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Preface  1 

11..  Preface 

The effortless recognition of other people is a fundamental basis of human so-

cial life. Among the several sources of information which possibly enable us to iden-

tify a person, the human face is certainly the most reliable and prominent one. Mostly 

we are very fast and efficient in distinguishing many different familiar individuals from 

their faces and are not even aware of how impressive this ability is. Moreover, apart 

from information about person identity, human faces provide us with a broad range of 

other socially relevant information, even if a person is unfamiliar to us: looking at the 

face of a person enables us to categorise it according to its gender, age, and ethnic 

background. The analysis of facial movements, especially lip movements, improves 

our speech comprehension and the correct interpretation of the emotional state of 

another person allows us to behave adequately in social situations. 

A wealth of information important for social interactions can be derived from 

solely analysing the eye region of a face, which provides us with information about 

the emotional, attentional, and cognitive state of a person and also plays an impor-

tant role in exercising social control, e.g. in communication situations. 

Despite the long tradition of face perception research, the mechanisms and 

brain structures underlying the perception of social signals in faces have not yet been 

completely resolved. In the last ten years an experimental approach which had tradi-

tionally been applied to the analysis of low-level vision has turned out to be also very 

fruitful for investigating how specific aspects of faces are being processed and repre-

sented. The analysis of perceptual adaptation to these aspects in faces (e.g. gender 

or gaze direction) allows insight into the nature and selectivity of their respective neu-

ral coding and reveals relevant information about how faces are mentally repre-

sented. Perceptual adaptation paradigms can therefore provide a useful tool in find-

ing out how the complex analysis of face stimuli works. In a series of four studies, the 

present work aims at a further investigation of eye gaze and gender adaptation proc-

esses. Combining adaptation paradigms with the high time resolution of electro-

physiological recordings in event-related potential studies, a deeper insight into both 

the neural correlates of selective adaptation processes and the timing parameters of 

the processing of eye gaze and gender information is the major goal of this thesis. 
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22..  Introduction 

2.1 Face Perception 

Humans have an outstanding ability to learn and memorise faces. Irrespective 

of how many people we already know we are always able to also learn the faces of 

those people we newly meet. The duration of the memory for faces seems to be infi-

nite: even after time intervals as long as thirty years faces can still be recognised very 

accurately (for a review, see Bahrick, Bahrick, & Wittlinger, 1975). At the same time, 

the nature of our face representations seems to be very flexible and allows us to rec-

ognise people even though the appearance of their faces might have changed due to 

makeup, aging, or changes in weight. We are far from fully understanding all of the 

mechanisms and neural structures involved in the encoding, memorising and recog-

nition of faces although many studies have been examining these topics and have 

accumulated much information about the way faces are perceived. The following sec-

tion is designed to give a short review of important findings and open questions 

among face researchers. First, there will be a short overview of the fundamental 

questions and empirical findings that have been discussed with regard to face per-

ception research (2.1.1) followed by a more detailed summary on specific findings 

related to the perception of eye gaze (2.1.2) and gender (2.1.3) which are of special 

relevance for the studies reported in this work. 

2.1.1 General principles and models on face perception 

Specificity 

The determination of the degree to which the processes underlying face percep-

tion are specific for that object category is certainly one of the most prominent aims in 

current research. There are different views on this aspect, with one position assum-

ing that the perception of faces is ‘special’ in a way that our perceptual system treats 

them differently from all other visual objects with special brain structures solely proc-

essing faces (Kanwisher, 2000). An alternative position, however, claims that faces 

are highly relevant visual objects for which we have gained large expertise and sug-

gests that any possible visual category of similarly high expertise should elicit the 

same ‘special’ processing mechanisms and involve the same brain structures (Tarr & 

Gauthier, 2000). A consensus has not yet been found in this debate and there seems 

to be evidence for either view. Developmental studies, for example, showing that 
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newborn babies track moving faces farther than other objects (Johnson, Dziurawiec, 

Ellis, & Morton, 1991) suggest that humans have a strong predisposition to process 

faces in a privileged way compared to other visual objects. Additional support for the 

assumption that faces are ‘special’ comes from studies on the so-called face-

inversion effect (Yin, 1969) which describes that inverted faces are more difficult to 

recognise than inverted objects (for a review, see Valentine, 1988). Similarly, it has 

been shown that the inversion of the eye and mouth regions in a face leads to a very 

grotesque facial appearance, but this can hardly be detected when the whole face is 

inverted (Thompson, 1980). These findings suggest that the recognition of faces and 

objects are not functionally identical and that the accurate perception of faces is 

somewhat bound to their presentation in a normal, i.e. upright, orientation. Electro-

physiological studies provided further evidence for differences in face and object 

processing. Single unit recordings in monkeys revealed the existence of cells in the 

inferior temporal cortex which respond strongly to monkey faces but show little re-

sponse to the presentation of other visual objects (Baylis, Rolls, & Leonard, 1987). 

This idea of distinct neuroanatomical structures underlying the processing of faces 

and objects is also supported by neuropsychological research. The existence of pa-

tients selectively suffering from prosopagnosia (i.e. a severe impairment in face rec-

ognition) and others selectively suffering from object agnosia (i.e. a severe impair-

ment in object recognition) with unimpaired face recognition suggests a double dis-

sociation between face and object processing, with differences in the functional 

mechanisms and anatomical structures underlying them (DeRenzi & diPellegrino, 

1998; Evans, Heggs, Antoun, & Hodges, 1995; Moscovitch, Winocur, & Behrmann, 

1997). 

There is also empirical evidence against the assumption of face-specificity. 

Non-face objects of large visual expertise have been shown to elicit processing 

strategies similar to that of human faces (Diamond & Carey, 1986; Gauthier & Tarr, 

1997) and to recruit brain structures which were originally believed to be solely dedi-

cated to face processing (Gauthier, Skudlarski, Gore, & Anderson, 2000; Gauthier, 

Tarr, Anderson, Skudlarski, & Gore, 1999; Rossion, Gauthier, Goffaux, Tarr, & 

Crommelinck, 2002). These findings will be described in greater detail in the following 

sections. 
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Features and configurations 

Two different kinds of information have generally been assumed to play an im-

portant role in face perception. Featural information refers to the information con-

tained in the isolated facial parts such as eye colour, shape of the lips, or form of the 

eyebrows. Studies exploring the relative importance of different facial features sug-

gest that the eyes or eyebrows are the most important features for face recognition, 

followed by the mouth and the nose (Fraser, Craig, & Parker, 1990; Haig, 1986; Sadr, 

Jarudi, & Sinha, 2003). The second kind of information in faces, namely configural 

information, refers to the spatial relationships of the facial parts. Maurer, LeGrand 

and Mondloch (2002) distinguish between three types of configural information: first-

order spatial relations that define a stimulus as a face (i.e. two eyes positioned above 

a nose which is located above the mouth), holistic information which leads to the per-

ception of the overall gestalt of a face, and second-order relations which are repre-

sented in the spatial relationships between the facial features and which are believed 

to be of great importance for individual face recognition (see Diamond & Carey, 1986, 

for a first dissociation of first-order and second-order spatial information). Although 

the exclusive analysis of facial features allows for a correct identification of facial 

stimuli (Schwaninger, Lobmaier, & Collishaw, 2002) configural information has long 

been discussed to be the key element of face processing in its most naturalistic, i.e. 

upright, orientation (Farah, Wilson, Drain, & Tanaka, 1998; Maurer, Le Grand, & 

Mondloch, 2002; Tanaka & Farah, 1993; but see Hole, George, Eaves, & Rasek, 

2002). When inverting the image of a face, however, the analysis of spatial informa-

tion is thought to be hampered (Collishaw & Hole, 2002; Freire, Lee, & Symons, 

2000; Thompson, 1980) leading to the face inversion effect (Yin, 1969; for a review, 

see Valentine, 1988). In the case of this unnatural orienting the processing of faces is 

believed to mainly rely on the analysis of feature information (Diamond & Carey, 

1986; Farah, Tanaka, & Drain, 1995; Thompson, 1980). The fact that such a pro-

nounced preference of configural analysis in upright stimuli could not be observed in 

the perception of other visual objects (Tanaka & Farah, 1993) and seemed to be ap-

plied mandatorily even under conditions in which a feature-based processing would 

have been more appropriate (Farah, Wilson, Drain, & Tanaka, 1995) led to the con-

clusion that the degree of dependence on configural information might be face-

specific. This interpretation, however, was strongly challenged by the findings of 

Diamond and Carey (1986) who also found inversion effects for dog faces in a study 
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testing dog experts. A further study underlining the relevance of visual expertise was 

conducted by Gauthier and Tarr (1997) who trained participants to discriminate be-

tween ‘greebles’, a homogeneous class of artificial, complex three-dimensional ob-

jects, which was designed in order to create a category of stimuli whose characteris-

tics are comparable to those of faces (i.e. they consist of featural and configural in-

formation and have a high degree of overall similarity) whereas novices do not per-

ceive them as faces. After extensive training, greeble experts showed the same pref-

erence for configural analysis that had formerly been considered to be unique to face 

perception. In line with this, a recent study showed that greeble experts presented 

with inverted greeble stimuli show an inversion effect of similar magnitude as the one 

for human faces (Ashworth, Vuong, Rossion, & Tarr, 2008). These findings provided 

strong evidence for the assumption that the special processing strategies applied to 

faces reflect expertise-specific perception of a homogeneous object class rather than 

purely face-specific processes (but see Duchaine, Dingle, Butterworth, & Nakayama, 

2004, for a case study reporting normal greeble learning in a participant suffering 

from developmental prosopagnosia, a finding which severely challenged the idea that 

face and greeble perception are based on the same mechanisms and brain struc-

tures). 

Electrophysiological and imaging studies on face processing 

Event-related potential (ERP) studies have reported remarkable differences in 

the electrophysiological brain potentials following face and object presentation. The 

first results indicating the existence of an electrophysiological potential with a high 

preference for face stimuli compared to other objects were published by Jeffreys 

(Jeffreys, 1989; Jeffreys & Tukmachi, 1992). These studies reported a positive poten-

tial at electrode Cz at a peak latency of 150-200 ms to preferentially respond to faces 

as compared to other visual stimuli. Jeffreys (1989) named this component the ‘ver-

tex positive potential’ (VPP) and stressed that the scalp distribution observed in his 

studies was well consistent with bilateral sources located in the temporal cortex. The 

VPP was found to be highly sensitive towards face orientation with face inversion 

leading to a reduction in amplitude and an increase in latency (Jeffreys, 1989; for a 

review, see Jeffreys, 1996).  

Later, using a different and larger set of electrodes and a nose reference, Ben-

tin et al. (Bentin, Allison, Puce, Perez, & McCarthy, 1996) described the N170, a 

negative deflection over occipitotemporal electrodes which is usually more pro-
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nounced over the right than left hemisphere. The N170 component has been as-

sumed to reflect the same brain processes and underlying sources as the VPP 

(Joyce & Rossion, 2005) and has been found to be larger in response to whole faces 

or face parts as compared to other objects (Carmel & Bentin, 2002; Eimer, 1998; 

McCarthy, Puce, Belger, & Allison, 1999). However, the idea of a purely face-specific 

nature of the N170 (Bentin et al., 1996) was strongly challenged by findings that the 

N170 also responds to other visual objects such as car fronts (Schweinberger, 

Huddy, & Burton, 2004), animal faces (Rousselet, Mace, & Fabre-Thorpe, 2004), 

non-face objects such as greebles (Rossion et al., 2002), and other objects of exper-

tise (Tanaka & Curran, 2001). In sum, these studies therefore suggest the N170 

component to be characterised by a large degree of face-sensitivity rather than face-

specificity.  

Interestingly, the N170 has been shown to be largely affected by stimulus inver-

sion, with reports of enhanced amplitudes and/or latencies in response to inverted as 

compared to upright faces (Carbon, Schweinberger, Kaufmann, & Leder, 2005; Itier & 

Taylor, 2002; Linkenkaer-Hansen et al., 1998; Rossion et al., 2000) and similar inver-

sion effects in response to objects that had been trained to an expertise level 

(Ashworth et al., 2008; Rossion et al., 2002). This large effect of orientation on the 

N170 suggests that the loss of configural information due to inversion slows down 

early face processing (Rossion et al., 2000). Together with studies showing that the 

N170 is unaffected by the familiarity of faces (Bentin & Deouell, 2000; Rossion et al., 

1999; Schweinberger, Pickering, Burton, & Kaufmann, 2002) these results indicate 

that the N170 reflects an early stage of face processing, i.e. the structural encoding 

of faces, and does not reflect the recognition process itself. 

A later ERP component with sensitivity to human faces, however, has been 

shown to be influenced by face identity and is believed to represent the stage of indi-

vidual face recognition. The N250r is evoked by repetition priming, i.e. it can be ob-

served following face repetition but is absent in trials providing no face repetition 

(Schweinberger et al., 2004) and has been shown to be larger for familiar than for 

unfamiliar faces (Pfütze, Sommer, & Schweinberger, 2002; Schweinberger, Pfütze, & 

Sommer, 1995). A study reporting increasing N250r amplitudes from unknown over 

famous to personally familiar faces suggested that the component reflects the activa-

tion of stored structural face representations underlying the recognition of individual 

faces (Herzmann, Schweinberger, Sommer, & Jentzsch, 2004). The N250r typically 
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arises over inferior temporal areas especially of the right hemisphere and its source 

has been located in the right fusiform gyrus (Schweinberger, Pickering, Jentzsch, 

Burton, & Kaufmann, 2002; Schweinberger et al., 2004).  

This is in line with earlier neuroimaging studies comparing the brain activity 

when participants were either viewing pictures of objects or faces. These studies 

suggested the fusiform gyrus to be selectively involved in the perception of faces 

(Kanwisher, Chun, McDermott, & Ledden, 1996) which led to naming this structure 

the “Fusiform Face Area” (FFA, Kanwisher, McDermott, & Chun, 1997). It has to be 

considered, however, that other studies suggested that the FFA is not specific to the 

perception of faces per se but is part of a widely distributed system involved in the 

perception of both faces and other objects (Haxby, Hoffman, & Gobbini, 2000; Haxby, 

Hoffman, & Gobbini, 2002). FFA activation in response to non-face visual objects of 

expertise has been shown to be similar to that evoked by human faces (Tarr & 

Gauthier, 2000). A very recent line of research using imaging methods with improved 

spatial resolution such as functional magnetic resonance imaging-adaptation, pattern 

analysis, and high-resolution functional magnetic resonance imaging (HR-fMRI, for a 

review, see Grill-Spector & Sayres, 2008) offers an explanation for these seemingly 

contradictory results. Recent evidence from a HR-fMRI study suggests a fine scale 

organisation of the fusiform face area containing a heterogeneous structure, with 

some neural populations being highly selective to human faces and others being 

highly selective to non-face objects (i.e. faces, animals, cars, and sculptures, Grill-

Spector, Sayres, & Ress, 2006b). Importantly, the data of Grill-Spector et al. (2006b) 

implied larger numbers of face-specific than non-face object-specific cell populations 

in the FFA and are therefore able to explain the larger overall activity in response to 

faces as compared to objects which were reported in most standard-resolution fMRI 

(SR-fMRI) studies (Avidan, Hasson, Hendler, Zohary, & Malach, 2002; Ishai, Unger-

leider, Martin, Schouten, & Haxby, 1999; Peelen & Downing, 2005). The authors 

therefore concluded “that the maximal FFA responses to faces and the intermediate 

responses to nonfaces measured with SR-fMRI reflect averaging across heterogene-

ous and highly selective populations of different sizes, rather than higher selectivity to 

faces” (Grill-Spector et al., 2006b, p. 1182). 

Models on face perception 

Irrespective of their degree of face-specificity, it is important to understand 

which mechanisms form the basis of our ability to recognise faces. The most influen-
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tial models concerning the mechanisms underlying face perception are probably 

those proposed by Bruce and Young (1986) and Haxby, Hoffman, and Gobbini 

(2000). The cognitive model of face recognition by Bruce and Young (1986) assumes 

a series of processing stages to be necessary for the recognition of familiar faces 

(see Figure 1 for a schematic illustration of the model). First, faces are claimed to be 

structurally encoded, which includes two processes: the view-centred pictorial analy-

sis of a face allows for the analysis of the current visual composition and provides 

input for the stages of expression analysis and facial speech analysis. Further, a 

structural encoding of the face composition irrespective of viewpoint, lighting condi-

tions, or the current expression allows for a processing of the relatively stable as-

pects of faces. At the next stage, the results of this structural encoding process are 

thought to be compared to stored representations of faces, so-called face recognition 

units (FRU). If the information from the structural encoding stage matches the infor-

mation of an FRU, it is assumed that the corresponding person identity node (PIN) 

will be activated and person-related semantic memory can be accessed. PINs are 

also thought to be accessible by sensory input of other modalities, e.g. voices or writ-

ten names. As a final stage of person recognition the process of “name generation” 

allows for accessing the person’s name.  

 

Figure 1: Schematic illustration of the cognitive model of face perception by Bruce and Young (1986). 
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The neurocognitive model of face perception by Haxby et al. (2000) proposes a 

distinction between the processing of changeable and invariant aspects of faces. It 

assumes that the processing of relatively changeable aspects in faces (e.g. eye 

gaze, emotional expression, and lip movements) serves as a basis for perceiving the 

kind of information which is of special relevance for social interactions (i.e. eye gaze 

direction and emotional state) whereas the analysis of invariant aspects of faces is 

believed to underlie the recognition of individual faces. Haxby et al (2000) suggest 

that the analysis of faces is performed by a core and an extended system (see Figure 

2). The core system is assumed to serve the visual analysis of faces, with invariant 

aspects underlying recognition and being processed in the fusiform gyrus and 

changeable aspects being analysed in the superior temporal sulcus (STS). The ex-

tended system is thought to be represented by neural systems for other cognitive 

functions (e.g the auditory cortex or the limbic system) which support the structures 

of the core system in order to extract meaning from faces. 

 

 

Figure 2: Schematic overview of the neurocognitive model of face perception by Haxby et al. (2002) illustrating 
the neural structures assumed to be part of the core and the extended system. Figure taken from Haxby et al. 
(2002). 

 

To summarise, both the Bruce and Young model and the Haxby model under-

line the importance of processing and integrating both relatively stable aspects medi-

ating the recognition of familiar faces and relatively changeable aspects mediating 
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the perception of important social signals such as the eye gaze direction or the emo-

tional state of both familiar and unknown faces. 

2.1.2 Gaze Perception 

Among the single visual features in human faces, the eyes are probably the 

most prominent and important ones. The efficient perception of another person’s eye 

region can help us to derive information about the attentive, emotional, and cognitive 

state of that person and allows us to modify our actions accordingly. Findings of defi-

cits in the processing of gaze direction in autistic people (Dichter & Belger, 2007; 

Wallace, Coleman, Pascalis, & Bailey, 2006) have been suggested to underline the 

high correlation of the abilities to perceive information from eye gaze and to act ap-

propriately in social situations. Humans have been shown to be highly sensitive to 

other people’s gaze directions, being able to reliably perceive even gaze deviations 

as small as only 1.4° (Cline, 1967). 

Most importantly, the directional content in the eye gaze of others serves as an 

important basis for detecting their focus of spatial attention. Moreover, perceiving the 

direction of gaze in others has been suggested to trigger fast ‘reflexive’ attentional 

shifts in the observer (Driver et al., 1999; Friesen & Kingstone, 1998; Hietanen, 1999; 

Langton & Bruce, 1999). That is, in cueing experiments participants are typically 

faster to detect a target at a location that corresponds to the gaze direction of a pre-

viously presented face than to respond to a target that appears at an uncued location 

(Langton & Bruce, 1999). This indicates that participants, even though correctly in-

formed that gaze direction is uninformative with regard to the target location, can ob-

viously not prevent shifting their attention to a gazed-at location. It is probably worth 

considering that both the ability to correctly estimate where another person is looking 

and the tendency to direct one’s own attention to the same location might have been 

important abilities in the evolution of mankind. Considering this evolutionary perspec-

tive it has been speculated that the general attentional effect should be modulated by 

the emotional expression of the observed face. One would intuitively expect that 

someone looking in a certain direction with a fearful expression most probably indi-

cates the presence of something threatening at that location and should therefore 

induce a larger gaze cueing effect than a face displaying a neutral emotional expres-

sion. Surprisingly, the results of emotional gaze cueing studies were very inconsis-

tent, with some finding no effect of emotional expression on the magnitude of gaze 
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cueing effects (Hietanen & Leppanen, 2003) and others, using more naturalistic stim-

uli, finding fearful faces to induce stronger gaze cueing than happy faces in normal 

participants (Putman, Hermans, & Van Honk, 2006; Tipples, 2006) or only in partici-

pants with high levels of trait anxiety (Mathews, Fox, Yiend, & Calder, 2003).  

Several studies have shown that the information contained in eye gaze interacts 

with other aspects of face perception and recognition. Compared to normal subjects, 

some prosopagnostic patients were found to be impaired when asked to choose the 

one out of two faces that is looking directly at them (Campbell, Heywood, Cowey, 

Regard, & Landis, 1990) suggesting some kind of interrelation of the processing of 

eye gaze and identity (a finding which is not in line with the model proposed by Bruce 

& Young, 1986, assuming identification processes and the analysis of changeable 

features to happen independently and in parallel).  

Suggesting further interactions of gaze processing with identity recognition and 

personality judgements, Bayliss and Tipper (2006) showed in a cueing paradigm that 

face identities which had always been presented as predictive and valid cues (i.e. 

always gazing at the target location) were judged more trustworthy than face identi-

ties presented as predictive but invalid cues (i.e. always gazing at the non-target lo-

cation). Similarly, it has been shown that smiling faces were judged more attractive 

when gazing directly at the observer whereas neutral faces received higher ratings of 

attractiveness when showing averted gaze (Conway, Jones, DeBruine, & Little, 2008; 

Jones, DeBruine, Little, Conway, & Feinberg, 2006; see also Ganel, Goshen-

Gottstein, & Goodale, 2005). Finally, indicating strong interactions between the proc-

essing of eye gaze and emotion, Adams and Kleck (2003) found that direct gaze fa-

cilitates the processing of approach-oriented emotions (i.e. anger and joy) whereas 

averted gaze facilitates the perception of avoidance-oriented emotions (i.e. fear and 

sadness). It has to be considered, however, that Bindemann, Burton, and Langton 

(2008) could not replicate these findings in an extensive series of experiments. The 

question of whether the perception of eye gaze direction, approach-oriented, and 

avoidance-oriented emotions interact is therefore not resolved yet. 

Considering the importance of information contained in human eye gaze, it is an 

interesting question how we actually perceive the direction of gaze. It is likely that we 

are only able to extract this wealth of information from the eye region because it 

evolved in a special way, making human eyes unique with regard to their morphol-

ogy. Kobayashi and Kohshima (1997; Kobayashi & Kohshima, 2001) pointed out that 
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whereas most animals’ eyes consist of a dark sclera (usually of similar colour as the 

surrounding skin) and a dark iris and pupil, human eyes have a large, exposed and 

bright sclera which is even lighter than the colour of the skin and sets a strong con-

trast to the darker iris and pupil. This strong light/dark contrast makes the accurate 

perception of human eye gaze so much easier than that of other species (see Figure 

3, for an example). The unique morphology of the human eye therefore seems to 

provide the basis for human non-verbal communication using eye gaze signals which 

is less pronounced in other primates (Kobayashi & Kohshima, 1997; Kobayashi & 

Kohshima, 2001). 

 

 

Figure 3: Orangutan (left) and human eye (right) as an illustration of the unique morphology of human eyes de-
scribed by Kobayashi and Kohshima (1997; Kobayashi and Kohshima, 2001). Of special importance are the dif-
ferences in the iris/sclera contrast and the eccentricity of the sclera, both of which are larger in human eyes as 
compared to other primates. Pictures taken from Kobayashi and Kohshima, 2001. 

 

Initially, the geometric (or configural) information contained in the eye region (i.e. the 

relative position of the angle between the eyelids to the circle formed by the iris) was 

considered to be the key factor in gaze perception (Anstis, Mayhew, & Morley, 1969; 

Langton, Watt, & Bruce, 2000). As in studies on general face perception the relative 

contribution of configural information has been investigated by rotating the stimulus. 

The results are inconsistent: Jenkins and Langton (2003) found sensitivity to gaze 

direction to be severely affected by eye inversion, independent of the orientation of 

the face context. They concluded that eye gaze processing in normal, upright orienta-

tion relies on configural processing (see also Schwaninger, Lobmaier, & Fischer, 

2005). Tipples (2005), however, investigated the attentional orienting to eye gaze 

and found reliable gaze cueing effects from both upright and inverted faces and con-

cluded local, part-based information to be critical for the perception of and orienting to 

eye gaze. Finally, Campbell et al. (1990) found that face inversion only impaired par-
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ticipants’ ability to discriminate small deviations of the eyes whereas larger deviations 

could still be discriminated at high levels of accuracy. 

There is accumulating evidence that luminance information also plays an impor-

tant role in the perception of eye gaze direction. The iris-sclera ratio and -contrast 

have been identified as important factors in gaze perception (Ando, 2002; Ando, 

2004; Ricciardelli, Baylis, & Driver, 2000; Tipples, 2005). Sinha (2000) presented the 

so-called ‘Bogart-illusion’ which is characterised by a reversal of the perceived gaze 

direction through contrast negation of a photograph of the famous actor. More pre-

cisely, the contrast negation of a photograph of a person looking to the left makes the 

observer perceive the person as looking to the right (see Figure 4). Sinha (2000) 

therefore proposed that human eye gaze perception is guided by a simple rule of 

thumb which defines the darkest part of the eye as the iris position (and hence the 

direction of eye gaze). Similarly, Ando (2002) found that after darkening one side of 

the sclera a substantial shift of the perceived gaze direction towards the darkened 

side takes place (for an illustration, see Figure 4). Both Sinha (2000) and Ando 

(2002) concluded that low-level analysis of the luminance distribution within the eye 

region is an important mechanism in the computation of gaze direction.  

The recent publication of a new visual illusion seems to integrate the contribu-

tion of both configural and luminance aspects. Jenkins (2007) presented the picture 

of a woman whose eye gaze is perceived as being directed to the left when viewed at 

a close range. From further away, however, the same person is perceived as gazing 

to the right (see Figure 4). In Jenkins’ stimulus, the darkest parts of the eyes which 

were located close to the right canthi were only then perceived as the iris when the 

image was viewed from some distance. From a closer distance, however, the brighter 

parts near the left canthi of the eyes in combination with their roundish contour (not 

detectable from the distance) lead to the impression of an iris gazing to the left. To 

sum up, it can be concluded that both configural (i.e. geometrical) and featural (e.g. 

luminance) aspects within the eye region seem to be involved in the perception of 

gaze direction. 

Several studies have investigated the neural basis of eye gaze processing. In 

single-cell recordings, cells selectively responding to direct and averted gaze direc-

tions have been identified in the macaque superior temporal sulcus (Perrett et al., 

1985; Perrett, Hietanen, Oram, & Benson, 1992). Consistently, bilateral removal of 
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the STS in monkeys led to a loss of the ability to discriminate between direct and 

averted gaze (Campbell et al., 1990). 

 

 

Figure 4: Left panel, top row: ‘Bogart illusion’ first described by Sinha (2000). Contrast negation of the original 
image leads to a change in the perceived gaze direction. Left panel, bottom row: ‘Bloodshot illusion’ (Ando, 2002). 
Darkening one side of the sclera leads to a shift of the perceived gaze direction towards the darkened side. Right 
panel: Gaze direction illusion as described by Jenkins (2007). All illustrations copied from the original papers. 

 

Functional imaging studies suggest that regions within the superior temporal 

sulcus are also involved in gaze processing in humans (Hoffman & Haxby, 2000), 

probably especially when observing eye movements in others (Pelphrey, Viola, & 

McCarthy, 2004; Puce, Allison, Bentin, Gore, & McCarthy, 1998). Findings that re-

gions involved in identity recognition and eye gaze perception are functionally disso-

ciable (Hoffman & Haxby, 2000) are in line with the Haxby model on face perception 

(Haxby et al., 2000) assuming an analysis of the invariant aspects of faces (e.g. iden-

tity) in the fusiform gyrus, whereas eye gaze information is assumed to be mainly 

processed in the superior temporal sulcus and the intraparietal sulcus. Further, Cal-

der et al. (2002) showed in a positron emission tomography (PET) study that eye 



Introduction  16 

gaze processing leads to activation in the medial prefrontal cortex (MPF), a region 

which has earlier been found to be involved in the attributions of aims and intentions 

of others (Baron-Cohen, 2001). Some studies also found the amygdala to be in-

volved in gaze processing, with activity in the right amygdala being reported to in-

crease when an observer is confronted with direct gaze (Kawashima et al., 1999). In 

line with this study and evidence that right amygdala activity is enhanced when par-

ticipants are actively monitoring for emotional gaze events in others (Hooker et al., 

2003), the amygdala has been suggested to be involved in directing our attention 

towards the eye and mouth regions of a face (Benuzzi et al., 2007). 

In addition to imaging studies investigating the brain structures involved in eye 

gaze perception, electrophysiological studies have been conducted in order to evalu-

ate the ERP correlates of gaze perception. There is some evidence that the percep-

tion of eye gaze is mainly reflected in the occipitotemporal N170 component, with 

some studies finding that the amplitude and latency evoked by isolated eye stimuli 

are enhanced relative to the presentation of full faces (Bentin et al., 1996; Jemel, 

George, Chaby, Fiori, & Renault, 1999; Itier, Latinus, & Taylor, 2006; but see Eimer, 

1998). Further stressing the sensitivity of the N170 for eye information, it was found 

that faces with eyes closed evoked a significantly delayed N170 compared to both 

averted and direct gaze (Taylor, Itier, Allison, & Edmonds, 2001). Finally, some ex-

periments suggest that the N170 face inversion effect is mainly due to inversion of 

the eye region (Doi, Sawada, & Masataka, 2007; Itier et al., 2006). Together, these 

findings propose that the N170 might reflect the activity of an eye detector (Bentin et 

al., 1996).  

With regard to the effects of gaze direction processing on electrophysiological 

components, several studies found the N170 amplitude to be larger in response to 

eye aversion than in response to eyes gazing directly at the observer (Itier, Alain, 

Kovacevic, & McIntosh, 2007a; Puce, Smith, & Allison, 2000; Watanabe, Miki, & 

Kakigi, 2002). Investigating the interrelation of the perception of head orientation and 

gaze direction, Itier et al (2007a) specified that the finding of larger N170 amplitudes 

for averted than for direct gaze seems to be restricted to front-view faces as it could 

not be found for ¾-view faces. In a later time window of about 400 - 600 ms the au-

thors found larger amplitudes in response to direct gaze – irrespective of the head 

orientation – and concluded that this stage might reflect the final outcome of gaze 

processing. 
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To sum up, the perception of eye gaze has been shown to be a very important 

aspect of social perception and cognition. Perceiving information from the eye region 

of others improves our understanding of their emotions, intentions, and aims and 

therefore enhances our ability to act appropriately in social situations. Further, the 

precise perception of the gaze direction of others has been shown to influence the 

focus of our own attention. It has been revealed that both luminance and geometrical 

information are processed in order to infer the direction of gaze of another person. 

ERP studies provided evidence that the perception of eyes and eye gaze is mainly 

reflected in the N170 component. Finally, the STS region, the medial prefrontal cor-

tex, and the amygdala seem to be important neural structures enabling us to process 

and interpret the direction of gaze of others. 

2.1.3 Gender Perception 

Adults can easily discriminate between male and female human faces even 

when pictures are of low quality (Cellerino, Borghetti, & Sartucci, 2004). Young chil-

dren, however, despite having an inborn preference for face stimuli (Johnson et al., 

1991) fail to make this distinction before the age of about five to eight months 

(Fagan, 1967; Fagan, 1974). Even after that age, young children show a great 

asymmetry in processing faces of both genders as they are more fluent in processing 

female than male faces (Ramsey, Langlois, & Marti, 2005; Ramsey-Rennels & Lan-

glois, 2006). These findings concerning gender discrimination abilities in infants 

strongly suggest that our proficiency to extract the gender of a face develops over 

time due to accumulating visual experiences with male and female faces. In adult-

hood, the identification of the gender of a face happens faster than its recognition 

(Bruce, 1986) and is an important basis of our social interactions with known and un-

known people. 

Several studies have been conducted in order to understand the physical differ-

ences between male and female faces. First, the information related to the colour 

(Hill, Bruce, & Akamatsu, 1995), brightness, and luminance of faces seems to play an 

important role for gender discrimination. Male skin tends to be darker than female 

skin (Frost, 1988) and the distributions of luminance across the face seems to differ 

between males and females: darker eyes and mouth surrounded by brighter skin 

parts are naturally greater in women than men and a face can therefore be made 

more feminine or masculine by changing this luminance difference (Russell, 2003). 
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Related to these aspects of physical stimulus properties, Cellerino et al. (2004) 

measured the minimum information necessary for correct gender classification and 

found that better picture quality was needed for a correct classification of female 

faces as compared to a correct classification of male faces, i.e. male faces seem to 

be categorised more easily than female faces. Second, some featural aspects of 

faces such as the eye region and the facial outline (Brown & Perrett, 1993; O'Toole et 

al., 1998; Yamaguchi, Hirukawa, & Kanazawa, 1995), the size of the nose, and the 

prominence of the eyebrows (Campbell, Benson, Wallace, Doesbergh, & Coleman, 

1999; Enlow, 1982) have been found to differ systematically between the two sexes. 

Third, in studies concerning the structural differences between male and female 

faces it has been found that the distance between the brow and the upper eyelid is 

one of the most reliable structural cues to gender in static faces (Brown & Perrett, 

1993). This distance is typically smaller for men than for women. Related to this, dif-

ferent head movements and postures can influence the ease with which we deter-

mine the gender of faces. For example, male faces with lowered brows are more ac-

curately and quickly categorised (Campbell et al., 1999) whereas male faces looking 

down and therefore increasing the perceived brow-lid distance have been shown to 

be rated more feminine than the same faces looking directly at the observer 

(Campbell, Wallace, & Benson, 1996). 

Further, high levels of facial attractiveness have been shown to facilitate the 

speed of gender classification of both male and female faces (Hoss, Ramsey, Griffin, 

& Langlois, 2005), a finding which is in line with the assumption that the level of per-

ceived attractiveness is highly correlated to the extent to which features and spatial 

aspects in faces are prototypical for their respective gender (Langlois & Roggman, 

1990; Rhodes & Tremewan, 1996). A study by Perrett et al. (1998), however, found a 

different relationship between the gender-prototypicality of faces and their perceived 

attractiveness. Irrespective of their own gender, participants judged feminised ver-

sions of both female and male faces as more attractive than female and male aver-

age faces, respectively. Additionally, enhancing masculine facial characteristics of 

male faces was found to lead to decreased rankings of perceived warmth, emotional-

ity, honesty, cooperativeness, and quality as a parent compared to average male 

faces. Together, these findings stress the strong interrelation between the evaluation 

of attractiveness and mating behaviour. Humans seem to prefer facial features that 

are associated with care-giving, honest, and responsible behaviour. 
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Apart from these purely face-driven aspects of gender discrimination, informa-

tion from other modalities has been shown to influence the decision of whether a pre-

sented face is male or female. In an auditory-visual cross-modal study, Smith, 

Grabowecky, and Suzuki (2007) found that androgynous faces were more likely to be 

judged as male when presented together with pure tones in the male fundamental 

speaking frequency range and more likely to be judged as female when presented 

with pure tones in the range of female fundamental speaking frequency. Similarly, it 

has been shown that male participants perceive faces to be more masculine when 

simultaneously exposed to the smell of male sex hormones such as steroids (Kovács 

et al., 2004). 

Until now, there have been only a few studies examining the neural structures 

and processes underlying gender perception. A comparison of the event-related po-

tentials evoked by the presentation of human hands and faces requiring different de-

grees of gender discrimination revealed that the degree of gender processing had no 

effect on N170 amplitude or latency at occipitotemporal electrodes (Mouchetant-

Rostaing, Giard, Bentin, Aguera, & Pernier, 2000). The processing of face gender, 

however, affected the ERPs measured at more anterior scalp locations in the N170 

time range (145 -185 ms). At these electrode locations, trials requiring a gender deci-

sion were characterised by larger amplitudes than trials that did not ask for a gender 

decision. In line with the Haxby model on face perception (Haxby et al., 2000), 

Mouchetant-Rostaing et al. (2000) concluded that the neural mechanisms involved in 

the structural encoding of faces have to be different from those involved in the extrac-

tion of gender-related facial features (but see Ganel & Goshen-Gottstein, 2002).  

