each subgoal in detail. Assume we have two peers, each peer provides
data with respect to only one subgoal that the join is defined on. Because of the routing
indexes we know approximations of the attribute value distributions of the attributes
the join is defined on. Based on this knowledge we can estimate the number of join
result records – we can even determine if it is possible that the join result yields any

Processing Rank-Aware Queries in Schema-Based P2P Systems 225

CHAPTER 8. CONCLUSION AND FUTURE WORK

result records at all. We can exploit this knowledge to prune additional peers from
consideration or in an advanced “best-effort” strategy we could even use the estimated
result size and the expected execution costs to decide whether it is worthwhile to compute
the join between the data of a particular pair of peers or not.

Additionally, we could consider strategies for join processing used in distributed
database systems in general [150]. For example, a join between data stored at differ-
ent peers does not necessarily (although it is our current implementation) have to be
computed at the peer that rewrites the query but it can also be computed at one of the
two neighbors whose data is involved in a rewriting containing the join or even at another
peer in the system. The optimization algorithm could, for instance, decide to transfer the
smaller data set to the peer holding the bigger data set so that only one instead of both
data sets has to be transferred to the rewriting peer. Further optimization is possible by
considering options such as ship-as-whole or fetch-as-needed.

To transfer the local data of one peer to another in the presence of schema heterogene-
ity, we can exploit the fact that rewritings contain query snippets. The construct POP of
a query snippet describes how to transform the data of a neighbor into the schema of the
rewriting peer. If both neighbors transform their data into the schema of the rewriting
peer, one of these peers can transfer its transformed data to the other peer that can now
compute the join as both data sets now adhere to the same schema. In addition to the
computation of the join operator, further operators of the rewritten query plan at the
rewriting peer can be computed by neighboring peers. Hence, considering further state-
of-the-art query optimization techniques developed for distributed query processing [150]
in the context of PDMSs is an interesting aspect of future work.

Another sector of future work is loosely-coupled data integration. For such scenarios it
is worthwhile to support automatic schema matching techniques so that peers can (semi-)
automatically determine mappings. Furthermore, the network could be reorganized au-
tomatically by deriving new mappings based on existing ones, either by applying ad-hoc
schema matching techniques [167] or by deriving them by mapping composition [61].
Although some interesting approaches have been developed in recent years, this remains
an interesting aspect in the context of PDMSs as the benefit of reorganizing the network
structure might have most beneficial influences on result quality and query execution
costs.

A third sector of future work is the attempt to assign ranks or guarantees to records
that are part of the result set. For example, we could rank the output to a query not only
by a user-defined ranking function but also, for instance, by the distance of a record’s
origin to the query’s initiator – the distance represents the number of times the query
had to be rewritten in order to obtain the record. As mappings might be erroneous, this
kind of ranking would indicate the record’s correctness as with each rewriting the chance
of having applied an erroneous mapping grows.

Apart from this simple assignment of a guarantee to a result record, we could alter-
natively consider the quality of mappings and sources. In many cases mappings are not
guaranteed to be correct, they might be erroneous, incomplete, out-dated, etc. Further-
more, the data provided by a peer might be imprecise, for example due to the application
of wrappers or the integration of data from multiple sources. Thus, reflecting this kind
of uncertain mappings and uncertain data [52], maybe even in conjunction with the issue
of trust, with a guarantee or a rank assigned to result records in a PDMS setup is an

226 Processing Rank-Aware Queries in Schema-Based P2P Systems

CHAPTER 8. CONCLUSION AND FUTURE WORK

interesting aspect of future work – especially if we consider that in a PDMS a query has
to be rewritten not just once but multiple times.

Aside from mappings and source data, there is another aspect influencing result qual-
ity: the routing indexes’ freshness. As routing indexes do not necessarily have to reflect
the current state of the network, a query processing strategy using them might miss some
relevant data to answer a query. In this context, future work might address the issue of
giving freshness guarantees for the routing indexes. By combining these guarantees with
result quality, we could assign each result record a rank reflecting not only data quality
but also the freshness of the applied routing indexes. This kind of guarantee or rank is in-
teresting in particular with regard to application scenarios such as disaster management,
where vitally important decisions are made that should be based on the most reliable
data. Maybe this guarantee is even extensible to reflect the relaxation applied by query
processing strategies in order to reduce execution costs.

Applications

The literature proposes several application scenarios for PDMSs. The ones mostly re-
ferred to are: disaster management [85], mediation between ontologies in the Semantic
Web [5], and information exchange between enterprises and research institutes [170]. In
addition to these scenarios we see two additional ones. One of them is data exchange
between astronomical observatories sharing data about their observations. Astronomi-
cal observatories not only store their data in different schemas (resulting in the kind of
schema heterogeneity we have considered in this dissertation), they might also use dif-
ferent celestial coordinate systems. Each system uses a coordinate grid projected on the
celestial sphere, in analogy to the geographic coordinate system used on the surface of the
Earth. The most important coordinate systems are the equatorial coordinate system, the
azimuthal coordinate system, the horizontal coordinate system, the ecliptic coordinate
system, the galactic coordinate system, and the supergalactic coordinate system. As the
time at which an observation is made also influences the coordinates, the observation
time is another issue that must be payed attention to when exchanging data between
observatories. Data integration in this context requires mappings supporting complex
functions to convert coordinates from one system into another in consideration of the
observation time.

