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Abstract
The covering density of a graph G = (V,E) is δ(G) = β(G)/|V | where

β(G), the covering number, is the minimum number of vertices that represent
all edges of G. The asymptotic covering density of the generalized Petersen
graph is determined.
Keywords: Petersen graph (generalized), vertex cover, edge representation,
covering number, covering density

Introduction

Let G = (V,E) be a finite graph on v(G) = |V | vertices. The covering number β(G) is
the minimum number of vertices that cover (i.e., represent) all edges of G, the covering
density is δ(G) = β(G)/v(G).

The generalized Petersen graph P (n, k) (n = 3, 4, 5 . . . ; k = 1, 2, . . . , bn/2c) has
vertex set V = {ui, vi | i = 1, 2, . . . , n} and edge set E = {uiui+1, uivi, vivi+k | i =
1, 2, . . . , n ; subscripts to be reduced mod n} (Figure 1); Petersen’s classic graph is P (5, 2).

Figure 1

In [1] it is shown that β(P (n, 2)) = n+ dn/5e and conjectured that

β(P (n, k)) ≤ n+ dn/5e, i.e., δ(P (n, k)) ≤ 1

2
(1 + dn/5e/n), k = 1, 2, . . . , bn/2c.
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Figure 2

Figure 3 Figure 4

Here we shall show that, from an asymptotic point of view (n→∞), we can do better.

The Result

Let δ(k) denote the asymptotic density of the sequence {P (n, k) | n = 3, 4, 5, . . .} for
n −→∞.

Theorem.
Claim A : δ(k) = 1

2
if k is odd.

Claim B : δ(k) = 1
2
(1 + 1

2k
) if k is even, k > 2.

Claim C : δ(2) = 1
2
(1 + 1

5
).

Proof. Let the Petersen strip P (∞, k) consist of k + 1 infinite paths

P0 = {. . . , u−2, u−1, u0, u1, u2, . . .},
Pκ+1 = {. . . , vκ−2k, vκ−k, vκ, vκ+k, vκ+2k, . . .} (κ = 0, 1, . . . , k − 1)

and the edges (spokes) uivi, i = 0,±1,±2, . . . (Figure 2). An (m,n)-section Pm(n, k) of
P (∞, k) is the part of P (∞, k) induced by the vertex set

{um, vm;um+1, vm+1; . . . ;um+n−1, vm+n−1}

with dangling half-edges at both ends; n is called the length of the section (Figure 3). Such
a section is obtained from P (n, k) by performing a radial cut C between two consecutive
spokes (Figure 1). Conversely, graph P (n, k) is retrieved from Pm(n, k) by gluing together
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pairs of half-edges according to a suitable identification scheme (Figure 4). A cover of an
(m,n)-section is assumed to represent the edges, not the half-edges.

The covering density of P (∞, k) is δ(P (∞, k)) = lim
n→∞

δ(P−bn/2c(n, k)); it is easy to see

that this limit exists. Clearly,

δ(k) = lim
n→∞

δ(P (n, k)) = lim
n→∞

δ(P−bn/2c(n, k)) = δ(P (∞, k)).

To determine this limit we distinguish three cases.

Case a: k is odd.
Note that, in this case, P (∞, k) is bipartite.

Case b: k is even and greater than two.

Case c: k = 2.
As at least one vertex of every spoke must be covered, δ(k) ≥ 1

2
for all k.

Case a, k is odd. Colour all vertices u2i, v2i+1 of P (∞, k) white and the rest black.
P (∞, k) being bipartite with bipartition white/black, the white vertices form a cover of
density 1

2
which is best possible.

This proves Claim A.

Cases b and c, k is even. P (∞, k) being cubic and containing (many) odd circuits (of
length k + 3, e.g.), it is easy to show that any cover creates some spokes both ends of
which are covered.

Consider an arbitrary cover and assume w.l.o.g. that spoke u0v0 is double-covered. Let
r be the least positive integer such that (at least) one of the spokes u1v1, u2v2, . . . , urvr is
double-covered . We shall determine the number R = R(k) = max r where the maximum
is taken over all covers of P (∞, k): then

δ(k) ≥ R + 1

2R
=

1

2
(1 +

1

R
).

