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Abstract

For m-input, m-output, finite-dimensional, linear systems satisfying the classical assump-
tions of adaptive control (i.e., (i) minimum phase, (ii) relative degree one and (iii) positive

high-frequency gain), the well known funnel controller k(t) = ϕ(t)
1−ϕ(t)‖e(t)‖ , u(t) = −k(t)e(t)

achieves output regulation in the following sense: all states of the closed-loop system are
bounded and, most importantly, transient behaviour of the tracking error e = y − yref is
ensured such that the evolution of e(t) remains in a performance funnel with prespecified
boundary ϕ(t)−1, where yref denotes a reference signal bounded with essentially bounded
derivative. As opposed to classical adaptive high-gain output feedback, system identification
or internal model is not invoked and the gain k(·) is not monotone.
We show that the funnel controller is robust by invoking the conceptual framework of the
nonlinear gap metric: the funnel controller copes with bounded input and output distur-
bances and, more importantly, it may even be applied to a system not satisfying any of the
classical conditions (i)–(iii) as long as the initial conditions and the disturbances are “small”
and the system is “close” (in terms of a “small” gap) to a system satisfying (i)–(iii).

1 Introduction

In the early 1980s, a novel feature in classical adaptive control was introduced: adaptive control
without identifying the entries of the system being controlled. Pioneering contributions to the
area include [1, 13, 14, 16, 19] (see, also, the survey [9] and references therein). The classical
assumptions on such a system class – rather than a single system – of linear m-input, m-output
systems are: (i) minimum phase, (ii) strict relative degree one and (iii) positive-definite high-
frequency gain matrix. Then the simple output feedback u(t) = −k(t) y(t) stabilizes each system
belonging to the above class and k(·) adapted by k̇(t) = ‖y(t)‖2 and variations thereof. Two ma-
jor drawbacks of the latter strategy (and its variations) are first, the gain k(t) is, albeit bounded,
monotonically increasing which might finally become too large whence amplifying measurement
noise, and secondly, whilst asymptotic performance is guaranteed, transient behaviour is not
taken into account (apart from [15], where the issue of prescribed transient behaviour is suc-
cessfully addressed).

A fundamentally different approach, the so-called “funnel controller”, was introduced in [8]
in the context of the following output regulation problem: this controller ensures prespecified
transient behaviour of the tracking error, has a non-monotone gain, is simpler than the above
adaptive controller (actually it is not adaptive in so far the gain is not dynamically generated)
and does not invoke any internal model. Funnel control has been applied to a large class
of systems described by functional differential equations including nonlinear or/and infinite
dimensional systems and systems with higher relative degree [10], it has been successfully applied
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in experiments controlling the speed of electric devices [11] (see [9] for further applications and
a survey), and recently it has be shown that funnel control copes with input constraints if a
certain feasibility inequality holds [6].

The contribution of the present paper is to show that the funnel controller is robust in the sense
that the control objectives (bounded signals and tracking within a prespecified performance
funnel) are still met if the funnel controller is applied to any system “close” (in terms of the
gap metric) to a system satisfying the classical assumptions (i)–(iii). This will be achieved by
exploiting the concept of (nonlinear) gap metric and graph topology from [5, 2]. The results
are analogous in structure to its precursors: robustness of the common adaptive controller [4]
and of the λ-tracker [7]. However, some care must be exercised in finding the appropriate signal
spaces, mainly in proving the existence of a gain function, and applying the known robustness
results from [5, 2].

1.1 System class

We consider the class of linear n-dimensional, m-inputm-output systems (n,m ∈ N with n ≥ m)

ẋ(t) = Ax(t) +B u1(t) , x(0) = x0 ∈ Rn,
y1(t) = C x(t) ,

}
(1.1)

which satisfy the classical assumptions in high-gain adaptive control, that is minimum phase
with relative degree one and positive definite high-frequency gain matrix, i.e. they belong to

M̃n,m :=



(A,B,C) ∈ Rn×n × Rn×m × Rm×n

∣∣∣∣∣∣

CB + (CB)T > 0 ,

∀ s ∈ C+ : det

[
sIn −A B

C 0

]
6= 0



 .

The state space dimension n ∈ N needs not to be known but only the dimension m ∈ N of the
input/output space. Most importantly, only structural assumptions are required but the system
entries may be completely unknown.

Note that for any (A,B,C) ∈ M̃n,m with detCB 6= 0 we may choose V ∈ Rn×(n−m) with
rkV = n−m and imV = kerC; then T := [B(CB)−1, V ] is invertible and

T−1AT =

[
A1 A2

A3 A4

]
, T−1B =

[
CB
0

]
= , CT =

[
Im 0m×(n−m)

]
.

Moreover, if (A,B,C) is minimum-phase, then A4 has spectrum in the open left half complex

plane C−. Therefore, we replace M̃n,m by

Mn,m :=





(A,B,C) ∈ Rn×n × Rn×m × Rm×n

∣∣∣∣∣∣∣∣∣

A =

[
A1 A2

A3 A4

]
, B =

[
B1

0

]
, C =

[
I 0
]
,

B1, A1 ∈ Rm×m , spec(A4) ⊂ C− ,

B1 +BT
1 > 0




,

and restrict our attention to systems (A,B,C) ∈ Mn,m in Byrnes-Isidori normal form, see for
example [12, Sec. 4], i.e.

ẏ1 = A1y1 +A2z + CB u1 , y1(0) = y0
1 ∈ Rm ,

ż = A3y1 +A4z , z(0) = z0 ∈ Rn−m .

}
(1.2)

We will study the initial value problem (1.1) or (1.2) as plant P mapping the interior input
signal u1 to the interior output signal y1, in conjunction with the controller C (the funnel
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controller (1.4) in our setup), mapping the interior output-signal y2 to the interior input signal
u2, and in the presence of additive input/output disturbances u0, y0 so that

u0 = u1 + u2, y0 = y1 + y2 , (1.3)

as depicted in Figure 1.

u0

u1 y1

P

C y0
u2 y2

−
+

+

−

Figure 1: The closed-loop system [P,C].

1.2 Performance funnel and funnel control

The control objective, defined in the following sub-section, will be captured in terms of the
performance funnel

Fϕ := {(t, e) ∈ R≥0 × Rm | ϕ(t)‖e‖ < 1} ,
determined by ϕ(·) belonging to

Φ :=

{
ϕ ∈W 1,∞(R≥0 → R≥0)

∣∣∣∣∣
ϕ(0) = 0 , ∀ t > 0 : ϕ(t) > 0 , lim inft→∞ ϕ(t) > 0 ,

∀ ε > 0 : ϕ|[ε,∞)
(·)−1 is globally Lipschitz continuous

}
.

Note that the funnel boundary is given by ϕ(t)−1, t > 0; see Figure 3. The concept of perfor-
mance funnel had been introduced by [8]. There it is not assumed that ϕ(·) has the Lipschitz
condition as given in Φ; we incorporate this mild assumption for technical reasons. The assump-
tion ϕ(0) = 0 allows to start with arbitrarily large initial conditions x0 and output disturbances
y0. If for special applications the initial value and y0 are known, then ϕ(0) = 0 may be relaxed
by ϕ(0)‖y0(0) − Cx0‖ < 1, see also the simulations in Example 4.6.

The funnel controller, for prespecified ϕ(·) ∈ Φ, is given by

u2(t) = −k(t)y2(t) , k(t) =
ϕ(t)

1 − ϕ(t)‖y2(t)‖
(1.4)

and will be applied to (1.1) or (1.2). Note that the funnel controller (1.4) is actually not
an adaptive controller in the sense that it is not dynamic. The gain k(t) is the reciprocal of
the distance between y2 = y0 − y1 (i.e. the difference of a reference signal y0 and the output
of (1.1)) and the funnel boundary ϕ(t)−1; and, loosely speaking, if the error approaches the
funnel boundary, then k(t) becomes large, thereby exploiting the high-gain properties of the
system and precluding boundary contact.

We will study properties of the closed-loop system generated by the application of the funnel
controller (1.4) to systems (1.1) of class Mn,m or of class Pn,m (see below) in the presence of
disturbances (u0, y0) ∈ L∞(R≥0 → Rm) × W 1,∞(R≥0 → Rm) satisfying the interconnection
equations (1.3). The closed-loop system (1.2), (1.4), (1.3) is depicted in Figure 2.
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u0

u1 y1ẏ1 = A1y1 +A2z + CB u1 , y1(0) = y0
1

ż = A3y1 +A4z , z(0) = z0

k(t) = ϕ(t)
1−ϕ(t)‖y2(t)‖

u2(t) = −k(t) y2(t)
y0

u2 y2

−
+

+

−

Figure 2: The “funnel controlled” closed-loop system.

