Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 09/20
The asymptotic covering density of generalized Petersen graphs

John, Peter E.; Sachs, Horst

2009

Impressum:

Hrsg.: Leiter des Instituts für Mathematik
Weimarer Straße 25
98693 Ilmenau
Tel.: +49 3677693621
Fax: +493677 693270
http://www.tu-ilmenau.de/ifm/

The Asymptotic Covering Density of Generalized Petersen Graphs

Remark on the paper "Minimum vertex covers in the generalized Petersen graphs $P(n, 2) "$ by M. Behzad, P. Hatami, and E.S. Mahmoodian [1]

Peter E. John and Horst Sachs
Ilmenau Technical University, Institute of Mathematics
PF 100565
98684 Ilmenau,Germany
e-mail: peter.john@tu-ilmenau.de, horst.sachs@tu-ilmenau.de
Dedicated to Tomaž Pisanski on the occasion of his 60th birthday

Abstract

The covering density of a graph $G=(V, E)$ is $\delta(G)=\beta(G) /|V|$ where $\beta(G)$, the covering number, is the minimum number of vertices that represent all edges of G. The asymptotic covering density of the generalized Petersen graph is determined.

Keywords: Petersen graph (generalized), vertex cover, edge representation, covering number, covering density

Introduction

Let $G=(V, E)$ be a finite graph on $v(G)=|V|$ vertices. The covering number $\beta(G)$ is the minimum number of vertices that cover (i.e., represent) all edges of G, the covering density is $\delta(G)=\beta(G) / v(G)$.

The generalized Petersen graph $P(n, k)(n=3,4,5 \ldots ; k=1,2, \ldots,\lfloor n / 2\rfloor)$ has vertex set $V=\left\{u_{i}, v_{i} \mid i=1,2, \ldots, n\right\}$ and edge set $E=\left\{u_{i} u_{i+1}, u_{i} v_{i}, v_{i} v_{i+k} \mid i=\right.$ $1,2, \ldots, n$; subscripts to be reduced $\bmod n\}$ (Figure 1); Petersen's classic graph is $P(5,2)$.

Figure 1

In [1] it is shown that $\beta(P(n, 2))=n+\lceil n / 5\rceil$ and conjectured that

$$
\beta(P(n, k)) \leq n+\lceil n / 5\rceil \text {, i.e., } \delta(P(n, k)) \leq \frac{1}{2}(1+\lceil n / 5\rceil / n), k=1,2, \ldots,\lfloor n / 2\rfloor .
$$

Figure 2

Figure 3

Figure 4

Here we shall show that, from an asymptotic point of view $(n \rightarrow \infty)$, we can do better.

The Result

Let $\delta(k)$ denote the asymptotic density of the sequence $\{P(n, k) \mid n=3,4,5, \ldots\}$ for $n \longrightarrow \infty$.

Theorem.
$\operatorname{Claim} A: \quad \delta(k)=\frac{1}{2}$ if k is odd.
Claim B: $\quad \delta(k)=\frac{1}{2}\left(1+\frac{1}{2 k}\right)$ if k is even, $k>2$.
Claim C: $\quad \delta(2)=\frac{1}{2}\left(1+\frac{1}{5}\right)$.
Proof. Let the Petersen strip $P(\infty, k)$ consist of $k+1$ infinite paths

$$
\begin{aligned}
P_{0} & =\left\{\ldots, u_{-2}, u_{-1}, u_{0}, u_{1}, u_{2}, \ldots\right\} \\
P_{\varkappa+1} & =\left\{\ldots, v_{\varkappa-2 k}, v_{\varkappa-k}, v_{\varkappa}, v_{\varkappa+k}, v_{\varkappa+2 k}, \ldots\right\} \quad(\varkappa=0,1, \ldots, k-1)
\end{aligned}
$$

and the edges (spokes) $u_{i} v_{i}, i=0, \pm 1, \pm 2, \ldots$ (Figure 2). An (m, n)-section $P_{m}(n, k)$ of $P(\infty, k)$ is the part of $P(\infty, k)$ induced by the vertex set