In astronomy it is very common for an observatory to have multiple observations of
the same astronomical object observed at different times. Moreover, the same object
might be observed by multiple observatories with regard to different spectra, e.g., radio
frequency, ultraviolet, x-ray, etc. Furthermore, observatories have different accuracies of
measurement and might, to a small percentage, hold erroneous data. Considering all
these aspects, it is difficult to decide whether two objects are the same.

Especially the fact that the amount of data is increasing every day makes it impos-
sible to integrate the data within a single global database. In contrast, this requires
a lightweight data integration scenario enabling astronomical observatories of different
sizes and importance to share data – even amateur astronomers might access the system
and share their observations. Note that astronomy is one of the very few sciences where
amateur astronomers still play an active role. Especially in consideration of the discover-
ies and observations of transient phenomena, it is important to allow amateurs to share

Processing Rank-Aware Queries in Schema-Based P2P Systems 227

CHAPTER 8. CONCLUSION AND FUTURE WORK

and access data. Their data, however, might not be constantly available so that there
is a certain amount of dynamic behavior the network has to deal with. As discussed
above, the reliability of the sources could be reflected by assigning reliability values to
the records as some kind of guarantee, which might help to identify erroneous data.

Another application scenario we see for PDMSs is data exchange between enterprises
in the context of supply chains. Supply chains, or logistics networks respectively, are
systems of organizations involved in manufacturing and moving a product from initial
suppliers to customers. These chains typically involve multiple enterprises and organi-
zations that might only temporarily cooperate. Although they need to exchange some
information, they do not want to give away all their data, so there is only a partial
mapping between the schemas of organizations.

However, future work has yet to determine to which extent the proposed extensions are
realizable. In any case, we believe that the techniques combined within a PDMS may
also be beneficial in a variety of applications. These applications do not necessarily have
to conform to a PDMS setup but may only use some of the techniques we have discussed
in this dissertation. Still, what applications these are and what techniques they will use
and enhance only time will tell.

228 Processing Rank-Aware Queries in Schema-Based P2P Systems

Bibliography

[1] S. Abiteboul and O. Duschka. Complexity of answering queries using materialized
views. In PODS ’98, pages 254–263, 1998.

[2] S. Abiteboul, I. Manolescu, and E. Taropa. A Framework for Distributed XML
Data Management. In EDBT ’06, pages 1049–1058, 2006.

[3] A. Aboulnaga and S. Chaudhuri. Self-tuning Histograms: Building Histograms
without Looking at Data. SIGMOD Rec., 28(2):181–192, 1999.

[4] A. Aboulnaga, P. Haas, M. Kandil, S. Lightstone, G. Lohmann, V. Markl, I. Popi-
vanov, and V. Raman. Automated Statistics Collection in DB2 UDB. In VLDB
2004, pages 1158–1169, 2004.

[5] P. Adjiman, P. Chatalic, F. Goasdoué, M. Rousset, and L. Simon. Distributed
Reasoning in a Peer-to-Peer Setting: Application to the Semantic Web. Journal of
Artificial Intelligence Research (JAIR), 25:269–314, 2006.

[6] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakrish-
nan, and S. Sarawagi. On the Computation of Multidimensional Aggregates. In
VLDB ’96, pages 506–521, 1996.

[7] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated Ranking of Database
Query Results. In CIDR ’03, 2003.

[8] M. Aigner. Combinatorial Theory, page 156 ff. Springer-Verlag Berlin, 1979.

[9] S. Amer-Yahia, S. Cho, L. Lakshmanan, and D. Srivastava. Minimization of tree
pattern queries. SIGMOD Rec., 30(2):497–508, 2001.

[10] W. Balke, U. Güntzer, and J. Xin Zheng. Efficient Distributed Skylining for Web
Information Systems. In EDBT ’04, pages 256–273, 2004.

[11] W. Balke, W. Nejdl, W. Siberski, and U. Thaden. Progressive Distributed Top k
Retrieval in Peer-to-Peer Networks. In ICDE’05, 2005.

[12] I. Bartolini, P. Ciaccia, and M. Patella. SaLSa: computing the skyline without
scanning the whole sky. In CIKM ’06, pages 405–414, 2006.

[13] R. Bayer. Binary B-Trees for Virtual Memory. In ACM-SIGFIDET Workshop on
Data Description, Access and Control ’71, pages 219–235, 1971.

229

BIBLIOGRAPHY

[14] R. Bayer and M. Schkolnick. Concurrency of operations on B-trees. pages 129–139,
1988.

[15] B. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, 1970.

[16] C. Böhm, S. Berchtold, and D. Keim. Searching in High-Dimensional Spaces –
Index Structures for Improving the Performance of Multimedia Databases. ACM
Computing Surveys, 33(3):322–373, 2001.

[17] A. Bonifati, E. Chang, T. Ho, and A. Lakshmanan. HePToX: Heterogeneous Peer
to Peer XML Databases. In CoRR cs.DB/0506002, 2005.

[18] A. Bonifati, E. Chang, A. Lakshmanan, T. Ho, and R. Pottinger. HePToX: Marry-
ing XML and heterogeneity in your P2P databases. In VLDB ’05, pages 1267–1270.
VLDB Endowment, 2005.

[19] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE ’01,
pages 421–432, 2001.

[20] S. Cohen Boulakia, O. Biton, S. Cohen, Z. Ives, V. Tannen, and S. Davidson.
SHARQ Guide: Finding relevant biological data and queries in a peer data man-
agement system. In DILS ’06, 2006.