In a PET study on face recognition and gender discrimination (Sergent, Ohta, & 

MacDonald, 1992) the right cuneus, the right inferior occipital and occipitotemporal 

gyrus, the right lateral occipital gyrus, and the left middle occipital gyrus were found 

to be involved in a gender discrimination task. This dominance of the right hemi-

sphere in gender perception was also reflected in the results of a visual hemifield 

study by the same authors, showing that face-gender discrimination is faster when 

stimuli are presented to the left visual field (Sergent et al., 1992). 

Interestingly, there seem to be differences in the perception of face gender be-

tween male and female participants. In general, women have been reported to out-

perform men in both face recognition and gender discrimination tasks. These gender 

differences have been suggested to at least partially result from motivational differ-
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ences in task involvement in male and female participants (Sporer, 1991). However, 

such motivational differences do not seem to be able to explain all gender differ-

ences. In gender discrimination tasks, for example, the better performance of female 

participants has usually been found to result from their greater efficiency in detecting 

female faces, whereas there were no differences in the ability to detect male faces 

(Cellerino et al., 2004; Lewin & Herlitz, 2002). Several studies have reported an own-

gender bias, i.e. both males and females were found to be more efficient in recognis-

ing faces of their own gender than faces of the other gender (Cellerino et al., 2004; 

Lewin & Herlitz, 2002; Wright & Sladden, 2003), an effect which has been attributed 

to the development of visual experiences from early childhood on (Ramsey et al., 

2005). Further evidence for differences in gender discrimination in male and female 

participants was reported by Fischer et al. (2004). In an fMRI study, they compared 

brain responses to male and female stimuli in male and female participants. During 

exposure to female faces male participants showed an increased fMRI signal in the 

left amygdala and anterior temporal regions which was absent in female participants 

when presented with male face stimuli. The authors concluded that the amygdala and 

the anterior temporal cortex may play a role in the perception of gender discriminat-

ing social signals in faces, especially in men. 

Apart from facial images, gender can also be determined from different sources 

of information. One example is the acoustic perception of a person’s gender from 

listening to his or her voice (Fellowes, Remez, & Rubin, 1997; Lass, Almerino, Jor-

dan, & Walsh, 1980; Lass, Hughes, Bowyer, Waters, & Bourne, 1976). A recent study 

has shown that the perception of gender from voices can be biased as a conse-

quence of adaptation (Schweinberger et al., 2008). 

A second example of a possible source for gender perception is the visual in-

formation contained in the human gait pattern (Barclay, Cutting, & Kozlowski, 1978; 

Kozlowski & Cutting, 1977). In studies investigating the perception of this kind of bio-

logical motion stimuli are usually derived from attaching lights to the major joints of 

the body. Only these lights, so-called point light walkers (PLW), are shown to partici-

pants to selectively investigate motion perception. The information contained in these 

lights alone has been shown to be sufficient for correct gender discrimination 

(Barclay et al., 1978; Kozlowski & Cutting, 1977). In analogy to faces and voices, the 

prolonged exposition to the biological motion of male or female walkers has recently 
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been shown to also induce opposite gender aftereffects (Jordan, Fallah, & Stoner, 

2006) as will be reported in chapter 2.2.4 in more detail. 

To summarise, different sources of information such as faces, voices, or the 

movements of a person allow for a correct categorisation of his or her gender. In 

faces, luminance, featural, as well as configural information seems to contribute to 

accurate gender perception. Differences in the processing of facial gender in early 

childhood and the own-gender bias observed in adults underline the influence of vis-

ual experience on the development of gender representations. Gender discrimination 

has been shown to affect ERPs measured in the time range of the N170, however, at 

more anterior scalp locations. Imaging studies suggest structures such as the cu-

neus, the inferior occipital and occipitotemporal gyri predominantly of the right hemi-

sphere to be involved in gender perception. 

2.2 Perceptual Adaptation 

Our perceptual systems have evolved over millions of years, providing us now 

with highly efficient sensory modalities which are specialised for the perception of our 

environment. But changes in the human perceptual system have not only been of 

great importance with regard to phylogenesis – even in our everyday lives we rely on 

the flexibility of our perceptual system. One of the mechanisms allowing for a flexible 

interaction of our visual representations and the environment is perceptual adapta-

tion. Neural adaptation is a mechanism by which specific neural responses decrease 

after prolonged stimulation. Traditionally, the effects of adaptation and their neural 

correlates have been investigated for low levels of visual perception or for relatively 

simple stimulus properties, such as motion or colour. In the last few years, however, 

adaptation effects have also been reported for the high-level perception of complex 

visual patterns such as human faces.  

After a short introduction into the principles of adaptation using the example of 

simple stimulus properties (2.2.1), findings of face-related high-level adaptation will 

be reported in greater detail (2.2.2). Following an overview of the findings on the spe-

cific effects of adaptation to eye gaze (2.2.3) and gender information in faces (2.2.4), 

the aims of the studies presented in the current thesis will be outlined (2.2.5). 
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2.2.1 Adaptation to simple stimulus attributes 

Adaptation is one of the fundamental properties of the neurons involved in the 

processing of our perceptions. It occurs when a perceptual system changes its proc-

essing characteristics due to the current information. According to Barlow’s hypothe-

sis of efficient coding, neural systems which have finite possibilities to transfer infor-

mation therefore obtain optimally efficient coding strategies by recalibrating their re-

sponse patterns to the stimulus properties they are typically confronted with (Barlow, 

1961). As a consequence, perceptual sensitivities are adjusted to the set of environ-

mental stimuli, a process which has been described as ‘fitting the mind to the world’ 

(Clifford & Rhodes, 2005). The systematic investigation of the aftereffects of adapta-

tion can therefore provide a detailed insight into the neural coding and the distinct 

representations of sensory information. Thanks to this completely non-invasive but 

detailed view into the functioning of the human brain, psychophysical aftereffects 

have been termed the psychologist’s microelectrode (Frisby, 1980). Visual adapta-

tion, i.e. adaptation within neural entities involved in visual perception, has therefore 

long been investigated in order to gain information about the processing mechanisms 

of the human visual system. Traditionally, these aftereffects have been studied and 

reported for early stages of processing and for relatively simple stimulus characteris-

tics such as luminance, contrast (e.g. Chen, Zhou, Gong, & Liang, 2005), colour, or 

motion (e.g. Antal et al., 2004). 

Here, the basic principles of adaptation will be explained using the example of 

the motion aftereffect (MAE) which was first described by Aristotle (Parva Naturalia) 

and which is probably among the most popular and most extensively investigated 

examples of visual adaptation to relatively simple stimulus properties. Here, the pro-

longed viewing of a downward-moving stimulus subsequently leads to the illusionary 

perception of an upward motion in a static image (see Anstis, Verstraten & Mather, 

1998, for a review). This phenomenon has been explained as being the result of a 

disequilibrium between motion detectors tuned to opposite directions, with neural fa-

tigue (Barlow & Hill, 1963) and reciprocal inhibition processes (Culham et al., 1999; 

Tootell et al., 1995) being discussed as possible underlying neural mechanisms. The 

prolonged viewing of downward motion has been assumed to lead to habituation of 

the neural channels selectively coding this property. Due to this selective habituation, 

the offset of the moving stimulus leads to a strong decrease in the adapted channels’ 

activity, which therefore drops below baseline activity. The resulting higher level of 
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activity in the unadapted channel (coding upward motion) relative to the remaining 

activity in the adapted channel (coding downward motion) therefore leads to the illu-

sionary perception of upward motion in a static image.  

The observation of this MAE therefore revealed detailed and non-invasive in-

sight into the organisation of the neural system processing vertical motion - with 

strong evidence for one subsystem detecting upward motion and a second subsys-

tem detecting downward motion. There is empirical evidence for the correlation of 

behavioural aftereffects with a reduction in neural activity in cell populations selec-

tively responding to a certain characteristic of the respective stimulus (Grill-Spector & 

Malach, 2001). However, the exact process underlying this decrease of neural sensi-

tivity is not yet resolved. It might result from a general decrease of amplitude of 

stimulus-responsive neurons, from a ‘sharpening’ of sensitivity in terms of fewer re-

sponding neurons, or a shortening of the duration of neural activity (Grill-Spector, 

Henson, & Martin, 2006a). Whatever may be the exact underlying neural mecha-

nisms, it is evident that an increased sensitivity to stimuli with different (i.e. unad-

apted) characteristics is one of the major consequences of perceptual adaptation, 

therefore providing a mechanism for ‘novelty detection’.  

The timing parameters of low-level adaptation have been widely investigated. In 

general, three important variables influencing the time-course have to be distin-

guished. These aspects are the presentation duration of the adaptor, the presenta-

tion duration of the test stimulus, and the time interval between the adaptor and test 

stimulus. Empirical findings vary considerably across adapted visual properties, 

methodological details of the respective experiments, and even across participants. 

However, generally speaking, the strength of most aftereffects increases as a func-

tion of adaptation time and decrease as a function of presentation duration of the test 

stimulus. The duration of motion aftereffects was reported to increase as a power 

function of the presentation time of the adaptation stimulus, while the decline was 

described by an exponential decay function (e.g. Hershenson, 1989; Hershenson, 

1993; see also Petersik, 2002, for a report of an exponential decay for three-

dimensional MAEs).  

Even if the reasons described above make it difficult to state a universal value 

as the ’typical’ duration of low-level aftereffects, it might be interesting to consider the 

variety of timing parameters observed in studies on different adaptation effects. In-

vestigating the effects of varying adaptation durations between 30 s and 15 min, 
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Hershenson (1989) observed that motion aftereffects decayed after only 17 to 75 s. 

Following adaptation to prisms, however, aftereffects have been found to be charac-

terised by a very slow decay rate. A recent study described the aftereffects of a sin-

gle 75 min prism adaptation session to be still measurable after 7 days (Hatada, 

Miall, & Rossetti, 2006). 

Recently, visual aftereffects have also been reported for complex visual pat-

terns in high-level vision, especially in face perception (Webster & Maclin, 1999). 

These findings build the framework for the experiments presented here and will be 

reported in detail in the following sections. Altogether, studies investigating adapta-

tion effects of higher-level perceptual processes suggest that adaptation may rou-

tinely influence perception in normal viewing and is not just a phenomenon measured 

in laboratories (Webster & Maclin, 1999). 

2.2.2 High-level adaptation in face perception 

While adaptation to simple stimulus attributes has been known for literally thou-

sands of years, it has been a striking novel discovery within the last few years that 

adaptive recalibration is also of central importance for the perception of very complex 

visual stimuli such as human faces. The technical progress over the last decades has 

been a major prerequisite of these studies, as new stimulus editing techniques such 

as image morphing provided access to high-quality, photorealistic images with well-

controlled features and a very fine-graded variation of specific stimulus aspects. It is 

possible, for instance, to derive a continuum of images from a pair of photographs, 

e.g. a male and a female face, which contains different levels of gender ambiguity 

and a completely gender-ambiguous face as the centre.  

The first study reporting visual aftereffects in face perception was published by 

Webster and MacLin (1999). They reported a so-called face distortion aftereffect 

(FDAE) which is a figural adaptation effect in the perception of face configurations. 

They found that adaptation to distorted (e.g. contracted) faces led to an altered per-

ception of normal faces in the direction opposite to adaptation (e.g. expanded). Simi-

lar high-level adaptation resulting in contrastive aftereffects has also been reported 

for other face-related processes such as the perception of identity (Leopold, O’Toole, 

Vetter, & Blanz, 2001), gender (Bestelmeyer et al., 2008; Kovács et al., 2006; Webs-

ter, Kaping, Mizokami, & Duhamel, 2004), eye gaze (Jenkins, Beaver, & Calder, 

2006; Seyama & Nagayama, 2006), viewpoint (Fang, Ijichi, & He, 2007), ethnicity 
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(Webster, Kaping, Mizokami, & Duhamel, 2004), emotional expression (Butler, Oruc, 

Fox, & Barton, 2008; Fox & Barton, 2007; Webster et al., 2004), and audiovisual 

speech integration (Bertelson, Vroomen, & de Gelder, 2003; Vroomen, van Linden, 

de Gelder, & Bertelson, 2007). These-high level visual aftereffects have been shown 

to be to a large extent size invariant (e.g. Zhao & Chubb, 2001), suggesting that they 

do not mainly reflect adaptation to single features on low levels of visual processing.  

Similar to the investigation of adaptation effects for simple stimulus characteris-

tics, figural high-level adaptation experiments can provide a valuable insight into the 

mechanisms and functional organisation of face perception. Webster and MacLin 

(1999), for example, reported the FDAE to be asymmetric, i.e. adaptation to distorted 

but not to undistorted (‘normal’) faces showed a clear effect on the perception of sub-

sequently presented test faces. This is in line with the ‘face-space’ theory (Valentine, 

1991) which suggests face representations as being organised in a multi-dimensional 

space with an average face prototype as the centre (see also Leopold et al., 2001).  

Rhodes et al. (2004) provided further insight into the organisation of face repre-

sentations showing orientation-dependent aftereffects in face perception. The au-

thors found that opposite face distortion aftereffects could be simultaneously induced 

for upright and inverted faces. Adaptation to upright faces with contracted internal 

features and inverted faces with expanded internal features led to a simultaneous 

shift of the perceived most normal looking distortion to a more contracted version in 

upright and to a more expanded version in inverted faces. Rhodes et al. (2004) fur-

ther reported equivalent orientation-dependent aftereffects for face gender, i.e. simul-

taneous adaptation to upright male faces and inverted female faces led to classifica-

tions of gender-ambiguous faces as more female when presented in upright orienta-

tion and as more male when presented in inverted orientation. These findings are in 

line with several other studies reporting weak transfer of adaptation effects across 

orientations (Robbins, McKone, & Edwards, 2007; Watson & Clifford, 2003; Webster 

& Maclin, 1999) supporting the idea that separate mechanisms and distinct neural 

populations selectively code upright and inverted faces.  

A recent study revealed further simultaneous category-contingent eye spacing 

aftereffects for different ethnicities (i.e. male European vs. male African faces), ages 

(i.e. male adult vs. male infant faces), and species (human vs. monkey faces) sug-

gesting that these different categories are also represented in functionally distinct 

neural populations (Little, DeBruine, Jones, & Waitt, 2008). 
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Fox and Barton (2007) investigated the aftereffects of adaptation to emotional 

expressions within and across identities. They found emotional aftereffects to be 

most pronounced for within-identity adaptation but they also reported that emotion 

adaptation produced weaker but significant aftereffects on different identities. These 

data therefore provided further insight into the neural representations of emotional 

expressions in suggesting that there are both identity-specific and general identity-

invariant representations of expressions.  

Related to the findings of face distortion aftereffects, several studies reported 

face identity aftereffects (FIAEs; e.g. Leopold, O'Toole, Vetter, & Blanz, 2001). That 

is, the exposure to an individual face systematically biased the perceived identity of a 

subsequently presented different face. Using a morphing technique, Leopold et al. 

(2001) created a complex set of face stimuli. They generated the image of an aver-

age face by morphing 100 male and 100 female faces and then created anti-faces by 

morphing images of individual faces towards this average face and beyond it. This 

procedure resulted in face/anti-face pairs, i.e. for each individual veridical image a 

second face image was created that deviated from the average face in a manner op-

posite to the veridical. For instance, when “Henry” was characterised by a large eye 

distance, thick eyebrows, a broad nose, and a large mouth, the resulting ‘Anti-Henri’ 

would be characterised by a small eye distance, slim eye brows, a narrow nose and a 

small mouth (see Figure 5).  

Using these stimuli, Leopold et al. (2001) found that adaptation to the anti-face 

of a certain individual subsequently led to an increased sensitivity to perceiving the 

original identity of the same person. For example, performance in identifying the av-

erage face as a certain identity moved from chance performance in baseline trials to 

greater than 60% ‘correct’ identification. This means that adaptation to an anti-face of 

a certain identity subsequently makes an average face look like this person. By con-

trast, the authors showed that test stimuli that were on a different identity trajectory 

than the anti-face (i.e. not the veridical faces used to create that anti-face) were less 

likely to be identified correctly after adaptation. 
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Figure 5: Examples of the stimulus set used by Leopold et al. (2001). Left panel: Face/anti-face pairs of four dif-
ferent identities. Each anti-face (red circles in right panel) differs from the average face (blue-circled face at the 
centre of the right panel) in an opposite manner to the original face (green circles). Figure copied from Leopold et 
al (2001). 

 

These effects were found for both upright and inverted stimuli, with adaptation 

and test faces always presented in the same orientation, suggesting that the mecha-

nisms underlying both upright and inverted face recognition are recalibrated in an 

adaptive manner (see also Kovács, Zimmer, Harza, Antal, & Vidnyanszky, 2005). 

This finding is of special importance as it revealed similarities in the response proper-

ties of the distinct neural mechanisms that have been assumed to be applied in the 

processing of upright and inverted faces (see chapter 2.1.1). 

A similar study (Jiang, Blanz, & O'Toole, 2006) revealed that identity adaptation 

could also be observed with adaptation and test stimuli containing either only facial 

shape or surface reflection information indicating that both face-shape and reflec-

tance can carry information about the identity of a face. Further, Jiang et al. (2006) 

found identity adaptation effects to transfer across large changes in viewpoint, in this 

case a rotation of the stimulus by 30°, underlining the idea that face recognition is 

very robust to variations in changeable aspects and therefore in line with both the 

Bruce and Young (1986) and the Haxby model (2000) of face perception.  

Some studies have examined the temporal aspects of face adaptation: In an in-

formal report, Leopold et al. (2001) mentioned having tested the robustness of FIAEs 
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to varying delays between adaptation and test stimulus of 150, 300, 600, 1200, and 

2400 ms. They found adaptation effects to be reduced for intervals longer than 300 

ms but to stay at a significant level up to the longest delay of 2400 ms. Leopold, 

Rhodes, Müller, and Jeffery (2005; see also Rhodes, Jeffery, Clifford, & Leopold, 

2007) explored the dynamics of face-adaptation and compared them to those of sim-

ple after-effects which are known to be influenced by both the duration of adaptation 

and the presentation duration of the test stimulus. The authors tested the depend-

ence of the FIAE on a wide range of durations of the adapting and test stimulus. In 

line with traditional aftereffects they found the FIAE to increase as a function of adap-

tation time and to decrease as a function of test duration, i.e. presentation period of 

the test stimulus. A major limitation of this study is, however, that the effect of differ-

ent inter-stimulus intervals between the presentation of the adaptation and test stimu-

lus has not been examined. Therefore, there is no further information concerning the 

long-term effects of high-level adaptation in face perception apart from that they sur-

vive the relatively short interval of 2.4 s between adaptor and test stimulus presenta-

tion (Leopold, O’Toole, Vetter, & Blanz, 2001; but see Carbon and Leder (2006) for 

an informal report of a face distortion aftereffect lasting over 24 hours in the percep-

tion of a painting). Examining the effects of adaptation duration on face viewpoint af-

tereffects, Fang, Murray, and He (2007) revealed differential effects of long-term ad-

aptation (i.e. 5 s) and short-term adaptation (i.e. 300 ms) with long-term adaptation 

effects being view-point specific and short-term adaptation effects being viewpoint-

invariant. An ERP study on gender adaptation similarly reported differential effects of 

the duration of adaptation, however, this study investigated position specificity of ad-

aptation effects, i.e. the dependence of adaptation effects on identical presentation 

locations of adaptor and test stimuli (Kovács, Zimmer, Harza, & Vidnyanszky, 2007). 

This study will be reported in greater detail in chapter 2.2.4. 

Further, the neural correlates of behavioural aftereffects have been investigated 

using fMRI-adaptation (Grill-Spector & Malach, 2001). The regional specialisation of 

selective cell populations can be inferred from this method with greater specificity 

than from the subtractive methodology conventionally used in imaging studies 

(Winston, Henson, Fine-Goulden, & Dolan, 2004). The logic of the method is based 

on the assumption that neurons specifically responding to distinct information of a 

stimulus will habituate when this aspect is repeated. Therefore, after sequential pres-

entations of stimuli repeating a certain aspect the neuronal population that is sensi-
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tive to that information is adapted, leading to a decreased blood-oxygen level de-

pendent (BOLD) signal in that region compared to an unrepeated presentation of that 

aspect (Grill-Spector et al., 2006a; Sawamura, Orban, & Vogels, 2006). If a change in 

one stimulus property subsequently leads to a recovery from adaptation, the underly-

ing brain mechanisms are assumed to be sensitive to that stimulus property. The ap-

plication of this technique allows for a deeper insight into the neural basis of adapta-

tion effects and provided strong evidence for the assumed dissociation between the 

neural representation of identity and changeable aspects of human faces (Furl, van 

Rijsbergen, Treves, & Dolan, 2007; Rotshtein, Henson, Treves, Driver, & Dolan, 

2005; Winston et al., 2004) that was proposed by Bruce and Young (1986) and 

Haxby et al. (2000).  

Using fMRI adaptation, Löffler and colleagues (2005) were able to specify the 

way faces are mentally represented and identified (Löffler, Yourganov, Wilkinson, & 

Wilson, 2005). Consistent with the concept of a multidimensional face space 

(Valentine, 1991), they found that neurons in the fusiform face area code facial iden-

tity in terms of deviance from a prototypical (i.e. average) face. Using the same tech-

nique, Andrews and Ewbank (2004) further found that the fusiform gyrus shows 

weaker response to repeated presentations of the same face as compared to differ-

ent faces – independent of the stimulus size but sensitive to different viewpoints of 

the face – further stressing the role of the fusiform gyrus in the identification of indi-

vidual faces. In contrast, in the STS they found larger responses to the same face 

shown from different viewpoints/with different expressions compared to different 

faces viewed from different viewpoints/with different expressions, suggesting that this 

region is responsible for the analysis of the changeable aspects of faces important in 

social communications (Haxby et al., 2000). 

However, due to the low temporal resolution of fMRI the reported adaptation ef-

fects reflect the neuronal activity of several seconds, making it difficult to decide 

whether the neural habituation measured is really due to perceptual or to later proc-

esses (Harris & Nakayama, 2007). To fully understand the nature of face adaptation 

effects, it is therefore important to also investigate their electrophysiological corre-

lates with the excellent temporal resolution of electroencephalography (EEG) or 

magnetoencephalography (MEG). The first studies that systematically investigated 

the electrophysiological correlates of face adaptation (Kovács et al., 2005; Kovács et 

al., 2006) found effects of adaptation on the amplitude of the N170 component in a 
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gender adaptation paradigm (as will be reported in greater detail in section 2.2.4). 

Similarly, later studies also confirmed the sensitivity of the M170 to face adaptation 

(Ewbank, Smith, Hancock, & Andrews, 2008; Harris & Nakayama, 2007; Harris & 

Nakayama, 2008). Together, these studies clearly indicate the perceptual nature of 

the investigated adaptation effects. 

2.2.3 Gaze Adaptation 

Two studies published at the same time independently reported negative after-

effects following adaptation to eye gaze direction (Jenkins et al., 2006; Seyama & 

Nagayama, 2006). Jenkins et al. (2006) conducted a series of three experiments in 

order to investigate the functional organisation of the human gaze processing sys-

tem. They hypothesised that if distinct cell populations selectively code different gaze 

directions in humans it should be possible to selectively adapt these populations re-

sulting in different aftereffects following adaptation to left and right gaze direction, 

respectively. In their main experiment, they indeed found that adaptation to consis-

tent strong gaze deviations to the left or to the right produced an illusion that elimi-

nated observers’ perception of smaller gaze deviations in the adapted direction. Test-

ing the baseline ability to correctly distinguish between gaze directions, they found 

that participants were highly accurate in correctly identifying direct gaze (~87% cor-

rect) or eye gaze directed 10° to the left or right (~98 % correct) and less accurate in 

discerning gaze that was averted by only 5° to the left or right (~71% correct). After 

adaptation to gaze averted 25° to left or right direction the ability to subsequently 

perceive gaze directed to that side was nearly eliminated (more than 80% direct re-

sponses for both left and right stimuli following adaptation to left and right gaze direc-

tion, respectively, see Figure 6 for an overview of the results). That is, following adap-

tation observers showed a striking tendency to judge gaze in the adapted direction as 

looking directly at them. Responses to direct gaze, however, were not significantly 

affected by adaptation and the authors stated that there was no loss of sensitivity to 

gaze that was directed to the unadapted side.  

These findings clearly suggest that distinct cell populations code different direc-

tions of gaze in humans. To rule out the possibility that the adaptation effects found 

in this first experiment merely reflected low-level visual adaptation, Jenkins et al. 

(2006) ran two variations of the experiment in which retinotopic mapping between the 

adaptation and test stimuli was severely disrupted by changes in the size (Experi-
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ment 2a) or head orientation (Experiment 2b) of the adaptation stimuli. Despite these 

changes, the results were remarkably similar to those of Experiment 1 (see Figure 6) 

and therefore excluded the possibility that the findings of the first experiment were 

due to low-level adaptation processes. There were slight differences compared to the 

results of the first study, however, as in Experiment 2b, using adaptation stimuli with 

a different head orientation than the test stimuli, sensitivity for gaze directed 5° to the 

unadapted side was slightly improved after adaptation and subjects showed a ten-

dency to judge direct gaze as pointing in the unadapted direction.  

 

 

Figure 6: Results of the eye gaze adaptation experiments conducted by Jenkins, Beaver, and Calder (2006). 
Percentages of “direct” responses (y-axis) obtained in the pre-adaptation baseline (solid lines), following adapta-
tion to left (dotted line) and right gaze direction (dashed line) in response to test stimuli of the five different gaze 
directions (x-axis). Abbreviations on the x-axis L10, L05, S00, R05, and R10 represent test stimuli gazing 10° left, 
5° left, directly at the observer, 5° right, and 10° right, respectively. a) Results of Experiment 1, b) Results of Ex-
periment 2a, c) Results of Experiment 2b. Figure copied from Jenkins et al. (2006). 
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Finally, Jenkins et al. (2006) conducted a third experiment to examine whether 

the observed aftereffects were specific for human eye gaze or whether gaze adapta-

tion influenced spatial estimations more generally. In this experiment, participants 

were again adapted to gaze averted by 25° from direct gaze but were then tested on 

a landmark task during which they had to decide whether a vertical bar crossed a 

horizontal line centrally or left or right from the centre. Importantly, deviations of the 

vertical bar from the centre physically corresponded to the magnitude of shifts in pupil 

positions in the gaze conditions (i.e. corresponding to 5° and 10° left or right, respec-

tively). The results of this landmark experiment clearly revealed that adaptation to 

averted gaze had no influence on participants’ line judgements and therefore pro-

duced a gaze-specific aftereffect, rather than a general spatial bias. 

The second study on eye gaze adaptation also reported a series of three stud-

ies aiming at answering the same questions as Jenkins et al. (2006). The experimen-

tal design, however, differed from the study by Jenkins et al. (2006) in various as-

pects. First, Seyama and Nagayama (2006) used images of human faces which were 

generated by computer graphics software instead of real photographs. Second, they 

used adaptation stimuli that were characterised by a larger deviation from direct gaze 

(35°) whereas the test stimuli were characterised by smaller gaze deviations (2° and 

4° left and right, respectively). Third, they had participants make two-alternative 

forced-choice decisions of whether a test face was gazing to the left or right and did 

not offer “direct gaze” as a response category. Despite these methodical differences, 

Seyama and Nagayama (2006) observed gaze adaptation aftereffects similar to 

those reported by Jenkins et al. (2006): after prolonged viewing of faces with eye 

gaze consistently directed to the left (or right) direction, participants most often per-

ceived gaze directed directly at them as looking to the right (or left), respectively. 

In addition to the basic experiment, the experiments excluding low-level adapta-

tion or a general spatial bias were also very different from those of Jenkins et al. 

(2006). In order to rule out low-level adaptation effects, Seyama and Nagayama 

(2006) used displays of a pair of faces with opposite gaze directions as adaptation 

stimuli. The faces either showed neutral, happy, or surprised expressions, whereas 

the eye features in all faces were identical. In one adaptation condition, participants 

simultaneously observed leftward gaze in happy faces and rightward gaze in sur-

prised faces (‘happy/surprised condition’). In a second condition, the allocation of 

gaze directions to emotions was reversed (‘surprised/happy condition’), and in a con-
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trol condition both faces showed neutral expression. The authors found that happy 

faces elicited stronger aftereffects than surprised faces (i.e. participants adapted to 

the direction of eye gaze contained in the happy faces). This interaction of eye gaze 

direction and emotional expression suggests that gaze adaptation happened at a 

relatively high level of visual processing. Finally, rather than using a non-facial test 

stimulus to see if adaptation effects merely reflected general spatial mechanisms, 

Seyama and Nagayama (2006) used non-facial adaptation stimuli (arrows pointing to 

the left or right) and facial test stimuli in their third experiment. The results showed 

that adaptation to a right-pointing (or left-pointing) arrow did not have an influence on 

the estimations of gaze directions to the left or right direction.  

Overall, the similarity of the results of the studies by Jenkins et al. (2006) and 

Seyama and Nagayama (2006) is remarkable, especially when considering the large 

differences in the stimulus sets, indicating that gaze direction aftereffects arise robus-

tly over various conditions. 

A study by Calder and colleagues (2007) has recently used eye gaze adapta-

tion paradigms in order to gain further insight into the organisation of the brain struc-

tures involved in eye gaze perception. Using fMRI adaptation they investigated the 

functional organisation of the human STS region and showed that adaptation to one 

direction led to a decreasing BOLD response to test faces gazing into the adapted 

direction (relative to test stimuli showing eye gaze directed to the unadapted side or 

gazing directly at the observer). This decrease in BOLD activity was located in the 

anterior part of the STS. Resuming earlier fMRI studies and the results of their own 

study Calder et al. (2007) suggested that the anterior part of the STS selectively 

processes different gaze directions whereas the posterior STS region was proposed 

to be involved in perceiving the ‘intentionality’ revealed by eye gaze.  

To summarise, several studies have demonstrated that our percept of the gaze 

direction in others can be severely altered as a consequence of adaptation. Above 

the pure demonstration of this, adaptation studies have made major contributions to 

the understanding of how eye gaze directions are neurally represented. 

2.2.4 Gender Adaptation 

The first study reporting aftereffects of adaptation to face gender was published 

by Webster, Kaping, Mizokami, and Duhamel (2004). They investigated the effects of 

adaptation to male or female faces on forced-choice gender decisions in response to 
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images morphed along a male-female-continuum between the adaptor faces. Before 

and after adaptation, Webster et al. (2004) determined participants’ individual cate-

gory boundaries for that continuum, i.e. the morph levels at which both gender deci-

sions were equally likely. Before adaptation, this boundary represented an androgy-

nous image in an intermediate position between the female and male exemplars. Af-

ter participants had adapted to male faces the category boundary was again deter-

mined and was found to be shifted towards the gender of the adapting stimulus, i.e. 

after adaptation to a male face, the previously ambiguous image appeared distinctly 

female. Analogous results were reported for adaptation to female faces. In order to 

rule out the explanation that observers only adapted to differences defining individual 

identity, Webster et al. (2004) repeated the experiment with a new set of adaptation 

stimuli. In this new experiment, identities of test stimuli were unrelated to the identi-

ties of adaptation stimuli. This manipulation did not have an influence on the gender 

adaptation effects: again, category boundaries were significantly shifted after adapta-

tion, suggesting that the observed effects indeed reflected response changes of neu-

ral mechanisms underlying gender perception. Above that and consistent with other 

studies reporting an own-gender bias in sex discrimination, Webster et al. (2004) ob-

served large individual differences in the category boundaries chosen during pre-

adaptation trials. These differences were related to the categories to which the par-

ticipants themselves belonged: female and male participants tended to choose gen-

der boundaries in a male-female continuum that were shifted towards their own gen-

der, indicating that observers may generally be more sensitive to how a face from 

their own category differs from others.  

Following the rationale of a study investigating opposite adaptation effects for 

upright and inverted faces (Rhodes et al., 2004), Little, DeBruine, and Jones (2005) 

tested whether opposite effects of adaptation could be observed for male and female 

faces. In three experiments they had participants adapt to male and female faces that 

were realistically transformed in opposite directions with regard to their eye spacing, 

facial identity, or masculinity. They found gender-contingent face aftereffects in all 

three experiments. For example, adaptation to female faces with increased eye-

spacing and to male faces with decreased eye-spacing induced simultaneous oppo-

site aftereffects for male and female faces. Participants perceived female faces with 

increased eye-spacing as more normal than females with decreased eye-spacing 

whereas at the same time they perceived male faces with decreased eye-spacing as 
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more normal than male faces with increased eye-spacing. These findings strongly 

suggest that distinct neural populations code subcategories of gender, namely male 

and female faces, as already proposed by Rhodes et al. (2003) and are not in line 

with the idea of one single face-space representing both male and female faces 

(Johnston, Kanazawa, Kato, & Oda, 1997). 

Bestelmeyer et al. (2008) conducted a study further investigating gender-

contingent aftereffects. They examined whether the differential aftereffects reported 

by Little et al. (2005) were really ‘category-contingent’, i.e. whether they were selec-

tive for the perceptual categories of male and female faces, or whether they were 

‘structure-contingent’ and mainly reflected an adaptation of neurons coding structural 

aspects of faces which happen to be different for male and female faces. In order to 

answer this question, the authors examined whether opposite aftereffects could 

equally be observed for two groups of faces from distinct gender categories (i.e. male 

and female faces) and for two groups of faces of the same gender with structural dif-

ferences that were physically identical to those between male and female categories 

(i.e. female and hyper-female). The authors found negative aftereffects only for the 

across-category but not for the within-category group and concluded that the gender-

contingent aftereffects reported earlier could be attributed to adaptation of neurons 

coding perceptual gender category rather than high-level structural aspects in face 

configurations. 

Kovács et al. (2006) investigated the neural correlates of face and hand gender 

adaptation processes. They had participants adapt to female faces, female hands, or 

control stimuli. The behavioural results revealed clear negative aftereffects of adapta-

tion to female faces as compared to control adaptation stimuli replicating earlier stud-

ies. Interestingly, negative aftereffects of gender adaptation could also be observed 

for female hands. However, these aftereffects appeared to be category-specific as 

there were no aftereffects when the adaptor and test stimulus belonged to different 

categories: gender adaptation did not occur when a hand served as the adaptation 

stimulus and a face was used as test stimulus or vice versa. The analysis of ERPs in 

response to test stimuli revealed that adaptation to both hands and faces resulted in 

a strong and category-specific modulation of the N170 with reduced amplitudes and 

increased latencies following adaptation to hands or faces as compared to the control 

condition in which participants adapted to Fourier randomised versions of the adap-

tors. Kovács et al. (2006) therefore suggested that the modulation of the N170 com-
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ponent induced by face adaptation might be regarded as the primary correlate of 

shape-selective visual adaptation in humans.  

Kovács, Zimmer, Harza, Antal, and Vidnyanszky (2005) investigated the effects 

of adaptation to female stimuli presented in only one visual hemifield on the percep-

tion of gender-ambiguous test stimuli presented in the same (overlapping condition) 

or a different hemifield (non-overlapping condition). The authors showed that adapta-

tion resulted in a strong perceptual aftereffect in both cases, i.e. in both the overlap-

ping and non-overlapping condition test faces were perceived more masculine than 

in the pre-adaptation phase. However, adaptation effects were not completely inde-

pendent of the locations of adaptation and test stimulus: the magnitude of the afteref-

fect was significantly larger when the adaptor and test faces were spatially overlap-

ping than when they were not overlapping. The ERPs recorded in this experiment 

also revealed that adaptation to a female face stimulus as compared to a control 

stimulus (a Fourier image) had a significant effect on the amplitude of the N170 com-

ponent evoked by the test stimulus (cf. Kovács et al., 2006). Kovács et al. (2005) 

found that the N170 amplitudes in the non-adapted condition were significantly larger 

than N170 amplitudes in both the overlapping and non-overlapping adaptation condi-

tions.  

When analysing N170 amplitudes separately for the two hemispheres, they 

found that the adaptation effects over the left hemisphere were significantly larger in 

the overlapping than in the non-overlapping conditions. For the right hemisphere, 

however, no such position-specific differences were found. Finally, separate analyses 

were conducted on the N170 amplitudes evoked by ipsilaterally and contralaterally 

presented test stimuli. For contralateral test stimuli, they revealed that N170 adapta-

tion effects over both hemispheres were significantly larger in the overlapping than in 

the non-overlapping condition. For ipsilateral test stimuli, however, N170 adaptation 

effects were significantly larger in the non-overlapping than in the overlapping condi-

tion over the right, but not over the left hemisphere. 

Overall, the authors concluded that effects of gender adaptation consist of a po-

sition invariant and non-invariant component (see also Zhao & Chubb, 2001 for simi-

lar effects concerning size invariance of the face distortion aftereffect). Concerning 

their finding of major differences in N170 adaptation effects between spatially over-

lapping and non-overlapping adaptor and test stimuli over the hemisphere contralat-

eral to the test stimulus, Kovács et al. (2005) suggested that their behavioural adap-
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tation effects primarily resulted from the adaptation of shape-selective neural proc-

esses in the hemisphere contralateral to the test stimulus. 

