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Zinc Oxide - Unique Material for Micro- /Nanotechnology  
 
 
1. INTRODUCTION 
 
Zinc oxide (ZnO) is a unique material that exhibits semiconducting, piezoelectric, pyroelectric 

and optoelectronic multiple properties. Zinc oxide is a transparent semiconductor with a direct 

bandgap of 3.37 eV and large excitation binding energy (60 meV), and exhibits near-UV 

emission and absorption, as well as high transparency and natural n-type in conductivity. Pure 

ZnO crystallizes in the hexagonal (wurtzite) system with lattice parameters a = 0.326 nm and 

c = 0.520 nm. The structure of ZnO can be simply described as number of alternating planes 

composed of tetrahedraly coordinated O2- and Zn2+ ions, stacked alternately along the c-axis 

(Fig. 1.) [1]. High electron carrier densities in undoped ZnO have been attributed to the native 

defects in ZnO structure such as zinc and oxygen vacancies, zinc and oxygen intersticials, and 

zinc and oxygen antisides. Electrons from the native defect zinc interstitials, a double donor, are 

the dominant carriers for zinc-rich conditions. 

 

 
 
Fig. 1. Wurtzite structure model of ZnO with tetrahedral configuration 
 

Recently, zinc oxide has attracted much attention because of wide applications in optoelectronic 

devices (short wavelength light emitting and detecting devices), surface and bulk acoustic wave 

devices, piezoelectric transducers, gas sensing and solar cells [2]. The semiconducting 

nanostructures such as nano-/fibers, wires, rods, tubes, belts, saws, springs, rings, bows and 



propellers have caught considerable attention due to zinc oxide great application potential in 

nanoactuators and nanosensors [3]. The highly one-dimensional ZnO nanostructures were 

realized using various methods such as vapor transport and deposition, thermal decomposition 

[4] and evaporation [5] (e.g. vapor liquid solid (VLS) process [6], metal-organic chemical vapor 

deposition (MOCVD) [7]. 

ZnO thin film deposition by sputtering is determined by complex processes proceeding: (a) at 

the target bombarded by energetic ions, (b) in the low-temperature plasma, (c) on the surface of 

substrate and growing film. In general, thin film growth is influenced by the kinetic energy of 

coating species on the substrate – in addition to substrate temperature a total energy flux is 

acting to the substrate and growing thin film. It depends mainly on the amount and the energy 

of: (i) sputtered coating species, (ii) energetic neutral working gas atoms (neutralized and 

reflected at the target), (iii) energetic secondary electrons emitted from the target, (iv) negative 

ions coming from the working gas plasma or target, (v) ions bombarding the substrate in bias or 

reactive mode. RF sputtering is capable: a low -temperature ion – assisted deposition of metals, 

semiconductors, insulators, the before/post deposition modification of substrate/thin - film 

surface by ions on the micro-/nano- level; change of deposition rate in wide range (0,1 to 10 

nm/s); to control further parameters which are important for thin film growth (substrate 

temperature, plasma density, composition of working gas, ion bombardment of film during 

deposition). In addition there is a significant contribution of secondary electron bombardment to 

the atomic scale heating of the film when it is prepared by the RF diode sputtering. 

We have done the systematic investigation of ZnO thin films prepared by RF diode sputtering 

from point of view their application in sensors and actuators. 

 

EXPERIMENTAL PROCEDURE 

 

The Au/ZnO structures were RF diode sputter deposited on Si and Corning glass substrates 

using a ZnO target (99.99 % purity, in 20 cm diameter) and metal Au target (99.95 % purity, in 

20 cm diameter). The substrates were cleaned by standard chemical method. The sputtering 

chamber was pumped down to 10-5 Pa before admission of the sputtering gas Ar (99.9995 %) 

and total gas pressure 1.3 Pa was kept constant. The morphology of Au and ZnO structures was 

characterized using scanning electron microscope SEM LEO 1550 and atomic force microscope 

AFM Topometrix TMX 2010. The crystal orientation and microstrains of the films were 

investigated by an automatic powder X-ray diffractometer AXS Bruker D8 with Eulerian cradle 



and 2D detector (CoKα, λ = 0.179 nm). The resistivity and carrier concentration in ZnO films 

were obtained from Van der Pauw measurements.  