1.3 Control objectives

We are ready to formulate the control objectives. If the funnel controller (1.4), for prespecified
ϕ ∈ Φ determining the funnel boundary, is applied to any system (1.1), belonging to the class
Mn,m, in the presence of disturbances (u0, y0) ∈ L∞(R≥0 → Rm)×W 1,∞(R≥0 → Rm) satisfying
the interconnection equations (1.3), then the closed-loop system (1.2), (1.4), (1.3), as depicted
in Figure 2, is supposed to meet the following control objectives:

• all signals are bounded;

• the output error y2(t) = y0(t) − y1(t) of the output disturbance and the output of the
linear system evolves in the funnel, in other words

∀ t ≥ 0 : (t, y2(t)) ∈ Fϕ = {(t, y) ∈ R≥0 × Rm | ϕ(t)‖y‖ < 1} .

Fϕ

0 t

λ

−λ

ϕ(·)−1

−ϕ(·)−1

‖y2(t)‖ = ‖y0(t) − y1(t)‖

Figure 3: Funnel Fϕ with ϕ ∈ Φ and inft>0 ϕ(t)−1 ≥ λ > 0.

1.4 Main result: robustness

The main result of the present paper is to show robustness of the funnel controller in the following
sense: The control objectives should still be met if (A,B,C) ∈ Mn,m is replaced by some system

(Ã, B̃, C̃) belonging to the system class

Pq,m :=
{
(A,B,C) ∈ Rq×q × Rq×m × Rm×q | (A,B,C) is stabilizable and detectable

}
) Mq,m
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where q,m ∈ N with q ≥ m, and (Ã, B̃, C̃) is close (in terms of the gap metric) to a system
belonging to Mn,m and the initial conditions and the disturbances are “small”.

For the purpose of illustration, we will further show that a minimal realization (Ã, b̃, c̃) of the
transfer function

s 7→ N(M − s)

(s − α)(s +N)(s +M)
, α,N,M > 0 , (1.5)

(which obviously does not satisfy any of the classical assumptions since it is not minimum phase,
has relative degree 2 and negative high-frequency gain) is the closer to a system in Mn,m the
larger N and M .

The paper is organized as follows. In Section 2 we show that the funnel controller achieves all
control objectives if applied to a linear system (1.1) belonging to class Mn,m in the presence of
L∞(R≥0 → Rm)×W 1,∞(R≥0 → Rm) input/output disturbances, see Figure 2. In Section 3, we
collect the basics of the framework of gap metric and graph topology from [5, 2, 4] necessary for
our setup. The final Section 4 contains the main result, i.e. robustness of funnel control.

Nomenclature

C+, C− = {s ∈ C |Re s > 0}, {s ∈ C |Re s < 0}, respectively

M > 0 if, and only if, xTMx > 0 for all x ∈ Rn \ {0}, where M ∈ Rn×n

‖x‖ =
√
xTx, the Euclidean norm of x ∈ Rn

‖M‖ = max
{
‖M x‖

∣∣ x ∈ Rm, ‖x‖ = 1
}
, induced matrix norm of M ∈ Rn×m

‖v‖V the norm of v ∈ V for any normed vector space V
Lp(R≥0 → Rℓ) the space of p-integrable functions y : R≥0 → Rℓ, 1 ≤ p <∞ with norm

‖y‖Lp(R≥0→Rℓ) =
(∫∞

0 |y(t)|p dt
) 1

p

Lp
loc(I → Rℓ) the space of locally p-integrable functions y : I → Rℓ, with∫

K ‖y(t)‖p dt < ∞ for all compact K ⊂ I, where 1 ≤ p < ∞ and
I ⊂ R≥0 is an interval

L∞(R≥0 → Rℓ) the space of essentially bounded functions y : R≥0 → Rℓ with norm
‖y‖L∞(R≥0→Rℓ) = ess supt≥0 |y(t)|
L∞

loc(I → Rℓ) the space of locally bounded functions y : I → Rℓ, with
ess supt∈K |y(t)| < ∞ for all compact K ⊂ I, where I ⊂ R≥0 is an
interval

W 1,∞(R≥0 → Rℓ) the Sobolev space of absolutely continuous functions y : R≥0 → Rℓ with
y, ẏ ∈ L∞(R≥0 → Rℓ) and norm

‖y‖W 1,∞(R≥0→Rℓ) = ‖y‖L∞(R≥0→Rℓ) + ‖ẏ‖L∞(R≥0→Rℓ)

2 Funnel control

In this section we show that the funnel controller (1.4) applied to any linear system (A,B,C)
of class Mn,m achieves, in presence of input/output disturbances (u0, y0) ∈ L∞(R≥0 → Rm) ×
W 1,∞(R≥0 → Rm), the control objectives: y2 is forced to evolve within a performance funnel
Fϕ for prespecified ϕ ∈ Φ and all signals and states of the closed-loop (1.2), (1.3), (1.4), as
depicted in Figure 2, remain essentially bounded. Moreover, it is shown that the derivatives of
the output signals y1, y2 and the state ( y1

η ) are essentially bounded, too.

Write, for notational convenience,

Dn,m := Mn,m×(Rm×Rn−m)×Φ×L∞(R≥0 → Rm)×W 1,∞(R≥0 → Rm), n,m ∈ N, n ≥ m,
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the set of all tuples of systems, initial values y0
1 , η

0 of the linear system, functions ϕ describing
the funnel Fϕ and input/output disturbances (u0, y0).

Proposition 2.1 Let n,m ∈ N with n ≥ m and ϕ ∈ Φ. Then there exists a continuous map

ν : Dn,m → R≥0 such that, for all tuples d =
([

A1 A2

A3 A4

]
, B,C, (y0

1 , η
0), ϕ, u0, y0

)
∈ Dn,m, the

associated closed-loop initial value problem (1.2), (1.3), (1.4) satisfies

‖(k, u2, y2, η)‖L∞(R≥0→R1+m)×W 1,∞(R≥0→Rm+n−m) ≤ ν(d) , (2.1)

and

∀ t ≥ 0 : (t, y2(t)) ∈ Fϕ = {(t, y) ∈ R≥0 × Rm | ϕ(t)‖y‖ < 1} . (2.2)

Note that Proposition 2.1 also yields that all control objectives are met if the funnel con-
troller (1.4) is applied to (A,B,C) ∈ M̃n,m. This had already been shown, for u0 = 0, in [8];
the essential difference to [8] is that here we prove the result by the construction of a continuous
function ν so that (2.1) holds. The latter is crucial for the robustness analysis of funnel control
in Section 4. The proof of Proposition 2.1 uses ideas from [4] and from [6].

Proof of Proposition 2.1. Let d =
([

A1 A2

A3 A4

]
, B,C, (y0

1 , η
0), ϕ, u0, y0

)
∈ Dn,m. Then the

closed-loop initial value problem (1.2), (1.3), (1.4) may be written as

d
dt

(
y2

η

)
= f(t, y2, η) ,




0
y2(0)
η(0)


 =




0
y0(0) − y0

1

η0


 ∈ Fϕ × Rn−m , (2.3)

where the right hand side is given by

f : Fϕ × Rn−m → Rn,

(t, y2, η) 7→
(
A1 y2 −A2 η − CB ϕ(t)

1−ϕ(t)‖y2‖
y2 + ẏ0(t) −A1 y0(t) − CB u0(t)

−A3 y2 +A4 η +A3 y0(t)

)
.

We proceed in several steps.

Step 1 : We show that the initial value problem (2.3) has an absolutely continuous solution
(y2, η) : [0, ω) → Rm × Rn−m for maximal ω ∈ (0,∞]; this solution satisfies (t, y2(t), η(t)) ∈
Fϕ ×Rn−m for all t ∈ [0, ω), is unique and maximality of ω means that the solution is extended

up to the boundary of Fϕ ×Rn−m: the closure of graph
(
(y2, η)|[0,ω)

)
is not a compact subset of

Fϕ×Rn−m, i.e. for every compact K ⊂ Fϕ×Rn−m there exists t ∈ [0, ω) such that (t, y2(t), η(t)) /∈
K.