[21] I. Brunkhorst, H. Dhraief, A. Kemper, W. Nejdl, and C. Wiesner. Distributed
Queries and Query Optimization in Schema-Based P2P-Systems. In DBISP2P ’03,
pages 184–199, 2003.

[22] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: a Multidimensional Workload-
Aware Histogram. SIGMOD Rec., 30(2):211–222, 2001.

[23] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection queries over relational
databases: Mapping strategies and performance evaluation. ACM TODS, Vol. 27,
No. 2, 2002.

[24] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. On the Expressive Power
of Data Integration Systems. In ER ’02, pages 338–350, 2002.

[25] D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Logical foundations
of peer-to-peer data integration. In PODS ’04, pages 241–251, 2004.

[26] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Vardi. Answering Regular
Path Queries Using Views. In ICDE ’00, pages 389–398, 2000.

[27] P. Cao and Z. Wang. Efficient Top-K Query Calculation in Distributed Networks.
In PODC ’04, pages 206–215, 2004.

[28] K. Chakrabarti, V. Ganti, J. Han, and D. Xin. Ranking objects based on relation-
ships. In SIGMOD ’06, pages 371–382, 2006.

230 Processing Rank-Aware Queries in Schema-Based P2P Systems

BIBLIOGRAPHY

[29] C. Chan, P. Eng, and K. Tan. Efficient Processing of Skyline Queries with Partially-
Ordered Domains. In ICDE ’05, pages 190–191, 2005.

[30] C. Chan, P. Eng, and K. Tan. Stratified Computation of Skylines with Partially-
Ordered Domains. In SIGMOD ’05, pages 203–214, 2005.

[31] C. Chan, H. Jagadish, K. Tan, A. Tung, and Z. Zhang. Finding k-Dominant
Skylines in High Dimensional Space. In SIGMOD ’06, pages 503–514, 2006.

[32] C. Chan, H. Jagadish, K. Tan, A. Tung, and Z. Zhang. On High Dimensional
Skylines. In EDBT ’06, pages 478–495, 2006.

[33] A. Chandra and P. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In STOC ’77, pages 77–90, 1977.

[34] S. Chaudhuri, N. Dalvi, and R. Kaushik. Robust Cardinality and Cost Estimation
for Skyline Operator. In ICDE ’06, pages 64–74, 2006.

[35] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic Ranking of
Database Query Results. In VLDB ’04, pages 888–899, 2004.

[36] S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In VLDB 1999,
pages 397–410, 1999.

[37] S. Chaudhuri, L. Gravano, and A. Marian. Optimizing queries over multimedia
repositories. IEEE TKDE, 16(8):992–1009, 2004.

[38] C. Chen and N. Roussopoulos. Adaptive Selectivity Estimation Using Query Feed-
back. SIGMOD Rec., 23(2):161–172, 1994.

[39] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In
ICDE 03, pages 717–816, 2003.

[40] S. Conrad. Föderierte Datenbanksysteme: Konzepte der Datenintegration.
Springer-Verlag, Berlin/Heidelberg, 1997.

[41] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In
ICDCS ’02, pages 23–32, July 2002.

[42] F. Cuenca-Acuna, C. Peery, R. Martin, and T. Nguyen. PlanetP: Using Gossiping
to Build Content Addressable Peer-to-Peer Information Sharing Communities. In
HPDC ’03, page 236. IEEE Computer Society, 2003.

[43] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou. Parallel Distributed Processing
of Constrained Skyline Queries by Filtering. In ICDE 08, pages 546–555, 2008.

[44] S. Dar, M. Franklin, B. Jónsson, D. Srivastava, and M. Tan. Semantic data caching
and replacement. In VLDB ’96, pages 330–341, 1996.

[45] R. de la Briandais. File Searching Using Variable Length Keys. In Western Joint
Computer Conference, pages 295–298, 1959.

Processing Rank-Aware Queries in Schema-Based P2P Systems 231

BIBLIOGRAPHY

[46] E. Dellis, A. Vlachou, I. Vladimirskiy, B. Seeger, and Y. Theodoridis. Constrained
subspace skyline computation. In CIKM ’06, pages 415–424, 2006.

[47] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic Algorithms for Replicated Database Main-
tenance. In PODC ’87, pages 1–12, 1987.

[48] K. Deng, X. Zhou, and H. Shen. Multi-source Skyline Query Processing in Road
Networks. In ICDE ’07, pages 796–805, 2007.

[49] Z. Despotovic and K. Aberer. P2P Reputation Management: Probabilistic Esti-
mation vs. Social Networks. Comput. Networks, 50(4):485–500, 2006.

[50] H. Dhraief, A. Kemper, W. Nejdl, and C. Wiesner. Processing and Optimization of
Complex Queries in Schema-Based P2P-Networks. In DBISP2P ’05, pages 31–45,
2005.

[51] X. Dong, A. Halevy, and I. Tatarinov. Containment of Nested XML Queries. In
VLDB ’04, pages 132–143, 2004.

[52] X. Dong, A. Halevy, and C. Yu. Data Integration with Uncertainty. In VLDB ’07,
pages 687–698, 2007.

[53] C. Doulkeridis, A. Vlachou, Y. Kotidis, and M. Vazirgiannis. Peer-to-Peer Similar-
ity Search in Metric Spaces. In VLDB ’07, pages 986–997, 2007.

