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INTRODUCTION

Rapid Single Flux Quantum (RSFQ) logic is a superconductive digital circuit technique, in which the
data are represented by the presence or absence of a flux quantum Φ0 = h/2e (Plancks constant h and
elementary charge e) in a cell, which is generated of Josephson junctions and inductances. The quantum
mechanical phase difference over each junction defines the internal state in these circuits. The switching
of RSFQ logic circuits between logical states is characterized by very high speed as well as low energy
consumption [1].

All complex devices in rapid single flux quantum (RSFQ) technique work at much lower clock rates than
possible for simple cells. New data driven self timed or asynchronous concepts can reduce this gap, but even
in this case a discrepancy between simulation and experiment is still present. We address the complete simu-
lation and optimization cycle for the development of logic cells. We start analyzing a Josephson transmission
line (JTL) as the origin for RSFQ circuit design.

The step from the level logic semiconductor circuits to the pulse logic RSFQ is accompanied by a new
kind of transient analysis in the system design. We can see a clear gap between the maximum operation
frequencies of simple logic cells and than for complex devices which are about one order of magnitude.
Already [2] reflects the timing jitter as the most limiting factor for large-scale RSFQ digital systems.

It has been pointed out in previous studies, that the influence of thermal fluctuations in RSFQ circuits is
divided into static and dynamic switching bit errors as well as timing jitter induced failures. Our last results
show for the first time, that the variance of the switching time is much slower decreased by reducing the
temperature and is still important at 4.2 K. The delay between output signal and the input signals for typical
RSFQ cells shows a variation over 1 ps which is more than 10% of the switching time itself. We combine in
our investigations the switching time variations caused by thermal noise and by technology related parameter
spread.

PULSE PROPAGATION IN A JOSEPHSON TRANSMISSION LINE

The parameter set for a Josephson Transmission Line (JTL) serves as a base for designing RSFQ logic
cells. We set first the critical current of the Josephson junction to a certain value, e.g. Ic = 250µA. Its value
should not be to small to obtain a high stability against thermal noise due to a high Josephson coupling
energy [3]. On the other hand, smallest possible inductance value L for a superconducting loop gives an
upper bound for the critical current. The model for the JTL used in this work is shown in Figure 1(a). If we
assume a complete switching of the first junction J1, it generates a driving current through the inductance
of IL ≈ Φ0

L2+L3

. If this current is larger then the critical current of the second junction, it will switch and
therefore increase its phase difference by 2π. With the bias level of Ib = 0.75 · Ic = 187.5µA, this results in
a optimal loop inductance of L∗ = 3.979pH [4]. Figure 1(b) shows a realization of the cell in the Niobium
tri-layer technology of IPHT Jena [5]. The bias current source is build with a constant voltage source of
2.5mV and a resistor.

The transmission of SFQ-pulses is the most simple, but essential part of RSFQ circuits. It is the typical
interconnect between logic cells and its operation as an active pulse repeater improves the pulse shape as
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Fig. 1. The JTL circuit model (a) and the photograph of the fabricated structure (b) with parameters as used for the simulations ( critical
currents: J1=J2=250 µA; inductances: L1=L2=L3=L4=1.85pH, Lp1=Lp2=0.15pH; bias current: IB1=375 µA ).

well as reduces the undesired interaction between adjacent cells. For an theoretical analysis of a JTL, we
assume all junctions and all loops with equal parameters and neglect the junction capacitance. According to
Fig. 2, this results for a n-stage JTL in a system of n nonlinear differential state variable equations

Φ0

2πRn
ẋ1 = Ib − Ic sin(x1) −

Φ0

2πL
(x1 − x2), (1)

Φ0

2πRn
ẋk = Ib − Ic sin(xk) +

Φ0

2πL
(xk−1 − xk) −

Φ0

2πL
(xk − xk+1), k = 2..n − 1,

Φ0

2πRn
ẋn = Ib − Ic sin(xn) +

Φ0

2πL
(xn−1 − xn)

with the quantum mechanical phase difference xk across the Josephson-junction Jk.
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Fig. 2. Model for the theoretical analysis with separated current sources for each junction (a) and the realization of a long JTL in three layer
niobium technology (b), fabricated at IPHT Jena, Germany.