Since ϕ|[ε,∞)
(·)−1, is globally Lipschitz for every ε > 0 and ϕ(0) = 0, it follows that f is locally

Lipschitz on the relatively open set Fϕ × Rn−m in the sense that, for all (τ, ξ, ζ) ∈ Fϕ × Rn−m,
there exists an open neighbourhood O of (τ, ξ, ζ) and a constant L > 0 such that

∀ (t, y, η) ∈ O : ‖f(t, y, η) − f(t, ξ, ζ)‖ ≤ L(‖y − ξ‖ + ‖η − ζ‖) .

Now by the standard theory of ordinary differential equations, see, for example, [18, Th. III.11.III],
the initial value problem (2.3) has the desired properties.

Step 2 : We collect some definition and technicalities.
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By Step 1 and the properties of ϕ it follows that

∃ δ = δ(d) > 0 ∀ t ∈ [0, δ] : ‖y2(t)‖ ≤ ‖y2(0)‖ + 1 ∧ 1 − ϕ(t)‖y2(t)‖ ≥ max{1/2, ϕ(t)} . (2.4)

Let Lδ > 0 denote a global Lipschitz constant of ϕ|[δ,∞)
(·)−1 (which exists by definition of Φ)

and set λ := inf
{
ϕ(t)−1 | t > 0

}
. Note that (t, y2(t)) ∈ Fϕ for all t ∈ [0, ω) yields

∀ t ∈ [0, ω) : ‖y2(t)‖ ≤ max
{
‖ϕ|[δ,∞)

(·)−1‖L∞ , ‖y0(0) − y0
1‖ + 1

}
. (2.5)

By the minimum phase property of (1.2), i.e. specA4 ⊂ C−,

∃α, β > 0 ∀ t ≥ 0 : ‖eA4t‖ ≤ βe−αt . (2.6)

In view of positive definiteness of CB, let γCB > 0 denote the smallest singular value of CB +
(CB)T , and thus

∀ v ∈ Rm \ {0} : 〈v,CBv〉 ≥ γCB‖v‖2 .

Step 3 : We show:
∀ t ∈ [δ, ω) : ϕ(t)−1 − ‖y2(t)‖ ≥ ε , (2.7)

where δ > 0 is defined by (2.4) and, for γCB , λ, Lδ, α and β defined in Step 2,

ε := min

{
1

2
,
λ

2
,
γCB λ

2
,

[
Lδ +

(
‖A1‖ + ‖A2‖ ‖A3‖

β

α

)
·
(
‖y0‖L∞ + ‖ϕ|[δ,∞)

(·)−1‖L∞

)

+ ‖A2‖β‖η0‖ + ‖ẏ0‖L∞ + ‖CB‖ ‖u0‖L∞

]−1
}
. (2.8)

Seeking a contradiction, suppose that

∃ t1 ∈ [δ, ω) : ϕ(t1)
−1 − ‖y2(t1)‖ < ε . (2.9)

Since t 7→ ϕ(t)‖y2(t)‖ is continuous on [0, ω) and in view of (2.4) it follows that

∃ t0 ≥ δ : t0 = max
{
t ∈ [δ, t1)

∣∣ϕ(t)−1 − ‖y2(t)‖ = ε
}
.

Thus, by definition of Φ,

∀ t ∈ [t0, t1] : ϕ(t)−1 − ‖y2(t)‖ ≤ ε ∧ ‖y2(t)‖ ≥ ϕ(t)−1 − ε ≥ λ− λ/2 (2.10)

and hence

∀ t ∈ [t0, t1] :
‖y2(t)‖

ϕ(t)−1 − ‖y2(t)‖
≥ λ

2 ε
. (2.11)

By Variation of Constants, the second line of the differential equation (2.3) yields

∀ t ≥ 0 : η(t) = eA4tη0 +

∫ t

0
eA4(t−s)A3 (y0(s) − y2(s)) ds , (2.12)

thus the first line of the differential equation (2.3) writes, for almost all t ≥ 0,

ẏ2(t) = −A1(y0(t) − y2(t)) +A2

∫ t

0
eA4(t−s)A3 (y0(s) − y2(s)) ds

−A2e
A4tη0 + ẏ0(t) − CBu0(t) + CB

−ϕ(t)

1− ϕ(t)‖y2(t)‖
y2(t) .
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Hence, by (2.5), (2.6), (2.11) and (2.8), we conclude, for almost all t ∈ [t0, t1],

〈y2(t), ẏ2(t)〉 ≤ ‖y2(t)‖
[(

‖A1‖ + ‖A2‖ ‖A3‖
β

α

)[
‖y0‖L∞ +

∥∥ϕ|[δ,∞)
(·)−1

∥∥
L∞

]

+ ‖A2‖β‖η0‖ + ‖ẏ0‖L∞ + ‖CB‖ ‖u0‖L∞

]
− ϕ(t) 〈y2(t), CBy2(t)〉

1 − ϕ(t)‖y2(t)‖

≤ ‖y2(t)‖
[(

‖A1‖ + ‖A2‖ ‖A3‖
β

α

)[
‖y0‖L∞ +

∥∥ϕ|[δ,∞)
(·)−1

∥∥
L∞

]

+ ‖A2‖β‖η0‖ + ‖ẏ0‖L∞ + ‖CB‖ ‖u0‖L∞

]
− ϕ(t)γCB‖y2(t)‖
ϕ(t) (ϕ(t)−1 − ‖y2(t)‖)

‖y2(t)‖

≤ ‖y2(t)‖
[(

‖A1‖ + ‖A2‖ ‖A3‖
β

α

)[
‖y0‖L∞ +

∥∥ϕ|[δ,∞)
(·)−1

∥∥
L∞

]

+ ‖A2‖β‖η0‖ + ‖ẏ0‖L∞ + ‖CB‖ ‖u0‖L∞

]
− γCBλ

2ε
‖y2(t)‖

≤ −Lδ‖y2(t)‖ . (2.13)

Thus

‖y2(t1)‖ − ‖y2(t0)‖ =

∫ t1

t0

〈y2(τ), ẏ2(τ)〉
‖y2(τ)‖

dτ

≤ −Lδ(t1 − t0) ≤ −|ϕ(t1)
−1 − ϕ(t0)

−1| ≤ ϕ(t1)
−1 − ϕ(t0)

−1 ,

whence the contradiction ε = ϕ(t0)
−1 − ‖y2(t0)‖ ≤ ϕ(t1)

−1 − ‖y2(t1)‖ < ε. This proves (2.7).

Step 4 : We show that ω = ∞.

Let σ := min
{
1, inf t∈[δ,ω) ϕ(t)

}
> 0. By (2.7) it follows, for ε > 0 as defined in (2.8), that

∀ t ∈ [δ, ω) : 1 − ϕ(t)‖y2(t)‖ ≥ εϕ(t) ≥ εσ ,

and so, in view of (2.4),
∀ t ∈ [0, ω) : 1 − ϕ(t)‖y2(t)‖ ≥ εσ .

Seeking a contradiction, suppose that ω <∞. By (2.5) and (2.12) follows that η ∈ L∞([0, ω) →
Rn−m) with

∥∥η|[0,ω)

∥∥
L∞ ≤ c for some c > 0. Then

K :=
{
(t, y, z) ∈ Fϕ × Rn−m

∣∣ t ∈ [0, ω] , 1 − ϕ(t)‖y‖ ≥ εσ , ‖z‖ ≤ c
}

is a compact subset of Fϕ×Rn−m with (t, y2(t), η(t)) ∈ K for all t ∈ [0, ω), which contradicts the

fact that the closure of graph
(
(y2, η)|[0,ω)

)
is not a compact set, see Step 1. Therefore, ω = ∞.

Step 5 : We show (2.1).

