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Abstract

Given a sequence A of 2n real numbers, the EvenRankSum prob-
lem asks for the sum of the n values that are at the even positions in
the sorted order of the elements in A. We prove that, in the algebraic
computation-tree model, this problem has time complexity Θ(n log n).
This solves an open problem posed by Michael Shamos at the Cana-
dian Conference on Computational Geometry in 2008.

1 Introduction

Let A = (a1, a2, . . . , a2n) be a sequence of 2n real numbers. We define the
even-rank-sum of A to be the sum of the n values that are at the even
positions in the sorted order of the elements in A. Formally, let π be a
permutation of {1, 2, . . . , 2n} that sorts the sequence A in non-decreasing
order; thus, aπ(1) ≤ aπ(2) ≤ . . . ≤ aπ(2n). Then the even-rank-sum of the
sequence A is the real number

aπ(2) + aπ(4) + aπ(6) + . . .+ aπ(2n).
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Observe that any permutation π that sorts the sequence A in non-decreasing
order gives rise to the same even-rank-sum. We consider the following prob-
lem:

EvenRankSum: Given a sequence A of 2n real numbers, compute the even-
rank-sum of A.

By using an O(n log n)–time sorting algorithm, this problem can be solved
in O(n log n) time. In the Open Problem Session at the Canadian Con-
ference on Computational Geometry in 2008, Michael Shamos posed the
problem of proving an Ω(n log n) lower bound on the time complexity of
EvenRankSum in the algebraic computation-tree model. (See [1, 2] for a
description of this model.) In this paper, we present such a proof:

Theorem 1 In the algebraic computation-tree model, the time complexity of
EvenRankSum is Θ(n log n).

We prove Theorem 1 by presenting an O(n)–time reduction of MinGap
to EvenRankSum. The former problem is defined as follows. Let X =
(x1, x2, . . . , xn) be a sequence of n real numbers, and let π be a permutation
of {1, 2, . . . , n} such that xπ(1) ≤ xπ(2) ≤ . . . ≤ xπ(n). For each 1 ≤ i < n, we
define the difference xπ(i+1) − xπ(i) to be a gap in the sequence X.

MinGap: Given a sequence X = (x1, x2, . . . , xn) of n real numbers and a
real number g > 0, decide if each of the n− 1 gaps in X is at least g.

Since in the algebraic computation-tree model, MinGap has an Ω(n log n)
lower bound (see [2, Section 8.4]), our reduction will prove Theorem 1.

2 The proof of Theorem 1

We now show how to reduce, in O(n) time, MinGap to EvenRankSum.
Let A be an arbitrary algorithm that solves EvenRankSum. We show

how to use algorithm A to solve MinGap. Let n ≥ 2 be an integer and
consider a sequence X = (x1, x2, . . . , xn) of n real numbers and a real number
g > 0. The algorithm for solving MinGap makes the following three steps:

Step 1: Compute S =
∑n

i=1 xi and, for i = 1, 2, . . . , n, compute a2i−1 = xi
and a2i = xi + g.

Step 2: Run algorithm A on the sequence (a1, a2, . . . , a2n), and let R be the
output, i.e., R is the even-rank-sum of this sequence.
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Step 3: If R = S + ng, then return YES. Otherwise, return NO.

It is clear that the running time of this algorithm is O(n) plus the running
time of A. Thus, it remains to show that the algorithm correctly solves
MinGap. That is, we have to show that the minimum gap G of X is at
least g if and only if R = S + ng. This is an immediate consequence of the
following lemma:

Lemma 1 Let x1, x2, . . . , xn and g be real numbers such that x1 ≤ x2 ≤ . . . ≤
xn and g > 0. Let (a1, a2, . . . , a2n) = (x1, x1 + g, x2, x2 + g, . . . , xn, xn + g)
and let π be a permutation of {1, . . . , 2n} such that b1 ≤ b2 ≤ . . . ≤ b2n with
bi = aπ(i) for 1 ≤ i ≤ 2n.

If R =
n∑
i=1

b2i, U =
n∑
i=1

b2i−1, and G = min{xi+1 − xi | 1 ≤ i ≤ n − 1},

then R− U ≤ ng with equality if and only if G ≥ g.

Proof. Since x1, x1 +g, x2, x2 +g, . . . , xi, xi+g ≤ xi+g, we have xi+g ≥ b2i
for 1 ≤ i ≤ n. Since xi, xi + g, xi+1, xi+1 + g, . . . , xn, xn + g ≥ xi, we have
xi ≤ b2i−1 for 1 ≤ i ≤ n. Hence b2i − b2i−1 ≤ (xi + g)− xi = g for 1 ≤ i ≤ n
which implies R− U ≤ ng.

If G ≥ g, then clearly R − U = ng. Conversely, if R − U = ng, then
b2i − b2i−1 = g for 1 ≤ i ≤ n. In view of the above, this implies that
xi + g = b2i and xi = b2i−1 for 1 ≤ i ≤ n. Since xi+1 = b2i+1 ≥ b2i = xi + g
for 1 ≤ i ≤ n− 1, we obtain G ≥ g.

We complete the proof of Theorem 1 by observing that R+U = 2S +ng
and by Lemma 1 we have G ≥ g if and only if R = U + ng = S + ng.
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