This result may be seen in some contradiction to earlier studies which reported 

other high-level face aftereffects to be independent of retinotopic mapping (Leopold 

et al., 2001; Jenkins et al., 2006). These studies, however, investigated identity or 

gaze direction aftereffects, whereas the study by Kovács et al. (2005) investigated 

gender aftereffects. The different findings might therefore, at least in part, be ex-

plained by the assumption that different facial aspects (e.g. identity, gaze direction, or 

gender) are processed by distinct neural entities (Haxby et al., 2000) that might be 

characterised by differences in their adaptation mechanisms.  

In a later study Kovács, Zimmer, Harza, and Vidnyanszky (2007) investigated 

whether adaptation duration had differential effects on position-specific and position-

invariant components of face gender aftereffects. In line with their earlier study 

(Kovács et al., 2005), they found facial aftereffects evoked by long-term adaptation (5 

s) to be characterised by both a position-invariant and a position-specific component. 

Short-term adaptation (500 ms), however, led to negative aftereffects that were en-

tirely position-invariant. Consistent with these behavioural findings, only the adapta-

tion effects on N170 amplitudes obtained after long-term adaptation were found to 

consist of a position-specific component – following short-term adaptation this was 

not the case. To sum up, the authors concluded that the timing of adaptation might 

be a critical factor in determining which cortical areas react to the adaptation proce-

dure (see also Fang, Murray, & He, 2007). 

As mentioned before, other kinds of social stimuli apart from facial information 

also support gender perception: Concerning voice perception, Schweinberger et al. 

(2008; see also Mullennix, Johnson, Topcu-Durgun, & Farnsworth, 1995) have re-

cently reported negative perceptual aftereffects following adaptation to gender in 

voices. In a series of experiments they showed that adaptation to unfamiliar male 

voices causes subsequently presented voices to be perceived as more female (and 

vice versa). In line with the findings of Kovács et al. (2006) adaptation effects did not 

occur across stimulus categories: Adaptation to female or male names or to silent 

videos of articulating female or male faces did not produce any aftereffects on the 

perception of subsequently presented voices. 

Similarly, the perception of biological motion which has also been proved a reli-

able source for gender discrimination (Barclay et al., 1978; Kozlowski & Cutting, 
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1977) has been shown to be biased by adaptation. Adaptation to the gait pattern of 

one gender biased participants to judge subsequent gait patterns as representing the 

opposite gender (Jordan et al., 2006). After viewing a male point light walker (PLW) 

participants were more likely to judge a subsequently presented ambiguous PLW as 

female, and vice versa. 
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2.2.5 Summary and aim of the present studies 

To summarise, adaptation studies on basic physical stimulus characteristics 

have a very long tradition and have provided important insight into the coding 

mechanisms of different stimulus attributes, such as motion. The more recent finding 

of similar aftereffects in high-level vision evoked by complex visual stimuli such as 

faces has already been proved to be of equal value for perception research. To name 

only a few aspects, selective adaptation effects have been found for facial identity, 

facial gender, and eye gaze direction. Respectively, these studies revealed insight 

into the nature of representation of facial identities in terms of deviance from a proto-

typical face, the selective coding of male and female faces, and provided evidence 

that gaze direction is not only coded in terms of direct vs. averted gaze but that dis-

tinct cell populations selectively process left and right gaze.  

Research combining adaptation paradigms with modern electrophysiological 

and neuroimaging methods is only at its beginning; however, first studies have al-

ready been published and revealed promising new approaches to understanding the 

processing of complex visual stimuli. Although the investigation of shape-specific 

high-level adaptation effects is only a relatively recent development, there are already 

a number of studies investigating adaptation in fMRI whereas the electrophysiological 

correlates of high-level adaptation have so far hardly been examined. Whereas first 

studies on the neural correlates of gender adaptation proved that the application of 

both methods can be successfully combined (Kovács et al., 2006), the investigation 

of ERP correlates of other adaptation effects has so far been neglected. This is es-

pecially surprising as electrophysiological studies have a long tradition in face per-

ception research which has led to the possibility of comparing new adaptation-related 

findings to well-established effects.  

The studies described in this thesis were designed in order to close that gap. 

Studies 1 and 2 investigated the electrophysiological correlates of the eye gaze ad-

aptation effect. Study 3 aimed at a further investigation of the nature of high-level ad-

aptation effects in describing temporal aspects of gaze adaptation. Whereas the tem-

poral aspects of low-level adaptation have been thoroughly examined, a close moni-

toring of the duration of high-level aftereffects and the time course of their decline has 

not yet been performed. Aiming at a further comparison of the characteristics of low-
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level and high-level adaptation effects, Study 3 therefore investigated gaze adapta-

tion effects with a paradigm modified to capture long-term effects of adaptation. 

Finally, Study 4 investigated the neural correlates of adaptation to both face and 

voice gender on the perception of faces and aimed at a deeper understanding of the 

modality-specificity of gender adaptation effects. The study also further tested a 

methodological modification of the ERP adaptation paradigm which had first been 

applied in Study 2. This new experimental condition aimed at disentangling the rela-

tive influences of general face adaptation and adaptation to specific facial character-

istics (i.e. eye gaze direction and the gender of a face, respectively).The application 

of this modification in Study 4 therefore allowed to judge the general benefit of the 

methodological improvement outside the field of gaze perception.  
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33..  Experiment 1: Neural correlates of gaze adaptation I 

3.1 Introduction 

As has been described in greater detail in the main introduction (see chapter 

2.1.2) the efficient perception of other people’s gaze direction has been shown to be 

of special importance for social interactions. Eye gaze is a key signal for exercising 

social control, it is used to estimate the focus of spatial attention in others, and is able 

to trigger fast ‘reflexive’ attentional shifts in observers (e.g. Friesen & Kingstone, 

1998; Schuller & Rossion, 2001). There is evidence from neurophysiological research 

suggesting that gaze signals may be processed by a specific neuronal circuitry in-

volving areas in the superior temporal sulcus, in which cells selectively responding to 

different directions of gaze have been identified in macaques (Perrett et al., 1992). 

Functional imaging studies propose that regions within the same structures are also 

involved in gaze perception in humans (Hoffman & Haxby, 2000). A posterior region 

within human superior temporal sulcus might be sensitive to observing eye move-

ments in others (Puce & Perrett, 2003).  

The investigation of ERP correlates of gaze perception provided some evidence 

that the perception of the eye region is mainly reflected in the occipitotemporal N170 

component. Several studies reported the N170 amplitude and latency evoked by iso-

lated eye stimuli as being enhanced as compared to the presentation of full faces 

(Bentin et al., 1996; Itier et al., 2006; Itier, Alain, Sedore, & McIntosh, 2007b; Jemel 

et al., 1999) and it has even been suggested that the N170 face inversion effect is 

mainly due to the inversion of the eye region (Doi et al., 2007; Itier et al., 2006; Itier et 

al., 2007b). Faces with closed eyes were found to evoke a significantly delayed N170 

as compared to both averted and direct gaze (Taylor et al., 2001). Studies directly 

assessing the processing of gaze direction found larger N170 amplitudes in response 

to eye aversion than in response to direct eye gaze (Itier et al., 2007a; Puce et al., 

2000; Watanabe et al., 2002; but see Conty, N'Diaye, Tijus, & George, 2007, for a 

study reporting opposite results). Together, these findings accumulated support for 

the hypothesis that the N170 might reflect the activity of an eye detector (Bentin et 

al., 1996; see also Itier et al., 2006) but it remains unclear how precisely the percep-

tion of gaze direction and gaze movements in others is coded in brain activity. 

Recently, a powerful adaptation effect was demonstrated for the perception of 

eye gaze: Adaptation to lateral gaze (25°) virtually eliminated observers’ perception 
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of smaller gaze deviations (5° and 10°) in the adapted direction; gaze to that side 

was erroneously perceived as gazing directly at the observer (Jenkins et al., 2006). 

The finding of very similar results in another study (Seyama & Nagayama, 2006) us-

ing different stimulus materials and experimental parameters suggests that gaze di-

rection aftereffects can reliably be observed under various conditions (see chapter 

2.2.3, for a detailed comparison of the two studies). 

Experiment 1 aimed at extending these novel gaze adaptation effects by intro-

ducing a short time interval between adaptation and test stimuli both to ensure a 

clean ERP baseline and to test whether gaze adaptation effects will survive the short 

interval, and by investigating the neural correlates of adaptation using event-related 

potentials. The focus was primarily on the face-elicited N170 due to the strong evi-

dence that this component is driven by the eye region and is thought to be at least 

partially generated by the posterior superior temporal sulcus region in tasks that in-

volve the perception of eye movements in others (Puce et al., 2000). 

3.2 Methods 

Participants  

Ten naïve participants (19 to 26 years, M = 22.3 years, 3 men) contributed data 

and received course credit or payment for their participation. They all reported normal 

or corrected-to-normal vision and were right-handed according to the Edinburgh 

Handedness Inventory (Oldfield, 1971). Participants gave their informed consent prior 

to the data acquisition. 

Stimuli 

Test faces were colour photographs of 6 male and 6 female young adults used 

in a previous study (Jenkins et al., 2006). Each model posed at three different angles 

of gaze: 5° left (L05), direct (S00), and 5° right (R05; all directions from the ob-

server’s point of view). Photos of the same 12 models gazing 25° to the left (L25) or 

right (R25) were also available, and were used as adaptation stimuli (for an example 

of the stimuli, please see Figure 7). Test faces (10.3 x 17.5 cm) were presented at a 

viewing distance of ~87 cm which was kept constant by using a chin rest. In order to 

exclude the possibility that the observed effects mainly reflect effects of low-level ad-

aptation, adaptation stimuli were presented at 90% the size of the other stimuli so 

that the eye regions in adaptation and test stimuli were non-overlapping. 
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L25 R25 

L05 S00 R05 
 

Figure 7: Example of gaze directions used in Experiment 1. Upper row: Faces with gaze deviations of 25° left and 
25° right were used as left and right adaptors, respectively. Lower row: Stimuli gazing 5° left, directly at the ob-
server, or 5° right served as test stimuli. 

 

Apparatus 

ERPs were recorded on 32 Ag/AgCl electrodes (AC, 0.05 – 40 Hz, 250 Hz 

sampling rate) at the positions Fz, Cz, Pz, Iz, Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, 

O2, F7, F8, T7, T8, P7, P8, F9, F10, FT9, FT10, TP9, TP10, P9, P10, PO9, and 

PO10, with TP10 as initial common reference, using an Easy-CapTM. Electrode im-

pedances were kept below 10 kΩ. The horizontal electrooculogram (EOG) was re-

corded from the outer canthi of both eyes, and the vertical EOG was monitored bi-

polarly from above and below the right eye. Data were segmented into epochs of 

2200 ms (200 ms prestimulus baseline). Offline, trials were visually inspected for ocu-

lar (e.g. blinks, saccades) and non-ocular artifacts. Trials with non-ocular artifacts 

and saccades were discarded. For all other trials, ocular blink contributions to the 

EEG were corrected in KN using a regression method (Elbert, Lutzenberger, Rock-

stroh, & Birbaumer, 1985). ERPs were digitally low-pass filtered at 10 Hz (zero phase 

shift, 12 dB/oct), and recalculated to average reference.  
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Task and Procedure 

The experiment began with a pre-adaptation test to determine the baseline 

ability to identify gaze direction. Using right index, middle, and ring fingers on three 

response keys, participants indicated if a test face showed left, direct, or right gaze 

direction. All 36 test faces (12 identities x 3 gaze directions) were repeated 3 times 

in random order. For each trial, a question mark was first presented (800 ms), was 

then replaced by the test face (400 ms), followed by a blank screen for 2250 ms dur-

ing which participants responded. 

Two adaptation blocks (left or right adaptation, block order counterbalanced 

across participants) followed the pre-adaptation test. In each block, twelve adaptation 

stimuli with gaze averted 25° in one constant direction were presented twice in ran-

domised order. Exposure duration was 3500 ms each with an inter-stimulus interval 

of 200 ms. Each adaptation sequence was immediately followed by a post-adaptation 

test. This was the same as the pre-adaptation test, except that each test stimulus 

was preceded by two consecutive top-up adaptation displays (3500 ms each). In or-

der to exclude potential effects of immediate repetition priming (Schweinberger et al., 

2004) neither of the two top-up adaptation stimuli carried the same identity as the 

following test face. To address the issue of whether adaptation would survive a short 

time interval, and to ensure a clean ERP baseline interval, a 1000 ms interval sepa-

rated the offset of the second top-up adaptation display and the onset of the test dis-

play. 

3.3 Results 

3.3.1 Behavioural Results 

In the pre-adaptation test, participants were highly accurate at discerning direct 

gaze (M = 90.8 ± 8.6%), and fairly accurately classified left (M = 70.3 ± 15.6%) and 

right gaze (M = 71.0 ± 19.2%). After adaptation to gaze averted 25° in one direction, 

however, perception of gaze directed to that side was nearly eliminated (M = 3.4% 

and M = 8.1% for left and right gaze, respectively), and gaze in the adapted direction 

was perceived as looking directly at the observer in ~90% of the trials (see Figure 8). 

An analysis of variance (ANOVA) on percentages of “direct” responses, with the fac-

tors Adaptation (left, right, pre-adaptation) and Test stimulus (left, right, direct) re-

vealed an interaction of Adaptation and Test stimulus, (F[4, 36] = 151.5, p < .001). 
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This was due to a strong increase of “direct” responses to left gazing test faces after 

left adaptation as compared to the pre-adaptation test (t[9] = 10.3, p < .001), and a 

strong increase of “direct” responses to right gazing test faces after right adaptation 

as compared to the pre-adaptation test (t[9] = 8.5, p < .001). 
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Figure 8: Percentages of “direct” responses (mean across 10 observers) for the three different gaze angles of test 
faces. Responses are displayed, depending on whether test faces were shown before adaptation (solid lines) or 
after adaptation to either left (dotted lines) or right (dashed lines) eye gaze. 

 

3.3.2 Electrophysiological Results 

For ERPs to test faces, mean amplitudes in the time segment 90-130 ms 

(P100) were calculated at 8 occipitotemporal electrodes (O1, O2, TP9, TP10, P9, 

P10, PO9, and PO10). Mean amplitudes for time segments 150-200 ms (N170) and 

250-350 ms were taken at 8 posterior electrodes (P7, P8, TP9, TP10, P9, P10, PO9, 

and PO10). Peak latencies of P100 and N170 were determined at PO10 (80-150 ms 

and 130-220 ms windows). 

P1 

Analogous ANOVAs as for behavioural data were run with the additional factors 

Electrode site and Hemisphere. There was a significant effect of adaptation on the 

P100 (F[2, 18] = 6.7, p < .01, see Figure 9). While the P100 amplitude was signifi-

cantly more positive after both left- and right-adaptation relative to the pre-adaptation 

test (p < .01), P100 amplitude was equivalent after left- and right-adaptation blocks (p 

> .20). 
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Effects of adaptation on P100 latency (F[2, 18] = 51.3, p < .001) reflected 

shorter latencies for pre-adaptation blocks (M = 122.4 ± 6.8, 123.7 ± 8.5, and 111.3 ± 

7.3 ms for left-, right-, and pre-adaptation, respectively). No further effects or interac-

tions were found (all ps > .20), and there were no differences between left- and right-

adaptation blocks (p > .20). 

N170 

Similar to the results obtained for the P1 time window, there was an effect of 

adaptation on N170 amplitude, both as a main effect (F[2, 18] = 4.5, p < .05) and in 

interaction with Site (F[6, 54] = 15.5, p < .001), however, this was entirely due to the 

fact that N170 amplitude was significantly smaller following both left- and right-

adaptation relative to the pre-adaptation test (see Figure 9). N170 was equivalent for 

left- and right-adaptation blocks (p > .20). 

Effects of adaptation on N170 latency were also significant (F[2, 18] = 17.3, p < 

.001), again with shorter latencies for pre-adaptation blocks (M = 186.9 ± 17.3, 189.3 

± 19.1, and 170.4 ± 13.5 ms for left-, right-, and pre-adaptation blocks, respectively). 

No further effects or interactions were found (all ps > .20), and there were no latency 

differences between left- and right-adaptation blocks (p > .20). 

250–350 ms 

The 250-350 ms segment was the only time segment that revealed ERP differ-

ences between left- and right-adaptation blocks (F[3, 27] = 3.5, p < .05) for the inter-

action Adaptation x Site, due to a right posterior positivity following left- vs. right-

adaptation (see Figures 9 and 10). Note that this effect was similar across the test 

stimuli, and there was no interaction involving test stimulus (p > .20). 
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Direct (S00)Left (L05) Right (R05)

Figure 9: Grand average ERPs across 10 observers, for the three different gaze angles of test faces depending 

on whether these faces were shown before adaptation (pre-adaptation baseline, solid lines) or after adaptation to 

either left (dotted lines) or right (dashed lines) eye gaze. Recordings are shown for a selected set of posterior 

electrodes. Arrows indicate the N170 and the larger right positivity ~250 – 350 ms after adaptation to left vs. right 

gaze.  
 

 

Figure 10: Voltage maps (spherical spline interpolation, 110º equidistant projection) for the ERP difference (left- 
minus right-adaptation) averaged across test stimulus. Note the right posterior positivity (in blue) ~250-350 ms 
and the absence of direction-specific adaptation effects in the preceding P100 and N170 time segments. 
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3.4 Discussion 

The study demonstrated a striking adaptation effect to lateral eye gaze: the abil-

ity to perceive small gaze deviations was virtually eliminated after adaptation to gaze 

strongly diverted to the same direction. Intriguingly, the present adaptation effect was 

of similar size as the effect reported by Jenkins et al. (2006), despite the fact that a 1 

s interval had been introduced between adaptation and test stimulus, indicating that 

gaze adaptation effects survive a short time interval. However, the precise time 

course of gaze adaptation is as yet unclear, and researchers have only begun to 

study the time course of adaptation for other facial aspects (Leopold, Rhodes, Muller, 

& Jeffery, 2005).  

In spite of striking effects of gaze adaptation on the perception of test stimuli, 

and although the N170 has been linked to the perception of eyes (Itier et al., 2006; 

Itier et al., 2007b; Schyns, Jentzsch, Johnson, Schweinberger, & Gosselin, 2003), 

N170 was completely unaffected by the direction of prior gaze adaptation. To the ex-

tent that the present N170 in gaze perception is generated by posterior superior tem-

poral sulcus regions (Puce et al., 2000), this suggests that gaze adaptation does not 

modify processing ~170 ms in those regions. It is, however, important to note that 

despite the prominent role of the eye region for the N170, the sensitivity of N170 for 

gaze direction is also controversial; with some studies reporting larger N170 ampli-

tudes in response to averted eye gaze (Itier et al., 2007a; Puce et al., 2000; Wata-

nabe et al., 2002), others reporting larger amplitudes in response to direct gaze 

(Conty et al., 2007), and yet others reporting no difference in N170 amplitudes to di-

rect and averted gaze at all (Taylor et al., 2001).  

While there were no direction-specific effects of gaze adaptation on N170, 

smaller and later N170 responses were elicited by the same test faces during the 

post-adaptation blocks than during the pre-adaptation block. This unexpected finding 

may be tentatively ascribed to the fact that test faces were shown more than 3000 ms 

after a previous test face in the pre-adaptation block, but only 1000 ms after a previ-

ous top-up adaptor face in post-adaptation blocks. The reduced and delayed N170 in 

post-adaptation blocks might thus reflect adaptation of a mechanism that is sensitive 

to the detection of face-like stimuli (irrespective of specific information such as gaze, 

gender, or identity) and that is reflected in the N170 (Schweinberger et al., 2004). 

While this interpretation can be reconciled with previous results on adaptation for 

other types of facial information (Kovács et al., 2006), this issue clearly deserves fur-
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ther investigation. One implication for studies using ERPs (N170) to investigate facial 

adaptation is that these should use adaptation conditions which differ with respect to 

the adaptation-relevant information only (e.g., for gaze adaptation: left vs. direct vs. 

right gaze adaptors, for gender adaptation: male vs. androgynous vs. female adap-

tors), while faces are used as adaptors throughout.  

Despite the absence of direction-specific gaze adaptation effects on N170 there 

was a later adaptation effect ~250-350 ms over right posterior regions (which surpris-

ingly did not interact with the gaze direction of the test stimulus). This may be an in-

teresting parallel to a recent fMRI study of gaze adaptation, which also reported no 

adaptation effects on posterior superior temporal sulcus regions, whereas adaptation 

effects were found in more anterior superior temporal sulcus regions as well as the 

inferior parietal cortex (Calder et al., 2007). Overall, the present findings suggest that 

adaptation does not modify gaze processing ~170 ms in posterior superior temporal 

sulcus regions, but alters subsequent processes that may be mediated by more ante-

rior temporal areas of the right hemisphere. 
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44..  Experiment 2: Neural correlates of gaze adaptation II 

4.1 Introduction 

While the results of Experiment 1 did not provide evidence for a gaze direction-

specific modulation of the N170, they clearly showed some impact of the general ad-

aptation procedure on this component. Following adaptation to either gaze direction, 

the N170 was characterised by reduced amplitudes and increased latencies as com-

pared to pre-adaptation trials. Modulations specific for the gaze directions of the ad-

aptation stimuli were measured not earlier than ~250 – 350 ms with larger right pos-

terior positivity following adaptation to left than right direction. Surprisingly, this effect 

was found to be unaffected by the gaze direction of the test stimuli. Experiment 2 was 

designed to further examine the nature of gaze adaptation and to answer the major 

question concerning the nature of the N170 effect observed in Experiment 1. 

A possible way to account for the effects observed in the N170 time range is the 

assumption that they reflect adaptation to more general face-related information, 

such as the structural composition of faces per se. This is in line with the general idea 

of the N170 as predominantly reflecting the processing of structural (or configural) 

face information in upright face stimuli (Bentin et al., 1996; Kanwisher & Moscovitch, 

2000; Rossion et al., 2000). To examine this hypothesis the adaptation procedure of 

Experiment 2 was modified in a way that allows for a comparison of the effects of 

adaptation to a certain gaze direction (i.e. adaptation to right gaze) and to a direction-

neutral adaptation condition (i.e. adaptation to direct gaze) which replaced the control 

(pre-adaptation) condition of Experiment 1. This modification solves the major me-

thodical concern related to Experiment 1, namely the different quantity of general 

face information that preceded test stimuli in the pre- and post-adaptation phases. 

More precisely, the control condition applied in Experiment 2 contains a series of ‘ad-

aptation’ faces and top-up stimuli presented before each test face. These adaptation 

and top-up stimuli, however, do not contain directional eye gaze information but they 

consist of faces gazing directly at the observer. 

Another major change compared to Experiment 1 is related to the choice of ad-

aptation stimuli. Considering the fast neural recovery of adaptation (which is the ma-

jor basis of fMRI adaptation paradigms), it might be possible that the relatively small 

influence of adaptation found on the ERPs to test faces in Experiment 1 was due to 

the large perceptual difference between adaptation and test stimuli used. Participants 
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adapted to faces showing strongly averted eye gaze (25°), they were, however, 

tested with faces showing only slightly averted eye gaze (5°). Therefore, it has to be 

considered that the presentation of only marginally deviating eye gaze in the test 

condition may generally have led to nearly complete recovery from adaptation of neu-

rons responding to eye gaze that largely deviates from direct gaze. This recovery 

process might have covered the activity of neurons responsible for the behaviourally 

found adaptation effects. More precisely, it is possible that the adaptation procedure 

affected the response characteristics of a larger number of neurons than those re-

sponsible for the behaviourally found adaptation effect and that the recovery of adap-

tation in this additional number of neurons might have made it difficult to detect the 

relatively small change in response properties of the neurons that still showed some 

residual influence of the adaptation procedure. To account for this potential draw-

back, the effects of adaptation to stimuli with relatively small gaze deviations (10°) on 

the perception of test stimuli with smaller or identical gaze angles (5° and 10°) have 

been investigated in Experiment 2. 

Finally, in order to more directly monitor the process of adaptation itself, Ex-

periment 2 also directly examined ERPs in response to the adaptation stimuli. This 

allowed for a characterisation of the immediate effects of adaptation without possible 

influences of recovery processes. 

4.2 Methods 

Participants 

Twenty naïve participants (20 to 28 years, M = 22.7 years, 10 men) which were 

right-handed according to the Edinburgh Handedness Inventory (Oldfield, 1971) con-

tributed data and received course credit or payment for their participation. They all 

reported normal or corrected-to-normal vision and gave their informed consent prior 

to data acquisition. 

Stimuli 

Test faces were colour photographs of the same 6 male and 6 female young 

adults as used in Experiment 1 and a previous study (Jenkins et al., 2006). Each 

model posed at five gaze angles: 10° left (L10), 5° left (L05), direct (S00), 5° right 

(R05), and 10° right (R10; all directions from the observer’s point of view). A subset 

of these stimuli also served as adaptation stimuli: The stimuli showing direct gaze 
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(S00) served as control (direct) adaptors and the stimuli showing 10° gaze deviation 

to the right (R10) served as right adaptors.  

Test faces (8.0 x 14.0 cm) were presented at a viewing distance of ~87 cm 

which was kept constant by using a chin rest. Adaptation stimuli were presented at 

150% the size of test stimuli so that the eye regions in adaptation and test stimuli 

were non-overlapping. 

Apparatus 

The EEG was recorded from 32 Ag/AgCl electrodes (AC, 0.05 – 40 Hz, 250 Hz 

sampling rate) at locations Fz, Cz, Pz, Iz, Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, 

F7, F8, T7, T8, P7, P8, F9, F10, FT9, FT10, TP9, TP10, P9, P10, PO9, and PO10, 

with TP10 as initial common reference, using an Easy-CapTM. Electrode impedances 

were kept below 10 kΩ. The horizontal electrooculogram (EOG) was recorded from 

the outer canthi of both eyes, and the vertical EOG was monitored bipolarly from 

above and below the right eye. Offline, data were segmented into epochs of 2200 ms 

(200 ms prestimulus baseline) and trials were inspected for ocular (e.g. blinks, sac-

cades) and non-ocular artifacts. Trials with non-ocular artifacts were discarded. For 

all other trials, the EEG was corrected for contributions of vertical and horizontal eye 

movements using BESAs automatic EOG artifact correction which is based on an 

adaptive artifact correction (Ille, Berg, & Scherg, 2002). Data were digitally low-pass 

filtered at 20 Hz (zero phase shift, 12 dB/oct), and recalculated to average reference.  

Task and Procedure 

The experiment began with a pre-adaptation test (identical to the one in Ex-

periment 1) which was announced as a block of practice trials. The results allowed 

determining participants’ baseline ability to identify eye gaze direction without any 

prior adaptation. Using right index, middle, and ring fingers on three response keys, 

participants indicated whether a test face showed left, direct, or right gaze direction. 

Altogether, ‘practice trials’ consisted of 72 test faces, with each of the twelve identi-

ties presented once in each of the L10, L05, R05, and L10 conditions and twice in 

the S00 condition. For each trial, a question mark was first presented (800 ms), was 

then replaced by the test face (400 ms), followed by a blank screen (2250 ms) dur-

ing which participants responded. The implementation of this pre-adaptation test 

aimed at comparing its results to the behavioural data recorded in the new control 

condition – the direct gaze adaptation condition – therefore allowing the examination 
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of possible effects of adaptation to direct gaze. During this stage of the experiment 

no EEG was recorded. 

The major experiment consisted of two main blocks: One half of the experiment 

investigated the effect of adaptation to direct eye gaze, the other half examined the 

effect of adaptation to right eye gaze direction – with block order counterbalanced 

across participants. At the beginning of each block, twelve adaptation stimuli with 

gaze constantly directed in the direction of adaptation were presented twice in ran-

domised order. Exposure duration was 3500 ms each with an inter-stimulus interval 

of 200 ms. This sequence was immediately followed by a post-adaptation test with 

216 test trials. These test trials consisted of 36 presentations (12 identities x 3 repeti-

tions) of L10, L05, R05, and R10 stimuli respectively and of 72 presentations (12 

identities x 6 repetitions) of S00 stimuli. The presentation of an equal number of test 

stimuli gazing in the left direction (L10, L05), right direction (R10, R05), and directly at 

the observer (S00) aimed at requiring an equal amount of “left”, “right”, and “direct” 

responses therefore preventing participants from a response bias. Post-adaptation 

trials began with the presentation of a top-up adaptation display (3500 ms) which did 

not carry the same identity as the subsequently presented test face, followed by the 

presentation of a question mark (1000 ms), the test stimulus (400 ms), and a blank 

screen during which participants responded (2300 ms). To maintain a high level of 

adaptation throughout the post-adaptation test the blocked presentation of adaptation 

stimuli was repeated after 108 trials. After each series of 54 post-adaptation test trials 

the experiment was interrupted for a self-paced break. 

4.3 Results 

4.3.1 Behavioural Results 

First, the patterns of “direct” classifications obtained in the pre-adaptation test 

(no adaptation condition) and in the control condition (direct adaptation condition) 

were analysed (see Table 1 and Figure 11). A repeated measurements ANOVA with 

the factors Adaptation (no, direct) and Direction of gaze in test faces (L10, L05, S00, 

R05, and R10) revealed no main effect of adaptation (F[1, 19] < 1) and no significant 

interaction with this factor (F[4, 76] < 1). This finding indicates that adaptation to di-

rect gaze did not lead to aftereffects, and that the direct gaze adaptation condition 

can therefore serve as a neutral control condition for the main experiment.  
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left gaze direction direct gaze right gaze direction

  
10° deviance 5° deviance     5° deviance 10° deviance 

Pre-Adaptation 
Baseline 2.50 (1.06) 29.17 (3.05) 85.62 (2.45) 36.25 (4.33) 3.33 (1.27) 

Post-Direct 
Adaptation 1.81 (0.61) 28.33 (2.93) 89.65 (1.64) 33.47 (5.45) 5.97 (2.43) 

Post-Right 
Adaptation 1.39 (0.68) 20.00 (3.02) 84.58 (2.63) 64.17 (5.18) 13.33 (3.65) 

Table 1: Mean percentages of “direct” classifications in response to test stimuli with left (5°, 10°), direct, and right 
(5°, 10°) gaze direction as obtained in the pre-adaptation baseline, the post-direct adaptation, and the post-right 
adaptation conditions (see also Figure 11). 

 

In a second step, the behavioural results of the main experiment were analysed 

in a repeated measurements ANOVA. As participants were presented with an equal 

amount of test stimuli gazing to the left, right, and directly at the observer but only 

test stimuli gazing to the left or right were further characterised by a different degree 

of deviance from direct gaze (5°, 10°), behavioural data were analysed in two steps. 

In the first step, a repeated measurements ANOVA was conducted to analyse the 

effects of adaptation on the perception of test stimuli gazing in the left or right direc-

tion – including an analysis of the effect of deviance. This ANOVA with the factors 

Adaptation (direct, right), Deviance (5°, 10°), and Direction (left, right) revealed sig-

nificant main effects of adaptation (F[1, 19] = 17.50, p < .01), deviance (F[1, 19] = 

172.09, p < .001), and direction (F[1, 19] = 23.14, p < .001). Further, there were sig-

nificant two-way interactions between the factors Adaptation and Deviance (F[1, 19] 

= 6.19, p < .05), Adaptation and Direction (F[1, 19] = 97.32, p < .001), Deviance and 

Direction (F[1, 19] = 30.99, p < .001), and a significant interaction between all three 

factors (F[1, 19] = 54.17, p < .001).  

In order to further examine this three-way interaction, separate ANOVAs were 

conducted for left and right gazing test stimuli with Adaptation and Deviance as fac-

tors. The analyses of responses to test stimuli of both test directions revealed signifi-

cant main effects of adaptation (F[1, 19] = 5.84, p < .05 and F[1, 19] = 63.89, p < 

.001, for analyses of responses to test stimuli with left and right gaze direction, re-

spectively), main effects of deviance (F[1, 19] = 104.55, p < .001 and F[1, 19] = 

144.10, p < .001), and significant interactions between the factors (F[1, 19] = 5.82; p 

< .05 and F[1, 19]= 31.22; p < .001). Further analyses of the interactions revealed 

that test stimuli with right gaze direction received significantly more incorrect “direct” 



Experiment 2: Neural correlates of gaze adaptation II 55 

classifications when presented following adaptation to right direction as compared to 

direct gaze adaptation – the difference was significant for both test stimuli deviating 

5° (t[19] = 7.72, p <. 001) and 10° from direct gaze (t[19] = 3.58, p < .01, for means 

see Table 1). For test stimuli with left gaze direction this pattern was reversed and 

there were significantly more incorrect “direct” classifications following adaptation to 

direct gaze as compared to right gaze adaptation, but only for test stimuli deviating 5° 

from direct gaze (t[19] = 2.47, p < .05) and not for test stimuli deviating 10° from di-

rect gaze (p > .5, for means see Table 1).  
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Figure 11: Percentages of “direct” responses (mean across 20 observers) for the five different gaze angles of test 

faces. Responses are displayed depending on whether test faces were shown before adaptation (blue) or after 

adaptation to either direct (black) or right (red) gaze direction. Please note the almost identical response pattern 

obtained in the pre-adaptation and post-direct adaptation tests and the increase of incorrect “direct” classifications 

of test stimuli with right gaze following adaptation to that direction. 

 

Finally, the responses to trials showing direct gaze were analysed separately. 

Bonferroni-corrected t tests were conducted in order to examine the classifications of 

test stimuli with direct gaze after direct and right gaze adaptation, respectively. These 

analyses revealed that the numerical reduction in correct classifications of direct gaze 

after right adaptation (M = 84.6%) as compared to direct adaptation (M = 89.7%) did 

not reach conventional levels of significance (p = .06). However, there was a signifi-

cant decrease in incorrect “right” classifications of direct gaze following right (M = 
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0.3%) as compared to direct gaze adaptation (M = 2.6%, t[19] = -4.21, p < .05) as 

well as a significant increase in incorrect “left” classifications following right (M = 

14.8%) as compared to direct adaptation (M = 7.0%, t[19] = 3.51, p < .05). For an 

overview of the results, please see Table 1 and Figure 11. 

4.3.2 Electrophysiological Results 

For ERPs to test faces, mean amplitudes1 in the time segment 92 - 132 ms 

(P100) were analysed at 8 occipitotemporal electrodes (O1, O2, P9, P10, PO9, 

PO10, TP9, and TP10). Mean amplitudes for time segments 150 - 190 ms (N170), 

205 - 245 ms (P2), and 250 – 350 ms were taken at 8 posterior electrodes (P7, P8, 

TP9, TP10, P9, P10, PO9, and PO10). The time segments were defined by the inter-

val of ± 20 ms placed around the peak latency (defined at the electrode in the grand 

average where the respective ERP-component was maximal). Finally, mean ampli-

tudes in the time interval of 400 – 600 ms were analysed for electrode locations F3, 

Fz, F4, C3, Cz, C4, P3, Pz, and P4. Where appropriate, epsilon corrections for het-

erogeneity of covariances were performed (Huynh & Feldt, 1976). All post-hoc t tests 

were corrected according to the Bonferroni-procedure (α = .05). 

P1 

Following the rationale of the analysis of behavioural results, P1 mean ampli-

tudes in response to test faces were first analysed in a repeated measurements 

ANOVA with Electrode site (O1/O2, P9/P10, PO9/PO10, and TP9/TP10), Hemi-

sphere (left, right), Adaptation condition (direct, right), Deviance (5°, 10°), and Direc-

tion of test gaze (left, right) as factors. The analysis revealed a significant main effect 

of electrode site (F[3, 57] = 44.22, p < .001) and a significant main effect of adapta-

tion (F[1, 19] = 6.37, p < .05). 

As there was no interaction of the factors Deviance and Adaptation, mean am-

plitudes obtained in the conditions L05 and L10 as well as R05 and R10 were col-
                                            
1 For the clearly pronounced P1 and N170 components all analyses were also performed on 

peak amplitudes. For P1, peak amplitudes were measured at electrodes O1 and O2 as largest individ-

ual positivities in the time window of 90 – 130 ms. For N170, peak amplitudes were individually deter-

mined for each participant and hemisphere as amplitudes at the latency of the maximal negative peak 

between 150 – 200 ms within electrodes P7, P9, PO9, and TP 9 as well as P8, P10, PO10, and TP10, 

respectively. If not otherwise stated, these analyses led to the same effects as those on mean ampli-

tudes reported here. 
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lapsed across gaze deviances and further analysed in a new ANOVA with the factors 

Electrode site, Hemisphere, Adaptation condition, and Direction of test gaze (left, di-

rect, right). This analysis therefore examined the effects of adaptation on the percep-

tion of test stimuli of all three gaze directions with an equal number of trials in all 

three conditions. The analysis revealed significant main effects of site (F[3, 57) = 

45.25, p < .001) and adaptation condition (F[1, 19] = 7.67, p < .05), reflecting small 

but significant P1 amplitude differences between trials following direct gaze adapta-

tion (M = 3.05 μV) and right adaptation (M = 2.90 μV, please see Figures 12 and 13). 