Step 4 yields ω = ∞. Then Step 3 and (2.4) guarantee that (t, y2(t)) ∈ Fϕ for all t ≥ 0.
Moreover, for some δ > 0 as in (2.4), ‖y2(t)‖ ≤ ϕ(t)−1 − ε for all t ≥ δ, and, in view of (2.4), we
have ‖y2(t)‖ ≤ ‖y2(0)‖ + 1 ≤ ‖y0(0)‖ + ‖y0

1‖ + 1 for all t ∈ [0, δ]. Thus y2 ∈ L∞(R≥0 → Rm) is

uniformly bounded in terms of d =
([

A1 A2

A3 A4

]
, B,C, (y0

1 , η
0), ϕ, u0, y0

)
. Moreover, (2.7) and (2.4)

yield
∀ t ≥ 0 : 1 − ϕ(t)‖y2(t)‖ ≥ εϕ(t)

and so

∀ t ≥ 0 : k(t) =
ϕ(t)

1 − ϕ(t)‖y2(t)‖
≤ ε−1
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which gives k ∈ L∞(R≥0 → R) and, in view of (2.4), ‖k‖L∞ ≤ 1
ε , thus k is uniformly bounded

in terms of d. Hence, u2 = −k y2 ∈ L∞(R≥0 → Rm) is also uniformly bounded in terms of d.
By (2.12) we have, for all t ≥ 0,

‖η(t)‖ =

∥∥∥∥e
A4tη0 +

∫ t

0
eA4(t−s)A3 (y0(s) − y2(s)) ds

∥∥∥∥

≤ βe−αt‖η0‖ +

∫ t

0
β‖A3‖e−α(t−s) (‖y0‖L∞ − ‖y2‖L∞) ds

≤ β‖η0‖e−αt +
β

α
‖A3‖ (‖y0‖L∞ − ‖y2‖L∞)

(
1 + e−αt

)
,

hence η ∈ L∞ (R≥0 → Rn−m) and moreover, η is uniformly bounded in terms of the system
matrices and the L∞-norms of y0 and y2 which yields that η is uniformly bounded in terms of

d =
([

A1 A2

A3 A4

]
, B,C, (y0

1 , η
0), ϕ, u0, y0

)
.

Finally, in view of (2.3), it follows that the derivatives of y2 and η are also uniformly bounded
in terms of d which yields that (y2, η) ∈ W 1,∞ (R≥0 → Rm × Rn−m). Moreover, this proves the
existence of a continuous function ν : Dn,m → R≥0 such that (2.1) holds true.

Step 6 : Finally, we show (2.2).

By Step 5 we have k ∈ L∞(R≥0 → R). Thus, and since y2 is continuous, it follows that, for all
t ≥ 0, 1 − ϕ(t)‖y2(t)‖ > 0, which shows (2.2) and completes the proof. 2

3 The concept of gap metric

The material in this section is based on [5, Sec. II], [4, Sec. 2], [2, Sec. 2] and mainly [3, Sec. 2].
Definitions for extended and ambient spaces, well posedness and the nonlinear gap can be found
in [3, Sec. 2]; however, gain-functions and gain-function stability, which are required for the
robust stability results in Section 4, is not defined in [3]. A section about the basic concepts of
the gap metric needed in the setup of robustness is in [7]; however, the latter contains a technical
flaw: extended and ambient spaces are defined there as in [4, Sec. 2] and [2, Sec. 2] and are not
applicable to function spaces of continuous functions. Therefore, in the following we correct this
flaw when defining extended and ambient spaces and well posedness more carefully. The results
in [7] hold true if this minor correction is applied; only the proof of [7, Prop. 4.4] is effected:
one has to apply [17, Th. 6.5.3 and Th. 6.5.4] which are revisions of [2, Th. 5.2 and Th. 5.3], see
also Sub-section 4.3 for more details.

3.1 Generalized signal spaces

Let X be a nonempty set. For 0 < ω ≤ ∞, let Sω denote the set of all locally integrable maps
in map([0, ω) → X ). For ease of notation define S := S∞. For 0 < τ < ω ≤ ∞, define the
truncation operator Tτ and the restriction of maps as follows:

Tτ : Sω → S , v 7→ Tτv :=

(
t 7→

{
v(t), t ∈ [0, τ)
0, t ∈ [τ,∞)

)
,

(·)∣∣
[0,τ)

: Sω → Sτ , v 7→ v
∣∣
[0,τ)

:= (t 7→ v(t), t ∈ [0, τ)) .

Consider next a space V ⊂ S of maps defined on [0,∞) with norm ‖ · ‖V : V → R≥0. Note
that Tτv may not belong to V, for example if V contains continuous functions. Therefore, we
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introduce the norm ‖ · ‖V∣∣
[0,τ)

: {v∣∣
[0,τ)

| v ∈ V} → R≥0 where ‖v∣∣
[0,τ)

‖V∣∣
[0,τ)

denotes the norm on

the restriction [0, τ) ⊂ R≥0, and write, for ease of notation, ‖Tτv‖V = ‖v∣∣
[0,τ)

‖V∣∣
[0,τ)

for v ∈ V.

We associate with V spaces as follows:

V[0, τ) =
{
v ∈ Sτ

∣∣∣∃w ∈ V with ‖Tτw‖V <∞ : v = w
∣∣
[0,τ)

}
, for τ > 0 ;

Ve =
{
v ∈ S

∣∣∣∀ τ > 0 : v
∣∣
[0,τ)

∈ V[0, τ)
}
, the extended space ;

Vω =
{
v ∈ Sω

∣∣∣ ∀ τ ∈ (0, ω) : v
∣∣
[0,τ)

∈ V[0, τ)
}
, for 0 < ω ≤ ∞ ;

Va =
⋃

ω∈(0,∞] Vω , the ambient space .

If v,w ∈ Va with v|I = w|I on I = dom(v) ∩ dom(w), then write v = w. For (u, y) ∈ Va × Va,
the domains of u and y may be different; adopt the convention

dom(u, y) := dom(u) ∩ dom(y) .

The set V ⊂ S is a said to be a signal space if, and only if, it is a) a normed vector space and
b) supτ≥0 ‖Tτv‖V <∞ implies v ∈ V.

For the purpose of illustration, consider V = L∞(R≥0 → Rm), which obviously satisfies the afore-
mentioned assumptions a) and b): L∞(R≥0 → Rm) is a normed space and, if supτ≥0 ‖Tτv‖L∞ <
∞, then v ∈ L∞(R≥0 → Rm). Note that this also holds for the Sobolev space W 1,∞(R≥0 → Rm).
For V = L∞(R≥0 → Rm) it follows that Ve = L∞

loc(R≥0 → Rm), Vω = L∞
loc([0, ω) → Rm) for

ω ∈ (0,∞], and Va = ∪0<ω≤∞L
∞
loc([0, ω) → Rm). It is important to note that Vω ) L∞([0, ω) →

Rm).

For a normed signal space U and the Euclidean space Rl, l ∈ N, also subsets of V = Rl × U will
be considered, which, on identifying each θ ∈ Rl with the constant signal t 7→ θ, can be thought

of as a normed signal space with norm given by ‖(θ, x)‖V =
√

|θ|2 + ‖x‖2
U .

3.2 Well posedness

A mapping Q : Ua → Ya is said to be causal if, and only if,

∀ x, y ∈ Ua ∀ τ ∈ dom(x, y) ∩ dom(Qx,Qy) :
[
x|[0,τ)

= y|[0,τ)
⇒ (Qx)|[0,τ)

= (Qy)|[0,τ)

]
.

Consider P : Ua → Ya, u1 7→ y1, and C : Ya → Ua, y2 7→ u2 being causal mappings representing
the plant and the controller, respectively, and satisfying the closed-loop equations:

[P,C] : y1 = Pu1, u2 = Cy2, u0 = u1 + u2, y0 = y1 + y2 , (3.1)

corresponding to the closed-loop shown in Figure 1.

For w0 = (u0, y0) ∈ W := U×Y, a pair (w1, w2) = ((u1, y1), (u2, y2)) ∈ Wa×Wa, Wa := Ua×Ya,
is a solution if, and only if, (3.1) holds on dom(w1, w2). The (possibly empty) set of solutions is
denoted by

Xw0
:= {(w1, w2) ∈ Wa ×Wa | (w1, w2) solves (3.1)}

The closed-loop system [P,C], given by (3.1), is said to have:

• the existence property if, and only if, Xw0
6= ∅ ;
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• the uniqueness property if, and only if,

∀ w0 ∈ W :
[
(ŵ1, ŵ2), (w̃1, w̃2) ∈ Xw0

=⇒
(ŵ1, ŵ2) = (w̃1, w̃2) on dom(ŵ1, ŵ2) ∩ dom (w̃1, w̃2)

]
.

Assume that [P,C] has the existence and uniqueness property. For each w0 ∈ W, define ωw0
∈

(0,∞], by the property

[0, ωw0
) :=

⋃

(ŵ1,ŵ2)∈Xw0

dom(ŵ1, ŵ2)

and define (w1, w2) ∈ Wa×Wa, with dom(w1, w2) = [0, ωw0
), by the property (w1, w2)|[0,t) ∈ Xw0

for all t ∈ [0, ωw0
). This construction induces the closed-loop operator

HP,C : W → Wa ×Wa, w0 7→ (w1, w2) .