$$
\left\{u_{m}, v_{m} ; u_{m+1}, v_{m+1} ; \ldots ; u_{m+n-1}, v_{m+n-1}\right\}
$$

with dangling half-edges at both ends; n is called the length of the section (Figure 3). Such a section is obtained from $P(n, k)$ by performing a radial cut C between two consecutive spokes (Figure 1). Conversely, graph $P(n, k)$ is retrieved from $P_{m}(n, k)$ by gluing together
pairs of half-edges according to a suitable identification scheme (Figure 4). A cover of an (m, n)-section is assumed to represent the edges, not the half-edges.

The covering density of $P(\infty, k)$ is $\delta(P(\infty, k))=\lim _{n \rightarrow \infty} \delta\left(P_{-\lfloor n / 2\rfloor}(n, k)\right)$; it is easy to see that this limit exists. Clearly,

$$
\delta(k)=\lim _{n \rightarrow \infty} \delta(P(n, k))=\lim _{n \rightarrow \infty} \delta\left(P_{-\lfloor n / 2\rfloor}(n, k)\right)=\delta(P(\infty, k)) .
$$

To determine this limit we distinguish three cases.
Case a: k is odd.
Note that, in this case, $P(\infty, k)$ is bipartite.
Case b: k is even and greater than two.

Case c: $\quad k=2$.
As at least one vertex of every spoke must be covered, $\delta(k) \geq \frac{1}{2}$ for all k.
Case a, k is odd. Colour all vertices $u_{2 i}, v_{2 i+1}$ of $P(\infty, k)$ white and the rest black. $P(\infty, k)$ being bipartite with bipartition white/black, the white vertices form a cover of density $\frac{1}{2}$ which is best possible.

This proves Claim A.
Cases band c, k is even. $\quad P(\infty, k)$ being cubic and containing (many) odd circuits (of length $k+3$, e.g.), it is easy to show that any cover creates some spokes both ends of which are covered.

Consider an arbitrary cover and assume w.l.o.g. that spoke $u_{0} v_{0}$ is double-covered. Let r be the least positive integer such that (at least) one of the spokes $u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{r} v_{r}$ is double-covered. We shall determine the number $R=R(k)=\max r$ where the maximum is taken over all covers of $P(\infty, k)$: then

$$
\delta(k) \geq \frac{R+1}{2 R}=\frac{1}{2}\left(1+\frac{1}{R}\right) .
$$

Consider any cover and colour the vertices that are covered white and the rest black (such a colouring will be called feasible). By hypothesis, u_{0} and v_{0} are white. Assume that in the sequence $\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$ two consecutive vertices v_{i}, v_{i+1} have the same colour c. If c is white then u_{i}, u_{i+1} cannot both be black (because this would leave the edge $u_{i} u_{i+1}$ uncovered), thus $r \leq i+1 \leq k-1$. If c is black then both v_{i+k}, v_{i+1+k} are white, thus, by the same argument, $r \leq i+k+1 \leq 2 k-1$.

Next assume that, in the sequence $\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$, the colours alternate.
We distinguish two subcases.

Subcase 1: v_{1} is black; then v_{k-1} is black and v_{k+1}, as a neighbour of v_{1}, is white. If v_{k} is white, too, then $r \leq k+1$. Let v_{k} be black: then both $v_{2 k-1}$ and $v_{2 k}$ are white, thus $r \leq 2 k$.

Note that if $r=2 k$ then, under the hypothesis that v_{1} is black, r is maximum and the colouring of $P_{0}(2 k, k)$ is unique (see Figure 6).

Figure 5: The fact that $v_{2 k+3}$ must be white prevents the length of the fair section following $P_{0}^{f}(2 k+1, k)$ from exceeding $2 k$.