[54] O. Duschka and M. Genesereth. Query planning in infomaster. In SAC ’97, pages
109–111, 1997.

[55] O. Duschka, M. Genesereth, and A. Levy. Recursive query plans for data integra-
tion. Journal of Logic Programming, 43(1):49–73, 2000.

[56] B. Seeger E. Dellis. Efficient Computation of Reverse Skyline Queries. In VLDB ’07,
2007.

[57] P. Eugster, R. Guerraoui, A. Kermarrec, and L. Massoulié. From Epidemics to
Distributed Computing. IEEE Computer, 37(5):60–67, May 2004.

[58] R. Fagin. Combining Fuzzy Information from Multiple Systems. In PODS’ 96,
pages 216–226, 1996.

[59] R. Fagin. Combining Fuzzy Information from Multiple Systems. Journal of Com-
puter and System Sciences, 58(1):83–99, 1999.

[60] R. Fagin. Combining Fuzzy Information: an Overview. SIGMOD Record,
31(2):109–118, 2002.

[61] R. Fagin, P. Kolaitis, W. Tan, and L. Popa. Composing Schema Mappings: Second-
Order Dependencies to the Rescue. In PODS ’04, pages 83–94, 2004.

[62] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algorithms for Middleware.
In PODS ’01, pages 102–113, 2001.

232 Processing Rank-Aware Queries in Schema-Based P2P Systems

BIBLIOGRAPHY

[63] E. Franconi, G. Kuper, A. Lopatenko, and I. Zaihrayeu. Queries and Updates in
the coDB Peer to Peer Database System. In VLDB ’04, pages 1277–1280, 2004.

[64] E. Franconi, G. Kuper, A. Lopatenko, and I. Zaihrayeu. The coDB Robust Peer-
to-Peer Database System. In SEBD ’04, pages 382–393, 2004.

[65] E. Fredkin. Trie memory. Commun. ACM, 3(9):490–499, 1960.

[66] M. Friedman, A. Levy, and T. Millstein. Navigational Plans For Data Integration.
In AAAI ’99/IAAI ’99, pages 67–73, 1999.

[67] T. Fruchterman and E. Reingold. Graph drawing by force-directed placement.
Softw. Pract. Exper., 21(11):1129–1164, 1991.

[68] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ull-
man, V. Vassalos, and J. Widom. The TSIMMIS Approach to Mediation: Data
Models and Languages. J. Intell. Inf. Syst., 8(2):117–132, 1997.

[69] P. Gibbons, Y. Matias, and V. Poosala. Fast Incremental Maintenance of Approx-
imate Histograms. In VLDB ’97, pages 466–475, 1997.

[70] GTK-Gnutella Web Page. http://gtk-gnutella.sourceforge.net/.

[71] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data
sets. In VLDB ’05, pages 229–240, 2005.

[72] P. Godfrey, R. Shipley, and J. Gryz. Algorithms and analyses for maximal vector
computation. The VLDB Journal, 16(1):5–28, 2007.

[73] L. Gong. JXTA: A Network Programming Environment. IEEE Internet Computing,
5(3):88–95, May/June 2001.

[74] G. Grahne and A. Mendelzon. Tableau Techniques for Querying Information
Sources through Global Schemas. In ICDT ’99, pages 332–347, 1999.

[75] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan, and D. Sri-
vastava. Approximate String Joins in a Database (Almost) for Free. In VLDB ’01,
pages 491–500, 2001.

[76] L. Gravano, P. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, L. Pietari-
nen, and D. Srivastava. Using q-grams in a DBMS for Approximate String Pro-
cessing. IEEE Data Engineering Bulletin, 24(2), 2001.

[77] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The Dangers of Replication and a
Solution. In SIGMOD ’96, pages 173–182, 1996.

[78] T. Green, G. Karvounarakis, Z. Ives, and V. Tannen. ORCHESTRA: Facilitating
Collaborative Data Sharing. In VLDB ’07, 2007.

[79] T. Green, G. Karvounarakis, N. Taylor, O. Biton, Z. Ives, and V. Tannen. OR-
CHESTRA: Facilitating Collaborative Data Sharing. In SIGMOD ’07 (demo),
pages 1131–1133, 2007.

Processing Rank-Aware Queries in Schema-Based P2P Systems 233

BIBLIOGRAPHY

[80] D. Gunopulos, G. Kollios, V. Tsotras, and C. Domeniconi. Approximating Multi-
Dimensional Aggregate Range Queries over Real Attributes. In SIGMOD ’00, pages
463–474, 2000.

[81] U. Güntzer, W. Balke, and W. Kießling. Optimizing Multi-Feature Queries for
Image Databases. In VLDB ’00, pages 419–428, 2000.

[82] U. Güntzer, W.-T. Balke, and W. Kiessling. Optimizing multi-feature queries for
image databases. In VLDB’00, pages 419–428, 2000.

[83] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
SIGMOD ’84, pages 47–57, 1984.

[84] A. Halevy. Answering Queries using Views: A Survey. The VLDB Journal,
10(4):270–294, 2001.

[85] A. Halevy, Z. Ives, P. Mork, and I. Tatarinov. Piazza: data management infras-
tructure for semantic web applications. In WWW ’03, pages 556–567, 2003.

[86] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data
management systems. In ICDE ’03, 2003.

