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Funnel control with saturation:

linear MIMO systems

Norman Hopfe* Achim llchmann* Eugene P. Ryan'

Abstract

Tracking — by the system output — of a reference signghssumed bounded with essentially
bounded derivative) is considered in the context of lineamput u, m-outputy systems(A, B, C)
in the presence of input saturation (iJe:(¢)|| < @ for all ¢). The system is assumed to have strict
relative degree one with positive-definite high-frequegain (i.e.C' B > 0) and stable zero dynamics.
Prespecified is a parameterized performance fufittél) = {(¢,&)| |€|| < ¢ (¢)}, whereX > 0 and
¥: [0,00) — [X, 00) is globally Lipschitz with Lipschitz constant. The tracking erroe = y — r is
required to evolve within the funnel (i.e. grajeh C F(v)): transient and asymptotic behaviour of the
tracking error is influenced through choice of parameteuesiwhich define the funnel. The proposed
control structure is a saturating error feedback of the faift) = —sat;(k(¢)e(t)) wherein the gain
function k: ¢t — 1/(x(t) — |le(t)||) evolves so as to preclude contact with the funnel boundary. A
feasibility condition (formulated in terms of the plant d&t4, B, C) andu, the funnel datd, A, \),
the reference signal and the initial state?) is presented under which the tracking objective is acligve

whilst maintaining boundedness of the statand gain functionk.

Keywords. Output feedback, input saturation, linear systems, tesmiddehaviour, tracking.

1. INTRODUCTION

In the early 1980s, a novel feature in classical adaptiverobmvas introduced: adaptive
strategies which do not require identification of the palttc system being controlled. Pioneering
contributions to the area include [1], [5], [6], [8], [11]€s, also, the survey [3] and references

therein). The prototypical example for a system class —erathan a single system — is that
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of linear m-input, m-output systems with relative degree one, positive higigiiency gain
and stable zero dynamics, i.e. minimum phase. The simpleubd¢edbacku(t) = —k(t) y(¢)
stabilizes each system belonging to the above class prb¥ideis appropriately generated: e.g.
by the differential equatiof(t) = ||y(t)||? or variants thereof. The two major drawbacks of the
latter strategy (and its variants) are (i) albeit boundkd,daink(¢) is monotonically increasing
and (ii) whilst asymptotic performance is guaranteed,di@mt behaviour is not generally taken
into account (an exception being the contribution [7], velrerthe issue of prescribed transient
behaviour is successfully addressed). A fundamentallierdift approach — so called ‘funnel
control’ — was introduced in [2] in the context of output tkan: this control ensures prespecified
transient behaviour of the tracking error, has a non-mareigain, is simpler than the above
adaptive controller (insofar as the gain is not dynamicgkyerated), and does not invoke any
internal model. It has been successfully applied in expenis controlling the speed of electric
devices [4]; see [3] for further applications.

The present paper adopts the funnel control viewpoint — iftdrd from its precursor [2] in
an essential manner: here, the presence of an explicit cgngtraint is a distinguishing feature
of the underlying system class. A feasibility relationshipolving the system data, funnel data,
reference signal data and the saturation bound is deriveérwvhich the efficacy of funnel

control in the presence of input saturation is established.

By way of motivation, consider the simple scalar linear egst
y=ay+bu, acR, b>0, y(0)=1"

The control objective is tracking, of a (suitably regulaeference signat, with prescribed
transient and asymptotic behavior in the sense that, foeggiven functiony: [0, c0) — [\, c0),

A > 0, the tracking error is bounded hy.
ly(t) —r(t)] < (t) ¥ t>0.

