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Inverse problems of electromagnetic Field Utilizing 
Sensitivity Analysis. 

 
Introduction 
 
 Sensitivity analysis has proved to be a very robust method for solution of inverse 
problems in electromagnetics [1],[2]. It determines the dependence of global or local 
electromagnetic quantities on geometrical or physical parameters expressed in form of an 
objective function. The final aim of field calculation methods is generally the design of an 
electromagnetic device. Solving of inverse problem on the base of finite elements method 
(FEM) makes the optimal shape design possible [8],[9], as well as the identification of 
material cracks and flaws inside conducting materials with the help of eddy-current 
method [7]. This tasks can be defined similarly to recognition of space distribution of 
material parameters. The recognition processes in iterative manner based on the gradient 
information derived from sensitivity analysis. Sensitivity analysis belongs to the most 
important tools in optimization theory. For several objective functions the sensitivity may 
be directly calculated differentiating the objective function versus one of  the material or 
geometric parameters. For the tasks based on local quantities the direct calculation is also 
possible, but it requires very large computational effort. A number of well described 
sensitivity evaluation methods exists in electric circuit theory. These methods could be 
adapted to electromagnetic field analysis programs, too. The first one bases on a version 
of Tellegen's theorem for electromagnetic field theory [7]. This method allows to calculate 
the sensitivity of chosen local quantities, as magnetic vector potential, impedance of a coil 
or induced voltage, versus all material parameters in a whole region at once. The second 
method bases on differentiation of stiffness matrix of the  finite elements [8],[9]. The 
stiffness matrix contains complete information about geometric and material properties of 
the model. On the contrary to Tellegen's method, this method allows to calculate the 
sensitivity of all local quantities versus only one chosen parameter. 
 
1. Inverse task utilizing sensitivity information 
 
 The task of conductivity recognition may be used for identification of crack shape. 
When using the eddy-current defectometer, the user should determine the search region, 
where the crack shape will be recognized. Then, the user should carry out the sufficient 
number of measurements of flux density around the crack. The number of measurements 
depends on discretization of the search region in finite elements. The discretization should 
be fine enough for modeling shape of the crack. To obtain the proper inverse job, the 
number of measurement points has to be greater or equal to the number of finite elements 
in search region. The dependence between conductivity inside of finite elements and the 
field distribution over conducting plate represented by the magnetic vector potential R , is 
given by the following system of equations: 
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where: j – number of measurement points, i – number of elements in the search region, 
S - sensitivity matrix. The field measurements can be carried out with constant feeding 
frequency ω. However, when identifying an inner crack, the multi-frequency method can 
be used. In both cases, the sensitivity values Sji are evaluated in the frequency domain. If 
the eddy-currents are induced by the coil driven with non-harmonic current impulse, the 
time-domain evaluation is necessary.  
 The objective function in the conductivity recognition problems is a nonlinear 
function over the material conductivity. So the iterative procedure of mathematical 
programming using sensitivity information has to be adopted. For the examples shown 
below, the gradient method was chosen. After each iteration the results are compared with 
that of measurements and the new ∆Rj values for Eq.(1) are obtained. The described 
methods require access to the source code of a finite element package. However, the 
obtained algorithms are very time effective. 
 
2. Evaluation of sensitivity in the frequency domain. 
 
Neglecting second terms of perturbations of the variable parameters one can obtain the 
following sensitivity equation in the frequency domain [2]: 
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The proper boundary conditions of both systems cause vanishing of the surface integral in 
Eq.(2). The above equation determines how to construct the adjoint (+) model. The 
excitation current J0

+ should be driven into this node, where the sensitivity value of E has 
to be obtained. Similarly, the magnetic current L0

+ makes possible the sensitivity 
calculation of H. It means, that the original and adjoint systems differ only in excitations 
and boundary conditions. The geometrical properties and material parameters are the 
same. Further, the stiffness matrix of both systems is the same and requires only one 
factorization. 
The other method consists in differentiation of the stiffness and mass matrices of the finite 
elements. The stiffness matrix A is computed in the standard finite element code: 
 

=AR b   (3) 
 
Variation of electric conductivity γ  of the material causes only changes of magnetic vector 
potential R, that the excitation vector remains unchanged: 
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This formula allows to formulate the nodal sensitivity versus the conductivity γ : 
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In numerical implementation the sensitivity is calculated on the basis of the equation 
system (4). Unlike the Tellegen’ method, in this method the sensitivity of all nodal 
potentials is obtained versus conductivity in one finite element. To calculate the sensitivity 
for other elements, the derivative of stiffness matrix should be determined anew. The 
terms of mass matrix are linear functions of electrical conductivity γ, so the matrix of 
derivatives contains only constants and zeroes. 
 Assuming the same number of finite elements and the nodes, for which the sensitivity 
is obtained, both methods seem to be equivalent in the necessary calculation time. As a 
result of both methods, the sensitivity matrix S is obtained. The matrix is necessary to 
solve Eq.(1). 
 
3. Evaluation of sensitivity in time domain. 
 
The dependence of magnetic field distribution on the variation of electric conductivity γ  is 
represented by the sensitivity matrix S(t) for consecutive time steps  j : 
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with : i - number of finite elements in the search region, 
   j - number of time steps of electromagnetic field evaluation. 
 