[87] M. Hernández and S. Stolfo. Real-world Data is Dirty: Data Cleansing and The
Merge/Purge Problem. Data Mining and Knowledge Discovery, 2(1):9–37, 1998.

[88] K. Hose, A. Job, M. Karnstedt, and K. Sattler. An Extensible, Distributed Sim-
ulation Environment for Peer Data Management Systems. In EDBT ’06, pages
1198–1202, 2006.

[89] K. Hose, M. Karnstedt, K. Sattler, and D. Zinn. Processing Top-N Queries in P2P-
based Web Integration Systems with Probabilistic Guarantees. In Proc. WebDB
2005, pages 109–114, 2005.

[90] K. Hose, D. Klan, and K. Sattler. Distributed Data Summaries for Approximate
Query Processing in PDMS. In IDEAS ’06, pages 37–44, 2006.

[91] K. Hose, C. Lemke, J. Quasebarth, and K. Sattler. SmurfPDMS: A Platform for
Query Processing in Large-Scale PDMS. In BTW 2007, volume 103 of LNI, pages
621–624. GI, 2007.

[92] K. Hose, C. Lemke, and K. Sattler. Processing Relaxed Skylines in PDMS Using
Distributed Data Summaries. In CIKM ’06, pages 425–434, 2006.

[93] K. Hose, C. Lemke, K. Sattler, and D. Zinn. A Relaxed but not Necessarily Con-
strained Way from the Top to the Sky. In CoopIS 07, pages 339–407, 2007.

[94] K. Hose, J. Quasebarth, and K. Sattler. Interoperability in Peer Data Management
Systems. In SDSI 07, pages 152–171, 2007.

[95] K. Hose, A. Roth, A. Zeitz, K. Sattler, and F. Naumann. A Research Agenda
for Query Processing in Large-Scale Peer Data Management Systems. Information
Systems Journal, 33:597–610, 2008.

234 Processing Rank-Aware Queries in Schema-Based P2P Systems

BIBLIOGRAPHY

[96] V. Hristidis and Y. Papakonstantinou. Algorithms and Applications for Answering
Ranked Queries Using Ranked Views. The VLDB Journal, 13(1):49–70, 2004.

[97] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline Queries Against Mobile
Lightweight Devices in Manets. In ICDE ’06, page 66, 2006.

[98] Z. Huang, H. Lu, B. Ooi, and A. Tung. Continuous Skyline Queries for Moving
Objects. IEEE TKDE, 18(12):1645–1658, 2006.

[99] Y. Ioannidis. The History of Histograms (abridged). In VLDB ’03, pages 19–30,
2003.

[100] H. Jagadish, B. Ooi, K. Tan, C. Yu, and R. Zhang. iDistance: An Adaptive B+-
tree Based Indexing Method for Nearest Neighbor Search. ACM Trans. Database
Syst., 30(2):364–397, 2005.

[101] H. Jagadish, B. Ooi, and Q. Vu. BATON: a balanced tree structure for peer-to-peer
networks. In VLDB ’05, pages 661–672, 2005.

[102] S. Jeffery, M. Garofalakis, and M. Franklin. Adaptive Cleaning for RFID Data
Streams. In VLDB ’06, pages 163–174, 2006.

[103] JGraph Web Page. http://www.jgraph.com/.

[104] W. Jin, J. Han, and M. Ester. Mining Thick Skylines over Large Databases. In
PKDD ’04, pages 255–266, 2004.

[105] A. Job. Distributed Simulation of P2P Query Processing Strategies in PlanetLab (in
German) – Verteilte Simulation von P2P-Anfragestrategien in PlanetLab. Master’s
thesis, TU Ilmenau, 2006.

[106] JXTA Web Page. https://jxta.dev.java.net/.

[107] M. Karnstedt, K. Hose, E. Stehr, and K. Sattler. Adaptive Routing Filters for Ro-
bust Query Processing in Schema-Based P2P Systems. In IDEAS 2005, Montreal,
Canada, 2005, pages 223–228, 2005.

[108] A. Kementsietsidis and M. Arenas. Data Sharing Through Query Translation in
Autonomous Sources. In VLDB ’04, pages 468–479, 2004.

[109] A. Kementsietsidis, M. Arenas, and R. Miller. Mapping Data in Peer-to-Peer
Systems: Semantics and Algorithmic Issues. In SIGMOD ’03, pages 325–336, 2003.

[110] M. Khalefa, M. Mokbel, and J. Levandoski. Skyline Query Processing for Incom-
plete Data. In ICDE 08, pages 556–565, 2008.

[111] W. Kießling. Preference Queries with SV-Semantics. In COMAD ’05, pages 15–26,
2005.

[112] J. Kleinberg. Complex Networks and Decentralized Search Algorithms. In Inter-
national Congress of Mathematicians (ICM), 2006.

Processing Rank-Aware Queries in Schema-Based P2P Systems 235

BIBLIOGRAPHY

[113] A. Koch. Evaluation of Top-N Queries in P2P Systems (in German) – Auswertung
von Top-N Anfragen in P2P-Systemen. Master’s thesis, TU Ilmenau, 2005.

[114] V. Koltun and C. Papadimitriou. Approximately Dominating Representatives. In
ICDT ’05, pages 204–214, 2005.

[115] D. Kossmann. The State of the Art in Distributed Query Processing. ACM Com-
puting Surveys, 32(4):422–469, 2000.