For example, ifyy given by (t) = max{l — At, A}, with A > 0 and\ € (0, 1), then attainment
of the tracking objective implies that a prescribed tragkatcuracy, quantified by > 0, is
achieved in prescribed timg = (1 — \)/A: specifically,|y(t) — ()| < A for all ¢ > ¢*. In the
general case, if) is globally Lipschitz and bounded away from zero, and theresfce signal

r IS a bounded absolutely continuous function with essdntiadunded derivative, then it is
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known (see [2]) that the tracking objective is achieved by fibllowing simple strategy
1
(t) = ly(t) —r(t)]

if, and only if, the following feasibility condition holdgy° — r(0)| < «(0). Moreover, the gain

(1.1)

u(t) = —k(®)[y(t) —rt)], k)= ”

k, and hence the contral, is bounded.

Consider again the above scalar system, with the same tobjective, but now with saturation

in the input channel:
y = ay + bsa(u), a€R, bu>0, y(0)=21° (1.2)

where sat is the saturation function given by sat usgn(u) if |u| > @ and saf(u) = u
otherwise. Again|y”—7(0)| < v(0) is a necessary condition for feasibility. However, a morisent
reflection confirms that the latter condition is not suffitieihhe question of feasibility of the
tracking objective in the presence of input saturation lkcdie and inevitably involves addressing
the interplay between the plant data b, "), the reference signal, the functionw) and the
saturation bound:. For example, ifa > 0, then it is readily seen thati > a|y°| is a necessary
condition for feasibility. Moreover, it is clear that, foedsibility, the saturation level should
also be commensurate with the magnitude of the referengwalsigand its derivativer. To
illustrate the interplay betweem and the function), consider the case wherein= 0, r(-) = 0
and ¢ is given, as above, by(t) = max{1 — At,\} with A > 0 and X € (0,1) (and soy

is globally Lipschitz, with Lipschitz constant). Assume feasibility of the tracking objective.

Then, writingt* := (1 — \)/A, we have
L=A=9(0) =y(t) <9(0) —y(t") =1 -y’ +y’ —y(t") <1 -3 +17b2

and since this must hold for dl§°| < 1, we may conclude that— \ < t*bu. Thereforepu > A

is a necessary condition for feasibility.

The purpose of the present paper is to extend the above ig@ishs to a more general context
of m-input u, m-outputy, n-dimensional linear systemsi, B, C') subject to input saturation:
|lu(t)|] < w for all t. The system(A, B,C') is assumed (i) to have strict relative degree one
with positive-definite high-frequency gain (i.€!B > 0) and (ii) to satisfy a minimum-phase
condition. Prespecified is a performance funéél)) = {(¢,€)| €]l < ¥(¢)}, parameterized
by A > 0 and a globally Lipschitz function): [0,00) — [\, 0c0) with Lipschitz constant;
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see Figure 3.1. The control objective is output trackingedrine a feedback structure which
ensures that, for a given reference signak WhH>~(R,_, R™) (the space of bounded locally
absolutely continuous functions R, := [0,00) — R™ with essentially bounded derivative,
the output tracking erroe = y — r evolve within the funnel (i.e. graph) C F(v)): transient
and asymptotic behaviour of the tracking error is influentedugh choice of parameter values
which define the funnel. The proposed control structure isitarating error feedback of the
form u(t) = —sat(k(t)e(t)) wherein the gain functiott: ¢ — 1/(¢(t) — |le(t)||) evolves so as
to preclude contact with the funnel boundary. A feasibitipndition (formulated in terms of the
plant data(A, B, C') andw, the funnel datd, A, ), the reference signal and the initial state
2°) is presented under which the tracking objective is achigwilst maintaining boundedness

of the stater and gain functiork.

In the highly specialized context of the motivating scalgstem (1.2), the main result of the

paper translates into the following: if
[y’ = r(0) <(0) and G = af [[[¢]leo + lIrlloc] + [I7]loc + A, (1.3)
wherein|| - || denotes thd.>°-norm, then the simple control strategy

1
o) — 1] e(t) =y(t) —r(t),

ensures attainment of the tracking objective (and, momedkie gain functionk is bounded).

u(t) = —saki(k(t)e(t)), k(t) =

Furthermore, if the first inequality in (1.3) is replaced by

=) < (15 ) O,

then input saturation does not occur and so the controlegtyatoincides with (1.1).