 

RESULTS AND DISCUSSION 

 

A. Semiconducting n- and p- type ZnO thin films 

 

Non-stoichiometric ZnO1-x thin films sputtered from ZnO target in pure Ar gas exhibited 

disordered grain structure with orientations of <100>, <002> and <101> (Fig 2.). The set of 

two-dimensional diffraction patterns displays three Debye rings of ZnO Bragg reflections (Fig. 

3.). The white circle is a Laue spot diffracted by substrate material (c-Si) due to the continuous 

X-ray radiation. ZnO1-x resistivity was sensitive to presence of oxygen and we used it in planar 

resistance gas sensor with TiN thin film heater and temperature sensor.  
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Fig 2. Sputtered ZnO thin films showed colummar polycrystalline structure with preferred 

orientation in <002> direction 

 
 

Fig 3. Two dimensional diffraction pattern of ZnO film 



Reactive sputtering in Ar+O2 working gas (up to 75 % of O2) at substrate temperatures  

Ts = 20 °C and 300 °C improved the structure progressively from more disordered fibrous ZnO 

grains to columnar crystallites preferentially oriented along c-axis normally to the substrate 

(<002> direction). The n-type resistivity was slightly dependent on the RF power, 

ρ = 0.4 ÷ 1.0 Ωcm, transparency in VIS region was 85 % with adsorption edge in near UV 

region 3.33 eV which is close to the bandgap of bulk ZnO Eg  = 3.37 eV. 

ZnO exhibits intrinsic n-type conductivity and can easily be n-type doped but it turned out to be 

more difficult to fabricate low-resistivity p-type ZnO. Nitrogen doping is considered an 

effective method to realize p-type ZnO:N thin films [8]. Novelty of our approach is in use of 

plasma assisted deposition method – RF diode sputtering – which allow to perform direct action 

of ions, ion complex and electrons on growing film with the aim to form suitable NO -O 

acceptors. ZnO:N thin films were prepared by RF diode sputtering from ZnO target in different 

content of N2 (0÷100%) in sputtering Ar gas on Corning glass substrates. The p-type 

conductivity of ZnO:N films was obtained by deposition in sputtering gas with N2 contend 

higher then 25 %. X-ray diffraction measurements (XRD) showed that ZnO:N films had the 

preferential orientation of (002) plane at 25 % N2 and of (100) plane for higher N2 

concentrations (Fig. 4.).  
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Fig. 4. XRD patterns for ZnO films doped with different percentage of N2 in sputtering gas 

 

 

The average grain size was from 7 to 42 nm for all Ar/N2 ratios and average microstrains were 

relatively high (10 x 10-3). The p-type conductivity of our ZnO thin films can be attributed to the 

presence of NO molecules, which will introduce low-formation energy NO, which is an acceptor 

in ZnO [9]. The electrical properties of n-doped ZnO thin films as a function of nitrogen 

percentage in Ar/N2 sputtering gas are shown in Fig. 5 a, b. 
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Fig. 5. Dependence of a) resistivity, b) Hall mobility and carrier concentration on
nitrogen percentage for as grown ZnO:N films 

 

The film’s resistivity decreases with the increase of the percentage of nitrogen from 25 % to 

75 %. The minimum value of resistivity of 790 Ωcm, a carrier concentration of 3.6 x 1014 cm-3 

and the Hall mobility of 22 cm2V-1s-1 were yielded at 75 % N2. The further increase of nitrogen 

percentage in the sputtering gas from 75 % to 100 % leads to the increase of the resistivity. The 

lowest resistivity is a result of the high mobility. The highest carrier concentration 

P ∼ 2.6 x 1015 cm-3 is recorded for 25 % N2 in the sputtering gas. The strong dependence of the 

electrical properties of sputtered ZnO:N films on dopant content can be explained with the 

different scattering mechanism of free carriers. Films with small dopant content exhibit good 

crystal structure in terms of grain size and grain orientation. The dopant atoms are effectively 

incorporated in the ZnO lattice but their concentration is low. Thus ionized impurity scattering 

becomes dominant in comparison to grain boundary scattering. Hence a low carrier mobility and 

a low hole concentration were obtained at samples deposited with 25% N2 in the sputtering gas. 