The potential energy for all circuit elements allows the straight forward construction of the total potential
energy of a logic cell. If the capacitance of the junction CJ or parasitic dynamic elements should be included
in the analysis, this energy includes additional terms. In equivalence to the derivation of the equations of
motion for the principle of minimal action, we can derive the system differential equation for the JTL from
its potential energy. In comparison to the node voltage in classical circuits, we can define a phase value for
each node in a superconducting circuit. The common ground phase reference is set to be zero. For Josephson
junctions and inductances the phase difference x1 − x2 between the terminals is used. Due to the connection
of all current sources to ground, we need only one phase value x for the potential energy of a source. The
energy terms for all circuit elements are shown in Table I.



circuit component scheme energy term

Josephson-junction x2x1 Φ0Ic

2π
(1 − cos(x1 − x2))

current source x −Φ0Ib

2π
x

inductance x1 x2
Φ2

0

4π2L
(x1 − x2)

2

TABLE I

INHERENT ENERGY OF CIRCUIT ELEMENTS DEPENDING ON THE PHASE DIFFERENCE BETWEEN NODES.

If we sum all energy terms for the transmission line model, we end up with

E(x) = Ic

(

n −
n
∑

k=1

cos(xk)

)

− Ib

n
∑

k=1

xk +
Φ0

4πL

n−1
∑

k=1

(xk − xk+1)
2 . (2)

This equation can be interpreted as a first integral of the system of differential equations (1) and between
this equations the potential energy E(x1, x2) holds the simple equation

Φ0

2πRn

∂

∂t











x1

x2

· · ·
xn











= −grad(E(x1, x2, · · · , xn)). (3)

The state of the system is defined by the state vector x = (x1, x2, . . . , xn). A stable state of the system is

characterized by vanishing time derivations ẋk
!
= 0. On the other hand, this is a necessary condition for a

minimum of the system energy
Φ0

2πRn
ẋk = − ∂E

∂xk
. (4)
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Fig. 3. Phase values xk of a 5-stage JTL for a forced switching of J1.

Figure 3 shows the result of a numerical simulation of a 5-stage JTL. An artificial source forces the first
junction to switch and starts the transmission of a SFQ pulse. The other junctions start to switch one by one



with a certain time delay. Due to the open end of the circuit, we generate a mismatch resulting in a modified
switching of the last two junctions. If we would increase the number of junctions in the simulations, all inner
junctions will behave like J3. The differential equation for stage k in Eq.(1) can be written as

Φ0

2πRn
ẋk = Ib − Ic sin(xk) +

Φ0

2πL
(xk−1 − 2xk + xk+1). (5)

If we assume the position k of a certain junction in the JTL as a discretization in space, we can write this
equation as

Φ0

2πR′

n

∂x

∂t
= I ′

b − I ′

c sin(x) +
Φ0

2πL′

∂2x

∂z2
(6)

for the space dependent phase x(z, t). In the case, we can interprete z as the position in space of a junction
in a straight long JTL. By using a step size hz, we can write all corresponding circuit parameters as

L = L′hz, Ic = I ′

chz, Ib = I ′

bhz, Rn =
R′

n

hz
. (7)

Finally, we get with function f(x) = 2π
Φ0

(I ′

b − I ′

c sin(x)) the partial differential equation

1

R′

n

∂x

∂t
= f(x) +

1

L′

∂2x

∂z2
. (8)

If we would like to use the junction capacitance CJ = C ′

Jhz in this approach, one can derive a similar
equation with the first and second time derivation

C ′

J

∂2x

∂t2
+

1

R′

n

∂x

∂t
= f(x) +

1

L′

∂2x

∂z2
. (9)
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Fig. 4. Pulse propagation on a JTL with 30 junctions. The measured value of 30.2ps corresponds to the 10 junctions in the middle. parameters
are L = 3.5 pH, Rn = 1.5 Ω, Ic = 200 µA and Ib = 140 µA with a switching time of ts = 3.02 ps.

For all kind of digital circuits, so called short Josephson-junctions are used, where the variation of the
phase versus space can be neglected. From the theory point of view, the third Josephson-equation describes



the influence of a magnetic field ~B and the phase difference x across a junction as

grad(x) =
2π

Φ0

( ~B × ~ez)(2λL + d) (10)

with the London penetration depth λL and the effective thickness of the insulating barrier d between the
superconductors. The transition from Eq.(1) to Eq.(8) is equivalent to the transition from a discrete coupling
of an infinite number of separated junctions to a continuous distributed long junction. Therefore, this kind
of partial differential equation has been analyzed in the past [6, 7] and the results can be translated to the
dynamic behavior of a JTL as a discrete form of a long Josephson-junction.

We replace the first junction by a driving phase source, acting as a hard source for the input signal x1(t).
The shape of the 2π-phase transition is changed, if the second junction repeats the pulse to x2(t) and so on.
If we use this as a new input signal for the next junction, we generate an iteration process without feedback
to the source.