The closed-loop system [P,C], given by (3.1), is said to be:

• locally well posed if, and only if, it has the existence and uniqueness properties and the
operator HP,C : W → Wa ×Wa , w0 7→ (w1, w2), is causal;

• globally well posed if, and only if, it is locally well posed and HP,C(W) ⊂ We ×We ;

• W-stable if, and only if, it is locally well posed and HP,C(W) ⊂ W ×W;

• regularly well posed if, and only if, it is locally well posed and

∀w0 ∈ W :
[
ωw0

<∞ ⇒
∥∥(HP,Cw0)|[0,τ)

∥∥
Wτ×Wτ

→ ∞ as τ → ωw0

]
. (3.2)

If [P,C] is globally well posed, then for each w0 ∈ W the solution HP,C(w0) exists on the half
line R≥0. Regular well posedness means that if the closed-loop system has a finite escape time
ωw0

> 0 for some disturbance w0 ∈ W, then at least one of the components u1, u2 or y1, y2 is
not a restriction to [0, ωw0

) of a function in U or Y, respectively. If [P,C] is regularly well posed
and satisfies

∀w0 ∈ W :
[
ωw0

<∞ ⇒ HP,C(w0)
∣∣
[0,ωw0

)
∈ W[0, ωw0

) ×W[0, ωw0
)
]
,

there does not exist a solution of [P,C] with a finite escape time, and therefore [P,C] is globally
well posed. However, global well posedness does not guarantee that each solution belongs to
W ×W; the latter is ensured by W-stability of [P,C]. Note also that neither regular nor global
well posedness implies the other.

3.3 Graphs, the nonlinear gap metric and gain-function stability

To measure the distance between two plants P and P1 it is necessary to find sets associated with
the plant operators within some space where one may define a map which identifies the gap.
These set are the graphs of the operators: for the plant operator P : Ua → Ya and the controller
operator C : Ya → Ua define the graph GP of the plant and the graph GC of the controller,
respectively, as follows:

GP :=

{(
u
Pu

) ∣∣∣∣ u ∈ U , Pu ∈ Y
}

⊂ W , GC :=

{(
Cy
y

) ∣∣∣∣ Cy ∈ U , y ∈ Y
}

⊂ W .
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Note that GP and GC are, strictly speaking, not subsets of W; however, abusing the notation
one may identify GP ∋ ( u

Pu ) = (u, Pu) ∈ W and GC ∋
(

Cy
y

)
= (Cy, y) ∈ W.

The essence of Section 4 is the study of robust stability of funnel control in a specific control
context. Robust stability is the property that the stability properties of a globally well posed
closed-loop system [P,C] persists under “sufficiently small” perturbations of the plant. In other
words, robust stability is the property that [P1, C] inherits the stability properties of [P,C],
when the plant P is replaced by any plant P1 sufficiently “close” to P . In the present context,
plants P and P1 are deemed to be close if, and only if, their respective graphs are close in the
gap sense of [5]. The nonlinear gap is defined as follows:

Let, for signal spaces U and Y,

Γ(U ,Y) :=
{
P : Ua → Ya

∣∣ P is causal
}

and, for P1, P2 ∈ Γ, define the (possibly empty) set

OP1,P2
:=
{
Φ : GP1

→ GP2

∣∣ Φ is causal, surjective, and Φ(0) = 0
}
.

The directed nonlinear gap is given by

~δ : Γ(U ,Y) × Γ(U ,Y) → [0,∞] , (P1, P2) 7→ inf
Φ∈OP1,P2

sup
x∈GP1

\{0}, τ>0

(‖Tτ (Φ − I)|GP1

(x)‖U×Y

‖Tτx‖U×Y

)
,

with the convention that ~δ(P1, P2) := ∞ if OP1,P2
= ∅, and the nonlinear gap δ is

δ : Γ(U ,Y) × Γ(U ,Y) → [0,∞] , (P1, P2) 7→ max{~δ(P1, P2), ~δ(P2, P1)} .

The following definition of gain-function stability goes back to [5]: A causal operator F : X → Va,
where X ,V are subsets of normed signal spaces, is said to be gain-function stable if, and only
if, F (X ) ⊂ V and the following nonlinear so-called gain-function is well defined:

g[F ] : (r0,∞) → R≥0, r 7→ g[F ](r) = sup
{
‖TτFx‖V

∣∣∣ x ∈ X , ‖Tτx‖X ∈ (r0, r], τ > 0
}
, (3.3)

where r0 := infx∈X ‖x‖X <∞.

A closed-loop system [P,C] is said to be gain-function stable if, and only if, it is globally well
posed and HP,C : W → We ×We is gain-function stable.

Observe that ‖TτFx‖V ≤ g[F ](‖Tτx‖X ) and note the following facts:

(i) global well posedness of [P,C] implies that imHP,C ⊂ We ×We;

(ii) gain function stability of [P,C] implies W-stability of [P,C];

(iii) if [P,C] is W-stable, then HP,C : W → GP × GC is a bijective operator with inverse
H−1

P,C : (w1, w2) 7→ w1 + w2.

To see (iii), note that HP,C(W) ⊂ W × W implies that HP,C(W) ⊂ GP × GC , and since, for
any w1 ∈ GP ⊂ W, w2 ∈ GC ⊂ W one has w1 + w2 ∈ W, it follows that HP,C(W) ⊃ GP × GC .
Therefore, think of a gain-function stable HP,C as a surjective operator HP,C : W → GP × GC .
The inverse of HP,C : W → GP × GC is obviously H−1

P,C : (w1, w2) 7→ w1 + w2.

Next, we associate with the closed-loop system [P,C] given by (3.1) the following two parallel
projection operators:

ΠP//C : W → Wa , w0 7→ w1 and ΠC//P : W → Wa , w0 7→ w2 .
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Clearly, HP,C =
(
ΠP//C , ΠC//P

)
and ΠP//C + ΠC//P = I. Note that gain stability of ei-

ther ΠP//C and ΠC//P implies W-gain stability of the closed-loop system [P,C] and that∥∥ΠP//C

∥∥
W ,W

,
∥∥ΠC//P

∥∥
W ,W

≥ 1 since ΠP//C = Π2
P//C , ΠC//P = Π2

C//P .

Finally, we associate with the closed-loop system [P,C] given by (3.1) the following two parallel
projection operators:

ΠP//C : W → Wa , w0 7→ w1 and ΠC//P : W → Wa , w0 7→ w2 .

Clearly, HP,C =
(
ΠP//C , ΠC//P

)
and ΠP//C + ΠC//P = I. Therefore, gain-function stability of

one of the operators ΠP//C and ΠC//P implies the gain-function stability of the other, and so
gain-function stability of either operator implies gain-function stability of the closed-loop system
[P,C].

We close this section with an example. Define, for α > 0, x0 ∈ R and N,M > 0, the plant
operator

Pα : L∞
e (R≥0 → R) →W 1,∞

e (R≥0 → R) , u1 7→ y1 = x, ẋ = αx+ u1 , x(0) = x0, (3.4)

and, for

Ã :=




0 1 0
0 0 1

αNM −NM + αN + αM α−N −M


 , b̃ :=




0
0
N


 , c̃ :=



M
−1
0




T

, x̃0 ∈ R3 , (3.5)

the plant operator

PN,M,α : L∞
e (R≥0 → R) →W 1,∞

e (R≥0 → R) , u1 7→ y1 = c̃ x, ẋ = Ã x+ b̃ u1 , x(0) = x̃0 . (3.6)

In [7, Sec. 3] it is shown that, for sufficiently large M > 0 and N = 2M , Pα is close to PN,M,α

in the sense
lim sup
M→∞

~δ(Pα, P2M,M,α) = 0 . (3.7)

4 Robustness of the funnel controller

4.1 Well posedness of the nominal closed-loop system

For n,m ∈ N with n ≥ m, consider Pn,m as a subspace of the Euclidean space Rn2+2mn by
identifying a plant θ = (A,B,C) with a vector θ consisting of the elements of the plant matrices,
ordered lexicographically. With normed signal spaces U and Y and (θ, x0) ∈ Pn,m × Rn, where
x0 ∈ Rn is the initial value of a linear system (1.1), we associate the causal plant operator

P (θ, x0) : Ua → Ya, u1 7→ P (θ, x0)(u1) := y1 , (4.1)

where, for u1 ∈ Ua with dom(u1) = [0, ω), we have y1 = cx, x being the unique solution of (1.1)
on [0, ω). Note that P is a map from

⋃
n≥m(Pn,m×Rn) to the space of maps Ua → Ya. Consider,

for ϕ ∈ Φ, the control strategy (1.4) and associate the causal control operator, parameterized
by ϕ, i.e.