Consider any cover and colour the vertices that are covered white and the rest black (such
a colouring will be called feasible). By hypothesis, u0 and v0 are white. Assume that in
the sequence {v1, v2, . . . , vk−1} two consecutive vertices vi, vi+1 have the same colour c. If
c is white then ui, ui+1 cannot both be black (because this would leave the edge uiui+1

uncovered), thus r ≤ i+ 1 ≤ k− 1. If c is black then both vi+k, vi+1+k are white, thus, by
the same argument, r ≤ i+ k + 1 ≤ 2k − 1.

Next assume that, in the sequence {v1, v2, . . . , vk−1}, the colours alternate.
We distinguish two subcases.

Subcase 1: v1 is black; then vk−1 is black and vk+1, as a neighbour of v1, is white. If
vk is white, too, then r ≤ k+ 1. Let vk be black: then both v2k−1 and v2k are white, thus
r ≤ 2k.

Note that if r = 2k then, under the hypothesis that v1 is black, r is maximum and the
colouring of P0(2k, k) is unique (see Figure 6).
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Figure 5: The fact that v2k+3 must be white prevents the length of the fair section
following P f

0 (2k + 1, k) from exceeding 2k.

Subcase 2: v1 is white; then v2 is black and vk−1 is white. If uk−1 is white then r ≤ k−1.
If uk−1 is black then uk must be white. If vk is white then r ≤ k. Let vk be black. vk+2,
as a neighbour of v2, must be white. If vk+1 is white, too, then r ≤ k+ 2. If vk+1 is black
then both v2k and v2k+1 are white, and we conclude that r ≤ 2k + 1.
Note that if r = 2k + 1 then r is maximum and the colouring of P0(2k + 1, k) is unique.

In any case, r ≤ 2k + 1, thus R ≤ 2k + 1 implying δ(k) ≥ 1

2
(1 +

1

2k + 1
).

Case b: k is even, k > 2. Every feasible colouring induces a partition of P (∞, k) into
sections P f

m(n, k) (which we shall call fair indicated by the superscript f) of, in general,
variable length n such that both the end vertices of the first spoke, um and vm, are white
and no other spoke in P f

m(n, k) has this property, and length n is maximum under this
condition, i.e., both um+n+1, vm+n+1 are white. It is easy to check that a fair section
P f

0 (r, k) of length r = 2k + 1 (which by Subcase 2 is maximum) is uniquely realized by
the following colouring: vertices

u0, v0; v1, u2, v3, u4, . . . , vk−1, uk;uk+1, vk+2, uk+3, vk+4, . . . , u2k−1, v2k

are white, the remaining vertices are black (Figure 5). If we try to extend this colouring
beyond the last spoke u2kv2k we observe that, by the unique colouring of P f

0 (2k + 1, k),
the initial conditions for creating a fair section P f

2k+1(·, k) of length 2k+1 are not satisfied

(Figure 5), the longest possible fair section following P f
0 (2k + 1, k) is P f

2k+1(2k, k) with
a colouring that is again unique and reproduces the same initial conditions for the next
fair section (compare Figure 6). The analogue is true for any extension of the colouring
of P f

0 (2k + 1, k) to the left hand side: we conclude that between any two fair sections of
length 2k + 1 there lies a fair section of length less than 2k implying δ(k) ≥ 1

2
(1 + 1

2k
).

There are feasible colourings of P (∞, k) with covering density 1
2
(1+ 1

2k
), e.g., the following:

to obtain a fair section P f
0 (2k, k) colour vertices

u0, v0;u1, v2, u3, v4, . . . , vk−2, uk−1;uk, vk+1, uk+2, vk+3, . . . , u2k−2, v2k−1

white and the remaining vertices black (Figure 6). This colouring can by isomorphic
versions of P f

0 (2k, k) be repeated arbitrarily often to both sides of P f
0 (2k, k).

This proves Claim B.
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Figure 6

Figure 7

Case c: k = 2. Here the situation is somewhat different: the colouring of a fair section
of (maximum) length 2k + 1 = 5 can be extended to both sides of this section such that
all fair sections of P (∞, 2) have length 5, see Figure 7. We conclude that, in accordance
with Theorem 1 of [1], δ(2) = 1

2
(1 + 1

5
).

This proves Claim C. �
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