The analysis of P1 latencies at electrodes O1 and O2 in both a 2 x 2 x 2 x 2 – 

ANOVA with Hemisphere, Adaptation condition, Deviance (5°, 10°) and Direction 

(left, right) as factors and a 2 x 2 x 3 – ANOVA with Hemisphere, Adaptation condi-

tion, and Direction (left, direct, and right) revealed no significant effects (all ps > .05). 

N170 

Figures 12 and 13 depict ERPs following adaptation to direct and right gaze di-

rection for test faces with left, direct, and right gaze direction at electrode locations 

P7, P8, P9, P10, PO9, PO10, TP9, and TP10. Visual inspection suggests that adap-

tation has small effects on N170 amplitudes, with test faces presented following ad-

aptation to right gaze direction evoking larger amplitudes than test faces presented 

after adaptation to direct gaze direction. This N170 amplitude effect appears to be 

strongest, yet only in the range of approximately 0.5 μV, for left gazing test stimuli, 

weaker for test stimuli with direct gaze direction, and hardly observable in response 

to right gazing test stimuli. N170 amplitudes were first statistically analysed in a re-

peated measurements 4 x 2 x 2 x 2 x 2- ANOVA with Electrode site (P7/P8, P9/P10, 

PO9/PO10, and TP9/TP10), Hemisphere (left, right), Adaptation condition (direct, 

right), Deviance (5°, 10°), and Direction (left, right) as factors. This analysis revealed 

a significant main effect of electrode site (F[3, 57] = 12.76, p < .001), a significant 

main effect of direction (F[1, 19] = 8.48, p < .01), and a significant three-way interac-

tion between the factors Electrode site, Adaptation condition, and Direction (F[3, 57] 

= 3.81, p < .05).  
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N170 N170 

 

Figure 12: Grand averages over 20 participants collapsed across deviance for ERPs to test stimuli gazing in the 
left (upper part) or right (lower part) direction after adaptation to either direct (solid lines) or right (dashed lines) 
gaze direction. Please note the N170 adaptation effect for left gazing stimuli at PO9/PO10 as indicated by arrows. 
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Figure 13: Grand Averages over 20 participants collapsed across deviance, for ERPs recorded in response to test 
stimuli gazing directly at the observer after adaptation to either direct (solid lines) or right (dashed lines) gaze 
direction. 

 

Again, the first analysis did not reveal an interaction of the factors Adaptation 

and Deviance2. Therefore, mean amplitudes obtained in the conditions L05 and L10 

as well as R05 and R10 were collapsed across gaze deviances and a new ANOVA 

was calculated with three levels of the factor Direction. This ANOVA on the factors 

Electrode site, Hemisphere, Adaptation condition, and Direction of test gaze (left, di-

rect, right) revealed significant main effects of electrode site (F[3, 57] = 12,43, p < 

                                            
2 The corresponding analysis of peak amplitudes, however, revealed a significant four-way in-

teraction of the factors Site, Hemisphere, Adaptation condition, and Deviance (F[3, 57] = 3.63, p < 

.05). Separate analyses of Adaptation condition x Deviance for each electrode site revealed a signifi-

cant main effect of adaptation only for electrode P8 (F[1, 19] = 6.26, p < .05). However, only visual 

inspection suggested that the larger N170 amplitude to test stimuli following right adaptation (as com-

pared to direct adaptation) were more pronounced in the 5° condition as compared to the 10° condi-

tion (F[1, 19] = 2.51, p = .13). 



Experiment 2: Neural correlates of gaze adaptation II 60 

.001) and direction (F[2, 38] = 3.72, p < .05), and a significant interaction of the fac-

tors Electrode site, Adaptation condition, and Direction (F[6, 114] = 2.62, p < .05). To 

analyse this interaction, separate analyses were conducted for the four different elec-

trode sites with Adaptation and Direction as factors. For P7/P8 the analysis revealed 

a trend towards a main effect of adaptation (F[1, 19] = 3.96, p = .06) reflecting larger 

N170 amplitudes following right (M = -2.06 μV) as compared to direct adaptation (M = 

- 1.87 μV, see Figures 12 and 13). At P9/10 the analysis revealed a significant main 

effect of Direction (F[2, 38] = 5.55, p < .01) due to significantly larger N170 ampli-

tudes in response to right gazing test stimuli (M = -3.37 μV) as compared to test 

stimuli showing both left (M = -3.14 μV, t(19) = 3.15, p < .05) and direct eye gaze (M 

= -3.15 μV, t(19) = 3.26, p < .05). At electrodes PO9/10 there was a strong trend to-

wards a significant interaction of the factors Adaptation and Direction (F[2, 38] = 3.20, 

p = .05) resulting from the fact that the larger N170 amplitudes following right as 

compared to direct adaptation only reached a level of significant difference for test 

stimuli showing left gaze (see Figures 12 and 13). Amplitudes evoked by these test 

stimuli were significantly larger following adaptation to right gaze direction (M = -0.95 

μV) as compared to following adaptation to direct gaze (M = -0.48 μV, t[19] = 2.54; p 

< .05). A separate analysis at electrodes TP9/TP revealed no significant effects (all 

ps > .09). 

The analysis of N170 latencies in a 2 x 2 x 2 x 2 - ANOVA with Hemisphere, 

Adaptation condition, Deviance (5°, 10°), and Direction (left, right) as factors revealed 

a significant three-way interaction between Hemisphere, Adaptation condition, and 

Deviance (F[1, 19] = 4.78, p < .01) due to a significant interaction between Adapta-

tion and Deviance in latencies obtained at left hemispheric (F[1, 19] = 5.96, p < .05) 

but not at right hemispheric electrodes (all Fs < 1). At left hemispheric electrodes 

N170 latencies evoked by stimuli deviating 10° from direct gaze were significantly 

delayed (M = 164.3 ms) as compared to 5° conditions (M = 160.8 ms) when pre-

sented after adaptation to direct gaze. Following adaptation to right gaze direction or 

at electrodes located over the right hemisphere, no such effect could be observed (F 

< 1). As this ANOVA revealed an interaction of the factors Adaptation condition and 

Deviance, data were not collapsed across deviances for the additional analysis in-

cluding responses to test stimuli with direct gaze. Instead, data considering these 

stimuli were analysed in a 2 x 2 x 5 – analysis with Hemisphere, Adaptation, and Di-
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rection (5° left, 5° right, 10° left, 10° right, and direct) as factors. This analysis re-

vealed no significant effects (all ps >.10). 

P2 

Figures 14 and 15 depict ERPs in response to test faces with left, direct, and 

right gaze direction in separate plots for trials following direct and right gaze adapta-

tion, respectively. Visual inspection suggests that right gazing test stimuli elicit 

smaller P2 amplitudes as compared to direct and left gazing test stimuli following di-

rect adaptation, whereas after adaptation to right eye gaze amplitudes evoked by 

right gazing test stimuli appear to be larger than those evoked by test stimuli gazing 

to the left or directly at the observer. 

 

 

Figure 14: Grand Average ERPs to test stimuli across 20 observers for a selected set of electrodes. Responses to 
the three different gaze directions (collapsed across deviance) following adaptation to direct eye gaze. Please 
note the smaller negativity between 250 and 350 ms (vertical lines) evoked by direct gazing test stimuli as com-
pared to test stimuli with left and right gaze direction. 
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Figure 15: Grand Average ERPs to test stimuli across 20 observers for a selected set of electrodes. Responses to 
the three different gaze directions (collapsed across deviance) following adaptation to right gaze direction. Please 
note the smaller negativity between 250 and 350 ms (vertical lines) evoked by right gazing test stimuli as com-
pared to test stimuli with left and direct gaze direction. 

 

In analogy to the earlier components, P2 amplitudes were first analysed in a re-

peated measurements 4 x 2 x 2 x 2 x 2- ANOVA with Electrode site (P7/P8, P9/P10, 

PO9/PO10, TP9/TP10), Hemisphere (left, right), Adaptation (direct, right), Deviance 

(5°, 10°), and Direction (left, right) as factors. This analysis revealed a significant 

main effect of Electrode site (F[3, 57] = 37.50, p < .001), a significant two-way inter-

action of Adaptation and Direction (F[1, 19]= 6.84, p < .05), a three-way interaction of 

Site, Hemisphere and Direction (F[3, 57] = 3.09, p < .05), and a four-way interaction 

of Electrode site, Hemisphere, Adaptation, and Direction (F[3, 57] = 3.49, p < .05). As 

there was no interaction of the factors Adaptation and Deviance, mean amplitudes 

obtained in the conditions L05 and L10 as well as R05 and R10 were collapsed 

across gaze deviances. Based on these data, a new ANOVA with the factors Elec-

trode site, Hemisphere, Adaptation, and Direction of test gaze (left, direct, and right) 

revealed a significant main effect of electrode site (F[3, 57] = 37.28, p < .001), a two-
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way interaction of Adaptation and Direction (F[2, 38] = 3.58, p < .05), and a three-way 

interaction of the factors Electrode site, Hemisphere, and Direction (F[6, 114] = 4.05, 

p < .01). Visual inspection of the mean amplitudes evoked by the three test gaze di-

rections after adaptation to either direct or right gaze suggests that the two-way inter-

action of Adaptation condition and Direction resulted from smaller, i.e. more negative, 

P2 amplitudes to right gazing test stimuli (M = -1.10 μV) as compared to direct gazing 

test stimuli (M = -0.87 μV) and left gazing test stimuli (M = -0.96 μV) following direct 

adaptation, whereas after adaptation to right eye gaze amplitudes evoked by right 

gazing test stimuli were larger, i.e. less negative (M = -0.90 μV) than those evoked by 

test stimuli gazing to the left (M = -1.13 μV) or directly at the observer (M = -1.03 μV, 

see Figure 14). However, it needs to be noted that the post-hoc t tests conducted in 

order to evaluate the statistical significance of the largest differences observed just 

failed to reach conventional levels of significance (t[19] = -2.07, puncorrected = .052, for 

comparison of amplitudes to right and direct gazing test stimuli after direct adapta-

tion, t[19] = -2.02, puncorrected = .058, for comparison of amplitudes to left and right gaz-

ing test stimuli after right adaptation). Finally, the interaction between Electrode site, 

Hemisphere and Direction was further analysed in separate analyses for each elec-

trode site. These revealed a significant interaction of Hemisphere and Direction at 

electrode site P7/8 (F[2, 38] = 5.13, p < .05) but not for the other electrode sites (all 

ps > .20). The significant interaction was due to the fact that at electrode P8 (but not 

at P7) amplitudes in response to test stimuli with direct gaze (M = 1.44 μV) were sig-

nificantly larger than those in response to test stimuli showing left gaze (M = 1.11 μV; 

t[19] = 2.37; p < .05, see Figures 14 and 15). 

250 – 350 ms 

Concerning effects of adaptation in a later time interval between 250 ms and 

350 ms, Figures 14 and 15 suggest that test stimuli gazing in the adapted direction 

evoked more positive amplitudes than test stimuli with eye gaze directed in the unad-

apted directions. This seems to be the case both for test stimuli with direct gaze fol-

lowing direct gaze adaptation and for stimuli gazing to the right following adaptation 

to right direction. 

Mean amplitudes in the time range of 250 - 350ms were analysed in a repeated 

measurements ANOVA with Electrode site (P7/P8, P9/P10, PO9/PO10, and 

TP9/TP10), Hemisphere (left, right), Adaptation (direct, right), Deviance (5°, 10°), and 
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Direction of test gaze (left, right) as factors. The analysis revealed significant main 

effects of electrode site (F[3, 57] = 37.10, p < .001) and deviance (F[1, 19] = 7.92, p < 

.05), a significant two-way interaction of Adaptation and Direction (F[1, 19] = 12.63, p 

< .01), and significant three-way interactions of Electrode site, Hemisphere, and Di-

rection (F[3, 57]= 11.90, p <.001), Electrode site, Adaptation and Direction (F[3, 57] = 

3.20; p <.05), and Electrode site, Deviance and Direction (F[3, 57] = 3.50; p < .05). 

Finally, there was a significant four-way interaction of the factors Electrode site, 

Hemisphere, Deviance, and Direction (F[3, 57]= 5.43. p < .01). As the ANOVA did not 

reveal an interaction of the factors Adaptation and Deviance, mean amplitudes ob-

tained in the conditions L05 and L10 as well as R05 and R10 were collapsed across 

gaze deviances and a new ANOVA was calculated with three levels of the factor Di-

rection. This 4 x 2 x 2 x 3 ANOVA with the factors Electrode site, Hemisphere, Adap-

tation, and Direction of test gaze revealed significant main effects of electrodes site 

(F[3, 57] = 36.43, p < .001), direction (F[2, 38] = 4.48, p < .05), a significant interac-

tion of Adaptation and Direction (F[2, 38] = 9.33, p < .01), and a three-way interaction 

of Electrode site, Hemisphere, and Direction (F[6, 114] = 6.02, p < .001). 

Visual inspection suggests that the interaction of Adaptation and Direction re-

sults from more positive amplitudes in response to test stimuli gazing in the adapted 

direction as compared to amplitudes evoked by test stimuli gazing in the unadapted 

directions (see Figures 14 and 15). This effect seems to be especially pronounced 

following adaptation to direct gaze where test stimuli gazing to the left or right elicit 

more negative amplitudes than those gazing directly at the observer. A similar pattern 

of responses seems to arise following adaptation to right gaze direction, although in 

this case the effect seems to be less pronounced than following adaptation to direct 

gaze. 

T tests further investigating the interaction of Adaptation and Direction sup-

ported this observation: following adaptation to direct gaze, stimuli gazing directly at 

the observer evoked significantly less negative amplitudes (M = -1.90 μV) than test 

stimuli gazing in the left (M = -2.11 μV, t[19] = 2.31, p < .05) and right direction (M = -

2.27 μV, t[19] = 4.58, p < .001) which did not produce significantly different ampli-

tudes (p > .09). After adaptation to right gaze direction, however, the pattern of re-

sults was not as straightforward: whereas test stimuli gazing to the right produced the 

least negative amplitudes (M = -2.10 μV), these did only differ significantly from those 
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evoked by test stimuli gazing to the left (M = -2.38 μV, t[19] = 3.01, p < .01) but not 

from those evoked by test stimuli with direct gaze direction (M = -2.22 μV, p > .26). 

Late positive component 

A pattern of results similar, yet polarity-reversed, to that found in the interval of 

250 – 350 ms could also be observed in a later time window at fronto-central, central, 

and parieto-central electrodes. In the time window of ~400 – 600 ms post stimulus 

onset, test faces with gaze directed in the adapted direction seem to have evoked 

less positive amplitudes than faces gazing in unadapted directions both following di-

rect (see Figure 16) and right gaze adaptation (see Figure 17). 
 

 

Figure 16: ERPs in response to left (dotted line), direct (solid line), and right (dashed line) gazing stimuli following 
adaptation to direct gaze. Please note the smaller amplitudes in the time interval of 300 – 600 ms evoked by test 
stimuli gazing in the adapted (i.e. direct) direction as compared to those evoked by test stimuli gazing in unad-
apted (i.e. left and right) directions. 



Experiment 2: Neural correlates of gaze adaptation II 66 

 

Figure 17: ERPs in response to left (dotted line), direct (solid line), and right (dashed line) gazing stimuli following 
adaptation to right gaze direction. Please note the smaller amplitudes in the time interval of 300 – 600 ms evoked 
by test stimuli gazing in the adapted (i.e. right) direction as compared to those evoked by test stimuli gazing in 
unadapted (i.e. left and direct) directions. 

 

Mean amplitudes evoked by test faces in the time interval between 400 and 600 

ms3 at electrode locations F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4 (see Figures 16 
                                            
3 Please note that differences in the late time interval seem to arise from approximately 300 ms 

on (see Figures 16 and 17). Therefore, additional analyses were also run for the time interval of 300 – 

600 ms. They led to analogous results with a significant interaction of Adaptation and Direction (F[1, 

19] = 6.83, p < .01) resulting from significantly smaller amplitudes in response to test stimuli gazing in 

the adapted as compared to unadapted directions for both the direct (t[19] = -3.77, p < .05 and t[19] = -

3.37, p < .05, for comparison of amplitudes evoked by direct gazing test stimuli with those evoked by 

left and right gaze, respectively) and the right gaze adaptation conditions (t[19] = -3.45, p < .05 and 
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and 17) were analysed in a repeated measurements ANOVA with Electrode location 

(frontal, central, parietal), Hemisphere location (left, middle, right), Adaptation (direct, 

right), Deviance (5°, 10°), and Direction of test gaze (left, right) as factors. This 

analysis revealed a significant interaction of Adaptation and Direction of test gaze 

(F[1, 19] = 5.33, p < .05) which was not further qualified by the factor Deviance (F < 

1; p > . 09). Therefore, following the rationale of the preceding analyses, data were 

collapsed across the factor Deviance and a new analysis was calculated considering 

direct gaze direction as well as left and right gaze direction. This ANOVA on the fac-

tors Electrode location, Hemisphere, Adaptation, and Direction of test gaze (left, di-

rect, right) revealed a significant main effect of direction (F[2, 38] = 7.09, p < .05) 

which was qualified by an interaction with Adaptation (F[2, 38] = 10.56, p < .001). T 

tests were conducted to analyse this interaction. They revealed that following direct 

gaze adaptation, amplitudes in response to test stimuli gazing in the adapted direc-

tion (i.e. directly at the observer) were significantly smaller (i.e. less positive) than 

those evoked by test stimuli gazing in the left (t[19] = -4.11, p < .05) or right direction 

(t[19] = -3.16, p < .05) which did not differ significantly from each other (p > .50, see 

Figure 16). The same pattern could be observed following right gaze adaptation 

where responses to test stimuli gazing in the adapted, i.e. right direction, were signifi-

cantly smaller (i.e. less positive) than those evoked by test stimuli with left (t[19]= -

3.51, p < .05) and direct gaze (t[19] = -3.10, p < .05) which did not differ significantly 

from each other ( p > .30, see Figure 17). 
 

Responses to adaptation stimuli 

Additionally, N170 amplitudes in response to the adaptation stimuli were ana-

lysed (see Figure 18). As described in detail in the method section above, each of the 

two blocks of test stimuli presented in one adaptation condition was preceded by a 

series of 24 adaptation stimuli. To analyse the effects of the adaptation procedure 

itself, the two adaptation series were split into halves, and ERPs to adaptation stimuli 

presented in the first halves of the two adaptation series were compared to the re-

sponses to adaptation stimuli presented in the second halves of adaptation series. 

Mean amplitudes were analysed in a repeated measurements ANOVA with the fac-
                                                                                                                                        

t[19] = -2.73, p < .05, for comparison of amplitudes evoked by right gazing test stimuli with those 

evoked by left and direct gaze, respectively). Amplitudes evoked by test stimuli gazing in directions 

other than the adapted, however, did not differ significantly from each other (both ps > .20). 
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tors Electrode site (P7/P8, TP9/TP10, P9/P10, and PO9/PO10), Hemisphere (left, 

right), Adaptation condition (direct, right) and Half (first half, second half). The analy-

sis revealed a significant main effect of electrode (F[3, 57] = 4.20, p < .06) and a 

main effect of half (F[1,19] = 11.45, p < .01) which was due to significantly smaller 

N170 amplitudes in the second half of the adaptation series (M = -2.23 μV) as com-

pared to the first one (M = -2.74 μV, see Figure 18). This amplitude reduction from 

the first to second half of the adaptation series occurred both in the direct and in the 

right adaptation condition as reflected in the absence of a significant interaction of 

Adaptation condition and Half (F < 1). An analogous analysis of N170 latencies re-

vealed no significant effects whatsoever (all ps > .18). 

 

Figure 18: Grand average ERPs in response to adaptation stimuli across 20 observers at selected electrodes. 
Responses to adaptation stimuli with direct (solid lines) and right (dashed lines) eye gaze direction in the first 
(bold lines) or second (thin lines) halves of the adaptation series. Please note the larger N170 amplitudes evoked 
by adaptation stimuli presented in the first halves as compared to the second halves. 

 

4.4 Discussion 

The current study investigated the effects of adaptation to a relatively small 

gaze deviation (10° right) on the perception of test stimuli showing similar deviations 
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from direct gaze (10° left, 5° left, direct, 5° right, and 10° right). In order to ensure an 

equal number of face presentations before each test stimulus, the control condition 

was designed analogously to the right adaptation condition, therefore consisting of 

‘adaptation stimuli’ and ‘top-up’ stimuli with direct gaze. The analysis of the behav-

ioural data revealed no differences between the response patterns obtained in the 

pre-adaptation condition (which was equivalent to Experiment 1) and the new control 

condition. This implies that direct gaze represents a neutral point in the representa-

tion of gaze direction and does not produce adaptation effects in itself. This could be 

reconciled with several ERP studies finding the N170 amplitude to be larger in re-

sponse to eye aversion than in response to direct gaze (Itier et al., 2007a; Puce et 

al., 2000; Watanabe et al., 2002) suggesting that the processing of averted gaze 

might require more neuronal resources than does the processing of direct gaze. 

However, it has to be considered that a consensus on the neural correlates of gaze 

direction perception has not yet been achieved, as other studies either reported no 

effects of different gaze directions on the N170 (Taylor et al., 2001) or differences in 

the opposite direction with direct gaze stimuli evoking larger N170 amplitudes than 

averted gaze direction (Conty et al., 2007). 

The analysis of the behavioural data in the main experiment revealed clear and 

significant effects of adaptation to right gaze direction on the perception of gaze in 

test stimuli. Following adaptation, test stimuli gazing both 5° and 10° in the adapted 

direction were more often perceived as gazing directly at the observer than in the 

control condition. Further, adaptation to right gaze direction led to a decrease of in-

correct ‘right’ classifications and to an increase of incorrect “left” classifications of di-

rect gazing test stimuli – underlining participants’ reduced sensitivity to ‘rightness’ in 

gaze. Although the magnitude of these gaze adaptation effects was clearly reduced 

as compared to those obtained in Experiment 1, this is the first evidence for afteref-

fects of adaptation to eye gaze with a relatively small deviation from direct gaze. 

The analysis of the ERP correlates of gaze adaptation revealed a less stringent 

pattern: although visual inspection suggested that N170 amplitudes were slightly lar-

ger following adaptation to right as compared to direct gaze for some gaze directions 

at some electrodes, the only significant adaptation effect in the N170 time window 

was reflected in larger amplitudes following right as compared to direct gaze adapta-

tion for test stimuli gazing in the left direction at electrodes PO9 and PO10. Similarly, 

N170 amplitudes in response to adaptation stimuli seemed to be larger in response 
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to right gaze as compared to direct gaze adaptors. Again, this difference failed to 

reach significance. There was, however, a significant reduction in N170 amplitudes in 

the course of adaptation with stimuli presented in the first halves eliciting larger am-

plitudes than stimuli presented in the second halves both in the direct and right adap-

tation condition. This underlines the hypothesis that the N170 is sensitive to adapta-

tion to general face information which has been proposed on basis of the findings of 

Experiment 1. As the N170 is thought to reflect processes related to the structural 

encodings of faces, it is possible that the adaptation effect in this time window results 

from a habituation of these face encoding mechanisms.  

ERPs in the time range of 250 – 350 ms were affected by adaptation with sig-

nificantly larger positivity to direct gazing test stimuli following direct adaptation and 

numerically larger positivity to right gazing test stimuli following right adaptation. 

These findings underline the sensitivity to gaze adaptation of the processes taking 

place in this time interval which has also been found in Experiment 1. It is important 

to consider that the behavioural results obtained in the present study suggest adapta-

tion to direct gaze to not produce any adaptation effects. It should therefore be ex-

pected that the ERP results following direct adaptation are not influenced by adapta-

tion but represent the ‘normal’ response pattern obtained for test stimuli of left, direct, 

and right gaze direction. This pattern does not seem to differentiate between gaze 

directed in the different directions but rather seems to respond differently when pre-

sented with direct vs. averted gaze direction with significantly less negative ampli-

tudes in the former than in the latter case. Interestingly, following adaptation to right 

gaze which leads to a bias to perceive test stimuli with right gaze direction as gazing 

directly at the observer, ERPs evoked by right gazing stimuli seem to evoke a similar 

response pattern as test stimuli with direct gaze without adaptation, i.e. they elicit 

less negative amplitudes. Test stimuli with direct gaze direction, however, seem to 

elicit more negative amplitudes when presented following right gaze adaptation 

(which makes them more likely to be judged as gazing to the left, i.e. diverted direc-

tion) than following direct gaze adaptation. 

The pattern of ERP correlates of eye gaze adaptation effects was most pro-

nounced in the late positive component (300/400 – 600 ms) over the central and pa-

rietal electrodes C3, Cz, C4, P3, Pz, and P4. Here, amplitudes evoked by test stimuli 

gazing in the adapted direction were significantly less positive than those evoked by 

test stimuli with eye gaze directed in unadapted directions. The time window and the 
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electrode sites over which this late effect could be observed in the current study as 

well as the fact that the amplitude increased from frontal to parietal electrodes sug-

gests that it at least partly reflects a P3 effect (Sutton, Braren, Zubin, & John, 1965; 

for a recent review, see Polich, 2007).  

The typical paradigm that has been used in P3 research is the ‘oddball para-

digm’ in which two tones are presented that differ with regard to pitch and probability. 

The participant’s task is to respond to the rare, ‘deviant’ tone, whereas the more fre-

quent or ‘standard’ tone does not require a response. Typically, the ‘deviant’ tones 

elicit a large positive deflection over parietal electrodes at a latency of approximately 

300 ms. The component is usually smaller or absent in response to the ‘standard’ 

tones. Importantly, the P3 has been shown to emerge not only in response to audi-

tory stimuli but also in visual, somatosensory, and olfactory paradigms and is there-

fore considered to be modality-invariant (Bernat, Shevrin, & Snodgrass, 2001; Fal-

kenstein, Koshlykova, Kiroj, Hoormann, & Hohnsbein, 1995; Polich, 1999; Sutton et 

al., 1965). Whereas stimulus modality has been found to be largely irrelevant for the 

scalp topography of the P3, it has been shown to be of relevance for the amplitude 

and latency of the component both of which are usually enhanced for visual as com-

pared to auditory stimuli. 

Sutton et al. (1965) suggested that the critical feature eliciting the P3 is ‘infor-

mation delivery’. They assumed that a rare, ‘deviant’ stimulus provides ‘more infor-

mation’ to the participant than the ‘standard’ stimulus which has to be expected due 

to the higher frequency of its presentation. Stimulus probability therefore seems to 

play an important role: the less probable a stimulus is to occur the larger is the infor-

mation delivery contained in its presentation. Indeed, a 10 – 20 percent probability of 

target stimulus occurrence has been shown to be the optimal condition to elicit a P3 

(Duncan-Johnson & Donchin, 1977) and increasing target stimulus probabilities have 

been shown to produce decreasing P3 amplitudes (e.g. Polich & Bondurant, 1997). 

An alternative theoretical account to explain the P3 effect is the context-

updating theory (Donchin, 1981; Donchin & Coles, 1988). This framework proposes 

that the late positive effect in oddball paradigms reflects a comparison process 

evaluating the representation of a previous event in working memory and comparing 

it to a current event. If the comparison does not result in the detection of an attribute 

change from the previous to the present target, the current mental model of a stimu-

lus is believed to be maintained. However, in the case of an attribute change from the 
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previous to the present target, attentional processes are proposed to run an update 

of the stimulus representation which is reflected in the larger P3 component towards 

deviating stimuli.  

Considering the context-updating theory of the P3, it seems plausible to assume 

that the late effect observed in the current study might at least in part reflect the rela-

tively easier processing of a stimulus that most closely resembles the perceptual con-

text provided by the adaptation and top-up stimuli. Stimuli that deviate from that con-

text with regard to their gaze direction might therefore recruit more neural processing 

resources which is possibly reflected in the larger amplitudes evoked by these stim-

uli. Considering the proposed theoretical explanations for the P3 effect, it seems 

plausible to assume that the presentation of test stimuli with their eyes turned in an-

other than the adapted direction might both have a larger informational value and 

require a more effortful context update than test stimuli gazing in the adapted direc-

tion. Due to the design with two blocked presentations of adaptation stimuli for both 

direct and right gaze adaptation, the presentation of a top-up adaptation stimulus be-

fore each test face, and the fact that some of the test stimuli had the same gaze de-

viances as the adaptation stimuli, there were large differences in stimulus occurrence 

probability. In the control adaptation condition (i.e. adaptation to direct gaze), for ex-

ample, 336 of the presented faces had direct gaze direction (48 adaptation stimuli, 

216 top-up stimuli, and 72 of the test stimuli) whereas only 144 of the presented test 

faces gazed in the left or right direction (72 each). One might therefore consider the 

direct adaptation and top-up stimuli as ‘standard’ stimuli and the presentation of test 

stimuli gazing in directions different from the adapted one as relatively ‘deviant’.  

The observed findings in this late time window therefore closely parallel one of 

the behavioural consequences of adaptation to specific stimulus attributes which has 

been described as ‘novelty detection’. The relatively easier processing of stimuli fit-

ting into a current perceptual (and maybe also semantic) context might leave more 

resources for the processing of stimuli that deviate from that context. This pattern 

might therefore allow relatively novel stimuli to be processed more thoroughly and 

allow them to ‘pop-out’, both in terms of the neural resources that they engage and 

with regard to the novel information that they provide. 
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55..  Experiment 3: The time-course of gaze adaptation 

5.1 Introduction 

While the time-course of adaptation effects in the perception of basic physical 

stimulus characteristics has been extensively investigated, high-level face adaptation 

effects have been detected only in the past few years, and their time-course is only 

just beginning to be studied. Most recently, the effects of different adaptation dura-

tions on the perception of certain aspects of face perception have been investigated 

showing that the nature of adaptation effects depends on adaptation duration, with 

short-term and long-term adaptation having differential effects on viewpoint and spa-

tial selectivity (Fang et al., 2007; Kovács et al., 2007, for details on these studies, 

please see chapters 2.2.2 and 2.2.4). These findings suggest that the systematic 

variation of adaptation durations can be a tool for the selective adaptation of different 

neural mechanisms of shape-specific coding.  

Leopold, Rhodes, Müller, and Jeffery (2005) explored the dynamics of face ad-

aptation and related them to those of simple aftereffects which are known to be influ-

enced both by the duration of adaptation and the duration of testing (see chapter 

2.2.1). The authors tested the dependence of the face identity aftereffect (FIAE) on a 

wide range of durations of the adaptation (1000 ms to 16000 ms) and test stimuli 

(200 ms to 1600 ms). In line with traditional aftereffects they found the FIAE to grow 

stronger as a function of adaptation time and to grow weaker as a function of test 

duration, i.e. presentation period of the test stimulus.  

The present study is motivated in part by the fact that although the influences of 

adaptor duration and test stimulus duration have been investigated in a few studies, 

there is only little insight into the influence of the time interval between the presenta-

tion of the adaptation and test stimulus on face adaptation effects. Previous studies 

of face adaptation typically used an adaptor-test interval of just a few hundred milli-

seconds (Jenkins et al., 2006; Kovács et al., 2006; Leopold et al., 2005; Rhodes et 

al., 2004; Webster & MacLin, 1999; Webster et al., 2004; but see Leopold et al., 

2001, for an informal report of diminished but still measurable face identity afteref-

fects after an adaptor-test interval of 2400 ms). The idea that face adaptation effects 

can survive an interval in the range of minutes received preliminary support by a brief 

report (Carbon & Leder, 2006) on a face distortion aftereffect. As a limitation, this 

study only used one single face (of Mona Lisa), and did not track the decay of the 
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aftereffect. No study to date has precisely evaluated the time-course of face adapta-

tion effects as a function of the adaptor-test interval. In Experiment 1 of the present 

thesis, the effects of adaptation to left and right gaze directions were investigated in 

two consecutive blocks with block order counter-balanced across participants. 

Though separated by a break that offered a number of intervening visual stimuli (e.g. 

contact with the experimenter, new instruction screen) the data appeared to suggest 

an influence from gaze adaptors presented in the first adaptation block on perform-

ance in the second block several minutes later. This was an accidental finding that 

was unrelated to the aims of that particular study and was therefore not reported at 

that stage.  

As eye gaze direction often changes quickly in real-life situations of human 

communication, a finding of relatively long-persisting effects of eye gaze adaptation 

might be somewhat unexpected. In the current section two experiments will be re-

ported which were specifically designed to gain a systematic evaluation of the time-

course of eye gaze adaptation effects. In Experiment 3a, participants’ ability to cor-

rectly identify direct gaze and gaze directed 5° left or right was measured before and 

directly after adaptation to eye gaze strongly (25°) diverted to right direction. In order 

to monitor the decrease of gaze adaptation aftereffects over time, a series of several 

further post-adaptation phases was run within approximately ten minutes. As prior 

research (Jenkins et al., 2006; Seyama & Nagayama, 2006) suggested that the mag-

nitude of gaze adaptation effects partly depends on the ambiguity of the test stimu-

lus, the role of the ambiguity of test stimuli for the persistence of the adaptation ef-

fects was further explored: Experiment 3b therefore followed the same procedure as 

Experiment 3a, but using more distinct gaze deviations (10°) in the test stimuli. 

5.2 Experiment 3a 

5.2.1 Methods 

Participants 

Twenty-five naïve participants (18 to 30 years, M = 21.6 y, 3 men) contributed 

data and received course credit for their participation. They all reported normal or 

corrected-to-normal vision and gave their informed consent prior to data acquisition. 
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Stimuli 

Test faces were colour photographs of 6 male and 6 female young adults as in 

previous studies (Jenkins et al., 2006). Each model posed at gaze angles of 5° left 

(L05), direct gaze (S00), and 5° right (R05; all directions from the observer’s point of 

view). Photos of the same 12 models gazing 25° right (R25) were used as adaptation 

stimuli. All faces were presented in a black elliptical mask. Test faces measured 13.0 

x 7.5 cm and adaptation faces measured 19.0 x 11.0 cm. Stimuli were presented at a 

viewing distance of ~87 cm which was kept constant using a chin rest. 

Task and Procedure 

The experiment began with a pre-adaptation phase (see Figure 19, for an over-

view of the procedure) in order to determine participants’ general ability to accurately 

perceive the gaze direction of faces. Using right index, middle, and ring fingers on 

three response keys, participants indicated if a test face showed left, direct, or right 

gaze direction, respectively. Thirty-six test faces (12 identities x 3 gaze directions) 

were presented in random order. For each trial, a question mark was first presented 

(800 ms), was then replaced by the test face (400 ms), and followed by a blank 

screen (2250 ms) during which participants responded. One pre-adaptation trial 

therefore took 3450 ms, leading to a pre-adaptation phase block duration of two min-

utes and four seconds (124.2 s). 

The pre-adaptation phase was followed by an adaptation phase in which par-

ticipants were presented with two consecutive runs of twelve adaptation stimuli each, 

presented in randomised order. These stimuli showed eye gaze averted 25° in the 

right direction and were passively viewed by participants. Exposure duration was 

3500 ms for each adaptation stimulus, with an inter-stimulus interval of 200 ms. Ad-

aptation stimuli were presented at about 150% the size of test stimuli so that the eye 

regions in adaptation and test stimuli were non-overlapping. The adaptation block 

had a total duration of one minute and 29 seconds (88.8 s).  

The adaptation phase was immediately followed by a series of five post-

adaptation phases during which participants were again asked to determine the di-

rection of eye gaze. In general, post-adaptation phases were equivalent to the pre-

adaptation phase. The first post-adaptation phase, however, was characterised by 

slight differences in design and duration. Here, each test stimulus was preceded by 

two consecutive top-up adaptation displays (3500 ms each) presented before the 
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question mark (1000 ms) and the test face (400ms) to ensure maximal adaptation 

effects during the whole first test block. To avoid any potential effects of immediate 

facial identity repetitions (Schweinberger, Huddy, & Burton, 2004), neither of the two 

top-up adaptation stimuli carried the same identity as the following test face. A single 

trial in the first post-adaptation block had a duration of 10650 ms – the completion of 

the whole first post-adaptation phase therefore took six minutes and 23 seconds 

(383.4 s). 

 

B. Adaptation 

A. Pre-adaptation phase 

C. First post-adaptation phase 

3500 ms 3500 ms 200 ms200 ms 

?

3500 ms 3500 ms 400 ms 2250 ms1000 ms

800 ms 

? 

400 ms 2250 ms

 

Figure 19: Schematic example for trial procedure in the pre-adaptation (first row), adaptation (second row), and 
1st post-adaptation (third row) phases. Please note that test stimuli were actually presented at a smaller size than 
the adaptors (see Procedure for details) and that the 2nd to 5th post-adaptation trials were equivalent to the pre-
adaptation trials. 