C(ϕ) : Ya → Ua, y2 7→ C(ϕ)(y2) := u2 . (4.2)

Note that C is a map from the set of inverse funnel boundary functions Φ to the space of causal
maps Ya → Ua.

In this sub-section we show that, for U = L∞(R≥0 → Rm) and Y = W 1,∞(R≥0 → Rm), the
closed-loop system [P (θ, x0), C(ϕ)] of any plant of the form (1.1) (with associated operator
P (θ, x0)) and controller (1.4) (with associated operator C(ϕ)), where (θ, x0) ∈ Pn,m × Rn and
ϕ ∈ Φ, is regularly well posed. Furthermore we show that, for θ ∈ Mn,m, the closed-loop system
[P (θ, x0), C(ϕ)] is globally well posed and

(
U × Y

)
-stable.
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Proposition 4.1 Let n,m ∈ N with n ≥ m, ϕ ∈ Φ, (θ, x0) ∈ Mn,m × Rn and (u0, y0) ∈
L∞(R≥0 → Rm) × W 1,∞(R≥0 → Rm). Then, for plant operator P (θ, x0) and funnel con-

trol operator C(ϕ), given by (4.1) and (4.2), respectively, the closed-loop initial value problem

[P (θ, x0), C(ϕ)], given by (1.2), (1.3), (1.4), is globally well posed and moreover [P (θ, x0), C(ϕ)]
is
(
L∞(R≥0 → Rm) ×W 1,∞(R≥0 → Rm)

)
-stable.

Proof. The proposition is a direct consequence of Proposition 2.1. 2

In the following sub-section we show that an application of the funnel controller to any stabiliz-
able and detectable linear system (A,B,C) yields a closed-loop system which is regularly well
posed. This is required for the robustness analysis in Sub-section 4.3, namely the application
of [17, Th. 6.5.3 and Th. 6.5.4].

4.2 Well posedness of the general closed-loop system

Note that, for (A,B,C) ∈ Pn,m, x0 ∈ Rn and ϕ ∈ Φ, the closed-loop initial value prob-
lem (1.1), (1.3), (1.4) may be written as

ẋ(t) = Ax(t) +B[u0(t) − u2(t)] , x(0) = x0 ∈ Rn ,

k(t) =
ϕ(t)

1 − ϕ(t)‖y2(t)‖
,

y2(t) = y0(t) − Cx(t) ,

u2(t) = −k(t)y2(t) .





(4.3)

Proposition 4.2 Let n ∈ N with n ≥ m, ϕ ∈ Φ, (θ, x0) ∈ Pn,m ×Rn and (u0, y0) ∈ L∞(R≥0 →
Rm) ×W 1,∞(R≥0 → Rm). Then, for plant operator P (θ, x0) and funnel control operator C(ϕ),
given by (4.1) and (4.2), respectively, the closed-loop initial value problem [P (θ, x0), C(ϕ)], given

by (4.3), has the following properties:

(i) there exists a unique solution x : [0, ω) → Rn, for some ω ∈ (0,∞], and the solution is

maximal in the sense that for every compact K ⊂ R≥0 × Rn exists t ∈ [0, ω) such that

(t, x(t)) /∈ K;

(ii) if (u2, y2) ∈ L∞([0, ω) → Rm)×W 1,∞([0, ω) → Rm), then ω = ∞, k ∈ L∞(R≥0 → R) and

y2 is uniformly bounded away from the funnel boundary ϕ(·)−1;

(iii) [P (θ, x0), C(ϕ)] is regularly well posed.

Proof. Set, for ϕ ∈ Φ and y0 ∈W 1,∞(R≥0 → Rm),

Hϕ,y0
:=
{
(t, x) ∈ R≥0 × Rn

∣∣ϕ(t)‖y0(t) − C x‖ < 1
}
.

(i): The initial value problem (4.3) may be written as

ẋ = g(t, x) , x(0) = x0 , (0, y0(0) − C x0) ∈ Hϕ,y0
, (4.4)

where

g : Hϕ,y0
→ Rn , (t, x) 7→ Ax+Bu0(t) +

ϕ(t)

1 − ϕ(t)‖y0(t) − C x‖B(y0(t) − C x) ,
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satisfies, in view of ϕ|[ε,∞)
(·)−1 being globally Lipschitz for every ε > 0 and ϕ(0) = 0, see the

definition of Φ in Section 1, a local Lipschitz condition on the relatively open set Hϕ,y0
in the

sense that, for all (τ, ξ) ∈ Hϕ,y0
, there exists an open neighbourhood O of (τ, ξ) and a constant

L > 0 such that
∀ (t, x) ∈ O : ‖g(t, x) − g(t, ξ)‖ ≤ L‖x− ξ‖ .

Therefore, standard theory of ordinary differential equations, see, for example, [18, Th. III.11.III],
yields that (4.3) has an absolutely continuous solution x : [0, ω) → Rn for some ω ∈ (0,∞], which
satisfies (t, x) ∈ Hϕ,y0

. Moreover, the solution is unique and the solution can be extended up to
the boundary of Hϕ,y0

. In other words: for every compact K ⊂ Hϕ,y0
exists t ∈ [0, ω) such that

(t, x(t)) /∈ K, as required.

(ii): Suppose (u2, y2) ∈ L∞([0, ω) → Rm) ×W 1,∞([0, ω) → Rm) and, for contradiction, ω < ∞.
By boundedness of ϕ, see the definition of Φ, it follows that there exists λ > 0 such that
ϕ(t) ≤ 1/λ for all t ∈ [0, ω). Thus

∀ t ∈ [0, ω) : 1 − ϕ(t)‖y2(t)‖ ≤ 1

2
⇒ 1

2
≤ ϕ(t)‖y2(t)‖ ≤ ‖y2(t)‖

λ
⇒ ‖y2(t)‖ ≥ λ

2

which yields, in view of y2 ∈ L∞([0, ω) → Rm) and −ϕ
1−ϕ‖y2‖

y2 = u2 ∈ L∞([0, ω) → R), that

∀ t ∈ [0, ω) : 1 − ϕ(t)‖y2(t)‖ ≤ 1

2
⇒ ‖u2‖L∞ ≥ ϕ(t) ‖y2(t)‖

1 − ϕ(t)‖y2(t)‖
≥ λϕ(t)

2(1 − ϕ(t)‖y2(t)‖)
,

thus ϕ
1−ϕ‖y2‖

is bounded on
{
t ∈ [0, ω)

∣∣ 1 − ϕ(t)‖y2(t)‖ ≤ 1/2
}
. Moreover, for all t ∈ [0, ω) such

that 1 − ϕ(t)‖y2(t)‖ > 1/2,
(

ϕ(t)
1−ϕ(t)‖y2(t)‖

)
≤ 2/λ. Thus k = ϕ

1−ϕ‖y2‖
∈ L∞([0, ω) → R). Hence,

by continuity of the solution

∃ ε > 0 ∀ t ∈ [0, ω) : 1 − ϕ(t)‖y2(t)‖ ≥ ε . (4.5)

Then, Variation of Constants applied to (4.3) yields the existence of constants c0 = c0(B,λ, ε),
c1 = c1(A) > 0 such that

∀ t ∈ [0, ω) : ‖x(t)‖ ≤ c0

(
ec1ω +

∫ ω

0
ec1(ω−s) (‖u0(s)‖ + ‖y2(s)‖) ds

)
. (4.6)

Since y2 ∈ L∞([0, ω) → Rm) and u0 ∈ L∞(R≥0 → Rm), it follows from the convolution in (4.6)
that the right hand side of (4.6) is bounded by c3 = c0

(
ec1ω + (ec1ω + 1)(‖u0‖L∞([0,ω)→Rm) +

‖y2‖L∞([0,ω)→Rm))/c1
)
> 0 on [0, ω) which gives that

K :=
{
(t, x) ∈ Hϕ,y0

∣∣ t ∈ [0, ω] , ‖x‖ ≤ c3
}

is a compact subset of Hϕ,y0
with (t, x(t)) ∈ K for all t ∈ [0, ω), which contradicts the fact that

the closure of graph
(
x|[0,ω)

)
is not a compact set, see (i). Therefore, ω = ∞ and in view of (4.5)

we have k bounded and y2 is uniformly bounded away from the funnel boundary ϕ(·)−1.