The sensitivity matrix S(t) may be calculated by direct evaluation for small changes of the 
conductivity value. However, such approach is not effective. 
Applying Tellegen's theorem similarly to the frequency domain, one can obtain the 
sensitivity equation in time domain [1]: 
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The material parameters of the adjoint model (+) are the same as the originals. Both 
models, original and adjoint, are analyzed in different times t and τ. Usually it will be 
assumed that τ is opposite to t : τ = T - t,  where  T is duration time of the analysis. 
Excitation of the adjoint model depends on the objective function. If the sensitivity is 
calculated for the potential values in mesh nodes, the excitation should be assumed as 
Dirac's impulse for the time T: 



 
J0

+( τ ) = δ( T ) . 
 
The geometric position of this impulse coincides with measurement area of the 
electromagnetic field. In the simplest case it may be a current introduced into the finite 
element mesh node. When the measurement proceeds with the help of a coil, the 
excitation current should be distributed on the area of this coil. 
 To fulfill the sensitivity analysis on the basis of Eq.(7) one should follow two steps: 
 
1. Analyze the adjoint model in opposite time τ , saving the values of  E+ and  H+ for 

each node, where the sensitivity will be evaluated, 
2. Analyze the original model in time period from 0 to T, and in parallel evaluate the 

sensitivity.  
 
It is very convenient to apply a constant value of the time increment. Then the stiffness 
matrix of both models is the same and remains unchanged during the time-analysis. For 
this reason, the algorithm is very effective, since the matrix factorization should be carried 
out only once. 
 
4. Iterative algorithm based on TSVD 
 
Solution of equations (1) or (6) provides corrections of conductivity �  . While the 
corrections are relatively large, the iterative approach should be taken. The equations 
(1) and (6) containing measurement data are usually ill-posed, so the solution of inverse 
task, in opposite to field analysis, may be ambiguous. To ensure good convergence of 
iterations, the excessing number of measurements is provided. In this case arises the 
over-determined equation system, while j >> i. The effective and superior tool, which is 
very important for analysis of discrete ill-posed problems, is Singular Value 
Decomposition (SVD) [4]. This method in combination with the traditional Gauss-Newton 
algorithm may constitute easy in the implementation for solving the identification 
problem. Then SVD of  j i×∈S � is a decomposition of the form: 
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 has non-negative diagonal elements appearing in 
non-increasing order such that: 
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which are so called the singular values of the matrix S. If one assumes, that matrix S 
indicates the Jacobian goal function, the equation (1)or (6) in matrix notation for each 
iteration might describe as: 
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Moreover, solving the equations system (10) by means of SVD, for example in the first 
iteration the index k was omitted because of notice clarity, one may define such as: 
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Thus, in the simplest case in order to introduce the regularization method, it is enough to 
define the filter factors of following form: 
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where: �  is the chosen threshold of smoothness. In the numerical implementation the 
regularization parameter δ  was chosen in indirect way, t.i. through assuming the 
minimal conditioned coefficient κ  , which ought to characterize the matrix  S. 
 
5. Numerical example 
 

Let us consider the following model of eddy-current equipment for testing of heat 
exchanger tubes of steam generator in nuclear plants. The eddy-current sensor 
consisting of three coils moves inside the long, conducting tube. The coil in the middle is 
used for magnetic field excitation, other two are differential measurement coils.  
 

 

Fig.1. Differential eddy-current sensor inside tube. 
 

In each position the sensor is excited with exponential current and the voltage impulse is 
registered. The model exhibits cylindrical symmetry and can be analyzed using a 2D 
formulation. For the aim of measurement simulation the area was divided into 189 696 
finite elements with 95 409 nodes. The transient field analysis was carried out with the 
backward Euler scheme, with n = 150 constant time steps, each of t = 10 ns. For 
d = 97 positions of the sensor the induced voltage shapes were registered. As 
measurement data are obtained the inverse job of conductivity recognition can start. 
Three exemplary cracks are shown in Fig.2, their electrical conductivities differing from 
tube wall are described in Table 1. 

For recognition process one thinner mesh was used with 128 700 elements and 
64 775 nodes. From this reason only 61 sensor positions were used and the 
measurement data had to be interpolated for some positions. Hence, the sensitivity 
matrix (6) consisted of 9150 rows and 360 columns (number of finite elements in search 
area). 



 
 

Table 1. Conductivity in area of cracks 

Crack I II III 

Conductivity 0.1 
MS/m 

0.3 
MS/m 

0.3 
MS/m 

 
 

   

Fig.2. Predicted shapes of cracks (search area shown black). 
 

The conductivity distributions (crack shapes) and crack positions on search area 
were correctly recognized after 20 iterations (Fig.3). 
 
 

   

Fig.3. Recognized shapes of cracks (search area shown black). 
 



6. Conclusions  
 

The examples show the reliability of proposed methods. The success of 
numerical evaluation of conductivity distribution depends mainly on the exact 
measurement of the magnetic flux. The error of sensitivity evaluation has a secondary 
meaning and influences only the manner in which the result is obtained. In the examples 
shown above, instead of the measurements, the models with cracks were analyzed by 
an FEM based on another discretization, providing data for further iterative process. 
Then, the cracks were removed, and the algorithm tried to reconstruct the nodal 
potentials based on sensitivity values of the nodes. If the real data containing 
measurement errors were used, the results could be worse. Disadvantage of sensitivity 
algorithms in the time domain is long computation time with personal computers, but the 
calculations can be easily parallelized. 

Further scientific work on this area should lead to three-dimensional algorithms, 
which allow modeling of wider class of cracks. For 3D-sensitivity analysis the different 
formulations [10] should be tested. Although the sensitivity equation (7) remains the 
same, it's terms would be evaluated in quite different manner, as in 2D. For recognition 
of real cracks the application of data filtering and new methods for regularization of 
equations system are necessary. 
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