Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 09/16
An $\Omega(n \log n)$ lower bound for computing the sum of even-ranked elements

Mörig, Marc; Rautenbach, Dieter; Smid, Michiel; Tusch, Jan

April 2009

Impressum:
Hrsg.: Leiter des Instituts für Mathematik
Weimarer Straße 25
98693 Ilmenau
Tel.: +49 3677693621
Fax: +493677 693270
http://www.tu-ilmenau.de/ifm/

An $\Omega(n \log n)$ lower bound for computing the sum of even-ranked elements

Marc Mörig*
Dieter Rautenbach ${ }^{\dagger}$
Jan Tusch*
Michiel Smid ${ }^{\ddagger}$

April 17, 2009

Abstract

Given a sequence A of $2 n$ real numbers, the EvenRankSum problem asks for the sum of the n values that are at the even positions in the sorted order of the elements in A. We prove that, in the algebraic computation-tree model, this problem has time complexity $\Theta(n \log n)$. This solves an open problem posed by Michael Shamos at the Canadian Conference on Computational Geometry in 2008.

1 Introduction

Let $A=\left(a_{1}, a_{2}, \ldots, a_{2 n}\right)$ be a sequence of $2 n$ real numbers. We define the even-rank-sum of A to be the sum of the n values that are at the even positions in the sorted order of the elements in A. Formally, let π be a permutation of $\{1,2, \ldots, 2 n\}$ that sorts the sequence A in non-decreasing order; thus, $a_{\pi(1)} \leq a_{\pi(2)} \leq \ldots \leq a_{\pi(2 n)}$. Then the even-rank-sum of the sequence A is the real number

$$
a_{\pi(2)}+a_{\pi(4)}+a_{\pi(6)}+\ldots+a_{\pi(2 n)} .
$$

[^0]Observe that any permutation π that sorts the sequence A in non-decreasing order gives rise to the same even-rank-sum. We consider the following problem:

EvenRankSum: Given a sequence A of $2 n$ real numbers, compute the even-rank-sum of A.

By using an $O(n \log n)$-time sorting algorithm, this problem can be solved in $O(n \log n)$ time. In the Open Problem Session at the Canadian Conference on Computational Geometry in 2008, Michael Shamos posed the problem of proving an $\Omega(n \log n)$ lower bound on the time complexity of EvenRankSum in the algebraic computation-tree model. (See [1, 2] for a description of this model.) In this paper, we present such a proof:

Theorem 1 In the algebraic computation-tree model, the time complexity of EvenRankSum is $\Theta(n \log n)$.

We prove Theorem 1 by presenting an $O(n)$-time reduction of MinGap to EvenRankSum. The former problem is defined as follows. Let $X=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a sequence of n real numbers, and let π be a permutation of $\{1,2, \ldots, n\}$ such that $x_{\pi(1)} \leq x_{\pi(2)} \leq \ldots \leq x_{\pi(n)}$. For each $1 \leq i<n$, we define the difference $x_{\pi(i+1)}-x_{\pi(i)}$ to be a gap in the sequence X.
MinGap: Given a sequence $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of n real numbers and a real number $g>0$, decide if each of the $n-1$ gaps in X is at least g.

Since in the algebraic computation-tree model, MinGap has an $\Omega(n \log n)$ lower bound (see [2, Section 8.4]), our reduction will prove Theorem 1.

2 The proof of Theorem 1

We now show how to reduce, in $O(n)$ time, MinGap to EvenRankSum.
Let \mathcal{A} be an arbitrary algorithm that solves EvenRankSum. We show how to use algorithm \mathcal{A} to solve MinGap. Let $n \geq 2$ be an integer and consider a sequence $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of n real numbers and a real number $g>0$. The algorithm for solving MinGap makes the following three steps:
Step 1: Compute $S=\sum_{i=1}^{n} x_{i}$ and, for $i=1,2, \ldots, n$, compute $a_{2 i-1}=x_{i}$ and $a_{2 i}=x_{i}+g$.
Step 2: Run algorithm \mathcal{A} on the sequence $\left(a_{1}, a_{2}, \ldots, a_{2 n}\right)$, and let R be the output, i.e., R is the even-rank-sum of this sequence.

Step 3: If $R=S+n g$, then return YES. Otherwise, return NO.
It is clear that the running time of this algorithm is $O(n)$ plus the running time of \mathcal{A}. Thus, it remains to show that the algorithm correctly solves MinGap. That is, we have to show that the minimum gap G of X is at least g if and only if $R=S+n g$. This is an immediate consequence of the following lemma:

Lemma 1 Let $x_{1}, x_{2}, \ldots, x_{n}$ and g be real numbers such that $x_{1} \leq x_{2} \leq \ldots \leq$ x_{n} and $g>0$. Let $\left(a_{1}, a_{2}, \ldots, a_{2 n}\right)=\left(x_{1}, x_{1}+g, x_{2}, x_{2}+g, \ldots, x_{n}, x_{n}+g\right)$ and let π be a permutation of $\{1, \ldots, 2 n\}$ such that $b_{1} \leq b_{2} \leq \ldots \leq b_{2 n}$ with $b_{i}=a_{\pi(i)}$ for $1 \leq i \leq 2 n$.

If $R=\sum_{i=1}^{n} b_{2 i}, U=\sum_{i=1}^{n} b_{2 i-1}$, and $G=\min \left\{x_{i+1}-x_{i} \mid 1 \leq i \leq n-1\right\}$, then $R-U \leq n g$ with equality if and only if $G \geq g$.

Proof. Since $x_{1}, x_{1}+g, x_{2}, x_{2}+g, \ldots, x_{i}, x_{i}+g \leq x_{i}+g$, we have $x_{i}+g \geq b_{2 i}$ for $1 \leq i \leq n$. Since $x_{i}, x_{i}+g, x_{i+1}, x_{i+1}+g, \ldots, x_{n}, x_{n}+g \geq x_{i}$, we have $x_{i} \leq b_{2 i-1}$ for $1 \leq i \leq n$. Hence $b_{2 i}-b_{2 i-1} \leq\left(x_{i}+g\right)-x_{i}=g$ for $1 \leq i \leq n$ which implies $R-U \leq n g$.

If $G \geq g$, then clearly $R-U=n g$. Conversely, if $R-U=n g$, then $b_{2 i}-b_{2 i-1}=g$ for $1 \leq i \leq n$. In view of the above, this implies that $x_{i}+g=b_{2 i}$ and $x_{i}=b_{2 i-1}$ for $1 \leq i \leq n$. Since $x_{i+1}=b_{2 i+1} \geq b_{2 i}=x_{i}+g$ for $1 \leq i \leq n-1$, we obtain $G \geq g$.

We complete the proof of Theorem 1 by observing that $R+U=2 S+n g$ and by Lemma 1 we have $G \geq g$ if and only if $R=U+n g=S+n g$.

References

[1] M. Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the 15 th ACM Symposium on the Theory of Computing, pages 8086, 1983.
[2] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, Berlin, 1988.

[^0]: *Faculty of Computer Science, University of Magdeburg, Magdeburg, Germany.
 ${ }^{\dagger}$ Faculty of Mathematics and Natural Sciences, Ilmenau University of Technology, Ilmenau, Germany.
 ${ }^{\ddagger}$ School of Computer Science, Carleton University, Ottawa, Ontario, Canada. Research supported by NSERC.