(iii): By (i), the closed-loop initial value problem is [P (θ, x0), C(ϕ)] is locally well posed. To
prove that [P (θ, x0), C(ϕ)] is regularly well posed, it suffices to show that (3.2) holds. For
arbitrary w0 = (u0, y0) ∈ W consider (w1, w2) = HP (θ,x0),C(ϕ)(w0) where dom(w1, w2) = [0, ω) is

maximal. Suppose, contrary to the right hand side of (3.2),
∥∥(w1, w2)|[0,ω)

∥∥
Wω×Wω

<∞. Then

(u2, y2) ∈ L∞([0, ω) → Rm) ×W 1,∞([0, ω) → Rm), which, in view of (ii), yields ω = ∞, i.e. the
contrary of the left hand side of (3.2). Hence the closed-loop system is regularly well posed and
the proof is complete. 2
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4.3 Robustness of funnel control

In Proposition 4.1 we have established that, for (θ, x0, ϕ) ∈ Mn,m × Rn × Φ and n,m ∈ N with
n ≥ m, (u0, y0) ∈ L∞(R≥0 → Rm)×W 1,∞(R≥0 → Rm), the closed-loop system [P (θ, x0), C(ϕ)]
is globally well posed and has certain stability properties.

The purpose of this sub-section is to determine conditions under which these properties are
maintained when the plant P (θ, x0) is perturbed to a plant P

(
θ̃, x̃0

)
where

(
θ̃, x̃0

)
∈ Pq,m × Rq

for some q ∈ N, q ≥ m, in particular when θ̃ /∈ Mq,m. Proposition 4.2 shows that the closed-

loop system [P (θ̃, x̃0), C(ϕ)] is regularly well posed. This provides the basis for our main result:
Theorem 4.5 shows that stability properties of the funnel controller persist if (a) the plant P

(
θ̃, 0
)

and P (θ, 0) is sufficiently close (in the gap sense) and (b) the initial data x̃0 and disturbance
w0 = (u0, y0) are sufficiently small.

To establish gap margin results, we will need to construct the augmented plant and controller
operators as in [7] and [4]. Note that 0 /∈ Mn,m. Define Ũ := Rn2+2mn × U = Rn2+2mn ×
L∞(R≥0 → Rm) and let W̃ := Ũ × Y = Ũ ×W 1,∞(R≥0 → Rm), which can be considered as

signal spaces by identifying θ ∈ Rn2+2mn with the constant function t 7→ θ and endowing Ũ with

the norm ‖(θ, u)‖
Ũ

:=
√

‖θ‖2 + ‖u‖2
L∞(R≥0→Rm). For given P (θ, 0) as in (4.1), we define the

(augmented) plant operator as

P̃ : Ũa →W 1,∞
a (R≥0 → Rm) , (θ, u1) = ũ1 7→ y1 = P̃ (ũ1) := P (θ, 0)(u1) . (4.7)

Fix ϕ ∈ Φ and define, for C(ϕ) as in (4.2), the (augmented) controller operator as

C̃ : W 1,∞
a (R≥0 → Rm) → Ũa, y2 7→ ũ2 = C̃(y2) :=

(
0, C(ϕ)(y2)

)
= (0, u2) . (4.8)

For each non-empty Ω ⊂ Mn,m, define

WΩ := (Ω × L∞(R≥0 → Rm)) ×W 1,∞(R≥0 → Rm) and HΩ
P̃ ,C̃

:= HP̃ ,C̃ |WΩ . (4.9)

It follows from Proposition 4.1 thatHΩ
P̃ ,C̃

: WΩ → W̃×W̃ is a causal operator for any Ω ⊂ Mn,m.

In the following Proposition 4.3 we show gain-function stability of HΩ
P̃ ,C̃

. This is a supposition

of Theorem 5.2 in [2], the latter being used to show Proposition 4.4 and thus the main result
Theorem 4.5.

Proposition 4.3 Let n,m ∈ N with n ≥ m, ϕ ∈ Φ and assume Ω ⊂ Mn,m is closed. Then, for

the closed-loop system [P̃ , C̃] given by (3.1), (4.7) and (4.8), the operator HΩ
P̃ ,C̃

given by (4.9)

is gain-function stable.

The proof for Proposition 4.3 is equivalent to the proof of [7, Prop. 4.3], when applying Propo-
sition 2.1 instead of [7, Prop. 2.1], and therefore omitted.

The following proposition establishes
(
L∞(R≥0 → Rm) ×W 1,∞(R≥0 → Rm)

)
-stability of the

closed-loop system [P (θ̃, x̃0), C(ϕ)] for a system θ̃ belonging to the system class Pq,m if, for

a system θ belonging to Mn,m, the gap between P (θ̃, 0) and P (θ, 0), the initial value x̃0 ∈ Rq

and the input/output disturbances w0 = (u0, y0) are sufficiently small. The proof uses the
robustness results [17, Th. 6.5.3 and Th. 6.5.4].

Proposition 4.4 Let n, q,m ∈ N with n, q ≥ m, U = L∞(R≥0 → Rm), Y = W 1,∞(R≥0 → Rm),

W = U × Y and θ ∈ Mn,m. For (θ̃, x̃0, ϕ) ∈ Pq,m × Rq × Φ, consider P (θ̃, x̃0) : Ua → Ya, and
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C(ϕ) : Ya → Ua defined by (4.1) and (4.2), respectively. Then there exist a continuous function

η : (0,∞) → (0,∞) and a function ψ : Pq,m → (0,∞) such that the following holds:

∀
(
θ̃, x̃0, w0, r

)
∈ Pq,m × Rq ×W × (0,∞) :

ψ(θ̃)|x̃0| + ‖w0‖W ≤ r

~δ
(
P (θ, 0), P (θ̃, 0)

)
≤ η(r)

}
=⇒ H

P (θ̃,x̃0),C(ϕ)
(w0) ∈ W ×W . (4.10)

The proof of Proposition 4.4 is equivalent to the proof of [7, Prop. 4.4] if the gain-function
stability result Proposition 4.3 for funnel control is applied instead of the corresponding result [7,
Prop. 4.3]. Moreover, one has to choose signal spaces as in Section 2, namely U = L∞(R≥0 →
Rm) and Y = W 1,∞(R≥0 → Rm) instead of U = Y = W 1,∞(R≥0 → Rm), and apply [17,
Th. 6.5.3 and Th. 6.5.4] instead of [2, Th. 5.2 and Th. 5.3].

Finally, we are in the position to state and prove the main result of the present paper. Loosely
speaking, we show that funnel control achieves the control objectives if applied to a system(
Ã, B̃, C̃

)
∈ Pq,m as long as this system is sufficiently close – in the terms of the gap metric –

to a system (A,B,C) ∈ M̃n,m and the initial value x̃0 ∈ Rq for
(
Ã, B̃, C̃

)
and the input/output

disturbances (u0, y0) are sufficiently small. As a consequence
(
Ã, B̃, C̃

)
∈ Pq,m may not even

satisfy any of the classical assumptions: minimum phase, relative degree one and positive high-
frequency gain.

Theorem 4.5 Let n, q,m ∈ N with n, q ≥ m, U = L∞(R≥0 → Rm), Y = W 1,∞(R≥0 → Rm),

W = U × Y, ϕ ∈ Φ and θ ∈ Mn,m. For (θ̃, x̃0) ∈ Pq,m × Rq consider the associated operators

P (θ̃, x̃0) : Ua → Ya and C(ϕ) : Ya → Ua defined by (4.1) and (4.2), respectively, and the closed-

loop initial value problem (1.1), (1.3), (1.4). Then there exist a continuous function η : (0,∞) →
(0,∞) and a function ψ : Pq,m → (0,∞) such that the following holds:

∀
(
θ̃, x̃0, w0, r

)
∈ Pq,m × Rq ×W × (0,∞) :

ψ(θ̃)‖x̃0‖ + ‖w0‖W ≤ r

~δ
(
P (θ, 0), P (θ̃, 0)

)
≤ η(r)



 =⇒





∀ t ≥ 0 : (t, y2(t)) ∈ Fϕ

k ∈ L∞(R≥0 → R)

x ∈W 1,∞(R≥0 → Rq) ,

(4.11)

where (x, k) and y2 satisfy (4.3).