The increasing of the dopant content in ZnO films introduce furthers scattering centers and thus 

the decrease of carrier concentration at high dopant levels. The increase of the carrier 



concentration in films deposited at 100% N2 in the sputtering gas can be a result of the high 

concentration of NO incorporated into the films. The compensation effect by N2 molecules at O 

sites ((N2)O) and NO - (N2)O complexes can be responsible for non-stable conductivity types of 

the film deposited at 50% N2 in the sputtering gas. 

 

B. Nanostructured surface of ZnO thin films 
 

Our second target is to form of nanostructured surfaces of ZnO thin films (nanoscale roughness, 

nanofibres). For growth of nanostructures are dominant initial growth phases: seed formation, 

nucleation growth of clusters and islands and their coalescency. Schematic simplified growth of 

ZnO structures (nanodots, nanofibers) on Au particles is shown on Fig 6. The nanofibre growth 

requires the aid of catalyzing metal particles, which are of gold in our case. Therefore, it is key 

to be able to accurately control the position and size of the seed Au particles during growth. RF 

diode sputtered Au nanoparticles of mean diameter of 10th nm (Fig. 7.) were as seeds for 

growth of nanostructured surface of ZnO thin films in thickness of 200 nm (Fig. 8.). 

ZnO fibers 

 
Au

Au +ZnO

 Fig. 6. Schematic illustration of the nanostructure growth of the ZnO

Fig. 8. Nanostructured surface of ZnO thin
film 

Fig. 7. Au nanoparticles deposited by RF
sputtering on Si substrate 



Next we formed nanostructured surface ZnO by using different bias voltage on the substrate  

( 0  to  - 175V) (Fig.13.) during deposition at two different voltages on the target (Fig. 9, 10, 

11). Microroughness of ZnO surfaces were measured by AFM (Root Mean Square roughness), 

maximal value (10 nm) was reached by - 175 V bias sputtering. The use of lower target voltage  

(VTarget  =  - 300V, Fig. 11) caused smoother surface of the thin film. More roughness surface of 

the thin film was at high target voltage (VTarget = -900V, Fig. 10) due to atomic scale heating of 

the film during deposition. Influence of different amount of Ar ions and their kinetic energy on 

surface structure of films sputtered bias voltages is shown on Fig. 13. 

 
 

 

Fig 9. Sputtered ZnO by using different bias voltage (0 to - 50V) during deposition at two 

target voltage (VTarget= -900V, VTarget= -300V) 
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 a) Bias = 0V, the 44.6° tilted view, b) Bias = - 25V, the 45° tilted view, 
Fig. 13. The ZnO nanostructured surface by RF diode sputtering, VTarget = - 900V: 

c) Bias = - 50V, the 43.8° tilted view, d) Bias = - 175V, top view 

 

CONCLUSIONS 
 

We synthesized p-type ZnO thin films on Corning glass substrate using nitrogen as a dopant by 

RF diode sputtering. Sputtering is deposition process conditions of which significantly differ 

from thermodynamic balance. Therefore we can expect that p-type properties of RF sputtered 

ZnO:N films will be metastable and highly dependent on nitrogen content in sputtering gas. In 

order to improve p-type properties of ZnO thin films will be necessary to combine nitrogen 

doping with other co-dopants (e.g. Al). 

ZnO offers the broad spectrum of unique physical and chemical properties, what is getting it into 

group of the most important nanomaterials for integration with microsystems and biotechnology. 

Our preliminary results have confirmed that sputtering is one of available deposition method for 

forming of chosen ZnO nanostructures. Future target is to use of nanostructured surfaces of ZnO 

thin films for modern DNA-based biosensors. 
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