[116] D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the Sky: An Online
Algorithm for Skyline Queries. In VLDB ’02, pages 275–286, 2002.

[117] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of
vectors. Journal of the ACM, 22(4):469–476, October 1975.

[118] C. Lemke. Management of Data Summaries in PDMSs (in German) – Verwaltung
von Datenzusammenfassungen in PDMS. Master’s thesis, TU Ilmenau, 2007.

[119] M. Lenzerini. Data Integration: a Theoretical Perspective. In PODS ’02, pages
233–246, 2002.

[120] U. Leser. Query Planning in Mediator Based Information Systems. PhD thesis,
TU Berlin, Fachbereich Informatik, 2000.

[121] V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[122] A. Levy, A. Mendelzon, and Y. Sagiv. Answering queries using views (extended
abstract). In PODS ’95, pages 95–104, 1995.

[123] A. Levy, A. Rajaraman, and J. Ordille. Query-Answering Algorithms for Informa-
tion Agents. In AAAI ’96, pages 40–47, 1996.

[124] A. Levy, A. Rajaraman, and J. Ordille. Querying Heterogeneous Information
Sources Using Source Descriptions. In VLDB ’96, pages 251–262, 1996.

[125] A. Levy and D. Suciu. Deciding Containment for Queries with Complex Objects.
In PODS ’97, pages 20–31, 1997.

[126] C. Li, A. Tung, W. Jin, and M. Ester. On Dominating Your Neighborhood Prof-
itably. In VLDB ’07, pages 818–829, 2007.

[127] H. Li, Q. Tan, and W. Lee. Efficient progressive processing of skyline queries in
peer-to-peer systems. In InfoScale ’06, page 26, 2006.

[128] D. Liben-Nowell and J. Kleinberg. The Link Prediction Problem for Social Net-
works. In CIKM 03, 2003.

[129] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the Sky: Efficient Skyline Com-
putation over Sliding Windows. In ICDE ’05, pages 502–513, 2005.

236 Processing Rank-Aware Queries in Schema-Based P2P Systems

BIBLIOGRAPHY

[130] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting Stars: The k Most Represen-
tative Skyline Operator. In ICDE ’07, pages 86–95, 2007.

[131] A. Lotem, M. Naor, and R. Fagin. Optimal aggregation algorithms for middleware.
In PODS’01, 2001.

[132] A. Marian. Evaluating Top-k Queries over Web-Accessible Databases. In ICDE ’02,
page 369, 2002.

[133] A. Marian, N. Bruno, and L. Gravano. Evaluating Top-k Queries over Web-
Accessible Databases. ACM TODS’04, 29(2):319–362, 2004.

[134] M. Marzolla, M. Mordacchini, and S. Orlando. Tree Vector Indexes: Efficient
Range Queries for Dynamic Content on Peer-to-Peer Networks. In PDP’06, pages
457–464, 2006.

[135] M. Masud, I. Kiringa, and A. Kementsietsidis. Don’t Mind Your Vocabulary: Data
Sharing Across Heterogeneous Peers. In CoopIS ’05, pages 292–309, 2005.

[136] S. Michel, P. Triantafillou, and G. Weikum. KLEE: a Framework for Distributed
Top-k Query Algorithms. In VLDB ’05, pages 637–648, 2005.

[137] G. Miklau and D. Suciu. Containment and equivalence for an xpath fragment. In
PODS ’02, pages 65–76, 2002.

[138] S. Milgram. The small-world problem. Psychology Today, 2:60–67, 1967.

[139] D. Morrison. PATRICIA—Practical Algorithm To Retrieve Information Coded in
Alphanumeric. J. ACM, 15(4):514–534, 1968.

[140] M. Morse, J. Patel, and W. Grosky. Efficient Continuous Skyline Computation. In
ICDE ’06, page 108, 2006.

[141] K. Mouratidis, S.n Bakiras, and D. Papadias. Continuous monitoring of top-k
queries over sliding windows. In SIGMOD ’06, pages 635–646, 2006.

[142] M. Muralikrishna and D. DeWitt. Equi-Depth Histograms for Estimating Selectiv-
ity Factors for Multi-Dimensional Queries. In SIGMOD 88, pages 28–36, 1988.

[143] N. Beckmann and H. Kriegel and R. Schneider and B. Seeger. The R*-tree: an
efficient and robust access method for points and rectangles. In SIGMOD ’90,
pages 322–331, 1990.

[144] Napster Web Page. http://www.napster.com.

[145] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmer,
and T. Risch. Edutella: a P2P Networking Infrastructure based on RDF. In World
Wide Web Conference ’02, 2002.

[146] S. Nepal and M. Ramakrishna. Query Processing Issues in Image(Multimedia)
Databases. In ICDE ’99, page 22, 1999.

Processing Rank-Aware Queries in Schema-Based P2P Systems 237

BIBLIOGRAPHY

[147] S. Nepal and M. Ramakrishna. Query Processing Issues in Image(Multimedia)
Databases. In ICDE ’99, page 22, 1999.

[148] ns-2 Web Page. http://www.isi.edu/nsnam/ns/.

[149] S. Oaks, B. Traversat, and L. Gong. JXTA in a Nutshell. O’Reilly & Associates,
Inc., 2002.

[150] M. Tamer Özsu and P. Valduriez. Principles of Distributed Database Systems, 2nd
Edition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

[151] P. McBrien and A. Poulovassilis. Data integration by bi-directional schema trans-
formation rules. In ICDE ’03, 2003.