Subcase 2: v_{1} is white; then v_{2} is black and v_{k-1} is white. If u_{k-1} is white then $r \leq k-1$. If u_{k-1} is black then u_{k} must be white. If v_{k} is white then $r \leq k$. Let v_{k} be black. v_{k+2}, as a neighbour of v_{2}, must be white. If v_{k+1} is white, too, then $r \leq k+2$. If v_{k+1} is black then both $v_{2 k}$ and $v_{2 k+1}$ are white, and we conclude that $r \leq 2 k+1$.
Note that if $r=2 k+1$ then r is maximum and the colouring of $P_{0}(2 k+1, k)$ is unique.
In any case, $r \leq 2 k+1$, thus $R \leq 2 k+1$ implying $\quad \delta(k) \geq \frac{1}{2}\left(1+\frac{1}{2 k+1}\right)$.
Case b: k is even, $k>2$. Every feasible colouring induces a partition of $P(\infty, k)$ into sections $P_{m}^{f}(n, k)$ (which we shall call fair indicated by the superscript f) of, in general, variable length n such that both the end vertices of the first spoke, u_{m} and v_{m}, are white and no other spoke in $P_{m}^{f}(n, k)$ has this property, and length n is maximum under this condition, i.e., both u_{m+n+1}, v_{m+n+1} are white. It is easy to check that a fair section $P_{0}^{f}(r, k)$ of length $r=2 k+1$ (which by Subcase 2 is maximum) is uniquely realized by the following colouring: vertices

$$
u_{0}, v_{0} ; v_{1}, u_{2}, v_{3}, u_{4}, \ldots, v_{k-1}, u_{k} ; u_{k+1}, v_{k+2}, u_{k+3}, v_{k+4}, \ldots, u_{2 k-1}, v_{2 k}
$$

are white, the remaining vertices are black (Figure 5). If we try to extend this colouring beyond the last spoke $u_{2 k} v_{2 k}$ we observe that, by the unique colouring of $P_{0}^{f}(2 k+1, k)$, the initial conditions for creating a fair section $P_{2 k+1}^{f}(\cdot, k)$ of length $2 k+1$ are not satisfied (Figure 5), the longest possible fair section following $P_{0}^{f}(2 k+1, k)$ is $P_{2 k+1}^{f}(2 k, k)$ with a colouring that is again unique and reproduces the same initial conditions for the next fair section (compare Figure 6). The analogue is true for any extension of the colouring of $P_{0}^{f}(2 k+1, k)$ to the left hand side: we conclude that between any two fair sections of length $2 k+1$ there lies a fair section of length less than $2 k$ implying $\delta(k) \geq \frac{1}{2}\left(1+\frac{1}{2 k}\right)$. There are feasible colourings of $P(\infty, k)$ with covering density $\frac{1}{2}\left(1+\frac{1}{2 k}\right)$, e.g., the following: to obtain a fair section $P_{0}^{f}(2 k, k)$ colour vertices

$$
u_{0}, v_{0} ; u_{1}, v_{2}, u_{3}, v_{4}, \ldots, v_{k-2}, u_{k-1} ; u_{k}, v_{k+1}, u_{k+2}, v_{k+3}, \ldots, u_{2 k-2}, v_{2 k-1}
$$

white and the remaining vertices black (Figure 6). This colouring can by isomorphic versions of $P_{0}^{f}(2 k, k)$ be repeated arbitrarily often to both sides of $P_{0}^{f}(2 k, k)$.

This proves Claim B.

Figure 6

Figure 7

Case c: $k=2$. Here the situation is somewhat different: the colouring of a fair section of (maximum) length $2 k+1=5$ can be extended to both sides of this section such that all fair sections of $P(\infty, 2)$ have length 5 , see Figure 7. We conclude that, in accordance with Theorem 1 of $[1], \delta(2)=\frac{1}{2}\left(1+\frac{1}{5}\right)$.

This proves Claim C.

Reference

[1] M. Behzad, P. Hatami, and E.S. Mahmoodian, Minimum vertex covers in the generalized Petersen graphs $P(n, 2)$. Bulletin of the ICA 56 (2009), 98-102.