 

Participants were then presented with four further post-adaptation phases that 

did not contain top-up adaptation stimuli. The timing parameters of these blocks were 



Experiment 3: The time-course of gaze adaptation 77 

equivalent to those of the pre-adaptation phase, with a single trial duration of 3450 

ms and a total duration of two minutes and four seconds (124.2 s) for each of the four 

post-adaptation phases. The consecutive post-adaptation phases were separated by 

standardised breaks of 30 s each, the first of which was presented immediately after 

the first post-adaptation phase.  

The assessment of the temporal persistence of gaze direction aftereffects was a 

central aim of the current study, and the considerations concerning the analysis of 

timing were as follows: first, by using top-up adaptation stimuli before each test 

stimulus, the first post-adaptation phase was designed to capture the maximal adap-

tation effect in the context of the present study (cf. Jenkins et al., 2006). The starting 

point in time relative to which the decay of aftereffects was tracked therefore coin-

cided with the end of the first post-adaptation phase (see Figure 20). As practical 

considerations (limited number of participants, randomised presentation of stimuli in 

different conditions) prevented an assessment of aftereffects on a trial-to-trial basis, 

relatively short test blocks were used with only 12 test stimuli for each gaze direction 

in the second to fifth post-adaptation phase. To determine a time-course of adapta-

tion effects, the average time across all test faces within a given phase (relative to 

the end of the first post-adaptation phase) was defined as a time point of measure-

ment. Similarly, the average performance across all test faces within a given phase 

was taken as an indicator of the residual magnitude of aftereffects at this time. Figure 

20 illustrates the resulting time scale. 

 

 

 

 

 

 

self-paced 
break 

A00 

124.2 s 

Adaptation 

88.8 s

A01 

383.4 s 

A02

124.2 s

A03

124.2 s

A04 

124.2 s 

A05

124.2 s

0          77 s     154 s     231 s    308 s    385 s     462 s    539 s    616 s 

30 s break 30 s break 30 s break 30 s break 

 

Figure 20: Schematic illustration of time scale. Each box represents one test phase, with “A00” used as an abbre-
viation for “pre-adaptation phase” and A01 to A05 as abbreviations for the first to fifth post-adaptation phases, 
respectively. Arrows indicate breaks between blocks which could either be self-paced (black) or standardised for 
a duration of 30s (red). Times stated in the boxes represent durations of the respective phases. The end of phase 
A01 is considered to be t=0. Durations printed in blue represent the time elapsed at the end of the respective test 
phases. Durations printed in black represent the average time elapsed since t=0 across all test faces within a 
given phase. 
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5.2.2 Results 

In the pre-adaptation test, participants were fairly accurate in discerning eye 

gaze directions (70.3 ± 22.8%, 71.8 ± 18.9%, and 74.7 ± 18.5% mean correct re-

sponses ± standard deviations for left, right and direct gaze, respectively). As ex-

pected, the ability to correctly perceive right gaze direction was strongly reduced after 

adaptation to that direction (9.8 ± 18.1% correct). The correct classification of direct 

gaze, however, was relatively unaffected (75.3 ± 15.6% correct responses) whereas 

correct classifications as “left gaze” appeared to increase after adaptation (e.g. to 

83.4 ± 23.2% in the first post-adaptation phase). For the detailed response pattern 

obtained in the different adaptation conditions (pre-adaptation test, first to fifth post-

adaptation test), please see Table 2  

 

 left gaze direction right gaze direction direct gaze direction

 „l“ "r" "s" "l" "r" "s" "l" "r" "s" 

A00 70.3 (4.6) 1.0 (0.7) 28.7 (4.3) 1.7 (1.0) 71.8 (3.8) 26.5 (3.5) 15.1 (3.5) 10.2 (2.6) 74.7 (3.7)

A01 83.4 (4.6) 0.4 (0.4) 16.2 (4.6) 4.2 (2.6) 9.8 (3.6) 86.0 (4.3) 22.9 (3.0) 1.8 (0.7) 75.3 (3.1)

A02 76.4 (3.8) 0.4 (0.4) 23.2 (3.8) 2.4 (1.7) 42.0 (5.2) 55.6 (5.3) 17.9 (2.9) 1.3 (0.8) 80.8 (2.8)

A03 70.9 (3.7) 1.0 (0.6) 28.1 (3.7) 2.3 (1.2) 52.3 (5.4) 45.3 (5.1) 11.6 (3.0) 4.1 (1.9) 84.2 (3.7)

A04 70.1 (3.5) 0.7 (0.5) 29.2 (3.5) 1.0 (0.7) 62.4 (5.0) 36.6 (4.8) 11.7 (2.3) 7.0 (2.1) 81.3 (2.7)

A05 70.7 (4.1) 0.3 (0.3) 29.0 (4.1) 0.7 (0.5) 67.3 (3.4) 32.0 (3.4) 12.1 (2.4) 5.1 (1.6) 82.7 (2.7)

Table 2: Mean percentages (and SEM) of “left” (“l”), “right” (“r”), and “direct” (“s”) responses to test stimuli depend-
ing on the actual gaze direction of the stimuli (left gaze direction, right gaze direction, direct gaze) and the test 
phase (A00 to A05). Please note that the pre-adaptation phase is indicated by “A00”, the first to fifth post-
adaptation phases are indicated by the abbreviations “A01” to “A05”, respectively. 

 

An analysis of variance (ANOVA) with the factors Adaptation phase (A00, A01, 

A02, A03, A04, and A05) and Direction of gaze of test stimulus (left, right, and direct) 

was conducted to analyse the “direct” responses, in analogy to Jenkins et al. (2006). 

Where appropriate, epsilon corrections for heterogeneity of covariances were per-
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formed (Huynh & Feldt, 1976). All post-hoc t tests were corrected with the Bonferroni-

procedure (α = .05). 

The ANOVA revealed significant main effects of Adaptation phase (F[5, 120] = 

11.42, p < .001) and Direction (F[2, 48] = 93.93, p < .001), as well as a significant 

interaction of these factors (F[10, 240] = 32.45, p < .001). Whereas the frequency of 

incorrect “direct” responses to left vs. right test stimuli was comparable in the pre-

adaptation phase, there was a dramatic increase in incorrect “direct” responses in the 

first post-adaptation phase – but only to right gazing stimuli. In subsequent post-

adaptation phases, this pattern gradually returned to near-baseline levels. Con-

versely, there was some decrease in incorrect “direct” responses to left gazing stimuli 

in the first post-adaptation phase, a pattern that also gradually returned to near-

baseline levels subsequently. These observations were further evaluated by post hoc 

t tests, which revealed that whereas the number of incorrect “direct” responses did 

not differ for left and right gazing stimuli during the pre-adaptation phase (p>.6), it 

clearly did so after adaptation. “Direct” responses were significantly more frequent to 

right as compared to left gazing stimuli from the first post-adaptation phase up to the 

third one (t[24] = 9.74, p < .001; t[24] = 5.25, p < .001; and t[24] = 3.36, p< .01, for 

first, second, and third post-adaptation phases, respectively). This difference was 

mainly due to a strong increase of “direct” responses to test stimuli showing right 

gaze direction after adaptation. Compared to the pre-adaptation phase, there were 

significantly more “direct” responses to right gazing test stimuli in the first (t[24] = 

11.87, p < .001), second (t[24] = 6.95, p < .001), and third post-adaptation phase 

(t[24] = 4.10, p < .001), with a strong trend in the same direction in the fourth post-

adaptation phase (t[24] = 2.26, puncorrected = .03). Incorrect “direct” responses to test 

stimuli showing left gaze exhibited a weaker pattern of aftereffects in the opposite 

direction: Following adaptation to right gaze, incorrect “direct” responses to left gaz-

ing test stimuli significantly decreased compared to pre-adaptation level in the first 

post-adaptation phase only (t[24] = -3.01, p < .01). Although some degree of gradual 

return to pre-adaptation level could also be observed in the data on left gazing stimuli 

(see Table 2 and Figure 21), differences to pre-adaptation level were not significant 

in the other post-adaptation phases. 

Concerning the classification of stimuli showing direct gaze, there was a very 

small increase in correct responses after adaptation (see Table 2), which only 

reached a level of significant difference from the pre-adaptation phase in the third 
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post-adaptation phase (t[24] = 2.73, p < .05). This enhancement was accompanied 

by a significant decrease in incorrect “right” classifications of direct gazing test stimuli 

in the first (t[24] = -3.68, p < .01), second (t[24] = -3.53, p < .01), and third (t[24] = -

2.83, p < .01) post-adaptation phases. 

Figure 21 depicts the mean percentages of “direct” responses to test stimuli 

gazing left and right against the time elapsed since adaptation. It was found that the 

development of the aftereffect over time for left and right gazing test stimuli could be 

well defined by exponential functions of the form  

f(x) = (Y0 – Plateau) *e(-k*x) + Plateau          (2) 

Please see Table 3 for an overview of the parameters of the functions fitted for left 

and right gazing stimuli, respectively.  

 

 Gaze direction of test face

Parameter left right 

Y0 (in %) 16.17 ± 0.23 84.97 ± 4.76 

Plateau (in %) 29.28 ± 0.18 34.87 ± 3.84 

k (in 1/s) 0.01011 ± 0.00060 0.00954 ± 0.00309 

Table 3: Parameter estimations for exponential functions plotted on the percentages of “direct” responses to test 
stimuli gazing in the left and right direction, respectively. With Y0 being the Y value when the time (x) is zero and 
the plateau being the y value at infinite times. K is the rate constant which is expressed in reciprocal of the X axis 
time units, in this case in inverse seconds. 

 

There was a high goodness of fit of the exponential functions for both the in-

crease in incorrect “direct” classifications of test stimuli showing left gaze (R2=0.99) 

and the decrease in incorrect “direct” classifications of test stimuli showing right gaze 

(R2=0.97). 
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Figure 21: Exponential functions fitted on the percentages of “direct” responses to test stimuli showing left (dotted 
lines) and right (solid lines) gaze direction. 

 

5.3 Experiment 3b 

5.3.1 Methods 

Participants 

Twenty-five new participants (19 to 32 years old, M = 21.4 y, 5 men) contributed 

data to this study and received course credit for their participation. They all reported 

normal or corrected-to-normal vision and gave their informed consent prior to data 

acquisition. 

Stimuli 

Test faces were colour photographs of the same twelve individuals as in Ex-

periment 3a. The models posed at the gaze angles 10° left (L10), direct (S00), and 

10° right (R10), leading to a much more obvious deviance from direct gaze in the ‘left 

gaze’ and ‘right gaze’ conditions as compared to Experiment 3a. As before, photos of 

the same 12 models gazing 25° right were used as adaptation stimuli. Stimuli were of 

the same size as in Experiment 3a and a constant viewing distance of ~87 cm was 

ensured by using a chin rest.  

Task and Procedure 

The procedure was equivalent to the one in Experiment 3a. 
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5.3.2 Results 

Participants showed very good accuracy in discriminating left (M = 92.9 ± 

14.8%), right (M = 91.3 ± 16.4%), and direct (M = 88.8 ± 12.3%) gaze directions. 

These accuracies were much higher than those obtained in Experiment 3a (cf. Table 

2), reflecting the lower task difficulty. However, the classification of these relatively 

unambiguous stimuli was also severely altered as a consequence of adaptation, as 

can be seen in the response pattern depicted in Table 4.  

As before, adaptation to stimuli gazing 25° in the right direction severely dis-

rupted the ability to correctly perceive eye gaze in that direction – leading to incorrect 

“direct” responses in 72.5% (SD = 17.9%) of the trials in the first post-adaptation 

phase. However, this aftereffect seemed to recover more quickly than in Experiment 

3a, as incorrect “direct” responses to right test stimuli were already strongly de-

creased in the second post-adaptation phase (M =18.9 ± 25.2%). 

 

 left gaze direction right gaze direction direct gaze direction

 „l“ "r" "s" "l" "r" "s" "l" "r" "s" 

A00 92.9 (3.0) 2.7 (2.3) 4.4 (1.6)   2.3 (1.7) 91.3 (3.3) 6.3 (1.9)   8.1 (2.1) 3.1 (0.9) 88.8 (2.5)

A01 88.0 (4.8) 3.7 (3.3) 8.3 (3.1)   0.7 (0.5) 26.8 (3.7) 72.5 (3.6)   9.6 (2.5) 0.3 (0.3) 90.1 (2.4)

A02 91.0 (4.2) 3.7 (3.7) 5.3 (2.4)   1.3 (1.0) 79.7 (5.5) 18.9 (5.0)   4.3 (1.2) 1.3 (0.8) 94.3 (1.3)

A03 90.0 (4.7) 4.3 (4.0) 5.7 (2.9)   3.0 (3.0) 86.2 (4.9) 10.8 (3.3)   4.7 (1.5) 2.0 (1.0) 93.3 (2.0)

A04 92.7 (4.1) 4.0 (3.6) 3.4 (1.4)   2.3 (2.3) 89.2 (4.7) 8.4 (3.6)   4.0 (1.5) 1.3 (0.6) 94.7 (1.7)

A05 92.2 (4.3) 4.0 (4.0) 3.8 (1.9)   2.2 (1.8) 89.7 (4.4) 8.1 (3.0)   3.7 (1.0) 1.3 (0.8) 95.0 (1.4)

Table 4: Mean percentages (± SEM) of “left” (“l”), “right” (“r”) and “direct” (“s”) responses to test stimuli depending 
on the actual gaze direction of the stimuli (left, right, direct) and the test phase. Abbreviations as in Table 2. 

 

The ANOVA revealed a significant main effect of adaptation phase (F[5, 120] = 

74.95, p < .001), a significant main effect of gaze direction of test stimulus (F[2, 48] = 

821.63, p < .001), and a significant interaction (F[10, 240] = 69.62, p < .001). Bon-
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ferroni-corrected comparisons showed that the mean percentages of incorrect “direct” 

responses did not differ for left and right test stimuli during this pre-adaptation phase 

(p > .6). Following adaptation, however, there were significantly more “direct” re-

sponses to right as compared to left gazing test stimuli in the first (t[24] = 16.13, p < 

.001) and second post-adaptation phases (t[24] = 3.62, p < .01). These differences 

between responses to left and right test stimuli were due to a strong increase of “di-

rect” responses to test stimuli showing right gaze direction: compared to the pre-

adaptation phase, there were significantly more “direct” responses to right test stimuli 

in both the first (t[24] = 19.18, p < .001) and the second post-adaptation phase (t[24] 

= 3.02, p < .05). From the third post-adaptation phase on, no such significant post-

adaptation effects could be detected (all ps > .10). The percentages of “direct” re-

sponses to test stimuli showing left gaze did not differ across adaptation phases (all 

ps > .09).  

As in Experiment 3a, the mean percentages of “direct” responses were plotted 

against the time elapsed since adaptation (see Figure 22). The development of the 

aftereffect over time for right gazing test stimuli could be well defined by an exponen-

tial decay function of the form 

f(x) = (Y0 – Plateau) *e(-k*x) + Plateau        (2) 

 

with Y0 (in %) = 72.54 (± 1.29), Plateau (in %) = 8.99 (± 0.76) and k (in 1/s) = 

0.02396 (± 0.00191). It was refrained from fitting the responses to test stimuli show-

ing left gaze, as these did not differ significantly across adaptation phases (see 

above). In order to allow for a direct comparison with Experiment 3a, the functions of 

both experiments were plotted together in Figure 22. The exponential decay function 

fit on the “direct” classifications of test stimuli gazing into the right direction almost 

perfectly matched the empirical data (R2=0.99).  

As hypothesised, the direct comparison of the results obtained in Experiment 3a 

and Experiment 3b suggests a much steeper initial decay in the 10° as compared to 

the 5° experiment. 

 



Experiment 3: The time-course of gaze adaptation 84 

 

Figure 22: Exponential functions fitted on the percentages of “direct” responses to test stimuli showing left 
(dashed line) and right (solid line, thin) gaze direction obtained in Experiment 3a (thin lines) and on the percent-
ages of “direct” responses to test stimuli with right gaze direction obtained in Experiment 3b (solid line, bold). 

 

5.4 Discussion 

The results of Experiments 3a and 3b replicate recent studies on eye gaze ad-

aptation effects (Jenkins et al., 2006; Seyama & Nagayama, 2006) and the results of 

Experiments 1 and 2 of the present thesis. Prolonged adaptation to faces showing 

eye gaze directed to the right subsequently led to an altered perception of eye gaze 

direction. Most importantly, adaptation biased the classification of eye gaze in the 

adapted direction to be perceived as direct gaze. For the relatively ambiguous 5° test 

stimuli this aftereffect decreased over time but remained significant until the fourth 

post-adaptation phase, corresponding to about 385 s after adaptation (please see 

Figure 20 for details on the time-course). The time-course of the aftereffect was well 

modelled by an exponential decay function. Using less ambiguous 10° test stimuli, 

the adaptation procedure in Experiment 3b led to a qualitatively similar but reduced 

perceptual bias in the classification of gaze directions. Immediately after adaptation, 

test stimuli were most often misjudged as looking directly at the observer – even 

when showing a substantial 10° gaze deviation in the adapted direction. However, 

this illusionary aftereffect was only measurable in the first and second post-

adaptation phases. Based on the time scale of this study this means that the afteref-

fect lasted about 77 s. The comparison of the exponential decay functions fitted on 
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the empirical data reveals that apart from the higher initial level of illusions in Experi-

ment 3a, there was also a more gradual decrease in these misperceptions in Experi-

ment 3a than in Experiment 3b. 

While the time interval between the adaptor and test stimulus has been previ-

ously demonstrated to affect the magnitude of aftereffects following adaptation to 

simple stimulus characteristics such as motion (e.g. Kanai & Verstraten, 2005), the 

present study is the first to systematically describe the course of high-level adaptation 

effects over time – from their first maximal level until their decay to insignificance. 

Although aftereffects caused by adaptation to eye gaze direction showed a system-

atic decay in post-adaptation phases, a remarkable finding of the present study is 

that such aftereffects were still measurable several minutes post adaptation. In both 

experiments, aftereffects of adaptation (i.e. incorrect “direct” classifications of eye 

gaze in the adapted direction) were maximal immediately following adaptation, and 

had decayed to near-baseline levels in the last post adaptation phase, approximately 

after ten minutes. In line with previous research (Jenkins et al., 2006; Seyama & Na-

gayama, 2006) the initial level of gaze aftereffects was found to be lower for less am-

biguous test stimuli. At the same time, adaptation effects on less ambiguous test 

stimuli were also subject to faster decay.  

Experiments 3a and 3b therefore show that adaptation continues to cause bi-

ased gaze perception over several minutes, suggesting that these effects may not be 

limited to very specific conditions in the laboratory. Instead it seems likely that, under 

appropriate conditions, adaptation may bias the social perception of eye gaze in real-

life situations. Face adaptation effects have been investigated for a multitude of so-

cial signals, some of which are typically subject to relatively rapid changes (e.g. eye 

gaze direction, expression, facial speech), whereas others (e.g. gender, identity) tend 

to be more stable over time. Invariant vs. changeable aspects of human faces are 

thought to be processed in different neural systems (Haxby et al., 2000). A plausible 

but yet unexplored hypothesis would be that the recalibration processes evident in 

adaptation effects are faster for those systems coding changeable aspects of facial 

information. While recent research has begun to demonstrate different mechanisms 

for short- and long-term adaptation (Fang, Murray, & He, 2007; Kovács et al., 2007), 

an important further question for future research will be whether both mechanisms 

and time-courses of adaptation effects can be dissociated for different social signals 

in faces. Tentative support for this assumption might be seen in a comparison of the 
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present findings with those by Carbon, Strobach, Langton, Harsányi, Leder, and 

Kovács (2007) who reported residual aftereffects of adaptation to distorted faces to 

be still measurable 24 hours after adaptation. These authors measured effects at 

only one point in time, and a precise tracking of the decay of aftereffects to invariant 

vs. changeable aspects of faces will therefore be required for a more thorough com-

parison.  

As this is the first study to systematically determine the effects of the adaptor-

test-interval in high-level face adaptation, it is difficult to relate the findings of Experi-

ment 3a and 3b to those of earlier studies. However, the comparison of the current 

data with findings on the decay of MAEs suggests a comparatively long-lived nature 

of gaze adaptation aftereffects. While the exponential nature of the decay function 

has typically been reported for simple adaptation effects as well (e.g. Hershenson, 

1989; Petersik, 2002; Tootell et al., 1995), Hershenson (1989) reported that motion 

aftereffects induced by extensive adaptation durations as long as 15 minutes almost 

completely decayed only 80 s after adaptation. Finally, whereas the combined effects 

of adaptor duration and test stimulus duration have been addressed by two previous 

studies (cf. Leopold et al., 2005; Rhodes et al., 2007), the combined effects of all 

three factors remain an important issue for future research. 
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66..  Experiment 4: Neural correlates of gender adaptation  

6.1 Introduction 

Following the prolonged viewing of a female (or male) face participants tend to 

classify subsequently presented gender-ambiguous faces as distinctively male (or 

female, Webster et al., 2004). This negative gender aftereffect has been shown to be 

orientation-contingent, i.e. after adaptation to upright female and inverted male faces, 

gender-ambiguous faces are more likely to be classified as male when presented in 

upright orientation and as female when presented in inverted orientation (Rhodes et 

al., 2004). In a hemifield stimulation paradigm, Kovács et al. (2005) found that gender 

adaptation effects consist of a position-specific and a position-invariant component. 

Adaptation to face gender caused strong perceptual aftereffects even when adaptor 

and test stimulus were presented in different visual hemifields. The magnitude of the 

aftereffect, however, was significantly greater when adaptor and test stimulus were 

presented in overlapping spatial locations. 

In an ERP study, Kovács et al. (2006) further investigated the nature of gender 

adaptation effects aiming at answering three important questions. First, the authors 

investigated the electrophysiological correlates of gender adaptation. As high-level 

aftereffects have been found to be largely invariant to changes in the low-level prop-

erties of the face stimuli, the authors hypothesised the face-sensitive N170 compo-

nent, which is thought to be a correlate of the structural encoding of faces, to be the 

major ERP component reflecting the effects of selective adaptation to gender stimuli. 

Second, the authors questioned whether high-level gender adaptation could also be 

found in the perception of complex visual stimuli other than faces, in this case in the 

perception of human hands. Finally, the authors were interested in investigating the 

possibility of cross-categorical effects, i.e. when a hand served as adaptation stimu-

lus and a face was used as test stimulus or vice versa. 

In order to answer these questions, Kovács et al. (2006) had participants adapt 

to photographs of female faces, female hands, or control stimuli (Fourier phase ran-

domised versions of the adaptors). In line with the findings of Webster et al. (2004) 

the behavioural results showed that prolonged adaptation to female faces as com-

pared to control adaptation stimuli led to a bias to perceive subsequently presented 

morphed faces with different proportions of male and female characteristics as more 

masculine. Interestingly, the same adaptation effects could also be observed for fe-
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male hands. However, the authors did not find aftereffects when the adaptor and test 

stimulus belonged to different categories, strongly suggesting that gender adaptation 

effects are category-specific. The analysis of the effects of adaptation on the N170 

component revealed that adaptation to both hands and faces resulted in a strong and 

category-specific modulation of the N170. The amplitude of the component was re-

duced and the latency was increased after adaptation to faces and hands as com-

pared to control stimuli. The adaptation effect on the N170 amplitude was signifi-

cantly larger over the right than left hemisphere and over parietal than over occipital 

electrodes. To sum up, Kovács et al. (2006) suggested that the modulation of the 

N170 component induced by face adaptation might be regarded as a primary corre-

late of the shape-selective visual adaptation in humans. 

Based on the findings of Experiments 1 and 2 reported above, the possibility 

must be considered that the effects observed by Kovács et al. (2006) might partly be 

due to the chosen control condition resulting in adaptation to face structures in the 

gender adaptation condition but not the control condition. In Experiment 1 of the pre-

sent thesis, N170 amplitude reductions were observed in both gaze adaptation condi-

tions irrespective of the direction of adaptation, whereas there was no such finding 

after the implementation of a new control adaptation condition in Experiment 2. 

Therefore, it might be plausible to attribute at least parts of the N170 amplitude re-

duction observed by Kovács et al. (2006) to the fact that test stimuli were preceded 

by a face (or hand) stimulus in face (or hand) adaptation trials, which was not the 

case in the control condition. The use of Fourier phase randomised versions of face 

and hand adaptors as control stimuli during the adaptation phase led to a different 

number of face (or hand) presentations preceding the test stimuli in the gender adap-

tation and control conditions.  

In order to test this hypothesis and to disentangle the respective influences of 

stimulus category repetition and gender adaptation on the N170 reduction, Experi-

ment 4 was designed to replicate the study by Kovács et al. (2006). However, rather 

than using a completely different image structure in the control condition, faces that 

were neutral with respect to gender and therefore without any adaptive power (an-

drogynous faces) were used as control stimuli.  

Further, Experiment 4 aimed at investigating the category-specificity of gender 

adaptation effects. It was tested whether the category-specificity of the gender adap-

tation effect observed by Kovács et al. (2006) would also apply to cross-modal adap-
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tation to gender in voices and faces. In everyday life, we often perceive human faces 

and voices simultaneously, and we can usually classify both faces and voices as be-

ing male and female quite easily. It can therefore be speculated that gender informa-

tion is much more important in the perception of human voices than hands and that 

the categorisation of gender in faces might be more susceptible to voice gender in-

formation. Moreover, the perception of gender in human voices has recently been 

shown to be altered as a consequence of adaptation (Schweinberger et al., 2008).  

To summarise, the second major goal of the study is therefore to extend the 

findings on category-specificity of gender adaptation of Kovács et al. (2006) by inves-

tigating if adaptation to male voices has an effect on the perception of subsequently 

presented gender-ambiguous faces. 

6.2 Methods 

Participants 

19 naïve and healthy participants (3 men, age range: 19-28 years, M = 22.9 y) 

contributed data to the study. They all reported normal or corrected-to-normal vision 

and were right-handed according to the Edinburgh Handedness Inventory (Oldfield, 

1971).  

Stimuli 

Face stimuli were derived from grey-scale full-front digital photographs of four 

young males and four young females and had been used in previous studies (e.g. 

Kovács et al., 2006). Faces had no visible gender-specific features such as facial 

hair, jewellery, or make up and did not wear glasses. They were fitted behind an oval 

mask hiding the outer contours of the faces. Morphs were generated by entering 

male-female pairs into a morphing algorithm (Winmorph 3.1; for details of the morph-

ing procedure please see Kovács et al., 2006). For each pairing, the morphing pro-

cedure resulted in 100 face images, varying gradually on a male-female axis. From 

these images, 4 androgynous face images (50% male/50% female) and 4 male face 

images (98% male/2% female) were chosen to serve as androgynous and male 

adaptors, respectively. Four faces with different morph levels (20%/80%, 40%/60%, 

60%/40%, and 80% male/20% female ratio) were chosen from each male-female 

pair and served as the 16 test stimuli (see Figure 23). Both visual test and adapta-

tion stimuli measured 6.5 x 6.5 cm. All face stimuli were presented on a black screen 

at a viewing distance of ~87 cm which was kept constant using a chin rest. 
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20% male 40% male 50% male
adaptor 

60% male 80% male 98% male
adaptor 

 

Figure 23: Example for test stimuli (20%, 40%, 60%, and 80% male) and androgynous (50% male) and male 
adaptation stimuli (98% male) derived from the morphing continuum of one female/ male – pairing. 

 

Voice stimuli were generated on the basis of high-quality audio recordings ob-

tained from four male and four female speakers pronouncing the vowel-consonant-

vowel (VCV) combination /aba/. All of them were native speakers of German with age 

ranging from 20 to 27 years. Voices were recorded at a resolution of 16 bit and a 

sampling rate of 44,100 Hz. Using Adobe Audition™, stimuli were normalised for av-

erage amplitude and timing and edited to a uniform duration of 886 ms, containing the 

normalised 686 ms utterance of the VCV plus 100 ms silence at the beginning and the 

end, respectively. These pre-processed voices were combined to four male-female 

voice pairs which were entered into a morphing algorithm (Kawahara & Matusi, 2003). 

Pairings were matched according to maximal similarity in intensity patterns in the 

spectrogram in order to optimise morph quality. From each morphed series, 4 an-

drogynous utterances (50% male/ 50% female) and 4 male utterances (100% male) 

were chosen to serve as androgynous and male acoustic adaptors, respectively. Each 

VCV utterance was repeated four times to form one single voice adaptor, which led to 

a total duration of 3544 ms for one acoustic adaptor. For more details concerning the 

voice stimuli used in this study, please see Schweinberger et al. (2008). Acoustic 

stimuli were presented via Sennheiser headphones with an approximate intensity of 

60 dB along with a black screen. 

Apparatus 

The EEG was recorded from 32 Ag/AgCl electrodes (AC, 0.05 – 40 Hz, 250 Hz 

sampling rate) at locations Fz, Cz, Pz, Iz, Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, 

F7, F8, T7, T8, P7, P8, F9, F10, FT9, FT10, TP9, TP10, P9, P10, PO9, and PO10, 

with TP10 as initial common reference, using an Easy-CapTM. Electrode impedances 

were kept below 10 kΩ. The horizontal electrooculogram (EOG) was recorded from 

the outer canthi of both eyes, and the vertical EOG was monitored bipolarly from 

above and below the right eye. Trials with non-ocular artifacts were discarded. For all 
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other trials, the EEG was corrected for contributions of vertical and horizontal eye 

movements using BESA’s automatic EOG artifact correction based on an adaptive 

artifact correction (Ille et al., 2002). Data were segmented into trials of 1200 ms (200 

ms pre-stimulus baseline), digitally low-pass filtered at 20 Hz (zero phase shift, 12 

dB/oct), and recalculated to average reference.  

Task and Procedure 

In a within-subject design participants underwent four adaptation conditions 

which were either unimodal (face adaptors) or cross-modal (voice adaptors) and ei-

ther contained ambiguous gender information (androgynous adaptation) or unambi-

guous gender information (male adaptation). The four different adaptation conditions 

were tested in separate blocks with order of modality of adaptation stimuli counter-

balanced across participants. Within each modality, subjects always adapted to an-

drogynous gender first because this condition was considered to serve as the neutral 

control condition. As the time-course of gender adaptation effects has not yet been 

systematically examined, male adaptation trials were always presented following an-

drogynous adaptation in order to avoid a potential influence of the previous adapta-

tion block on the following one (see Experiment 3). In each of the four conditions, 8 

repetitions of each of the 4 morphlevels derived from the 4 identity pairings were pre-

sented leading to a number of 128 trials per condition. 

In each trial, the adaptor was first presented for 3544 ms. It was then replaced 

by a white question mark on black screen for 800 ms which indicated that participants 

had to respond to the following test face which was presented for 200 ms. After that, 

a black screen was shown for 2000 ms, during which participants responded. Partici-

pants were asked to determine the gender of the test faces, classifying them as ei-

ther male or female by pressing one of two marked keys (labelled “M” and “F”) on a 

standard keyboard. Please see Figure 24, for an overview of the procedure. 
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Figure 24: Trial procedure in face adaptation (upper row) and voice adaptation (lower row) trials. Please note that 
both voice and face adaptors could either be of male or androgynous gender. 

 

6.3 Results 

6.3.1 Behavioural Results 

Visual inspection revealed clear adaptation effects for test faces of relative gen-

der-ambiguous morph levels for both the face adaptation condition (see Figure 25 a 

and Table 5) and the voice adaptation condition (see Figure 25 b and Table 5). Fol-

lowing male adaptation test faces with 40%/60% and 60% male/40% female propor-

tions were less often classified as “male” than following androgynous adaptation, ir-

respective of the adaptor modality. To determine the statistical significance of these 

observations, mean percentages of “male” responses for each participant and each 

condition were analysed in a three-way repeated measurements ANOVA with Modal-

ity of the adaptor (visual, acoustic), Gender of the adaptor (androgynous, male), and 

Morphlevel of test stimulus (20%/80%, 40%/60%, 60%/40%, and 80% male/20% fe-

male ratio) as within-subject factors. The analysis revealed a significant main effect of 

Gender (F[1, 18] = 5.08, p < .05), a main effect of Morphlevel (F[3, 54] = 180.43, p < 

.001), and a significant interaction between these factors (F[3, 54] = 4.50, p < .01). 

The ANOVA revealed no further significant effects, in particular no interaction of Mo-

dality and Gender (F[1, 18] = 4.80, p > .80), and Modality, Gender, and Morphlevel 
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(F[3, 54] = 39.27, p >.30), although there was a strong trend for an interaction of Mo-

dality and Morphlevel (F[3, 54] = 2.55, p = .066). 

a)  

 

b) 

 

Figure 25: Cumulative Gaussian functions fitted on the behavioural adaptation effects. a) Effects of adaptation to 
face gender b) Effects of adaptation to voice gender. Solid lines represent results of adaptation to androgynous 
gender, dashed lines represent results of adaptation to male gender. 

 

T tests collapsed across adaptor modality revealed that the interaction of Gen-

der and Morphlevel resulted from significantly fewer male classifications following 

male as compared to androgynous adaptation for morphlevels 40%/60% (t[18] = 
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3.31, p < .01) and 60% male/40% female (t[18] = 2.52, p < .05) but not for the mor-

phlevels 20%/80% and 80% male/20% female (both ps > .70).  

Considering earlier studies which did not find cross-categorical (Kovács et al., 

2006) or cross-modal (Schweinberger et al., 2008) effects in gender adaptation para-

digms, further analyses aimed at a deeper evaluation of the cross-modal nature of 

the adaptation effect. Although the analysis described above did not reveal a signifi-

cant interaction of Modality, Gender, and Morphlevel, further analyses were therefore 

conducted in order to separately analyse the effects of face and voice adaptation. For 

face adaptation blocks, a repeated measurements ANOVA with the factors Gender 

(androgynous, male) and Morphlevel (20%/80%, 40%/60%, 60%/40%, and 80% 

male/20% female ratio) on the percentage of “male” classifications revealed a signifi-

cant main effect of morphlevel (F[3, 54] = 134.43, p < .001) and a significant interac-

tion of Gender and Morphlevel (F[3, 54] = 4.87, p < .01). T tests revealed that the 

latter was due to significantly fewer “male” classifications following male as compared 

to androgynous adaptation for test faces of the morphlevel 40% male/60% female 

(t[18] = -3.54, p < .01). Although a similar, yet smaller, decrease in the number of 

“male” responses following adaptation to male faces could be observed for test faces 

of the morphlevel 60% male/40% female (see Table 5), this difference failed to reach 

significance (p > .20). 

 

Adaptation stimulus Morphlevel of test stimulus (% male) 

 20% 40% 60% 80% 

Androgynous face 20.2 (3.8) 43.8 (4.0) 72.4 (4.3) 89.0 (3.1) 

Male face 20.9 (3.8) 34.2 (4.6) 66.9 (4.2) 89.4 (2.5) 

Size of aftereffect for face ad-
aptation -0.7 9.6 5.5 -0.4 

Androgynous voice 23.2 (4.8) 44.6 (3.8) 80.8 (2.8) 92.3 (2.3) 

Male voice 20.9 (4.9) 38.5 (4.2) 74.6 (2.8) 90.9 (1.9) 

Size of aftereffect for cross-
modal adaptation 2.3 6.1 6.2 1.4 

Table 5: Proportion of mean “male” classifications and size of the aftereffect (difference between number of male 
classifications following androgynous and male adaptation) depending on the morphlevel of the test stimulus 
(20% male, 40% male, 60% male, and 80% male) and the adaptation condition (androgynous face, male face, 
androgynous voice, and male voice).  
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An analogous separate ANOVA analysing the effects of voice adaptation on the 

perception of gender in test faces of the different morphlevels revealed a main effect 

of morph level (F[3, 54] = 183.76, p < .001) and a trend towards a main effect of gen-

der (F[1, 18] = 3.05, p = .098). Most importantly, there was no significant interaction 

of Gender and Morphlevel (F[3, 54] = 1.37, p > .20). This finding was somewhat sur-

prising, considering that the overall analysis of behavioural data with Modality of the 

adaptor as a factor did not reveal a three-way interaction of Modality, Gender, and 

Morphlevel. 

Therefore, in order to fully understand the data, additional t tests were con-

ducted to compare the number of “male” classifications following androgynous and 

male adaptation for each of the four morphlevels, respectively. These t tests revealed 

significantly fewer “male” classifications following male compared to androgynous 

adaptation for test faces of the morphlevel 60% male/40% female (t[18] = -2.70, p < 

.05) whereas the similar difference observed for test faces with 40% male/ 60% fe-

male ratio was reduced to insignificance (t[18] = -1.86, p = .08, see also Table 5). 