[152] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm
for skyline queries. In SIGMOD ’03, pages 467–478, 2003.

[153] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive Skyline Computation in
Database Systems. ACM Trans. Database Syst., 30(1), 2005.

[154] V. Papadimos and D. Maier. Mutant Query Plans. Information and Software
Technology, 44(4):197–206, April 2002.

[155] J. Pei, A. Fu, X. Lin, and H. Wang. Computing Compressed Multidimensional
Skyline Cubes Efficiently. In ICDE ’07, pages 96–105, 2007.

[156] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic Skylines on Uncertain Data.
In VLDB ’07, pages 15–26, 2007.

[157] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the Best Views of Skyline: A
Semantic Approach Based on Decisive Subspaces. In VLDB ’05, pages 253–264,
2005.

[158] Y. Petrakis, G. Koloniari, and E. Pitoura. On Using Histograms as Routing Indexes
in Peer-to-Peer Systems. In DBISP2P ’04, pages 16–30, 2004.

[159] Y. Petrakis and E. Pitoura. On Constructing Small Worlds in Unstructured Peer-
to-Peer Systems. In EDBT Workshops, pages 415–424, 2004.

[160] PlanetLab Web Page. http://www.planet-lab.org/.

[161] V. Poosala and Y. Ioannidis. Selectivity Estimation Without the Attribute Value
Independence Assumption. In VLDB ’97, pages 486–495, 1997.

[162] R. Pottinger and A. Halevy. MiniCon: A scalable algorithm for answering queries
using views. The VLDB Journal, 10(2-3):182–198, 2001.

[163] R. Pottinger and A. Levy. A Scalable Algorithm for Answering Queries Using
Views. In VLDB ’00, pages 484–495, 2000.

[164] F. P. Preparata and M. I. Shamos. Computational Geometry - An Introduction.
Springer, 1985.

238 Processing Rank-Aware Queries in Schema-Based P2P Systems

BIBLIOGRAPHY

[165] J. Quasebarth. Distributed Query Rewriting in PDMSs (in German) – Verteiltes
Anfrage-Rewriting in PDMS. Master’s thesis, TU Ilmenau, 2007.

[166] E. Rahm. Mehrrechner-Datenbanksysteme: Grundlagen der verteilten und paralle-
len Datenverarbeitung. Addison-Wesley (Germany) GmbH, 1994.

[167] E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching.
VLDB Journal, 10(4):334–350, 2001.

[168] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In SIGCOMM ’01, pages 161–172, New York, NY,
USA, 2001. ACM Press.

[169] P. Rodŕıguez-Gianolli, A. Kementsietsidis, M. Garzetti, I. Kiringa, L. Jiang, M. Ma-
sud, R. J. Miller, and J. Mylopoulos. Data sharing in the Hyperion peer database
system. In VLDB ’05, pages 1291–1294, 2005.

[170] A. Roth and F. Naumann. System P: Query Answering in PDMS under Limited
Resources. In IIWeb ’06, 2006.

[171] A. Roth and F. Naumann. System p: Completeness-driven query answering in peer
data management systems. In BTW ’07, pages 625–628, 2007.

[172] Y. Saito and M. Shapiro. Optimistic Replication. Computing Surveys, 37(1):42–81,
2005.

[173] K. Sattler, S. Conrad, and G. Saake. Interactive Example-driven Integration
and Reconciliation for Accessing Database Federations. Information Systems,
28(5):393–414, 2003.

[174] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. HyperCuP – Hypercubes, On-
tologies and Efficient Search on P2P Networks. In International Workshop on
Agents and Peer-to-Peer Computing, pages 112–124, 2002.

[175] H. Shang and T. Merrettal. Tries for Approximate String Matching. IEEE Trans.
on Knowl. and Data Eng., 8(4):540–547, 1996.

[176] M. Sharifzadeh and C. Shahabi. The spatial skyline queries. In VLDB ’06, pages
751–762, 2006.

[177] A. Sheth and J. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183–
236, 1990.

[178] U. Srivastava, P. J. Haas, V. Markl, M. Kutsch, and T. M. Tran. ISOMER: Con-
sistent Histogram Construction Using Query Feedback. In ICDE ’06, page 39,
2006.

[179] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. LEO -
DB2’s LEarning Optimizer. In VLDB ’01, pages 19–28, 2001.

Processing Rank-Aware Queries in Schema-Based P2P Systems 239

BIBLIOGRAPHY

[180] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In SIGCOMM ’01,
pages 149–160, 2001.

[181] E. Sutinen and J. Tarhio. On Using q-Gram Locations in Approximate String
Matching. In ESA ’95, pages 327–340, 1995.

[182] E. Sutinen and J. Tarhio. Filtration with q-Samples in Approximate String Match-
ing. In CPM ’96, pages 50–63, 1996.

[183] K.-L. Tan, P.-K. Eng, and B. Chin Ooi. Efficient progressive skyline computation.
In Proceedings of VLDB, pages 301–310, 2001.

[184] Y. Tao and D. Papadias. Maintaining Sliding Window Skylines on Data Streams.
IEEE TKDE, 18(3):377–391, 2006.

[185] Y. Tao, X. Xiao, and J. Pei. SUBSKY: Efficient Computation of Skylines in Sub-
spaces. In ICDE ’06, page 65, 2006.