Φ0

2πRn
ẋk = Ib − Ic sin(xk) +

Φ0

2πL
(xk−1 − xk) . (11)

If we can observe a switching process inside a long JTL, the only difference between both curves is a certain
time delay. A normalization in time Φ0

2πIcRn
τ = t and inductance βL = 2πIcL

Φ0

reduces this equation to

x′

k =
Ib

Ic
− sin(xk) +

1

βL
(xk−1 − xk) . (12)

The inductance has to fulfill L < Φ0

Ic−Ib

, to avoid a trapping of the magnetic flux quantum inside the loop.
This corresponds to βL < 1−i

2π
for the normalized equation. The time and space dependent phase x(z, t) can

be expressed as
∂x

∂τ
=

Ib

Ic
− sin(x) +

1

βL

∂x

∂z
(13)

with a space step of ∆z = 1. For a bias current 0 < i < 1 exists an analytical solution

x(z, τ) = 2 arctan

{

1

i
−

√
1 − i2

i
tanh

(√
1 − i2

2
βL [z + F1 (τ − zβL)]

)}

. (14)

with an arbitrary function F1. The shape of this function is defined by the initial driving pulse shape and the
argument τ−zβL is typical of the propagation of waves. If we use x(0, τ) = arcsin(i) as an initial condition,
we obtain F1 = ∞ and furthermore tanh(∞) = 1. The final solution of the phase transition inside a long
JTL results as

x(z, t) = 2 arctan

{

1 −
√

1 − i2

i

}

= arcsin(i). (15)

All junctions will have for all time the initial phase value. This is the static solution for a JTL without a
propagation pulse.

If the function F1 has any finite value, the limit for z → ∞ results also in this static solution. In that
case, we have a small relaxation phase of the JTL as reaction of an external current pulse, but to weak for a
switching event.

Only a infinite value of F1 results in a switching event. If we use x0 = x(0, τ) = arcsin(i) + 2πh(τ) as
an initial switching event with the unit step function h(τ), we can derive the function F1 to be

F1(τ) =
2

βL

√
1 − i2

arctanh







1 − i tan
(

1

2
arcsin(i) + πh(τ)

)

√
1 − i2







, (16)



with the conditions
lim

t→0−0
F1(τ) = −∞, lim

t→0+0
F1(τ) = ∞. (17)

This results finally in a non-stationary solution and the position of switching

zs =
τ

βL
i.e. zs =

Φ0

2πIcL

2πIcRn

Φ0

t =
Rn

L
t (18)

moves in time with a speed of 1/βL. The time delay between two junctions can be derived, if we increase
the index k by one. This is equal to an increasing in space zs by one. The switching time of a single stage in
the JTL is simply

ts =
L

Rn
(19)

defined by the time constant of the Rn-L element.
If we extend this consideration on an infinite long chain of loops, the analytical solution for the switching

time in Eq.(8) can be derived with a computer algebra system [8] to be

ts =
Rn

Φ0

(

Ib

Ic

)3/2

√

√

√

√

(

Ib −
Φ0

L

2
)2

− I2
c . (20)

The structure of this result is similar the the time constant in of the ac-solution for a Josephson-junction

fJ =
〈v(t)〉

Φ0

=
Rn

√

I2
ges − I2

c

Φ0

. (21)

in the voltage state. Table II shows different simulation results and their comparison to values form Eq.(20).

L Rn Ic Ib tsims ts/t
sim
s

3,5 1,5 200 140 3,02 1,109
3,5 1,2 200 140 3,74 1,119
3,0 1,5 200 140 2,64 1,108
4,0 1,5 200 140 3,30 1,140
4,0 1,5 200 160 2,72 1,095
4,0 1,5 200 173 2,40 1,081

TABLE II

SIMULATION AND CALCULATION OF TIME DELAY FOR DIFFERENT PARAMETER SETS OF A JTL

We find a fixed factor of 1.1 in all cases and the dependence from the bias current is similar in theory and
simulation. On this base, we can validate this method to be in good agreement with the simulation results.
We are mainly interested in the variations of switching time depending on random influences to each single
Josephson junction. Therefore, we have to extend this method by adding noise sources in all differential
equations.

NOISE INDUCED TIMING JITTER IN A JTL

The Johnson/Nyquist noise in the shunt resistor of an overdamped Josephson junction is the dominant
noise source for RSFQ logic circuits. We study only the transfer of one single SFQ pulse along the JTL. The
transient behavior of phase x and voltage v of a junction in the middle of a JTL can be described with the
RCSJ-model given in Eq. (22). The junction capacitance CJ and the normal resistor Rn are determined by



the typical process parameter IcRn = 256µV and damping with McCumber-parameter βc = 2πIcR2
nCJ

Φ0

equal
to unity.