6.3.2 Electrophysiological Results 

For ERPs to test faces, mean amplitudes4 were calculated in the time segment 

100 - 140 ms (P100) at 8 occipitotemporal electrodes (O1, O2, P9, P10, PO9, PO10, 

TP9, and TP10). Mean amplitudes for time segments 150 - 190 ms (N170) and 192 - 

232 ms (P2) were analysed at 8 posterior electrodes (P7, P8, TP9, TP10, P9, P10, 

PO9, and PO10). These time segments were defined by the interval of ± 20 ms 

placed around the peak latency of the grand mean (defined at the electrode where 

the respective ERP component was maximal). Finally, late effects in the time interval 

of 400 to 600 ms were analysed using mean amplitudes in that interval at 9 elec-

trodes (F3, F4, C3, C4, P3, P4, Fz, Cz, and Pz). Where appropriate, epsilon correc-

                                            
4 For the clearly pronounced P1 and N170 components all analyses were also performed on 

peak amplitudes. For P1, individual peak amplitudes were measured at electrodes O1 and O2 as larg-

est positivities in the time window of 90 – 130 ms. For N170, peak amplitudes were individually deter-

mined for each participant and hemisphere as amplitudes at the latency of the maximal negative peak 

between 150 – 200 ms within electrodes P7, P9, PO9, and TP9 as well as P8, P10, PO10, and TP10. 

If not otherwise stated, these analyses led to the same effects as those on mean amplitudes reported 

here.  
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tions for heterogeneity of covariances were performed (Huynh & Feldt, 1976). All 

post-hoc t tests were corrected according to the Bonferroni-procedure (α = .05). 

Please note that in analogy to and for an easier comparison with the gender 

adaptation study by Kovács et al. (2006) the morphlevel of test faces has not been 

included as a factor in the analysis of the ERP data. 

P1 

The analysis of P1 amplitudes in a repeated-measurements ANOVA with the 

factors Electrode (O1/O2, P9/P10, PO9/PO10, and TP9/TP10), Hemisphere (left, 

right), Modality of adaptor (visual, acoustic), and Gender of adaptor (androgynous, 

male) revealed significant main effects of electrode (F[3, 54] = 58.19, p < .001), and 

modality (F[1, 18] = 78.91, p < .001), and significant two-way interactions of Electrode 

and Modality (F[3, 54] = 24.65, p < .001) and Modality and Gender (F[1, 18] = 15.52, 

p < .01). Post-hoc t tests revealed that the interaction between Electrode and Modal-

ity resulted from significantly smaller P1 amplitudes in trials following acoustic as 

compared to visual adaptation at electrode sites O1/O2 (t[18] = -7.08, p < .001), 

P9/P10 (t[18] = -7.01, p < .001), and PO9/PO10 (t[18] = -7.19, p < .001), but not at 

TP9/TP10 (p > .60). The interaction of the factors Modality and Gender resulted from 

the fact that test faces following face adaptation trials were characterised by signifi-

cantly larger amplitudes in trials following adaptation to androgynous gender (M = 

3.19 μV) than following adaptation to male gender (M = 2.95 μV, t[18] = 3.69, p < 

.01). For test faces following voice adaptation trials, however, the pattern was re-

versed. Here, test faces evoked significantly smaller amplitudes if presented following 

adaptation to androgynous (M = 1.45 μV) as compared to male gender (M = 1.67 μV, 

t[18] = -2.89, p < .05). 

The analysis of P1 peak latencies in a 2 x 2 x 2 – ANOVA with Hemisphere, 

Modality of adaptor, and Gender of adaptation stimulus revealed a significant main 

effect of modality (F[1, 18] = 13.81, p < .01) reflecting significantly later P1 peaks in 

trials following face adaptation (M = 118.5 ms) than in trials following voice adapta-

tion (M = 113.6 ms). 

N170 

N170 amplitudes were analysed in a repeated measurements ANOVA with 

Electrode (P7/P8, P9/P10, PO9/PO10, and TP9/TP10), Hemisphere (left, right), Mo-

dality of adaptor (visual, acoustic), and Gender of adaptor (androgynous, male) as 
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factors. The analysis revealed a significant main effect of electrode (F[3, 54] = 8.03, p 

< .01), a main effect of hemisphere (F[1,18] = 5.60, p < .05), a main effect of modality 

(F[1, 18] = 114.96, p < .001), significant two-way interactions of the factors Electrode 

and Modality (F[3, 54] = 11.89, p < .001), Hemisphere and Modality (F[1, 18] = 13.01, 

p < .01), Hemisphere and Gender (F[1, 18] = 5.47, p < .05), and a three-way interac-

tion of Electrode, Hemisphere, and Gender (F[3, 54] = 4.54, p < .01). The main effect 

of modality reflects substantially larger N170 amplitudes in response to test faces 

preceded by voice adaptors (M = -3.86 μV) as compared to face adaptors (M = -1.78 

μV, see Figure 26).  

 

Figure 26: ERPs to test faces either preceded by adaptor faces (thin lines) or voices (bold lines) of androgynous 
(solid lines) or male gender (dashed lines). 

 

Though measurable at each of the electrode locations, the modality effect was 

more pronounced at electrode sites P7/P8, P9/P10, and PO9/PO10 than at 

TP9/TP10 and was more distinct over right (M = -2.40 μV, M = -5.20 μV, for mean 

amplitudes after visual and acoustic adaptation, respectively) than left hemispheric 
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sensors (M = -1.17 μV, M = -2.52 μV for mean amplitudes after visual and acoustic 

adaptation, respectively). 

The comparison of the differences obtained for the left and right hemisphere 

reached statistical significance (t[18] = 3.61, p < .01). The three-way interaction be-

tween Electrode, Hemisphere, and Gender was further analysed in separate analy-

ses for each electrode with Gender as a factor. The analyses revealed a significant 

main effect of gender only for electrode location PO9 (F[1, 18] = 5.32, p < .05) due to 

smaller (i.e. less negative) amplitudes after male adaptation (M = -0.72 μV) as com-

pared to androgynous adaptation (M = -1.06 μV).  

The analogous analysis of peak amplitudes mainly replicated the above find-

ings. However, there was also an additional four-way interaction of Electrode, Hemi-

sphere, Modality, and Gender (F[3, 54] = 3.60, p < .05) reflecting that, in addition to 

the main effect of gender at electrode PO9 (F[1, 18] = 23.62, p < .001) due to the 

smaller N170 amplitudes following male adaptation (M = -1.79 μV) than androgynous 

adaptation (M = -2.17 μV), there was also a significant main effect of gender at elec-

trode PO10 (F[1, 18] = 4.50, p < .05) due to significantly larger N170 amplitudes fol-

lowing male (M = -4.07 μV) than androgynous adaptation (M = -3.78 μV). For an 

overview of the gender effects, please see Figure 27. 

The analysis of N170 peak latencies in a 4 x 2 x 2 x 2 – ANOVA with Electrode, 

Hemisphere, Modality, and Gender as factors revealed a main effect of modality (F[1, 

18] = 10.87, p < .01) reflecting significantly longer N170 latencies in trials following 

face adaptation (M = 165.1 ms) than in trials following voice adaptation (M = 161.9 

ms, see Figure 26). 

P2 

The analysis of P2 amplitudes in a 4 x 2 x 2 x 2 – ANOVA with Electrode, 

Hemisphere, Modality, and Gender as factors revealed significant main effects of 

electrode (F[3, 54] = 30.10, p < .001), hemisphere (F[1, 18] = 4.53, p < .05), and mo-

dality (F[1, 18] = 8.88, p < .01). Further, there was a significant interaction between 

the factors Electrode and Modality (F[3, 54] = 6.30, p < .01) reflecting that the modal-

ity effects with more positive P2 amplitudes following face as compared to voice ad-

aptation were restricted to electrode locations P9/P10, PO9/PO10, and TP9/TP10, 

but did not reach significance for electrode location P7/P8 (see Figure 26 and Table 

6).  
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N170 N170 

Figure 27: Left column: ERPs to test faces presented after adaptation to faces of androgynous (solid lines) or 
male (dashed lines) gender. Please note the small but significant differences in N170 amplitudes evoked by an-
drogynous and male face adaptation at electrodes PO9 and PO10 as indicated by the arrows. Right column: 
ERPs to test faces presented after adaptation to voices of androgynous (solid lines) or male (dashed lines) gen-
der.  

 

 Paired differences
   

Pair M SD SEM T df p 

P7/P8:  
FaceA – VoiceA 0.23 1.33 0.30 0.74 18 0.466 

P9/P10: 
FaceA – VoiceA 1.32 1.76 0.40 3.27 18 0.004 

PO9/PO10: 
FaceA – VoiceA 0.78 1.07 0.25 3.17 18 0.005 

TP9/TP10: 
FaceA – VoiceA 1.24 1.76 0.40 3.08 18 0.006 

Table 6: Results of t tests separately analysing the existence of modality effects for each of the homologue elec-
trode pairings. 
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Late positive component 

ERPs to test faces in the time range of 400 - 600 ms at electrode locations F3, 

F4, C3, C4, P3, P4, Fz, Cz, and Pz (see Figures 28 and 29) were analysed in a re-

peated measurements ANOVA with Electrode location (frontal, central, parietal), 

Hemisphere (left, middle, right), Modality of adaptor (visual, acoustic), and Gender of 

adaptor (androgynous, male) as factors. This analysis revealed significant main ef-

fects of electrode location (F[2, 36] = 75.45, p < .001), hemisphere (F[2, 36] = 16.31, 

p < .001), a significant two-way interaction between Electrode location and Hemi-

sphere (F[4, 72] = 17.81, p < .001), and a significant three-way interaction between 

Electrode location, Modality, and Gender (F[2, 36] = 3.91, p < .05). To analyse the 

three-way interaction, separate analyses were conducted for the groups of frontal, 

middle, and parietal electrodes, respectively. They revealed a significant interaction 

of Modality and Gender for parietal electrodes (F[1, 18] = 5.00, p < .05) and a strong 

trend for central electrodes (F[1, 18] = 4.21, p = .05). T tests revealed that these in-

teractions were due to significantly larger, i.e. more positive amplitudes following 

male face than androgynous face adaptation (t[18] = 2.41, p < .05, t[18] = 2.33, p < 

.05, for central and parietal electrodes, respectively, see Figure 28). No such effects 

of adaptor gender were found in trials following voice adaptation (all ps > .40, see 

Figure 29). 

The differences observed in the late positive component might be explained in 

terms of a P3 effect with larger amplitudes arising in response to deviating stimuli. 

Considering the design of the experiment, both androgynous and male face adaptors 

were followed by an equal set of test stimuli consisting of relatively feminine faces 

(20% male/80% female), of gender-ambiguous faces (40% /60% and 60% male/40% 

female), and of relatively masculine faces (80% male/20 % female). Consequently, 

there was a varying overall rate of deviance between androgynous and male adapta-

tion trials, i.e. the total dissimilarity of test stimuli from the adaptor stimuli was differ-

ent for the two adaptation conditions. More precisely, in the androgynous adaptation 

condition, 50% of the tests faces contained similar androgynous gender information 

(i.e. 40%/60% and 60% male/40% female) as the adaptor faces (50% male/50% fe-

male) and the resulting 50% of test faces (i.e. the relatively male and relatively fe-

male faces) were dissimilar yet relatively close with regard to their gender informa-

tion: they deviated to the same extent although in a different direction from the an-

drogynous faces, which lay halfway between male and female faces. 
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Figure 28: Effects of adaptation to facial gender in the time interval between 400 and 600 ms (vertical lines). 
ERPs in response to test faces presented following androgynous (solid lines) or male (dashed lines) face gender 
adaptation, respectively. Please note the larger amplitudes in trials following adaptation to male as compared to 
androgynous gender at central and parietal electrodes.  

 

In the male adaptation condition, however, only 25% of the test faces (i.e. 

80%male/ 20% female) contained similar gender information as the adaptor stimuli. 

The 50% of test faces showing ambiguous test stimuli contained dissimilar yet rela-

tively close gender information, whereas the 25% of test faces that contained rela-

tively feminine information (i.e. 20% male/ 80% female) were very dissimilar to the 

male adaptation stimuli.  
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Figure 29: Effects of adaptation to voice gender in the time interval between 400 and 600 ms (vertical lines). 
ERPs in response to test faces presented following androgynous (solid lines) or male (dashed lines) voice gender 
adaptation, respectively. Please note the absence of effects of adaptor gender which were very prominent in face 
adaptation conditions (cf. Figure 28) 

 

Considering the relationship between adaptation and test stimuli in this way, i.e. 

in terms of the total amount of deviance of gender information in test stimuli from the 

gender information in adaptation stimuli, the sum of test faces in the male face adap-

tation condition contained more gender deviance than did the total amount of test 

faces in the androgynous face adaptation condition. This might explain the larger 

positivity between 400 and 600 ms evoked by test stimuli following male as com-

pared to androgynous adaptation. 
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Further analyses were conducted to test this possible explanation of the effects 

in the time interval of 400 to 600 ms. The rationale behind these analyses was the 

following: if the observed effects should represent a P3 effect with more positive am-

plitudes in response to stimuli deviating from the context given by adaptor faces, this 

effect should be largest for relatively female faces with more positive amplitudes fol-

lowing male than androgynous adaptation for test stimuli of the morphlevel 20% 

male/80% female. Further, decreasing effects might be predicted for morphlevels 

with increasing proportions of maleness. Figure 30 separately depicts the effects in 

the interval of 400 to 600 ms for the four different morphlevels used. 

In order to evaluate the statistical significance of amplitude differences ob-

served in the late time interval for test stimuli of the different morph levels a repeated 

measurements ANOVA was conducted on mean amplitudes obtained between 400 

and 600 ms. The ANOVA investigated the effects of Electrode location (C3, Cz, C4, 

P3, Pz, and P4), Gender of the adaptor (androgynous, male), and the Morphlevel of 

the test stimulus (20%/80%, 40%/60%, 60%/40%, and 80% male/20% female ratio). 

The analysis revealed significant main effects of electrode (F[5, 90] = 35.61, p < 

.001), gender (F[1, 18] = 5.04, p < .05), and morphlevel (F[3, 54] = 6.58, p < .05), as 

well as a significant interaction of Gender and Morphlevel (F[3, 54] = 4.99, p < .01). T 

tests revealed that only the relatively feminine stimuli, i.e. test stimuli of the mor-

phlevel 20% male/80% female produced significantly larger positivity following male 

than androgynous face adaptation (t[18] = 3.84, p < .01) whereas for all other mor-

phlevels amplitudes evoked between 400 – 600 ms did not significantly differ be-

tween androgynous and male adapted trials (all ps > .10).  
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Figure 30: Effects of adaptor gender on test faces of the different morphlevels in the time interval of 400 to 600 
ms.  
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6.4 Discussion 

The adaptation procedure applied in Experiment 4 evoked clear and significant 

effects of adaptation to gender. As has been shown before, adaptation to male faces 

led to an increase in female classifications of subsequently presented face stimuli 

with relatively high gender-ambiguity. Interestingly, a similar shift in the perception of 

facial gender did also seem to take place following adaptation to male voices. Al-

though the significance of this cross-modal gender adaptation effect could not be 

proven in all analyses, there is still some statistical support for the assumption that 

the perception of gender in faces can be biased by the preceding voice information. 

This is the first evidence for cross-modal adaptation effects. Whereas Kovács et al. 

(2006) have shown that the perception of gender in hands is generally vulnerable to 

adaptation effects in an intra-category adaptation condition, the perception of gender 

in faces was found to be unaffected by previous presentation of hand adaptors. Con-

sidered together, these findings suggest that the perception of gender in faces is un-

affected by cross-category adaptation whereas some cross-modal adaptation seems 

to occur following the presentation of voices.  

The frequent co-occurrence of faces and voices in everyday life compared to 

relatively few cases of simultaneous presentation of faces and hands might explain 

for the different findings on cross-category gender adaptation. Additionally, consider-

ing that much of our communication takes place over the phone and therefore only 

provides acoustic information, it is likely that we are very experienced in extracting 

gender information from voices. However, when deciding about the gender of a per-

son in a direct personal interaction, we usually make this decision on the basis of the 

persons’ face rather than his or her hands. The current finding of cross-modal adap-

tation to gender might therefore be explained in terms of adaptation to a superordi-

nate, high-level, and modality-invariant gender concept that subsumes different kinds 

of sensory information, such as visual, acoustic, and olfactory information. This hy-

pothesis is in line with a study by Kovács et al. (2004) describing influences of sex-

hormone-like odours on the perception of gender-ambiguous faces.  

However, given the relatively small statistical support for cross-modal gender 

adaptation that certainly suggests the effect to be rather weak and considering that a 

recent study investigating voice adaptation did not observe an effect of face adapta-

tion on the gender classification of ambiguous voices (Schweinberger et al., 2008) 

the present findings have to be considered with caution. It is evident that further re-
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search will be needed to shed light on the complex multimodal aspects of gender 

perception. Of special importance, the cross-modal voice-to-face gender adaptation 

effect described here will have to be replicated. The inconsistent results in the differ-

ent statistical analyses suggest that cross-modal adaptation effects have a relatively 

large variance. Further, the cross modal effect appears to be somewhat weaker than 

the unimodal adaptation effect. Finally, it might even be the case that different indi-

vidual predispositions (e.g. sharp vs. poor sense of hearing) lead to interindividual 

differences with regard to the emergence and magnitude of cross-modal adaptation 

effects. These considerations might be accounted for in studies trying to replicate the 

present results with a larger number of participants and trials. 

The major findings concerning the ERP correlates of this study were as follows. 

The N170 was shown to be mainly sensitive to adaptor modality, with test faces 

evoking dramatically larger N170 amplitudes when presented after voice adaptors 

than after face adaptors. Relative to that great effect, only a relatively small effect of 

adaptor gender was found in the N170 measured at electrode pair PO9/PO10 due to 

slightly smaller amplitudes following male as compared to androgynous adaptation at 

electrode PO9 and a reversed pattern with significantly larger amplitudes following 

male than androgynous adaptation at electrode PO10.  

The effects observed in the N170 are largely in line with the hypotheses of this 

study and underline the methodical considerations following Experiment 1: the large 

reduction in N170 amplitudes following adaptation to male gender as observed by 

Kovács et al. (2006) seems to consist of both a large general face adaptation effect 

and a relatively small contribution of a gender specific face adaptation effect. The 

size of the amplitude reduction observed by Kovács et al. (2006) which was in the 

range of ~3 μV is at a similar scale as the modality effect observed in the current ex-

periment. The gender effects observed, however, were relatively small and limited to 

the occipitotemporal electrodes PO9 and PO10. Interestingly, the N170 gender adap-

tation effect interacted with the factor hemisphere with adaptation to male gender (as 

compared to androgynous gender) evoking significantly smaller amplitudes over the 

left hemisphere and significantly larger amplitudes over the right hemisphere. While 

there is no clear interpretation of these results at present, they can be reconciled with 

a recent study by Parente and Tommasi (2008) suggesting some degree of laterality 

in the processing of facial gender as will be discussed in more detail in the general 

discussion of this thesis. However, it is important to consider that this effect is rela-
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tively small and requires replication in order to base possible interpretations on the 

functional relevance of this effect on more established findings. 

More pronounced effects of gender adaptation could be observed in the late 

positive component over central and parietal electrode locations. Here, test faces 

elicited more positive amplitudes following adaptation to male as compared to an-

drogynous faces. Although a small numerical effect in this direction was also found 

for test stimuli preceded by voice adaptors, this was far from reaching statistical sig-

nificance. 

Further analyses considering the different morph levels of the test stimuli aimed 

at a deeper understanding of the nature of this late effect. In line with the assumption 

of a P3 effect, amplitude differences between male adapted and androgynous 

adapted trials were largest for relatively female test stimuli, with more positive ampli-

tudes following male as compared to androgynous adaptation. This finding is in line 

with the ‘context-updating theory’ of the P3 (Donchin, 1981) that assumes larger P3 

amplitudes to reflect the larger effort of context updating for stimuli that differ from the 

previous perceptual context. In the current experiment, the largest perceptual differ-

ence between adaptation and test stimuli existed between male adaptation stimuli 

and relatively feminine (80% female) test stimuli. All other stimulus combinations 

were perceptually more similar and did not evoke significant differences in P3 ampli-

tudes. Importantly, this explanation does also account for the fact that there were no 

effects in the late positive components evoked by test faces in voice adaptation trials. 

Here, the preceding stimulus context was given by a completely different modality 

therefore possibly requiring a similar context updating effort for all different kinds of 

test stimuli. 
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77..  General Discussion 

In a series of four studies the current work investigated the nature of high-level 

adaptation effects in the perception of faces. Experiments 1, 2, and 3 investigated the 

effects of adaptation to eye gaze direction with different degrees of deviance from 

direct gaze and examined the neural correlates and the time-course of gaze adapta-

tion effects, respectively. 

Experiment 4 examined the neural correlates of gender adaptation in intra- and 

inter-modality adaptation trials. For this purpose, a new control adaptation condition 

has been applied which was developed as a consequence of the findings of Experi-

ments 1 and 2. 

7.1 Behavioural findings on eye gaze adaptation 

Although Experiments 1, 2, and 3 all investigated effects of adaptation to eye 

gaze, they used different experimental parameters allowing broad insight into the 

conditions under which gaze adaptation occurs. Effects of adaptation to right gaze 

direction could be observed both in the case of adaptation to faces with large gaze 

deviations from direct gaze (25°, Experiments 1 and 3) and in the case of adaptation 

to faces with smaller gaze deviations (10°, Experiment 2) leading to a misperception 

of eye gaze deviating in the adapted direction as gazing directly at the observer. The 

results of Experiments 1, 2, and 3 were therefore able to replicate the gaze adapta-

tion effects that have been reported in earlier studies (Jenkins et al., 2006; Seyama & 

Nagayama, 2006). Additionally, they provided further information on the nature of 

gaze adaptation effects in examining the neural correlates (Experiments 1 and 2) and 

the temporal persistence of these effects (Experiment 3).  

Experiment 2 provided new information on the interrelation of the nature of ad-

aptation and test stimuli and their ability to evoke gaze aftereffects. Considering that 

the gaze deviations of adaptor stimuli in former studies showed substantial 25° 

(Jenkins et al., 2006, Experiment 1 of the present thesis) or 35° deviations from direct 

gaze (Seyama & Nagayama, 2006) and were very dissimilar to the test stimuli used 

(5° and 10°, 2° and 4°, respectively), this study has provided the first evidence that 

adaptation to eye gaze direction can be elicited by stimuli with substantially smaller 

(10°) deviations from direct gaze. The size of aftereffects on test stimuli with 5° gaze 

deviance in the adapted direction was found to be smaller when elicited by adapta-
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tion stimuli with 10° deviance (Experiment 2) as compared to adaptation stimuli with 

25° deviance in the right direction (Experiments 1 and 3). The number of incorrect 

“direct” classifications increased from approximately 30% in the baseline condition to 

about 60% following adaptation to 10° right gaze. Following adaptation to 25° right 

gaze it increased from approximately 30% in the baseline condition to about 90%, 

therefore closely replicating the magnitude of the gaze adaptation effect reported by 

Jenkins et al. (2006). Moreover, Experiment 2 showed that adaptation to a small de-

gree of gaze deviation even has small but significant effects on the perception of test 

stimuli with the same 10° gaze deviation as contained in the adaptation stimuli. Here, 

the number of incorrect “direct” classifications significantly increased from about 6% 

in the baseline condition to approximately 13% following adaptation. Overall, these 

findings are in line with the suggestion by Robbins et al. (2007) who proposed that 

those facial characteristics for which a large range of values has to be coded evoke 

aftereffects that increase when the adaptation stimulus is shifted away from the norm. 

For different facial attributes that only vary in a relatively small range, Robbins et al. 

(2007) claimed that aftereffects decrease the further the adaptation stimulus is placed 

away from the norm. 

The comparison of a new direct gaze adaptation control condition to the tradi-

tional pre-adaptation condition which had been used by Jenkins et al. (2006) and in 

Experiment 1 revealed that adaptation to direct gaze did not have an effect on the 

perception of subsequently presented gaze directions. Rather, it led to the same 

classifications of gaze direction as obtained without any adaptation procedure. This 

finding suggests that direct eye gaze serves as a neutral point in the representation 

of gaze directions  

Along with the theoretical implication of considering direct gaze as a neutral 

point in the neural representation of gaze directions, the comparison of the pre-

adaptation and direct gaze adaptation conditions also suggested that adaptation to 

direct gaze can indeed be considered as an adaptation-neutral condition. This condi-

tion therefore met the requirements for serving as a suitable new control condition for 

ERP studies: although presenting the same amount of facial information before each 

test stimulus as displayed in the directional adaptation condition, direct gaze adapta-

tion did not produce adaptation effects in itself. 

A few adaptation studies have begun to address the question of contrastive 

(two-pool) vs. multichannel coding of faces. These neural coding models have tradi-
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tionally been investigated using adaptation paradigms in low-level vision (Clifford, 

Wenderoth, & Spehar, 2000; Rogers & Graham, 1985) and have recently also been 

applied to studies on high-level aftereffects (Robbins et al., 2007). Two-pool models 

have usually been considered appropriate for the perception of dimensions which 

contain a neutral point. These models assume a contrastive processing where oppo-

site characteristics of a stimulus dimension are coded by different neural entities, and 

a neutral point between those characteristics is perceived when activity in the two 

neural pools is at an equilibrium (e.g. the perception of vertical motion with standstill 

as the neutral point between upward motion and downward motion). In the case of 

eye gaze direction perception, a two-pool model would assume that one neural entity 

selectively processes left gaze direction and a second neural entity selectively proc-

esses right gaze direction. Direct gaze direction would be assumed to be perceived 

as a consequence of equal activity in both pools.  

Multichannel models, however, may be applicable for the processing of dimen-

sions that do not have a neutral point (e.g. spatial frequency). They propose the exis-

tence of several channels with each of them coding a certain range within the dimen-

sion of a certain stimulus attribute. The minimal account of a multichannel system 

applied to the perception of eye gaze direction would assume three different chan-

nels – one for the perception of left, direct, and right gaze direction, respectively – 

whereas a more refined multichannel system might also code different gaze devia-

tions, e.g. 30° left, 20° left, 10° left, 0° (i.e. direct gaze), 10° right, and so on. 

Concerning the application of these models on the perception of different facial 

aspects as investigated in high-level visual aftereffects, most authors have reported 

evidence for contrastive coding in studies investigating for example identity adapta-

tion (see Leopold et al., 2001, for a study strongly suggesting that identity is coded 

relative to an average face) or adaptation to symmetrical and asymmetrical face dis-

tortions (see Robbins et al., 2007). Jenkins et al. (2006) stated that their findings on 

eye gaze adaptation would be both in line with a two-channel and a multichannel 

coding mechanism and concluded that further research would be required to come to 

a decision about the nature of eye gaze representations.  

The behavioural results obtained in the Experiments 1, 2, and 3 of the present 

thesis might well be reconciled with the idea of contrastive (two-channel) coding of 

horizontal eye gaze direction. Although it is difficult to completely exclude a multi-

channel system with separate channels for distinct gaze directions on the basis of the 
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present data, at least when assuming relatively broad tuning curves of individual 

channels, three aspects of the current data seem to be more in line with the idea of 

contrastive coding of gaze direction: first, multichannel models predict adaptation ef-

fects to mainly arise for test stimuli close to the adaptor (Robbins et al., 2007). The 

data of Experiments 1 and 3, however, showed that adaptation to eye gaze deviating 

by 25° caused substantial and more persistent aftereffects for the perception of 5° 

test stimuli as compared to 10° test stimuli. Moreover, the behavioural data of Ex-

periment 2 clearly showed that aftereffects on stimuli identical to the adaptor were 

significantly weaker than those on stimuli that were dissimilar to the adaptor, but 

more ambiguous. Second, unlike the basic results of Jenkins et al. (2006), but similar 

to the findings of Seyama and Nagayama (2006), adaptation to right gaze consis-

tently not only impaired the observer’s perception of gaze in the adapted direction, 

but also improved the observer’s perception of gaze in the opposite direction, again 

supporting the idea that adaptation effects to eye gaze reflect the coding of gaze di-

rection in a contrastive manner. Third, the comparison of gaze classifications ob-

tained in a traditional pre-adaptation baseline to those acquired in a direct gaze ad-

aptation baseline in Experiment 2 suggested that adaptation to direct gaze did not 

lead to a bias in the perception of gaze direction, again suggesting direct gaze to be 

represented as the neutral point between left and right gaze direction. 

In a very recent study, Calder et al. (2008) systematically examined the nature 

of eye gaze representations using adaptation paradigms to test different predictions 

derived from the two models. First, they investigated the effects of adaptation to di-

rect eye gaze. According to the authors, adaptation to direct gaze if represented in a 

multichannel system should lead to an attenuation of the channel representing direct 

gaze and lead to the perception of small gaze deviations as being more averted. In 

an opponent channel system, however, they claimed that adaptation to direct gaze 

should lead to an equivalent attenuation of channels coding left and right gaze direc-

tion, which should not lead to a change of any perceived gaze direction. Second, 

Calder et al. (2008) stated that the two models make different predictions for the ef-

fects of adaptation to different degrees of gaze deviation (10° and 25°), with a mul-

tichannel model predicting that adaptation to 25° stimuli should lead to a larger prob-

ability of perceiving gaze stimuli averted in the adapted side as showing direct gaze 

relative to the 10° adaptation condition. Further, they expected adaptation to 10° 

gaze represented in a multichannel model to lead to a decreased tendency to per-
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ceive gaze directed to the unadapted side as direct relative to the 25° adaptation 

condition. They stated that these effects result from a larger attenuation of the direct 

gaze channel by 10° than 25° adaptors. According to Calder et al. (2008), however, a 

two-channel model allows for two possible outcomes when comparing adaptation to 

different degrees of gaze deviation (i.e. 10° and 25°): first, it is possible that adapta-

tion to 25° would both increase the probability of “direct” responses to stimuli gazing 

to the adapted side and decrease the probability of “direct” responses to stimuli gaz-

ing to the unadapted side to a greater extent than adaptation to 10°. As a second 

prediction in line with the two-channel model, they stated that both adaptor types (10° 

and 25°) might lead to equivalent effects on test stimuli with gaze directed to the 

adapted and unadapted sides. Calder et al. (2008) derived these two possible predic-

tions from the consideration that the shift in the central tendency due to adaptation is 

proportional to the degree of attenuation of the left or right channel, so that adapta-

tion to 25° gaze deviance might be assumed to produce either an equal or more pro-

nounced attenuation of the adapted channel than adaptation to 10° gaze deviance.  

Testing these different predictions, Calder et al. (2008) conducted two studies 

and investigated (a) the effects of adaptation to left (25° and 10°), right (25° and 10°), 

and direct gaze direction on the perception of test stimuli (10° left, 5° left, direct, 5° 

right, and 10° right) and (b) the effects of simultaneous adaptation to alternating 

presentations of 25° left and 25° right gaze, leading to equivalent habituation of both 

left and right channels.  

The main results were as follows: adaptation to direct gaze was found to signifi-

cantly decrease the number of “direct” responses to test stimuli gazing 5° in both the 

left and right direction and, to a lesser extent, to test stimuli gazing 10° in both the left 

and right direction. Comparing adaptation to 25° and 10°, the former led to a larger 

increase in incorrect “direct” classifications of gaze to the adapted direction compared 

to the 10° adaptation stimuli, whereas the 10° adaptors led to a reduced tendency to 

perceive eye gaze to the unadapted side as direct. Finally, they showed that after 

simultaneous adaptation to faces with alternating left and right gaze directions par-

ticipants made significantly more “direct” judgements to both 5° and 10° left and right 

test faces. These findings are in strong contradiction to a two-channel coding of gaze 

direction, whereas they can be well explained by the multichannel assumption. Based 

on this series of findings, the authors therefore suggested that eye gaze direction is 

coded in a multichannel system 
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Although the studies on eye gaze adaptation presented in the current thesis 

were designed to investigate neural correlates of gaze adaptation (Experiments 1 

and 2) and the temporal decay of that effect (Experiment 3) and did not systemati-

cally investigate the question of two-channel versus multichannel coding, part of their 

findings clearly contradict the results of Calder et al. (2008). Whereas the finding that 

adaptation to faces with larger gaze deviations (i.e. 25°) induced stronger aftereffects 

than adaptation to smaller gaze deviations (i.e. 10°) could also be observed in the 

comparison of Experiments 1 and 2, there were large differences in the findings con-

cerning the effects of adaptation to direct gaze direction. Calder et al. (2008) reported 

that adaptation to direct gaze significantly decreased the number of “direct” re-

sponses to test stimuli gazing 5° in both the left and right direction and, to a lesser 

extent, to test stimuli gazing 10° in both the left and right direction. In Experiment 2 of 

the present thesis, however, the comparison of behavioural effects of adaptation to 

direct gaze to those obtained in a traditional pre-adaptation phase without adaptation 

revealed no differences between the conditions, suggesting no effect of adaptation to 

direct gaze whatsoever. This is clearly in line with a two-pool model account on gaze 

perception expecting both channels coding left and right gaze direction to equally 

adapt when presented with direct gaze, therefore not leading to a disproportionate 

habituation of any channel which would result in behavioural aftereffects.  

Overall, the contradictory results observed following direct gaze adaptation un-

derline that the nature of the neural coding of gaze directions is still not completely 

discovered. Whereas some aspects seem to be consistently found in different stud-

ies, such as larger adaptation effects following adaptation to large as compared to 

small gaze deviations, other findings are difficult to integrate: the fact that adaptation 

to direct gaze did not influence the perception of subsequently presented test stimuli 

in Experiment 2 is a serious challenge for the assumption that eye gaze is coded in a 

multichannel system. Further research will be required to understand the origin of 

these conflicting findings.  

7.2 ERP correlates of eye gaze adaptation 

In the analysis of the ERP data collected in Experiments 1 and 2, two time win-

dows consistently emerged as being of relevance for eye gaze adaptation: the occipi-

totemporal N170 component and the time interval of 250 – 350 ms. In Experiment 1, 

the N170 was largely affected by adaptation irrespective of the direction of gaze, with 
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a substantial reduction in amplitude and an increase in latency in post-adaptation 

trials as compared to the pre-adaptation baseline. Due to the direction-invariance of 

this effect it was hypothesised to merely reflect a correlate of general face adaptation 

irrespective of the eye gaze direction. As a result of the design of pre-adaptation and 

post-adaptation trials in the study, test faces presented in post adaptation trials were 

always closely preceded by top-up adaptation displays. These trials therefore pro-

vided a higher frequency of face repetitions than pre-adaptation trials, which were 

characterised by longer blank screen intervals between the presentations of test 

faces.  

In order to test the hypothesis of a general face adaptation mechanism underly-

ing this N170 amplitude reduction and to test the applicability of a methodically modi-

fied adaptation design for ERP studies, Experiment 2 compared the effects of adap-

tation to direct gaze and right gaze direction, therefore providing the same amount of 

face information before each test face in both adaptation conditions. This change of 

the design led to a completely different pattern of results in the N170 time window in 

which the large (~2 μV) N170 amplitude differences observed in Experiment 1 almost 

completely vanished. In line with this finding, the comparison of N170 amplitudes in 

response to the presentation of adaptation stimuli revealed significantly larger ampli-

tudes in response to stimuli presented in the first halves of the adaptation blocks 

compared to the second halves. Again, these amplitude differences were independ-

ent of the direction of gaze contained in the adaptation stimuli, further stressing that 

the N170 is mainly sensitive to face repetitions in general.  

Together, these findings suggest that the N170 effects observed in Experiment 

1 indeed reflected adaptation to face stimuli per se, more precisely, they probably 

represented adaptation to their structural composition, the analysis of which is be-

lieved to be reflected in the N170 (Eimer, 1998; Eimer, 2000; Itier & Taylor, 2004a; 

Kanwisher & Moscovitch, 2000). This interpretation is in line with earlier studies that 

reported decreased amplitudes following face repetitions both in EEG (Itier & Taylor, 

2002; Itier & Taylor, 2004b) and MEG studies (Harris & Nakayama, 2007; Jeffreys, 

1996). The use of the new control condition of direct gaze adaptation therefore 

seemed to allow the disentangling of the relative contributions of general face repeti-

tion and gaze adaptation effects on the N170 and is therefore considered to be a 

promising new approach to study effects of adaptation in ERP studies. 
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The remaining N170 adaptation effects in response to test stimuli observed in 

Experiment 2 were very small: at P7/P8 a strong trend reflected larger amplitudes 

following right as compared to direct gaze adaptation. At PO9/10 the same pattern 

was found, but only for test stimuli showing left gaze direction which evoked larger 

N170 amplitudes following right as compared to direct adaptation. The fact that there 

were relatively small adaptation effects in the N170 time range in both Experiments 1 

and 2 allows the exclusion of one possible explanation for finding no direction-

specific effects in the N170 observed in Experiment 1. Considering that a possible 

N170 adaptation effect might have been covered by recovery from adaptation in Ex-

periment 1, Experiment 2 investigated adaptation to stimuli with relatively small gaze 

deviations (10°) from direct gaze. This increased the perceptual similarity between 

adaptation and test stimuli and was therefore expected to decrease the amount of 

fast recovery of adaptation. The fact that N170 effects of adaptation were still very 

small in Experiment 2 therefore suggests that recovery of adaptation might not have 

played an important role with regard to the findings of Experiment 1.  