[186] Y. Tao, X. Xiao, and J. Pei. Efficient Skyline and Top-k Retrieval in Subspaces.
IEEE TKDE, 19(8):1072–1088, 2007.

[187] I. Tatarinov and A. Halevy. Efficient query reformulation in peer data management
systems. In SIGMOD ’04, pages 539–550, 2004.

[188] I. Tatarinov, Z. Ives, J. Madhavan, A. Halevy, D. Suciu, N. Dalvi, X. Dong,
Y. Kadiyska, G. Miklau, and P. Mork. The Piazza Peer Data Management Project.
SIGMOD Record, 32(3):47–52, 2003.

[189] N. Taylor and Z. Ives. Reconciling while tolerating disagreement in collaborative
data sharing. In SIGMOD ’06, pages 13–24, 2006.

[190] M. Theobald, G. Weikum, and R. Schenkel. Top-k Query Evaluation with Proba-
bilistic Guarantees. In VLDB’04, pages 648–659, 2004.

[191] L. Tian, L. Wang, A. Li, P. Zou, and Y. Jia. Continuous Skyline Tracking on
Update Data Streams. In APWeb/WAIM Workshops, pages 192–197, 2007.

[192] E. Ukkonen. Approximate String Matching with q-grams and Maximal Matches.
Theoretical Computer Science, 92(1):191–211, 1992.

[193] J. Ullman. Principles of Database and Knowledge-Base Systems, volume 1. Com-
puter Science Press, Rockville, MD., USA, 1989.

[194] J. Ullman. Information Integration Using Logical Views. In ICDT ’97, pages 19–40,
1997.

[195] J. Ullmann. A Binary n-Gram Technique for Automatic Correction of Substitu-
tion, Deletion, Insertion and Reversal Errors in Words. The Computer Journal,
20(2):141–147, 1977.

240 Processing Rank-Aware Queries in Schema-Based P2P Systems

BIBLIOGRAPHY

[196] A. Vlachou, C. Doulkeridis, Y. Kotidis, and M. Vazirgiannis. SKYPEER: Efficient
Subspace Skyline Computation over Distributed Data. In ICDE ’07, pages 416–425,
2007. To appear.

[197] A. Vlachou, C. Doulkeridis, K. Nørv̊ag, and M. Vazirgiannis. Skyline-based Peer-
to-Peer Top-k Query Processing. In ICDE, pages 1421–1423, 2008.

[198] S. Wang, B. Ooi, A. Tung, and L. Xu. Efficient Skyline Query Processing on
Peer-to-Peer Networks. In ICDE ’07, pages 1126–1135, 2007.

[199] M. Weis and F. Naumann. DogmatiX Tracks down Duplicates in XML. In SIG-
MOD ’05, pages 431–442, 2005.

[200] G. Wills. NicheWorks - Interactive Visualization of Very Large Graphs. In GD ’97:
Proceedings of the 5th International Symposium on Graph Drawing, pages 403–414,
1997.

[201] R. Wong, A. Fu, J. Pei, Y. Ho, T. Wong, and Y. Liu. Efficient Skyline Querying
with Variable User Preferences on Nominal Attributes. CoRR, abs/0710.2604, 2007.

[202] P. Wu, D. Agrawal, Ö. Eğecioğlu, and A. Abbadi. DeltaSky: Optimal Maintenance
of Skyline Deletions without Exclusive Dominance Region Generation. In ICDE ’07,
pages 486–495, 2007.

[203] P. Wu, C. Zhang, Y. Feng, B. Zhao, D. Agrawal, and A. Abbadi. Parallelizing
Skyline Queries for Scalable Distribution. In EDBT ’06, pages 112–130, 2006.

[204] T. Xia and D. Zhang. Refreshing the sky: the compressed skycube with efficient
support for frequent updates. In SIGMOD ’06, pages 491–502, 2006.

[205] J. Xin, G. Wang, L. Chen, X. Zhang, and Z. Wang. Continuously Maintaining
Sliding Window Skylines in a Sensor Network. In DASFAA 07, pages 509–521,
2007.

[206] L. Yan and M. Özsu. Conflict Tolerant Queries in AURORA. In CoopIS 99, pages
279–290, 1999.

[207] K. Yee, D. Fisher, R. Dhamija, and M. Hearst. Animated Exploration of Dynamic
Graphs with Radial Layout. In INFOVIS ’01, page 43, 2001.

[208] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient Maintenance of Materialized
Top-k Views. In ICDE ’03, pages 189–200, 2003.

[209] C. Yu, B. Ooi, K. Tan, and H. Jagadish. Indexing the Distance: An Efficient
Method to KNN Processing. In VLDB ’01, pages 421–430, 2001.

[210] C. Yu and L. Popa. Semantic Adaptation of Schema Mappings when Schemas
Evolve. In VLDB ’05, pages 1006–1017, 2005.

[211] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. Xu Yu, and Q. Zhang. Efficient computation
of the skyline cube. In VLDB ’05, pages 241–252, 2005.

Processing Rank-Aware Queries in Schema-Based P2P Systems 241

BIBLIOGRAPHY

[212] L. Zadeh. Fuzzy Sets. Information and Control, 8:338–353, 1969.

[213] D. Zinn. Skyline Queries in P2P Systems. Master’s thesis, TU Ilmenau, 2005.

242 Processing Rank-Aware Queries in Schema-Based P2P Systems