ẋ =
2π

Φ0

v, CJ v̇ = Ib − Ic sin(x) − v

Rn
+

Φ0(x1 − 2x + x3)

2πL
+ In(t) (22)

The left and right neighbor junctions have the phases x1 and x3, respectively. Their behavior can be described
by the same set of differential equations. The thermal noise of the resistor Rn is modeled by a normal
distributed noise current source In(t) with mean value zero and a variance of

s =< I(t)I(t′) >=
2kBT

Rn
. (23)

The thermal activation energy is expressed as the product of the Boltzmann constant kB and the temperature
T . The numerical analysis is simplified using a normalized time using the characteristic frequency ωc and
the voltage v is replaced by the normalized voltage u in units of the characteristic voltage IcRn.

βc =
2πIcR

2
nCJ

Φ0

τ =
2πIcRn

Φ0

t = ωct

βL =
2πIcL

Φ0

u =
v

IcRn

(24)

The set of differential equations in Eq.(25) is the result of this normalizations (Eq.(24)) and setting the
McCumber Parameter βc equal to unity.

dx

dτ
= u

du

dτ
= i − sin(x) − u +

1

βL
(x0 − 2x + x2) (25)

This system of stochastic differential equations can be translated in a corresponding Fokker Planck equa-
tion for the probability density W (x, u, τ) given by Eq.(26).

∂W

∂τ
= W − ∂W

∂u

(

i − sin(x) − u +
x0 − 2x + x2

βL

)

− u · ∂W

∂x
+

sn

2

∂2W

∂u2
. (26)

We derive the distribution of the normalized noise current sn to be 4kBT
β2

cΦ0Ic
. The stable solution before arriving

of a SFQ pulse is approximately given as a two-dimensional Gaussian distribution of voltage and phase in
the state space with a mean value of u = 0 and x = arcsin(Ib/Ic). We use this a an initial condition for a
numerical finite differences time domain solution of the partial differential equation. The strong coupling of
the junctions in connection with the low temperature of 4.2K is resulting in a heavy concentrated probability
distribution, which is a challenge for the numerical solution. The later studied cells with much larger thermal
noise influence are numerically much easier to handle. That is the reason, that up to now, we can only show
a few results for the jitter analysis of a JTL.

We calculated a timing jitter of about σ=0.12ps for one Josephson junction with parameters mentioned
above at 4.2 Kelvin. The measurement of the cycling period for a long circular transmission line reports a
timing jitter of σ = 0.2ps for a bias level (ratio Ib/Ic)) of 0.7 [9]. Also [10] reports the same high value
measured on a different circuit, but with a comment about apparent problems with the external rf-shielding
of the testing setup. The noise simulation carried out in [11] reports a value of σ = 0.08ps for a bias
level of 0.7. A recent extensive experimental study clearly shows the decreasing of pulse jitter in a JTL
by increasing the bias level [12]. Both experiments reports also the well scaling of the timing jitter with
the square root of the number of junctions in the JTL. This affirmed the hypothesis to model the thermal
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Fig. 5. Timing jitter of for the SFQ pulse transfer for one Josephson junction.

noise as a superposition of independent Gaussian white noise sources for every junction. Fig. 5 shows this
measurements together with our new calculated results based on the FPE. We calculated a timing jitter of
about σ=0.12ps for one Josephson junction. The deviation between our calculations and the measurements
of Terai et al. [12] can be explained by the different circuit parameters used in the experimental setup [13].
The different behavior of intrinsic and external shunted junction can also bring a certain contribution to the
timing jitter of the junctions [14]. We plan a further analysis of the exact structure used in this experiments
[15]. The decreasing of the timing jitter versus increased bias level can be mostly explained by the similarly
decreased average time delay for transferring the pulse from one junction to the next. The relative timing
jitter varies only from 2.4% to 2.05% of the transfer time using bias levels from 0.6 to 0.8, respectively.

CONCLUSIONS

The analysis of the stochastic dynamic by using Fokker-Planck equations has been used in the past for the
calculation of static and dynamic error rates. Due to the exponential decreasing, these error sources are not
the main problem for lower temperatures, but the third type of switching errors, the timing jitter, becomes
very important for low temperatures [16]. Our previous suggested method is also providing all necessary data
for the timing analysis of RSFQ logic cells. Even in the case of low temperatures, switching time variations
are still large and cause timing errors in medium and large scale devices. The new possibility of calculating
this timing conditions allows furthermore the modification of cells during the design process to reduce their
jitter. This information is also an important part for the high level cell description in HDL-level simulations.
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