To date, there is mixed evidence concerning the sensitivity of the N170 to gaze 

direction, with some studies observing sensitivity to gaze direction (Conty et al., 

2007; Itier et al., 2007a; Puce et al., 2000; Watanabe et al., 2002) and other studies 

not finding it (Taylor et al., 2001). In the studies that reported effects of gaze direc-

tions averted eye gaze was usually found to elicit larger N170 amplitudes than direct 

gaze (but see Conty et al., 2007, for a report of larger N170 amplitudes in response 

to gaze movements from diverted to direct gaze as compared to movements from 

direct to averted gaze).  

Visual inspection of the ERP responses to adaptation stimuli in Experiment 2 

also revealed larger N170 amplitudes following right (i.e. averted) adaptation than 

direct adaptation, although these differences failed to reach statistical significance. It 

is important to note, however, that the small but significant effect found in the study, 

namely the finding of larger N170 amplitudes to left gazing test stimuli following right 

than direct adaptation is in line with the direction of amplitude differences reported by 

Itier et al. (2007) and Watanabe et al. (2002). Considering that adaptation to right 

gaze direction has been found to improve correct classifications of left gaze it is rea-

sonable to assume that left gazing stimuli following right adaptation were more relia-

bly perceived as averted. This finding might explain the increase in N170 amplitude 

following right adaptation: direct gaze was still perceived as direct in most cases after 
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adaptation, possibly explaining why N170 amplitudes were found to be unaffected by 

adaptation. Following these considerations, right gaze direction, which was most of-

ten perceived as direct gaze (i.e. unaverted gaze) following adaptation, should have 

produced smaller N170 amplitudes as compared to the control condition. An effect in 

this direction, however, could not be observed. 

The finding of only small effects in the N170 time window and the fact that the 

response to right gazing stimuli was not modulated in a way consistent with the ex-

planation of the results for stimuli gazing in the left direction does not necessarily 

mean that the processes taking place in the N170 time window were not influenced 

by adaptation. It is possible that there is greater sensitivity to eye gaze adaptation in 

the structural encoding state ~170 ms but that the neural correlates of this effect are 

just not easily detectable in EEG measurements. Possibly, the neural sources that 

are affected by prior gaze direction information are located in a way parallel to the 

scalp surface which would make it difficult to (fully) measure their activity by EEG 

scalp electrodes. 

Considering this possibility it might be worth replicating the present gaze adap-

tation experiments measuring magnetoencephalographic correlates of adaptation. 

The magnetoencephalographic M170 and the electroencephalographic N170 com-

ponent have been discussed as originating from the same underlying neural sources 

(Deffke et al., 2007), the M170 has also been shown to be sensitive to eye gaze in-

formation (Watanabe, Kakigi, & Puce, 2001), and a recent study reported larger 

M170 amplitudes in response to averted as compared to direct gaze (Sato, Kochi-

yama, Uono, & Yoshikawa, 2008).  

As the MEG method is only sensitive to the magnetic fields resulting from the 

electric currents in neurons oriented in parallel to the scalp surface, it is possible that 

gaze adaptation effects would be more pronounced in the M170 than in the N170. On 

the other hand, a similar lack of strong effects in an MEG study might allow the com-

plete exclusion of the existence of large effects of gaze direction-specific adaptation 

in the time range of ~170 ms. Therefore, combined findings from EEG and MEG 

studies that provide a more detailed view on the activity of neural sources oriented 

both in a parallel and perpendicular way might be necessary to finally decide on the 

role of the structural encoding or ‘eye detecting’ in early gaze adaptation. 

The time interval of 250 – 350 ms was consistently found to be affected by gaze 

adaptation in both Experiments 1 and 2. In Experiment 1, test faces of all three gaze 
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directions elicited less negative amplitudes when presented following left as com-

pared to right adaptation. This effect of adaptation direction was restricted to right-

posterior electrodes. In Experiment 2, the analysis of the same time interval revealed 

significantly less negative amplitudes in response to direct gazing test stimuli than to 

test stimuli with left or right gaze in trials following adaptation to direct as compared to 

right gaze direction. Similarly, right gazing test stimuli following adaptation to right 

gaze direction evoked less negative amplitudes than test stimuli gazing to the left or 

directly at the observer. This pattern, however, was weaker than the one found for 

test stimuli with direct gaze following adaptation to that direction and failed to reach 

conventional levels of significance. 

Although both Experiment 1 and Experiment 2 suggested an ERP effect of gaze 

adaptation in the 250 – 350 ms time interval, the precise pattern of gaze adaptation 

effects in the two experiments differed somewhat. In Experiment 1, adaptation to left 

gaze direction consistently evoked smaller negativities in response to test stimuli of 

all gaze directions over posterior, right-hemispheric electrodes. The restriction of this 

finding to right hemispheric electrodes is in line with studies reporting an advantage 

of the left visual field in gaze direction perception (Ricciardelli, Ro, & Driver, 2002) or 

greater right STS activity in response to direct as compared to averted gaze percep-

tion (Conty et al., 2007) stressing the role of the right hemisphere in the processing of 

face-related information. 

When evaluating and interpreting the results of Experiment 1 it might be impor-

tant to consider the later findings of Experiment 3 on the temporal persistence of eye 

gaze adaptation effects. Here, gaze adaptation effects were found to gradually de-

crease over time but to still be measurable several minutes after adaptation. Consid-

ering that the order of left and right gaze adaptation blocks was counterbalanced 

across participants in Experiment 1, it seems plausible to assume a residual influ-

ence of the first adaptation condition on the second one. Most probably, however, 

this affected the ERP data obtained following adaptation to left and right gaze to the 

same extent. The differences in the ERPs in response to left and right adaptation 

might therefore even be more pronounced than they appeared to be in the ERP data 

of Experiment 1. 

The gaze adaptation effect observed in the same time interval in Experiment 2 

was qualified by the gaze direction of the test stimulus. Here, amplitudes evoked by 

test stimuli gazing in the adapted direction were found to be less negative than ampli-
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tudes evoked by test stimuli gazing in unadapted directions. This was true for both 

direct and right adaptation conditions although the effect did not reach statistical sig-

nificance in the latter case. This finding might be considered to reflect a reduced neu-

ral activity evoked by the presentation of a stimulus characteristic that has formerly 

been adapted to. Therefore, this effect might be interpreted to represent the relatively 

easier or ‘prepared’ processing of a gaze direction that had been extensively pre-

sented before test stimulus presentation. It is important to consider, however, that the 

behavioural results obtained in Experiment 2 suggested that adaptation to direct 

gaze does not produce any adaptation effects. It can therefore be speculated that the 

ERP results following direct gaze adaptation were not influenced by adaptation but 

rather represent the ‘normal’ response pattern obtained for test stimuli of left, direct, 

and right gaze direction. This pattern does not seem to differentiate between left, di-

rect and right gaze, but rather seems to respond differently when presented with di-

rect vs. averted gaze with significantly less negative amplitudes in response to direct 

as compared to averted gaze. 

Consistent with this assumption, ERPs evoked by right gazing stimuli presented 

after adaptation to right gaze direction (which makes them more likely to be per-

ceived as direct gazing) seemed to show a similar response pattern as test stimuli 

with direct gaze without prior adaptation (i.e. following direct gaze adaptation). Over-

all, this finding suggests that the distinction between direct and averted eye gaze 

might take place or at least influence processing in the time interval of 250 – 350 ms 

with direct gaze or gaze that is perceived as direct as a consequence of adaptation 

evoking less negative amplitudes than averted gaze. 

In order to understand the different results of Experiments 1 and 2 as observed 

in the time interval of 250 – 350 ms, it might be important to recapitulate the major 

differences in the design of the two studies. For a start, there were different numbers 

of participants tested in Experiment 1 (N = 10) and Experiment 2 (N = 19) possibly 

suggesting the results of Experiment 2 to be somewhat more reliable than those of 

Experiment 1. 

Second, there were different control conditions used in the two experiments. 

Whereas the effects of adaptation were compared to a pre-adaptation baseline 

phase in Experiment 1, they were compared to those of adaptation to direct gaze in 

Experiment 2. The change of the control condition allowed the judgement of the ERP 

correlates of gaze adaptation in Experiment 2 without the impact of stimulus repeti-
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tion that strongly influenced the pattern of data recorded in Experiment 1. Therefore, 

the ERP data of Experiment 2 might be considered as more clearly representing the 

correlates of eye gaze adaptation. 

Third, participants in Experiment 1 adapted to both left and right gaze direction, 

whereas Experiment 2 only investigated the effect of adaptation to right direction. The 

decision to have participants adapt to only one direction in Experiments 2 and 3 was 

based on the suspicion that gaze adaptation effects might survive a relatively long 

time interval, and was made to rule out possible effects of cancellation. The findings 

of Experiment 3, which revealed that gaze adaptation effects can survive a time in-

terval in the range of several minutes, might suggest that the ERP data for adaptation 

to left and right gaze direction obtained in Experiment 1 might also have been af-

fected by the preceding test block. The choice of having participants adapt to only 

right gaze direction in Experiment 2 was driven by the observation that adaptation 

effects on right gazing stimuli were numerically (though not statistically) weaker in 

both the study by Jenkins et al. (2006) and in Experiment 1 reported here, and was 

therefore considered to be the most conservative one. However, this difference in the 

experimental designs of Experiments 1 and 2 makes it particularly difficult to compare 

their results especially with regard to the effects of adaptation to left gaze which had 

a prominent role in the time window of 250 - 350 ms in Experiment 1 but had not 

been tested in Experiment 2. Considering the temporal persistence of gaze adapta-

tion effects, further studies using longer breaks between adaptation sessions of dif-

ferent gaze directions and implementing direct gaze adaptation as a control condition 

will be required to obtain a deeper understanding of the differences between adapta-

tion to left and right gaze direction. 

Fourth, Experiment 1 used faces with large gaze deviations (25°) as adaptation 

stimuli, whereas adaptation stimuli in Experiment 2 depicted faces with relatively 

small (10°) gaze deviation. Similarly, test stimuli used in Experiment 1 consisted of 

faces with only very small, i.e. 5° gaze deviations while test stimuli in Experiment 2 

showed faces with small (5°) and larger (10°, i.e. corresponding to the adaptation 

stimuli) gaze deviations. The use of perceptually similar adaptation and test stimuli in 

Experiment 2 aimed at a reduction of possible recovery of adaptation. Moreover, the 

finding that reliable adaptation effects could be elicited by adaptor faces with eye 

gaze deviating by only 10° from direct gaze even if test faces showed the very same 

deviance in gaze direction allowed new and deeper insight into the nature of adapta-
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tion effects. However, considering a possible comparison of the ERP results obtained 

in Experiments 1 and 2, the different adaptation stimuli used raise the problem that 

the behavioural adaptation effects obtained in the two experiments were of a very 

different magnitude. The behavioural results of Experiments 1 and 2 as well as the 

data by Calder et al. (2008) strongly suggest that adaptors with large gaze deviances 

produce larger aftereffects than do adaptation stimuli with only small gaze deviations. 

This makes the adaptation effects observed in Experiments 1 and 2 at least quantita-

tively different, which might lead to difficulties when trying to compare their neural 

correlates. Considering the possibility that eye gaze direction may be coded in a mul-

tichannel-system as proposed by Calder et al. (2008) it is also possible that adapta-

tion effects elicited by 25° and 10° adaptation stimuli are even qualitatively dissimilar, 

as they might be produced by different neural populations selectively coding relatively 

small and relatively large gaze deviations. 

Overall, whereas the specific reasons for the discrepancy in adaptation effects 

between Experiments 1 and 2 must remain unclear at present, both studies clearly 

suggest processing mechanisms involved in the perception of faces ~250 – 350 ms 

post stimulus onset to be sensitive to gaze adaptation. From fMRI studies in humans 

(Haxby et al., 2000; Hoffman & Haxby, 2000) as well as from single cell recordings in 

monkeys (Perrett et al., 1985), it is known that the STS region plays a prominent role 

in gaze perception. When assuming that the activity recorded in the time interval be-

tween 250 – 350 ms at least partly reflects activity in STS structures, Experiment 1 

suggests the right STS to be sensitive to the preceding directional gaze context (left 

vs. right direction) irrespective of the actual gaze direction of the test stimulus. The 

results of Experiment 2, however, suggest that cells in the bilateral STS show a more 

systematic response pattern. Here, test faces were observed to elicit larger positivity 

when their gaze is directed in the same direction as had previously been observed in 

the adaptation stimuli. To my knowledge, no ERP study investigating the perception 

of eye gaze has so far reported effects of different gaze directions or more general 

effects of direct vs. averted gaze in this time window, and it is therefore difficult to 

relate the present findings to those of other investigators. 

In Experiment 2, large effects of gaze adaptation have also been observed in a 

late positive component over frontal, central, and parietal electrodes. Here, ampli-

tudes in response to test stimuli with eye gaze averted in the adapted direction 

evoked significantly smaller, i.e. less positive amplitudes than test stimuli gazing in 
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the unadapted directions. This finding might possibly reflect a P3 effect. These ef-

fects have traditionally been reported in oddball paradigms in which different stimuli 

are presented in a random sequence with one of them, the standard stimulus, being 

presented more frequently than the second one, the deviant or target stimulus. Typi-

cally, the rare deviant stimulus elicits a positive going component with a central scalp 

distribution over the midline electrodes Fz, Cz, and Pz, which has been described as 

increasing from frontal to parietal electrode locations (Johnson, 1993).  

Sutton et al. (1965) suggested ‘information delivery’ to be the critical feature 

eliciting the P3. They proposed that participants gain ‘more information’ from a rare, 

deviant stimulus than from the standard stimulus which is more frequently presented 

and may therefore be expected. Findings concerning the effects of stimulus probabil-

ity seem to underline the relevance of the ‘information delivery’ theory as increasing 

target stimulus probabilities have been shown to produce decreasing P3 amplitudes 

(e.g. Polich & Bondurant, 1997). Another theoretical account on the P3 is the context-

updating theory (Donchin, 1981) which assumes that the P3 reflects the activity of an 

attentional process that leads to an update of a stimulus representation in working 

memory whenever a new stimulus is detected which does not match the context 

given by the preceding stimuli.  

Obviously, the standard oddball paradigm differs widely from the experimental 

paradigm used in Experiment 2. Although participants did not have to respond to all 

faces presented, ‘targets’ requiring a response appeared regularly and were an-

nounced by a question mark and not defined by a certain feature that would require a 

response and was absent in ‘non-targets’. Further, many different facial identities 

displaying different gaze directions were used as stimuli, therefore leading to a more 

complex paradigm than using only two different stimuli. However, given that test 

phases were preceded by adaptation blocks and each test face was preceded by 

additional top-up adaptation stimuli it appears plausible to claim that there was a 

‘standard’ context provided by the respective adaptation condition and represented in 

more than 2/3 of the faces presented. Due to this standard context, test stimuli dis-

playing gaze directed in unadapted directions might be considered as ‘deviant’ stim-

uli. The pattern observed in the late positive component might therefore reflect the 

smaller information delivery or relatively easier context update of test stimuli with 

gaze directed in the adapted direction. When considering the late adaptation effect 

as a correlate of ‘context updating’ or ‘information delivery’, one might suggest that 
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the response pattern at this late stage represents the neural indicator of ‘novelty de-

tection’ which has been described as one of the consequences of perceptual adapta-

tion.  

One possible prediction derived from this application of the context update or in-

formation delivery explanations of the P3 on the adaptation effects observed in the 

late positive component could be the following: test stimuli identical to the adaptors, 

i.e. showing the same 10° deviance from direct gaze, might be expected to be more 

easily integrated or to deliver less information than stimuli with eye gaze deviating 

only 5° in the adapted direction. However, the statistical analysis of the ERP results 

in the late time window did not reveal an interaction with the deviance of a test stimu-

lus. This insensitivity to different gaze deviances in the same direction might arise 

from the fact that the effect was found at a relatively late, post-perceptual processing 

stage where the gaze perception stimuli might be categorised or semantically coded 

in terms of ‘gazing left’ or ‘gazing right’ rather than in terms of the exact physical pat-

tern of the stimulus. It has to be kept in mind, however, that this interpretation of the 

late gaze adaptation effect is a post hoc interpretation that certainly requires further 

research in order to reject or strengthen the hypotheses described above. 

7.3 Temporal aspects of eye gaze adaptation 

Aiming at a deeper understanding of the nature of eye gaze adaptation, Ex-

periment 3 investigated the time-course of gaze adaptation effects. A series of two 

experiments revealed a higher initial level and a more gradual decay of aftereffects 

for 5° than 10° test stimuli. In both cases the nature of the decay could be well mod-

elled by exponential decay functions which have earlier been described for adapta-

tion to basic physical stimulus attributes (Hershenson, 1989; Petersik, 2002). This 

analogy further stresses the similarity of the neural mechanisms underlying the es-

tablished adaptation effects to basic stimulus attributes and the relatively recently 

discovered high-level adaptation effects.  

What is difficult to conclude, however, from Experiment 3 is the question of 

which further factors apart from the deviance of the gaze direction possibly influence 

the decay rate of gaze adaptation effects. More precisely, an interesting question for 

future research might be whether the number of intervening face stimuli presented 

after the last display of an adaptation stimulus determines the persistence of gaze 

adaptation effects. A well-known characteristic of perceptual aftereffects in low-level 
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vision is the so-called storage of an effect which was first described for movement 

aftereffects (Wohlgemuth, 1911; cited from Verstraten, Fredericksen, Grüsser, & van 

den Grind, 1994). This term describes the effect that the temporal decay of adapta-

tion is delayed or interrupted when test stimuli are not presented immediately after 

the adaptation phase, e.g. when participants are instructed to close their eyes after 

adaptation. Moreover, storage effects have even been shown to occur when another 

visual pattern is presented between adaptation and test phase (Verstraten et al., 

1994). Considering these findings, it seems promising to investigate whether the de-

cay of gaze adaptation effects is time-locked, i.e. whether it decreases over time in-

dependent of the visual input provided after adaptation. However, bearing in mind the 

results of earlier studies on movement adaptation described above, it seems more 

plausible to assume that the decay of aftereffects is to a large degree stimulus-

locked, i.e. a certain number of intervening stimuli might be necessary for the effect 

to decay.  

The finding that gaze aftereffects may survive a time interval of several minutes 

is somewhat surprising, especially when taking the level of changeability of eye gaze 

information into account. However, considering the slight asymmetries contained in 

human faces and especially in their eye position (Güntürkün, 1991), it seems sensi-

ble to recalibrate the perception especially of smaller gaze deviations according to 

earlier experiences with gaze direction. Eye gaze that is farther averted is usually 

much easier to integrate and the information derived from both eyes is more consis-

tent. Therefore, less stable adaptation effects might be sufficient in order to recali-

brate this kind of gaze direction. If the differential time-courses of adaptation ob-

served in Experiment 3 really reflect the greater need for a ‘fine tuning’ of the percep-

tion of smaller as compared to larger gaze deviations, a clear prediction for a future 

study might be that gaze direction adaptation effects should be more stable in intra-

identity trials, with adaptor and test faces always displaying the same person, as 

compared to inter-identity trials with adaptor and test faces displaying different identi-

ties and therefore not allowing for a ‘fine tuning’ of gaze detectors to the individual 

morphometry of one single person. 

An important aspect that is related to the above-named hypothesis of a more 

stable recalibration of relatively small 5° gaze deviations as compared to larger 10° 

gaze deviations is also of general relevance for all of the behavioural results on eye 

gaze adaptation that have been reported in the present thesis. In line with the earlier 
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studies on gaze adaptation (Jenkins et al., 2006; Seyama & Nagayama, 2006) the 

paradigms used in Experiments 1, 2, and 3 required participants to categorise the 

gaze direction of a presented test face by pressing one of several response keys rep-

resenting a certain gaze direction. Response options were the classification of the 

gaze direction as “left”, “direct”, or “right”. It has to be considered that the magnitude 

of aftereffects especially in response to test stimuli with larger gaze deviation might 

have been underestimated by choosing this response set. Theoretically speaking, if 

adaptation to right gaze direction generally reduced participants’ ability to perceive 

that direction by 5°, they would classify test stimuli actually gazing 5° to the right as 

showing direct gaze, whereas they would perceive test stimuli actually gazing 10° to 

the right as gazing only 5° to that direction and therefore still classify them as gazing 

right. That is, although the magnitude of the aftereffect in terms of the shift in percep-

tion would be exactly the same, the above-named example would lead to behavioural 

data suggesting a gaze adaptation aftereffect to arise in response to the 5° test stim-

uli and no aftereffect at all in response to the 10° test stimuli. 

The above-named theoretical problem might be solved by finding a way to 

measure induced shifts in the perception of gaze direction in a continuous manner 

giving the participants more than just “left”, “direct”, and “right” response categories. 

For practical reasons, however, it seems difficult to use a purely continuous meas-

urement as such a procedure would necessarily have to be more complicated and 

time consuming than the response options used in current studies. Given that afteref-

fects are known to decrease as a function of the inspection time of the test stimulus 

(Leopold et al., 2005), a fast response option that does not require participants to 

look away from the screen will be necessary in order to capture the aftereffect on its 

early and maximal stage. A compromise in terms of practicability and accuracy might 

be to give participants five or more response options instead of three. 

A further aspect related to the effects observed in Experiment 3 is the question 

as to what extent adaptation effects to different face-related characteristics (i.e. iden-

tity, eye gaze direction, emotional expression, gender) are characterised by different 

decay rates. The most influential models of face perception (Bruce & Young, 1986; 

Haxby et al., 2000) both stress that some aspects of faces are largely changeable 

and allow for an analysis of the momentary cognitive, attentional, and emotional state 

of a person (e.g. eye gaze direction, emotional expression) whereas other aspects 

are relatively stable over time (e.g. the structural composition or gender of faces) and 
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allow for the recognition of familiar faces irrespective of their viewpoint or current ex-

pression. Haxby et al (2000) proposed that these characteristics of face perception 

are processed by a distributed neural system in which invariant and changeable as-

pects are being analysed by different structures. It is therefore plausible to assume 

that adaptation to different aspects in faces is characterised by different decay rates, 

with adaptation to more stable aspects being relatively long-lived and adaptation to 

changeable aspects being subject to faster decay. 

Preliminary evidence for this assumption can be derived from a comparison of 

the data obtained in Experiment 3 to a recent study on effects of identity adaptation 

on familiar faces using a variation of the FDAE (Carbon et al., 2007). In this study, 

participants adapted to configurally manipulated famous faces and the effects of ad-

aptation were examined after five minutes or 24 hours after adaptation, respectively. 

Carbon et al. (2007) found effects of adaptation to manipulated famous faces both 

five minutes and - weaker but still significant - 24 hours post adaptation. This pro-

vides first evidence for very long-lasting effects of adaptation to spatial manipulations, 

and suggests that adaptation to relatively stable face characteristics (i.e. their struc-

tural configurations) is long-lasting relative to the aftereffects lasting for minutes 

which could be observed for the changeable feature of gaze direction in faces in Ex-

periment 3. As Carbon et al. (2007) consistently used only one test phase, either five 

minutes or 24 hours after adaptation, a precise tracking of the decay of the aftereffect 

and its modelling could not be performed. It might be worth conducting further studies 

containing several post-adaptation phases in order to allow for an observation of the 

aftereffects from their initial maximum until they have completely vanished.  

7.4 Effects of adaptation to face and voice gender 

Experiment 4 was conducted to test the applicability of the newly developed 

control condition of ‘neutral adaptation’ in an adaptation paradigm investigating the 

perception of another facial feature apart from eye gaze direction. The study investi-

gated the neural correlates and the degree of modality invariance of gender adapta-

tion effects examining the effects of adaptation to both face and voice gender and 

provided the first evidence for cross-modal adaptation effects. Both adaptation to 

male faces and male voices led to an increased probability to perceive subsequently 

presented gender-ambiguous test faces as female. This study therefore suggests 

that gender adaptation effects at least partly reflect the recalibration of a superordi-
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nate, modality invariant level of gender representations. It is important to note, how-

ever, that whereas an earlier study on voice gender adaptation found clear evidence 

for adaptive recalibration of the perception of gender in voices in intra-modality trials 

(i.e. when adaptor and test stimuli both consisted of human voices) cross-modal ef-

fects of adaptation to gender in faces on the perception of gender-ambiguous voice 

stimuli were absent in this study (Schweinberger et al., 2008).  

Further, it has to be considered that the statistical analyses suggested the 

cross-modal (i.e. voice-to-face) adaptation effects in Experiment 4 to be somewhat 

weaker and possibly less reliable than the unimodal face adaptation effects. Bearing 

in mind the conflicting result of the earlier voice gender adaptation study 

(Schweinberger et al., 2008) and the somewhat unclear statistical results on voice to 

face gender adaptation in Experiment 4, it is obvious that these findings require repli-

cation. 

Supposing that the findings of cross-modal adaptation can be replicated in fu-

ture studies, gender information contained in human voice samples appears to have 

an influence on how participants categorise subsequently presented face stimuli ac-

cording to their gender. This finding suggests that adaptation does not only influence 

a modality-specific representation of the gender of a person, but that some sort of 

adaptive recalibration of gender perception also takes place at a higher, modality-

invariant level of person representation. This finding is of special interest as Kovács 

et al. (2006) recently reported that adaptation to gender in hands, although leading to 

aftereffects on the perception of gender in subsequently presented hand stimuli, did 

not evoke aftereffects in the perception of gender in faces. 

The different findings in the voice-to-face adaptation and hand-to-face adapta-

tion studies might be partly due to differences in the relevance of voice and hand in-

formation for gender discrimination. Participants might generally be more experi-

enced in judging the gender of a person from his or her voice rather than the per-

son’s hand. In everyday life much interpersonal communication takes place on the 

telephone where the only available physical information concerning the interlocutor is 

his or her voice and people are usually very confident in judging the person’s gender 

when talking to an unknown person. It is therefore possible that people are very ex-

perienced and efficient in extracting person-related information from voices. Further, 

it is most likely (and is even considered a principle of common politeness) that people 

who are talking to each other in a face-to-face situation look at each other so that 
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face and voice information are often perceived at the same time. Studies on audio-

visual integration have described the relevance of the co-occurrence of face and 

voice information. For instance, the observation of face information (i.e. facial move-

ments) has been shown to enhance speech perception, especially under noisy condi-

tions (Rosenblum, Johnson, & Saldana, 1996; Schwartz, Berthommier, & Savariaux, 

2004). Moreover, under certain circumstances visual speech has even been shown 

to alter the perception of auditory signals: conflicting visual and auditory information 

has been found to make us hear a syllable that has never been said but is merely a 

blend of the auditory and visual signals presented – a phenomenon known as the 

McGurk effect (McGurk & MacDonald, 1976). 

Whereas these findings stress that voice information has to be considered as 

an important aspect of everyday encounters, both presented in isolation, as for ex-

ample in communications over the phone, and in simultaneous occurrence with face 

information, visual hand information does not play a similarly important role in human 

everyday life. Although hand gestures are an important aspect of non-verbal commu-

nication and have even been shown to be able to improve our speech comprehen-

sion (e.g. Holle & Gunter, 2007), we do not perceive faces and hands simultaneously 

with the same frequency as faces and voices. Moreover, different from voice informa-

tion, we are rarely confronted with hands in isolation, i.e. in the absence of faces. 

These circumstances might explain the findings that adaptation to voice gender in-

formation seems to have an effect on the perception of face gender, whereas adapta-

tion to hand gender information does not (Kovács et al., 2006).  

An interesting test on this theory might be a replication of the cross-modality 

adaptation study by Kovács et al. (2006) comparing the results obtained with normal 

hearing participants to those collected in a population of deaf and dumb persons. 

People who were born deaf usually communicate via a sign language. Therefore, 

their communication mainly relies on attention to and interpretation of hand gestures 

which are usually performed in front of the interlocutor’s face providing simultaneous 

presentation of hand and face information. This might lead to the effect that this 

group usually pays more attention to other people’s hands and should therefore be 

more sensitive to information derivable from them.  

Another interesting question related to the finding of voice to face adaptation ef-

fects arises from their comparison to the results reported by Schweinberger et al. 

(2008). Here, adaptation to the gender of silently articulating faces presented in vid-



General Discussion  128 

eos did not have an effect on the gender classification of subsequently presented 

voices. Assuming that cross-modal adaptation takes place at a very high level of per-

son categorisation as suggested by the findings in Experiment 4, it seems unlikely 

that the general use of videos instead of static photographs of faces explains the 

conflicting findings. However, as the videos presented silently articulating faces (i.e. 

no sound was presented along with the videos) it may be possible that participants’ 

attention was especially attracted by the moving mouth region of the faces and that 

they therefore processed the faces differently from static images or articulating faces 

presented with sound.  

As mentioned in greater detail in the introduction part of this thesis, a number of 

factors have been found to be important for the perception of gender in faces: next to 

colour (Hill et al., 1995) and luminance information (Frost, 1988; Russell, 2003) some 

featural aspects have been found to differ systematically between the two sexes: the 

eye region and the facial outline (Brown & Perrett, 1993; O'Toole et al., 1998; Yama-

guchi et al., 1995), the size of the nose, and the prominence of the eyebrows 

(Campbell et al., 1999; Enlow, 1982). The importance of the eye region for gender 

discrimination was further emphasised in studies concerning the structural differ-

ences between male and female faces, showing that the distance between the brow 

and the upper eyelid is one of the most reliable structural cues to gender in static 

faces (Brown & Perrett, 1993; Campbell et al., 1996; Campbell et al., 1999).  

Considering these findings, it seems possible that the presentation of silently ar-

ticulating adaptor stimuli might have attracted participants’ attention to the moving 

mouth regions of the adaptor faces, where they possibly tried to lip-read the expres-

sion of the stimuli as there was no acoustic information present. In a study examining 

the influence of task on gaze patterns during silent speech-reading, Lansing and 

MacConkie (1999) found that whereas participants who were instructed to discrimi-

nate whether a silently articulating person made a statement or asked a question di-

rected 39.5% of their gaze fixations to the upper facial (eye) region, they only di-

rected 14.4% of their gaze fixations to that region when their task was to identify the 

spoken words. Similarly, participants in the study of Schweinberger et al. (2008) 

might not have processed the eye and brow regions which have been shown to be of 

high relevance for the identification of face gender as deeply as in static stimuli. Al-

though it can certainly be assumed that participants were still able to extract the gen-

der of the adaptation stimuli given their relatively long presentation duration (~900 
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ms) the distraction of participants’ attention from the eye region and an overrepresen-

tation of attention allocation to the mouth region of the adaptation stimuli might have 

prevented participants from activating strong gender representations and might there-

fore have inhibited cross-modal gender adaptation. 

Another possibly important difference between Experiment 4 and the cross-

modal adaptation study conducted by Schweinberger et al. (2008) is the different 

ecological validity contained in the procedure. In Experiment 4, participants adapted 

to voice adaptation stimuli before being presented with static and obviously silent 

(closed mouths) test faces. This resembles situations we encounter daily as we often 

hear voices without seeing their faces or look at people who do not speak at that 

time. Even when talking to people there are usually breaks in the conversation with 

moments of silence before a new topic is addressed. The participants judging the 

gender of test voices in the study by Schweinberger et al. (2008), however, were pre-

sented with a different scenario: Following the somewhat artificial situation of perceiv-

ing silently articulating faces, they were presented with the test voices after a time 

delay of 500 ms. In everyday life, however, we never see a person pronounce a syl-

lable which we only hear with a delay of 500 ms. A possible test of this post hoc the-

ory might consist of a study comparing the current cross-modal adaptation condition 

using silently articulating videos to a new cross-modal adaptation condition which 

might be of higher ecological relevance: if the suggested explanation should be at 

least partly responsible for the fact that Schweinberger et al. (2008) did not find a 

cross-modal adaptation effect, then adaptation to static images of faces might be ex-

pected to have an effect on the perception of gender in voices.  

A number of studies on audiovisual speech integration has investigated the 

question of how asynchronous auditory and visual signals are perceived and tried to 

identify a threshold for the detection of desynchrony. In the case of the auditory sig-

nal being delayed with respect to the visual stimulus, a time range of about 250 ms 

has been identified to severely disrupt the perception of synchrony (Dixon & Spitz, 

1980; Munhall, Gribble, Sacco, & Ward, 1996). It is possible that the timing of the 

visual adaptation and auditory test stimuli is also of relevance with regard to the 

paradigm used by Schweinberger et al. (2008). The 500 ms interval between the last 

visual adaptation stimulus and the auditory test stimulus as used here might have 

stressed the fact that face and voice stimuli were unrelated and might therefore not 

have led to cross-modal gender adaptation. Although adaptation and test stimuli 



General Discussion  130 

would necessarily have to be presented separately, some cross-modal adaptation 

may have had occurred at an ISI shorter than 500 ms. 

Consistent with the combined findings of Experiments 1 and 2, the analysis of 

the ERP data obtained in Experiment 4 and their comparison to earlier ERP studies 

on gender perception (Kovács et al., 2005; Kovács et al., 2006; Kovács et al., 2007) 

revealed an overlap of contributions of general face adaptation processes and corre-

lates of the specific adaptation to face gender in the N170 component. The imple-

mentation of a control condition using androgynous adaptation and top-up stimuli led 

to a substantial decrease of the N170 amplitude differences observed in earlier stud-

ies. The modality effect observed in this component was of similar magnitude as the 

N170 effects observed by Kovács et al. (2006), suggesting that the latter might have 

been strongly driven by effects of repeated face presentations vs. face stimuli pre-

ceded by non-face control stimuli or black screens, respectively.  

However, this interpretation can only be speculative as Experiment 4 only com-

pared the presentation of faces following black screen presentation (which was the 

visual ‘stimulus’ accompanying the presentation of the auditory adaptor) to the pres-

entation of faces following androgynous or male face adaptor presentation. The use 

of a third condition with visual (non-face) control stimuli similar to those that Kovács 

et al. (2006) presented before the test face would have been sensible in order to al-

low for a more direct comparison of the results of Experiment 4 to those of Kovács et 

al. (2006). However, the experimental design of Experiment 4 allowed for an estima-

tion of gender adaptation effects in the N170 component without a differential effect 

of face repetitions. These gender effects were relatively small and restricted to one 

homologous pair of electrodes with test stimuli evoking smaller N170 amplitudes after 

male than after androgynous adaptation at electrode PO9 and evoking larger ampli-

tudes after male than androgynous adaptation at PO10.  

The fact that adaptation to androgynous vs. male faces evoked differential ef-

fects in the left and right hemisphere can be partly reconciled to a recent study inves-

tigating the relative contributions of the left and right hemispheres to gender discrimi-

nation. Parente and Tommasi (2008) tachistoscopically presented chimeric faces cre-

ated by juxtaposing left and right half-faces of different genders. Participants were 

asked to classify these stimuli according to their gender. The authors calculated an 

index of laterality to determine whether participants decided more upon the left or the 

right part of the stimulus and found a right-hemispheric advantage for gender recog-
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nition but only for female faces: judgements were significantly more based on the left 

hemi-face but only for those stimuli that consisted of a left female and a right male 

half-face. Taken together, the findings of Parente and Tommasi (2008) and those 

obtained in Experiment 4 of the present thesis might be considered to hint at a spe-

cial role of the right hemisphere in female face processing.  

Considering that test faces were more likely to be judged as female following 

adaptation to male faces, the larger N170 amplitudes which were measured over 

right-hemispheric electrodes in response to test faces following male as compared to 

androgynous adaptation might also be considered as representing deeper process-

ing of femaleness. Due to the fact that participants in Experiment 4 only adapted to 

faces of one gender (apart from the neutral control condition) it is impossible to fur-

ther challenge the idea of laterality in gender perception by comparing the ERP corre-

lates of male and female gender adaptation. Moreover, it has to be noted that the 

majority of participants in Experiment 4 was of female gender (16 out of 19). As it is 

known that participants are usually more efficient in processing faces of their own 

gender (own gender bias, see e.g. Wright & Sladden, 2003) the prominent role of the 

right hemisphere in female gender processing might be restricted to female partici-

pants. Future studies investigating equal numbers of male and female participants 

and testing the effects of adaptation to both male and female gender might reveal 

deeper insight into what can only be a vague post hoc explanation on the basis of the 

present results. 

Largest effects of gender adaptation were observed in the late positive compo-

nent over central and parietal electrodes. Here, test stimuli preceded by male face 

adaptors elicited significantly more positive amplitudes than those preceded by an-

drogynous adaptors. This effect was restricted to unimodal adaptation trials and 

could not be observed in response to test faces following voice adaptors.  