Proof. Step 1 : We show

(
(u1, y1), (u2, y2)

)
= H

P (θ̃,x̃0),C(ϕ)
(w0) ∈ W ×W . (4.12)

Choose functions η : (0,∞) → (0,∞) and ψ : Pq,m → (0,∞) from Proposition 4.4. Let

(
θ̃, x̃0, w0, r

)
∈ Pq,m × Rq ×W × (0,∞) : ψ(θ̃)|x̃0|+ ‖w0‖W ≤ r ∧ ~δ

(
P (θ, 0), P (θ̃, 0)

)
≤ η(r) .

Then Proposition 4.4 gives (4.12).

Step 2 : By Proposition 4.2 it follows that (4.3) has a unique solution x : [0, ω) → Rq on a
maximal interval of existence [0, ω) for some ω ∈ (0,∞]. Proposition 4.2(iii) yields ω = ∞ and
k = ϕ

1−ϕ‖y2‖
∈ L∞(R≥0 → R), the second assertion of (4.11).

Step 3 : By Step 2 we have k ∈ L∞(R≥0 → R) which, in view of continuity of 1 − ϕ‖y2‖ on
(0,∞), yields 1 − ϕ(t)‖y2(t)‖ ≥ ‖ϕ‖L∞‖k‖−1

L∞ > 0. Thus, for all t ≥ 0, ϕ(t)‖y2(t)‖ < 1, which
yields the first assertion of (4.11).
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Step 4 : It remains to show that x ∈W 1,∞(R≥0 → Rq).

Let
(
Ã, B̃, C̃

)
∈ Pq,m associated with (1.1). Detectability of

(
Ã, B̃, C̃

)
yields the existence of

F ∈ Rq such that spec(Ã+FC̃) ⊂ C−. Setting g := −
[
F + k B̃

]
(y0 − y2) + B̃ u0 + B̃ ky0 gives

ẋ =
[
Ã− k B̃C̃

]
x+ B̃ u0 + B̃ ky0 =

[
Ã+ FC̃

]
x+ g . (4.13)

By Proposition 4.4 and Step 3 we have y2 ∈ W 1,∞(R≥0 → R) and k ∈ L∞(R≥0 → R) and
since w0 = (u0, y0) ∈ L∞(R≥0 → Rm) ×W 1,∞(R≥0 → Rm) it follows that g ∈ L∞(R≥0 → Rq).
Hence, by (4.13) and Variation of Constants we obtain x ∈ L∞(R≥0 → Rq). The first equation
in (4.3) then gives ẋ ∈ L∞(R≥0 → Rq) which shows the third assertion in (4.11) and the proof
is complete. 2

Example 4.6 Finally, we revisit the example systems (3.4) and (3.6).

We have already shown that for zero initial conditions the gap between the system
(
Ã, b̃, c̃

)
∈

P3,1\M3,1 and (α, 1, 1) ∈ M1,1 tends to zero as N = 2M and M tends to infinity, see (3.7). Now,
in view of Theorem 4.5, there exist a continuous function η : (0,∞) → (0,∞) and a function
ψ : P3,1 → (0,∞) such that, for all (x̃0, w0, r) ∈ R3 ×W × (0,∞), we have

ψ
(
(Ã, b̃, c̃)

)
‖x̃0‖ + ‖w0‖W ≤ r

~δ
(
P̃1

(
(α, 1, 1), 0

)
, P̃2

(
(Ã, b̃, c̃), 0

))
≤ η(r)



 =⇒





∀ t ≥ 0 : (t, y0(t) − y1(t)) ∈ Fϕ ,

k ∈ L∞(R≥0 → R) ,

x ∈W 1,∞(R≥0 → R3) ,

where W = L∞(R≥0 → R) ×W 1,∞(R≥0 → R). Note that Theorem 4.5 shows only existence of
two continuous functions ψ : Pn,m → (0,∞) and η : (0,∞) → (0,∞) in (4.11); however, it could
be hard to find these functions for a given system.

The above theoretical result is visualized by MATLAB simulations. System (3.6) has a state
space realization

d
dt



ξ1
ξ2
z


 =




0 1 0
αN + 2M(α −M −N) , α−M −N , 2M(NM +M2 − αM − αN)

−1 0 −M





ξ1
ξ2
z


+




0
−N
0


u1

y1 = ξ1 .





(4.14)

Let α = 1 and N = 2M = 100. In [7, Sec. 3] it is shown that ~δ(Pα, PN,M,α) ≤ 8/51. Let the
funnel boundary be specified, for λ = 0.1, by

ϕ(·)−1 : R≥0 → R>0 , t 7→
{

15.31 − 7.8 t+ t2 , if t ∈ [0, 3.9)

λ , if t ≥ 3.9.

Then, for initial values x0 = 1 for system (3.4) and x̃0 = (0.1, 0.1, 0.08)T for system (3.6) and
input/output disturbances u0 = y0 ≡ 0, Figures 4(a) and 4(b) show the solution t 7→ y1(t),
k and the input u1 of the closed-loop system (3.4), (1.4), (1.3) with u0 = y0 ≡ 0. Moreover,

Figures 4(c) and 4(d) show all components of the solution t 7→
(

ξ(t)
η(t)

)
=

(
y1(t)
ẏ1(t)
η(t)

)
, k and u1 of

the closed-loop system (4.14), (1.4), (1.3) with u0 = y0 ≡ 0, where Figures 4(d) indicates that
all states (in particular ξ2 = ẏ1) are bounded.

Figure 4 illustrates that the funnel controller (1.4) work for linear systems, which do not satisfy
the classical assumptions for funnel control, but are close in terms of the gap metric to minimum
phase systems with relative degree one and positive high–frequency gain.
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(b) [PN,M,α;x̃0 , C(ϕ)] with u0 = y0 ≡ 0

y1

d
dt

y1

η

k

±ϕ−1

15

0

0

−5

−10
1 2 3 4 5

(c) [PN,M,α;x̃0 , C(ϕ)] with u0 = y0 ≡ 0

ẏ1

k

u1

±ϕ−1

300

200

100

0

0 0.5 1

(d) [PN,M,α;x̃0 , C(ϕ)] with u0 = y0 ≡ 0

Figure 4: Funnel control simulations

A shortcoming of the main result is that it shows sheer existence of functions ψ and η in (4.11),
compare also with the result for λ-tracking. For a given systems θ̃ it is maybe hard to calculate
the value ψ(θ̃). It could be also possible that this functions counteract in some ways. For
example: given small r > 0 and θ̃ ∈ Pq,m such that ~δ

(
P (θ, 0), P (θ̃, 0)

)
≤ η(r) it could be

possible that ψ(θ̃) is very large which requires then a very small initial value x̃0 ∈ Rq so that
the left hand side of (4.11) holds. However, in view of (4.11) given that the second inequality
holds for r and θ̃ it is always possible to choose a sufficiently small initial value. This is shown
with the simulation in Figure 5: choose PN,M,α;x̃0 with α = 1, N = 2M = 10000 and the initial
value x̃0 = (0.0001, 0.0001, 0.0001).

Figure 5(a) shows that the output y2 is within the funnel and k is bounded. Figure 5(b) shows
that all states are bounded, although though ẏ1 is very large.

This shows in particular that funnel control works for system (3.6) despite the fact that it
has unstable zero dynamics, relative degree two and negative high-frequency gain. The only
restrictions are that the zero is “far” in the right half complex plane, the initial condition x̃0 is
“small” and the L∞ ×W 1,∞ input/output disturbances u0 and y0 are “small”, too.
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(a) [PN,M,α;x̃0 , C(ϕ)] with u0 = y0 ≡ 0
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(b) [PN,M,α;x̃0 , C(ϕ)] with u0 = y0 ≡ 0

Figure 5: Funnel control simulations for PN,M,α;x̃0 with “huge” N = 2M = 10000

5 Conclusions

We have shown robustness of the funnel controller (1.4) for a class of linear systems which are
close in the gap metric to minimum phase systems with (strict) relative degree one; moreover,
funnel control copes with certain bounded input/output disturbances. The only shortcoming
of the present approach is that the main result shows sheer existence of continuous functions
ψ and η in (4.11). For a given systems θ̃ it maybe hard to calculate the value ψ(θ̃). It could
be also possible that this functions counteract in some ways. For example: given small r > 0
and θ̃ ∈ Pq,m such that ~δ

(
P (θ, 0), P (θ̃, 0)

)
≤ η(r) it could be possible that ψ(θ̃) is very large

which requires then a very small initial value x̃0 ∈ Rq so that the left hand side of (4.11) holds.
However, in view of (4.11) given that the second inequality holds for r and θ̃ it is always possible
to choose a sufficiently small initial value.
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