The late positive effect closely resembled the one obtained in Experiment 2 in 

which test stimuli gazing in the adapted direction were found to elicit smaller, i.e. less 

positive, amplitudes than test stimuli gazing in unadapted directions. This pattern was 

interpreted as representing a P3 effect reflecting the relatively easier context update 

or smaller information delivery of test stimuli that most closely resembled the context 

given by the adaptation stimuli as compared to test stimuli that deviated from the 

given context. The results observed in Experiment 4 might similarly have been pre-

dicted by the rationale assumed to underlie the effect in Experiment 2. Given that 
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50% of the test stimuli were very close to androgynous (40%/60% and 60%/40% 

male/ female proportion) and 25% of the test stimuli were relatively masculine 

(80%/20%) and relatively feminine (20%/80%), respectively, the overall deviance of 

test stimuli from adaptation stimuli was smaller in the androgynous face adaptation 

condition than in the male adaptation condition. This might have led to a relatively 

easier context update or smaller information delivery of test stimuli following an-

drogynous than male adaptation, reflected in smaller, i.e. less positive amplitudes to 

test faces following androgynous than male adaptation. 

To test this interpretation, separate analyses were conducted to investigate the 

magnitude of the late positive effect for the different morph levels of test stimuli. Fol-

lowing the hypothesis of easier context update or smaller information delivery of 

those test stimuli that are most similar to the context provided by the adaptation and 

top-up stimuli, it was predicted that the P3 effect should be largest for the largest per-

ceptual difference, i.e. for relatively female test stimuli following male as compared to 

androgynous adaptation and smallest for relatively androgynous test stimuli following 

androgynous adaptation. The analyses revealed a significant effect, however, only 

for the relatively feminine stimuli, i.e. test stimuli of the morphlevel 20% male/80% 

female, which produced significantly larger positivity following male than androgy-

nous face adaptation. For all other morphlevels amplitudes evoked between 400 and 

600 ms did not significantly differ between androgynous and male adapted trials. 

It is difficult to finally decide on the nature of the late effects observed in Ex-

periments 2 and 4, especially as the examination of the post-hoc explanation in a 

detailed analysis for the different morphlevels of test stimuli in Experiment 4 did not 

exactly reveal the predicted pattern. However, it has to be noted that the only signifi-

cant effect found in this analysis was found for the relatively feminine test stimuli fol-

lowing male as compared to androgynous adaptation and therefore for the test stimu-

lus class that was most dissimilar to the male face adaptors. Given that the late effect 

observed in the eye gaze adaptation paradigm applied in Experiment 2 did not differ 

for stimuli deviating 5° vs. 10° from direct gaze, the findings of both experiments 

might be reconciled to the idea that the late effect does not differentiate between 

smaller perceptual differences in the stimuli but might rather operate on a more 

global, semantically driven concept of ‘left’ and ‘right’ or ‘male’ and ‘female’ catego-

ries, respectively. 
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7.5 Summary and outlook 

To sum up, the present series of experiments replicated and extended earlier 

findings on high-level face adaptation effects. Experiment 1 revealed a first insight 

into the neural correlates of gaze adaptation effects and suggested that direction-

specific effects emerge not earlier than ~250 – 350 ms post stimulus onset. Further, 

the findings of that study proposed that the neural processing stages eliciting the 

N170 component are largely sensitive to face repetition as reflected in dramatically 

reduced N170 amplitudes in trials immediately following prior face presentation as 

compared to trials presented after longer intervals of a blank screen.  

These observations motivated the application of a new control adaptation condi-

tion in Experiment 2 in which participants either adapted to direct gaze or to right 

gaze direction, therefore being presented with the same amount of face information 

in both conditions. The newly implemented direct gaze adaptation condition was 

found to lead to the same judgements of the direction of gaze in test faces as ob-

served in a traditional pre-adaptation baseline. This suggests that the direct gaze ad-

aptation condition served the purpose of a neutral control condition. N170 results in 

Experiment 2 were unaffected by general face adaptation effects in line with the hy-

pothesis that the large N170 effects observed in Experiment 1 had been due to gen-

eral face adaptation. The finding that only very small effects of gaze adaptation could 

be found in the N170 in Experiment 2 whereas correlates of gaze adaptation were 

more pronounced in the time interval of 250 – 350 ms can therefore be considered as 

further evidence that adaptation to gaze does not alter the processing of face stimuli 

before 250 ms. Largest effects of gaze adaptation were observed in the late positive 

component ~400 to 600 ms after stimulus onset, where test stimuli gazing in the di-

rection of adaptation were found to elicit smaller amplitudes than test stimuli gazing in 

unadapted directions. This pattern was interpreted as reflecting a P3-like effect in 

terms of an easier context update or smaller information delivery of adapted stimuli, 

leading to an emphasis of relatively new, i.e. unadapted, characteristics in faces 

which has been believed to reflect the neural basis of ‘novelty detection’ as a conse-

quence of adaptation. 

Experiment 3 investigated the time-course of gaze adaptation. Adaptation ef-

fects observed in response to test stimuli with small gaze deviations were character-

ised by a higher initial level and a more gradual decay than stimuli with larger gaze 

deviations. The decay of aftereffects in the perception of both small and larger gaze 
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deviations was found to be best described by a negative exponential function further 

stressing the similarities in the characteristics of low-level and high-level adaptation 

processes. 

Finally, Experiment 4 investigated the effects of adaptation to gender in voices 

and faces on the perception of facial gender. The study provided the first evidence 

for a cross-modal adaptation effect as adaptation to male voices was found to bias 

the classification of gender of subsequently presented face stimuli. Only small corre-

lates of gender adaptation could be observed in the N170 component whereas a 

more systematic pattern was found in the time range of the late positive component 

~400 – 600 ms after stimulus onset. Here, test stimuli evoked more positive ampli-

tudes when presented following male as compared to androgynous adaptation. 

Separate analyses for test faces with different male/female proportions revealed that 

this effect was most pronounced for relatively female test stimuli. This finding sup-

ported the idea that the late effect might reflect the ease of integration of test stimuli 

in the context provided by adaptation stimuli. In line with the findings of Experiment 2, 

this effect seemed to be based on a categorical decision on “maleness” and “female-

ness” and did not differentiate between the smaller variations of gender in test stimuli. 

The findings of very small yet statistically significant effects in the N170 in Ex-

periments 2 and 4 suggest that small differences were reliably evoked in most of the 

participants. The comparison of N170 effects found in Experiments 2 and 4 to those 

observed in Experiment 1 and by Kovács et al. (2006), respectively, suggests that 

this component responds more strongly to adaptation to general face configurations 

than to gaze direction information or gender information. This finding can be recon-

ciled with the current work of Itier et al. (2006), who tried to disentangle the relative 

contributions of general face and eye gaze information on the N170 component. 

They proposed that distinct populations of eye and face detectors contribute to the 

N170 component. In upright face perception they assume the facial parts to be con-

figurally processed (i.e. in relation to each other) with only face-selective neurons 

responding, whereas eye-selective neurons are believed to be inhibited by face cells. 

When inverting a face, however, the inhibitory influence of face cells on eye cells is 

believed to be impaired which allows eye cells to respond to the eye region of the 

stimulus leading to the N170 amplitude increase usually observed in response to face 

inversion. 
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Whereas the data of Experiment 2 suggest some influence of the eye region on 

the N170 amplitude, the large reduction of the N170 effect observed between Ex-

periments 1 and 2 certainly supports the hypothesis of Itier et al. (2006) claiming that 

the N170 in response to upright faces is mainly driven by general face information. 

An interesting prediction from the model proposed by Itier et al. (2006) would be that 

effects of gaze adaptation on the N170 should be more pronounced in a gaze adap-

tation paradigm using isolated eyes as stimuli. Similarly, adaptation to gaze direction 

in inverted faces might be expected to lead to selective adaptation of eye cells which 

would then be able to respond to the stimulus unaffected by the inhibitory influence of 

the face cells. Consequently, greater N170 effects of adaptation to eye gaze should 

be expected in this condition. 

An important field for future research will be the investigation of the precise rela-

tionship between adaptation and priming. Although both processes are based on 

stimulus repetition, they lead to completely different response patterns. Whereas 

priming leads to faster and/or more accurate responses to stimuli that have been 

presented earlier, effects of adaptation usually reveal themselves in the form of inac-

curate perceptions of test stimuli whose perception is usually biased away from the 

characteristics of previously presented adaptation stimuli. 

One of the major differences between high-level face adaptation and face-

related priming is the level at which the effects are assumed to occur. Whereas high-

level adaptation is believed to be a perceptual effect affecting the sensitivity of cell 

populations selectively coding different aspects in faces (e.g. left vs. right gaze direc-

tion in the perception of eye gaze) priming is thought to occur at higher levels which 

are only accessed after the completion of structural face encoding. The Interactive 

Activation (IAC) model proposed by Burton, Bruce, and Johnston (1990) is based on 

the Bruce and Young model (1986) and assumes semantic priming to be a result of 

spreading activation between person identity nodes and person-related semantic in-

formation. Further, Burton, Bruce, and Johnston (1990) suggested that identity (i.e. 

repetition) priming results from a strengthening of the connection between face rec-

ognition units and person identity nodes. Therefore, Burton et al. (1990) believed per-

son-related priming to occur at stages following the analysis of visual facial character-

istics which they assume to be necessary for FRUs to be activated. This is consistent 

with the finding that face repetition priming does not seem to affect the N170 compo-

nent but that priming effects are usually only detected from ~250 ms on 
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(Schweinberger et al., 2002). On the contrary, the N170 has consistently been shown 

to be largely affected by face adaptation (Kovács et al., 2006; Experiments 1, 2, and 

4 of the present thesis) suggesting that face adaptation does at least partly take 

place at the structural encoding stage of face perception. 

It is therefore possible to evoke effects of face adaptation and semantic priming 

in faces in the same experiment. For instance, when participants adapt to the picture 

of George Clooney (adaptation stimulus) and are subsequently presented with a face 

identity morph containing equal amounts of identity information of George Clooney 

and Brad Pitt (prime) they should be expected to respond faster to the subsequently 

presented image of Angelina Jolie (target) as compared to a condition when the 

prime consists of a morph containing equal amounts of identity information of Brad 

Pitt and Matt Damon. Due to identity adaptation, the prime stimulus in the former ex-

ample would be perceived as Brad Pitt. This percept would trigger the ‘Brad Pitt 

FRUs’ therefore leading to access to the ‘Brad Pitt PIN’. According to Burton et al. 

(1990) the PIN activation would lead to activation of the semantic information about 

the actor, part of which should also be knowledge that he is related to Angelina Jolie. 

As the connections between semantic information and PINs are believed to be bidi-

rectional, the PIN of Angelina Jolie would also be activated, leading to a faster re-

sponse if her picture is subsequently presented as a target. In other words, adapta-

tion mechanisms lead to a certain percept, the later processing of which might lead to 

priming. 

A further difference between priming and adaptation studies consists in the tim-

ing of experimental parameters. Even within the area of adaptation studies it has 

been shown that short-term (500 ms) vs. long-term presentation (5 s) of adaptation 

stimuli seem to specifically modify different neural processes (Kovács et al., 2007) 

suggesting that timing is a crucial aspect. Whereas priming studies only briefly pre-

sent prime stimuli, adaptation studies are usually characterised by long presentation 

durations of the adaptation stimuli (i.e. in the range of several seconds), maybe even 

by a long series of several successively presented adaptation stimuli. Adaptation ef-

fects for eye gaze direction have been shown to gradually decrease over time and to 

completely decay in the range of several minutes. Even when assuming that afteref-

fects for unchangeable aspects in faces are subject to slower decay, identity priming 

effects might generally be more robust with regard to long prime-target intervals and 

also with regard to the number of intervening visual stimuli (Bruce & Valentine, 1985) 
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again suggesting that they might occur at a different processing level. Therefore, a 

systematic variation of the presentation duration of the first stimulus (prime/adaptor), 

of the time interval between the first and second (target/test face) stimulus, and the 

number of intervening stimuli might be a promising account in order to improve our 

understanding of the relationship of perceptual adaptation and priming. 

A final aspect which should be addressed here is the functionality of adaptation 

effects. The fact that aftereffects of adaptation can be observed in the form of ‘biases’ 

in the perception of adapted features leads to a relatively negative or ‘pessimistic’ 

terminology suggesting that the phenomenon is merely a design fault of the visual 

system. However, in their review on the motion aftereffect Anstis, Verstraten, and 

Mather (1998) stress that  

the naive view that neurons can ‘fatigue’ rather like over-exercised muscles, 

perhaps owing to depletion of neurotransmitters is almost certainly incorrect, 

since some neurons seem to resist adaptation altogether. (p. 115) 

The aspect that some neurons do show adaptation after prolonged exposition to a 

stimulus feature whereas others do not suggests that adaptation is a useful property 

of some neurons rather than some kind of mistake and indeed visual adaptation 

seems to be a very efficient tool in ‘fitting our mind to the world’.  

It is likely that the adaptive response pattern of neurons makes sure that our 

visual system is regularly ‘reset’, enabling us to have a stable perception of the world 

around us. The perception of many visual characteristics seems to be organised in 

relation to a norm, or null-point, which does not appear to be an absolute value but is 

rather frequently updated on the basis of the average activity on that characteristic. 

This regular updating mechanism makes our visual system very flexible and allows 

an efficient adjustment of neural coding mechanisms to the stimulus characteristics 

that actually surround us.  

Phenomena in face perception, such as the own-race bias seem to be a result 

of adaptation. Although generally able to process, learn and recognise each of the 

~6.5 billion faces which are factually present on this planet, our face recognition sys-

tem usually ‘concentrates’ on those faces that are available and of relevance to our 

daily lives, which makes us experts in their identification. However, as has been 

shown in studies investigating the own-race bias in people who left their homelands 

to live in other countries with a different ethnic composition, our visual system is very 
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flexible and able to adapt to the new visual context; the own-race bias slowly de-

creases over time (Chiroro & Valentine, 1995). This is especially astonishing when 

considering that long distances were very difficult to overcome even only 100 years 

ago. Times have changed and countries with a very different ethnical composition 

can be reached in as short as a 12 hour intercontinental flight – a technical develop-

ment which was certainly unpredictable when our perceptual processing mechanisms 

evolved to what they are like today. Still, our visual system is prepared to adapt to 

changes and enables us to perceive and act efficiently no matter what the next visual 

impression will be. 
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88..  Summary 

The perception of faces is an essential aspect of our social life as it does not 

only enable us to recognise the faces of people who we already know but also allows 

for the perception of the gender, approximate age, emotional expression, and focus 

of attention of any familiar and unfamiliar face we meet. The accurate perception of 

this information is a fundamental basis of socially adequate behaviour and function-

ing human relations.  

Despite the long tradition of research investigating both face recognition and the 

perception of face-related social information, the question of how we actually per-

ceive such facial information is not yet completely resolved. A promising new ap-

proach of the past ~10 years is the investigation of face adaptation effects which al-

lows for a better understanding of the processes underlying the perception of differ-

ent information in faces. 

The investigation of adaptation to certain stimulus attributes has a very long tra-

dition in research on the processing of relatively basic physical stimulus attributes 

such as motion, orientation, or colour. The most prominent example of so-called af-

tereffects of adaptation is the waterfall illusion whose first mention is ascribed to Aris-

totle (Parva Naturalia): after prolonged exposition to downward motion we often per-

ceive an illusory upward motion in a subsequently presented static visual image. The 

systematic investigation of aftereffects can reveal deep insight into the architecture of 

the visual system: the motion aftereffect has been shown to originate from selective 

adaptation to downward motion in downward-motion selective cell populations and 

from the resulting dominance of an unadapted opponent cell population selectively 

coding upward motion. 

The systematic investigation of face adaptation effects in high-level vision has 

already been shown to be of similar value for our understanding of how distinct facial 

characteristics are perceived and mentally represented. For instance, paradigms in-

vestigating adaptation to identity in faces have found that faces are mentally repre-

sented in a multi-dimensional face space with a face-prototype at its centre (Leopold 

et al., 2001). Most importantly for the present work, studies on gaze adaptation re-

vealed insight that eye gaze directed to the left and right seems to be processed by 

distinct cell populations (Jenkins et al., 2006; Seyama & Nagayama, 2006). 
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Research combining adaptation paradigms with modern electrophysiological 

and neuroimaging methods is only at its beginning but those studies that have al-

ready been conducted revealed promising new approaches to understanding the 

processing of complex face stimuli. Further, there are already a number of studies on 

fMRI adaptation, whereas the electrophysiological correlates of high-level adaptation 

have so far hardly been examined. Although a study investigating ERP correlates in a 

gender adaptation paradigm has already shown that the simultaneous application of 

both methods can be successfully combined (Kovács et al., 2006), the investigation 

of event-related correlates of other adaptation effects has so far been neglected. This 

approach, however, seems to be particularly promising since the combination of ad-

aptation paradigms and electrophysiological recordings offers the possibilities to not 

only reveal functional subdivisions in the face perception system but also to deter-

mine their involvement in the different face processing stages with a superb time 

resolution. 

The studies described in this thesis were designed to close this gap. Whereas 

Experiments 1 and 2 investigated the electrophysiological correlates of the eye gaze 

adaptation effect, Experiment 3 aimed at a further investigation of the nature of high-

level adaptation effects in describing temporal aspects of gaze adaptation. Finally, 

Study 4 was conducted in order to further investigate the neural correlates of gender 

adaptation using a modified ERP adaptation paradigm which had been developed on 

the basis of the findings of Experiment 1 and was also applied in Experiment 2. A 

new experimental control condition aimed at disentangling the relative influences of 

general face adaptation and adaptation to specific facial characteristics (i.e. eye gaze 

direction and gender).  

The series of experiments replicated and extended earlier findings on high-level 

face adaptation effects. Experiment 1 revealed a first insight into the neural correlates 

of gaze adaptation and suggested that direction-specific effects emerge not earlier 

than ~250 – 350 ms post stimulus onset. Further, the findings of that study suggested 

that the neural processing stages eliciting the N170 component are largely sensitive 

to face repetition as reflected in dramatically reduced N170 amplitudes in trials im-

mediately following prior face presentation as compared to trials presented after 

longer intervals of a blank screen.  

These observations motivated the application of a new control adaptation condi-

tion in Experiment 2 in which participants either adapted to direct gaze or to right 
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gaze direction, therefore being presented with the same amount of face information 

in both conditions. The newly implemented direct gaze adaptation condition was 

found to lead to the same judgements of the direction of gaze in test faces as ob-

served in a traditional pre-adaptation baseline, suggesting that the direct gaze adap-

tation condition served the purpose of a neutral control condition. The N170 ampli-

tude in Experiment 2 was unaffected by general face adaptation effects which is in 

line with the hypothesis that the large N170 effects observed in Experiment 1 had 

been largely due to general face adaptation but not to gaze adaptation. The finding 

that only very small effects of gaze adaptation could be found in the N170 in Experi-

ment 2 whereas correlates of gaze adaptation were more pronounced in the time in-

terval of 250 – 350 ms can therefore be considered as further evidence that adapta-

tion to gaze does not alter the processing of face stimuli before 250 ms. Greatest ef-

fects of gaze adaptation were observed in the late positive component ~400 to 600 

ms after stimulus onset in which test stimuli gazing in the direction of adaptation were 

found to elicit smaller amplitudes than test stimuli gazing in unadapted directions. 

This pattern was interpreted to reflect a P3-like effect in terms of an easier context 

update or smaller information delivery of adapted stimuli leading to an emphasis of 

relatively new, i.e. unadapted, characteristics in faces which has been thought to re-

flect the neural basis of ‘novelty detection’ as a consequence of adaptation. 

Experiment 3 investigated the time-course of gaze adaptation. Adaptation ef-

fects observed in response to test stimuli with small gaze deviations were character-

ised by a higher initial level and a more gradual decay than stimuli with larger gaze 

deviations. The decay of aftereffects in the perception of both small and larger gaze 

deviations was found to be best described by a negative exponential function further 

stressing the similarities in the characteristics of low-level and high-level adaptation 

processes. 

Finally, Experiment 4 investigated the effects of adaptation to gender in voices 

and faces on the perception of facial gender. The study provided first evidence for a 

cross-modal adaptation effect as adaptation to male voices was found to bias the 

classification of gender of subsequently presented face stimuli. Again, only small cor-

relates of gender adaptation could be observed in the N170 component, whereas a 

larger and more systematic pattern was found in the time range of the late positive 

component ~400 – 600 ms after stimulus onset. Here, test stimuli evoked more posi-

tive amplitudes when presented following male as compared to androgynous adapta-
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tion - an effect which was most pronounced for relatively female test stimuli. This 

finding supported the idea that the late effect might reflect an easier context update 

of test stimuli similar to the context provided by the adaptation stimuli. In line with the 

findings of Experiment 2, this effect seemed to be based on a categorical decision on 

‘maleness’ versus ‘femaleness’ and did not differentiate between the smaller varia-

tions of gender in test stimuli. 

To summarise, the findings confirmed the sensitivity of the N170 to general face 

information which is in line with assumptions that this processing stage mainly re-

flects the structural encoding of the face composition. The time interval of 250 – 350 

ms after stimulus onset consistently revealed effects of gaze adaptation suggesting 

that this time window is crucial for the perception of gaze direction especially for the 

distinction between direct and averted gaze. This distinction is important because it 

has been found to play an important role also in interaction with emotion processing 

(Adams & Kleck, 2003; Adams & Kleck, 2005; but see Bindemann, Burton, & Lang-

ton, 2008) and general face judgements, for example concerning the attractiveness 

of faces (Conway et al., 2008; Jones et al., 2006). Finally, the late positive compo-

nent in the time window of approximately 400 to 600 ms has consistently been found 

to be largely influenced by both eye gaze and gender adaptation. Here, test stimuli 

providing stimulus properties similar to the adaptor evoked significantly smaller ampli-

tudes, a finding which might reflect the relatively easier context update and the rela-

tively smaller informational value of test stimuli exhibiting the adapted property. This 

late effect is therefore proposed to be the neural correlate of ‘novelty detection’ which 

is assumed to be one of the major outcomes of adaptation. 
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99..  Zusammenfassung 

Die Wahrnehmung von Gesichtern ist ein wesentlicher Aspekt unseres sozialen 

Miteinander, denn sie ermöglicht uns nicht nur bekannte Personen zu erkennen, 

sondern gibt uns auch Aufschluss über das Geschlecht, das ungefähre Alter, den 

emotionalen Gesichtsausdruck und den Aufmerksamkeitsfokus jeder bekannten und 

unbekannten Person, die wir treffen. Die Wahrnehmung dieser Informationen ist ei-

ner der Grundsteine für sozial angemessenes Verhalten und somit auch für erfolgrei-

che zwischenmenschliche Beziehungen. 

Obwohl die Forschung zur Erkennung von Gesichtern und zur Wahrnehmung 

der in ihnen enthaltenen sozial relevanten Informationen eine lange Tradition hat, ist 

noch immer nicht vollständig geklärt, wie diese Verarbeitung genau funktioniert. Ein 

viel versprechender Forschungsansatz der vergangenen etwa zehn Jahre ist die Un-

tersuchung von so genannten Adaptationseffekten in der Wahrnehmung von Gesich-

tern, deren systematische Analyse ein genaueres Verständnis der Verarbeitung der 

verschiedenen in Gesichtern enthaltenen Informationen ermöglicht. 

Die Untersuchung selektiver Adaptationseffekte hat eine lange Tradition in For-

schungsarbeiten zur visuellen Verarbeitung relativ basaler physikalischer Stimulusei-

genschaften, wie zum Beispiel Bewegung, Orientierung oder Farbe. Das wohl be-

kannteste Beispiel so genannter Adaptations-Nacheffekte ist die Wasserfalltäu-

schung, deren erste Erwähnung Aristoteles (Parva Naturalia) zugeschrieben wird: 

Nach längerer Präsentation von Abwärtsbewegung nehmen wir in einem statischen 

Bild eine illusorische Aufwärtsbewegung wahr. 

Die systematische Untersuchung von Nacheffekten dieser Art kann ein größe-

res Verständnis der Organisation des visuellen Systems ermöglichen. So wurde zum 

Beispiel gezeigt, dass der Bewegungsnacheffekt aus der Adaptation von Zellpopula-

tionen resultiert, welche selektiv auf abwärtsgerichtete Bewegungen reagieren. Ein 

Resultat dieser Adaptation ist die relative Dominanz von Aktivität in unadaptierten 

opponenten Zellverbänden, die Aufwärtsbewegungen verarbeiten. Dieses Ungleich-

gewicht zwischen adaptierten und unadaptierten opponenten Zellverbänden führt 

dann zu einer Wahrnehmungsillusion wie dem Bewegungsnacheffekt. 

Es wurde gezeigt, dass die systematische Untersuchung von Gesichts-

Adaptationseffekten ähnlich wertvoll sein kann für ein besseres Verständnis sowohl 

der Verarbeitungsmechanismen als auch der mentalen Repräsentation der verschie-
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denen in Gesichtern enthaltenen Informationen. So haben zum Beispiel Untersu-

chungen zur Adaptation an die Identität von Gesichtern gezeigt, dass diese in einem 

multidimensionalen Gesichter-Raum repräsentiert werden, in dessen Zentrum ein 

Gesichtsprototyp steht (Leopold et al., 2001). Von besonderer Bedeutung für die vor-

liegende Arbeit sind die Studien zur Blickrichtungsadaptation, die zeigten, dass Pro-

banden selektiv an nach rechts bzw. nach links gerichteten Blick adaptieren (Jenkins 

et al., 2006; Seyama & Nagayama, 2006). Dies bedeutet, dass die Probanden nach 

vermehrter Konfrontation mit z.B. nach rechts abgewandter Blickrichtung für diese 

Richtung insensitiv wurden und Gesichter, die in die adaptierte Richtung blickten, als 

geradeaus schauend wahrnahmen. Diese Ergebnisse legten nahe, dass die ver-

schiedenen Blickrichtungen von unterschiedlichen Zellpopulationen verarbeitet wer-

den. 

Die Erforschung von Adaptationsparadigmen in Kombination mit modernen e-

lektrophysiologischen und bildgebenden Verfahren steckt noch in den Anfängen, 

doch die wenigen bereits durchgeführten Studien sind viel versprechend im Hinblick 

auf ihre Möglichkeiten das Verständnis der Verarbeitung von Gesichtern zu vergrö-

ßern. Insbesondere gibt es bereits eine Reihe von fMRI Studien zur Adaptation, wäh-

rend die elektrophysiologischen Korrelate von Adaptationsprozessen auf hohen Ebe-

nen der visuellen Wahrnehmung bislang kaum untersucht wurden. Obwohl eine Stu-

die zu den ERP-Korrelaten der Adaptation an das Geschlecht von Gesichtern bereits 

zeigte, dass beide Methoden erfolgreich kombiniert werden können (Kovács et al., 

2006), wurde die Untersuchung der neuronalen Korrelate anderer Adaptationseffekte 

bislang vernachlässigt. Dieser Ansatz scheint jedoch besonders Erfolg versprechend, 

da die Kombination von Adaptationsparadigmen und elektrophysiologischen Auf-

zeichnungen nicht nur die Möglichkeit bietet selektiv adaptierende funktionale Einhei-

ten innerhalb des Gesichterwahrnehmungssystems zu identifizieren, sondern auch 

deren Beitrag zu den verschiedenen Stufen der Wahrnehmung eines Gesichts mit 

einer exzellenten zeitlichen Auflösung zu bestimmen. 

Die im Rahmen dieser Arbeit beschriebenen Studien haben begonnen diese 

Forschungslücke zu schließen. Während die Experimente 1 und 2 die elektrophysio-

logischen Korrelate der Blickrichtungsadaptation untersuchten, zielte Experiment 3 

auf eine genauere Bestimmung der für diesen Adaptationseffekt geltenden zeitlichen 

Parameter. In Anlehnung an eine Studie von Kovács et al. (2006) diente Experiment 

4 einer weiteren Untersuchung der neuronalen Korrelate der Adaptation an das Ge-
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schlecht eines Gesichts. Insbesondere untersuchte diese Studie die Modalitätsspezi-

fität von Adaptationseffekten, indem sowohl Effekte der Adaptation an männliche 

Gesichter als auch an männliche Stimmen auf die anschließende Wahrnehmung des 

Geschlechts von Gesichtern erhoben wurden. 

Die Serie von Studien konnte frühere Befunde zu Gesichtsadaptationseffekten 

replizieren und erweitern. Experiment 1 ermöglichte den bislang ersten Einblick in die 

neuronalen Korrelate von Blickrichtungsadaptation und legte nahe, dass richtungs-

spezifische Effekte der Adaptation in ereigniskorrelierten Potenzialen nicht vor ~250 

– 350 ms auftreten. Des Weiteren zeigte die Studie, dass die neuronalen Generato-

ren der N170-Komponente in einem großen Ausmaß für die Wiederholung von Ge-

sichtsinformation sensibel sind. Dies offenbarte sich in einer deutlich reduzierten 

Amplitude der N170 auf Teststimuli denen unmittelbar Adaptationsstimuli vorausgin-

gen im Vergleich zu Teststimuli in der Kontrollbedingung, denen in Anlehnung an 

traditionelle Adaptationsparadigmen keine Adaptationsstimuli vorausgingen wodurch 

die Testgesichter in einem größeren zeitlichen Abstand präsentiert wurden. 

Diese Befunde führten zur Anwendung einer neuen Kontrollbedingung in Expe-

riment 2, in dem die Probanden entweder an Gesichter mit direktem Blick oder an 

Gesichter mit nach rechts gerichtetem Blick adaptierten und deshalb in beiden Ver-

suchsbedingungen in demselben Ausmaß Gesichtsinformation wahrnahmen. Es 

zeigte sich, dass die neue Bedingung, in der Probanden auf direkte Blickrichtung a-

daptierten, zu denselben Einschätzungen der Blickrichtung von Teststimuli führte wie 

eine traditionelle Präadaptations-Kontrollbedingung, was ihre Eignung als neutrale 

Vergleichsbedingung unterstreicht. Durch die Einführung der alternativen Kontrollbe-

dingung in Experiment 2 wurden dort die in Experiment 1 gefundenen großen Ampli-

tudenunterschiede in der N170 nicht mehr beobachtet. Dies unterstützte die Hypo-

these, dass die Amplitudenunterschiede der N170 in Experiment 1 tatsächlich haupt-

sächlich Adaptationseffekte auf generelle Gesichtskonfiguration, nicht jedoch auf 

Blickrichtung darstellten. Zusammengenommen mit einem weiteren Ergebnis aus 

Experiment 2, nämlich den nur geringen Einflüssen von Blickrichtungsadaptation auf 

die Amplitude der N170 im Vergleich zum Zeitbereich von ungefähr 250 – 350 ms, 

legt dies nahe, dass Blickrichtungsadaptation die Verarbeitung von Gesichtern erst 

ab ca. 250 ms verändert. Sehr deutliche Korrelate der Blickrichtungsadaptation wur-

den erst in einer späten, positiven Komponente von ~400 – 600 ms gefunden, in der 

Teststimuli, deren Blick in die adaptierte Richtung gewandt war, deutlich geringere 
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Amplituden evozierten als Teststimuli, deren Blick in unadaptierte Richtungen ge-

wandt war. Dieses späte Muster wurde im Sinne eines P3-Effekts interpretiert und 

könnte den relativ größeren Informationsgewinn durch vom Adaptationskontext ab-

weichende Stimulusmerkmale reflektieren, was zu einer besonderen Betonung un-

adaptierter Stimuluscharakteristika führt und möglicherweise ein neuronales Korrelat 

der als Folge von Adaptation vorgeschlagenen novelty detection darstellt. 

Experiment 3 untersuchte den Zeitverlauf von Blickrichtungsadaptation und 

konnte zeigen, dass Adaptationseffekte auf Teststimuli mit geringeren Abweichungen 

von direktem Blick (d.h. 5° Abweichung in die adaptierte Richtung) durch ein höheres 

Anfangsniveau und einen langsameren Verfall gekennzeichnet sind als solche auf 

Teststimuli mit größeren Abweichungen in der Blickrichtung (d.h. 10° Abweichung in 

die adaptierte Richtung). Für beide Abweichungen konnte der Verfall von Nacheffek-

ten am besten mit einer negativen Exponentialfunktion beschrieben werden, wie sie 

auch für Nacheffekte bei basalen Stimuluscharakteristika berichtet wurde. 

Experiment 4 untersuchte schließlich die Effekte von Adaptation an das Ge-

schlecht von Stimmen und Gesichtern auf die Wahrnehmung anschließend präsen-

tierter Gesichtsstimuli. Diese Studie konnte erste Evidenz für Adaptationseffekte zwi-

schen Modalitäten liefern: sowohl die Adaptation an eine männliche Stimme als auch 

an ein männliches Gesicht erhöhten die Wahrscheinlichkeit, dass anschließend prä-

sentierte Gesichter als weiblich klassifiziert wurden. Auch in dieser Studie wurden nur 

geringe Einflüsse von Adaptation auf die Amplitude der N170 gefunden, während 

deutlichere und sehr systematische Effekte von Adaptation in den ereigniskorrelierten 

Potenzialen erst im Zeitbereich von ~400 – 600 ms auftraten. Hier zeigte sich, dass 

Testgesichter, die nach Adaptation an männliche Gesichter präsentiert wurden, deut-

lich größere Amplituden evozierten als Testgesichter, die nach Adaptation an andro-

gyne Gesichter gezeigt wurden. Dieser Effekt war am deutlichsten für relativ feminine 

Gesichter und unterstützte somit die Hypothese, dass der Adaptationseffekt in dieser 

späten Komponente den größeren Informationsgewinn durch vom Adaptationskon-

text stark unterschiedliche Gesichter darstellt. In Übereinstimmung mit den Befunden 

aus Experiment 2 schien der späte Adaptationseffekt auf einer kategorialen Ein-

schätzung zwischen „Maskulinität“ und „Femininität“ zu beruhen und differenzierte 

nicht zwischen kleineren Variationen der Geschlechtsambiguität der Teststimuli. 

Insgesamt unterstützten die Ergebnisse der hier berichteten Studien somit die 

Sensitivität der N170 Komponente für allgemeine Gesichtsinformationen unabhängig 
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vom Geschlecht und der Blickrichtung der Gesichter. Dieses Ergebnis ist in Überein-

stimmung mit Theorien, nach denen die Verarbeitungsstufe um ~170 ms in erster 

Linie die strukturelle Enkodierung von Gesichtern reflektiert. Das Zeitintervall um 250 

– 350 ms wurde konsistent durch Blickrichtungsadaptation beeinflusst, ein Befund 

der impliziert, dass dieser Zeitbereich für die Wahrnehmung von Blickrichtungen von 

besonderer Relevanz ist. Insbesondere scheint in diesem Stadium eine Differenzie-

rung zwischen direktem und abgewandtem Blick stattzufinden, die in verschiedenen 

früheren Studien, z.B. im Zusammenhang mit der Wahrnehmung von Emotionen, als 

besonders bedeutsam herausgestellt wurde (Adams & Kleck, 2003; Adams & Kleck, 

2005). Schließlich wurden ebenfalls sehr konsistent Einflüsse von Adaptation in ei-

nem Zeitbereich um 400 – 600 ms gefunden. Hier konnte gezeigt werden, dass Test-

stimuli, deren Eigenschaften den jeweiligen Adaptationsstimuli sehr ähnlich waren, 

deutlich geringere Amplituden evozierten als Teststimuli, die den Adaptationsstimuli 

unähnlich waren. Dieses Ergebnis könnte eine einfachere Kontext-Aktualisierung 

bzw. einen geringeren Informationsgehalt von Stimuli mit einer adaptierten Merk-

malsausprägung reflektieren. Aus diesem Grund scheint es plausibel, den späten 

Adaptationseffekt als neuronales Korrelat der novelty detection anzunehmen, welche 

als eines der wichtigsten Ergebnisse von Adaptation diskutiert wird. 
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List of abbreviations 

ANOVA analysis of variance 

BOLD  blood-oxygen level dependent  

EEG  electroencephalography  

ERP  event-related potential 

EOG  electrooculogram 

FDAE  face distortion aftereffect 

FIAE  face identity aftereffect 

FFA  fusiform face area 

fMRI  functional magnetic resonance imaging 

FRU  face recognition unit  

HR-fMRI high-resolution functional magnetic resonance imaging 

ISI  interstimulus interval 

MAE  motion aftereffect 

MEG  magnetoencephalography 

MPF  medial prefrontal cortex 

PET  positron emission tomography 

PIN  person identity node 

PLW  point light walker 

SD  standard deviation 

SEM  standard-error of the mean 

SR-fMRI standard-resolution functional magnetic resonance imaging 

STS  superior temporal sulcus 

VCV  vowel-consonant-vowel 

VPP  vertex positive potential 
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