~

u
1+u

We proceed to make precise the class of systems and perfoenfiamnels.

2. THE SYSTEM CLASS

Consider then-input, m-output linear system

i(t) = Az(t) + Bu(t),  x(0) =2" € R, } (2.4)
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with (A, B,C) € R™" x R™™ x R™" and assume that thainimum-phaseondition holds:

sl —A B
se€C, Res >0 = det # 0. (2.5)
C 0

Furthermore, we assume and the matfiB € R™*™ is positive definite(not necessarily
symmetric):
Iy >0Vv eR™ : (v,CBv) > vljv|*. (2.6)

As is well known, if (2.6) holds, then there existe R™*(~™) and N € R»~™*" wjth
imV =kerC and N :=V'V)"'V'[I, - B(CB)™'C]. (2.7)

such that the similarity transformation

C
S = , with inverse S™' = (B(CB)™', V)
N

takes system (2.4) into the form

y(t) = Ary(t) + Agz(t) + CBu(t), y(0) = Ca”

(2.8)
2(t) = Asy(t) + Agz(t), 2(0) = N2,
where
Ay = CAB(CB)™', Ay:=CAV, A3:= NAB(CB)™', A,=NAV. (2.9)
Moreover, if (2.5) holds, theml, is a Hurwitz matrix, that is,
specd, C {s € C| Res < 0}, (2.10)
in which case, there exist positive constant$} > 0 such that
| exp(Ast)|| < Be™ Wt >0. (2.12)

Finally, we assume that the input functianis subject to a saturation constraint: in particular,
for someu > 0,
lu(t)| <u Vt>O0. (2.12)

With the input constraint parametér we associate the saturation function

allv||"te, vl > 7w
sat;: R™ — {w c Rm‘ HwH < ﬂ}, U sat;(v) — H ” ) ” H |
v, otherwise.
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3. THE PERFORMANCE FUNNEL

A central ingredient of our approach is the concept of a fuignen by

F@) :={{t, &) e Ry xR™| gl <v(t)} (3.13)

determined by a functiom(-) belonging to
G(A ) == {v: Ry — [, oo)} ¥ bounded and globally Lipschitz with Lipschitz constan}

parameterized bys > 0 and A > 0. The control objective is a feedback structure which — given

(0,(0))

Radius )\

Error evolution

Fig. 3.1. Prescribed performance funiily).

a reference signal € W>°(R ., R™) and under appropriate feasibility conditions — ensures tha
the closed-loop system has unique global bounded solutidh, — R™ and the tracking error

e = y — r evolves within the performance funnel.

4. THE MAIN RESULT

We summarize the main contributions of the paper in the ¥ahg theorem, a proof of which
can be found in the Appendix.

Theorem 4.1:Let (A, B,C) € (R™", R™™ R™*™) such that (2.5) holds. Seledt <
R™*(=m) sych that i/ = kerC' and letN, A;, A,, As, Ay, « >0 andg > 0 be as in (2.7),
(2.9) and (2.11). Assume further that (2.6) holds with asded constanty > 0. Let A > 0,
A >0 andy € §(\, A) define the performance funngl().

If z° € R™ andr € WhH>(R,,R™) are such that

IC2® — (0[] < 4(0) (4.14)
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andw > 0 such that

N s :
v > L= | 1A + A2l A3l =] [1¥llee + lIrllc] + BIA[IN2")l + [[#lloc + A, (4.15)

then application of the feedback strategy

u(t) = —sat(k(t)e(t)), k(t) = m, e(t) = Cx(t) — r(t) (4.16)

to (2.4) (subject to the input constraint (2.12)) yields aseld-loop initial-value problem with

the following properties.

(i) There exists precisely one maximal solution [0,w) — R™ and this solutiorglobal (i.e.
W = 00).

(i) The global solutionz is bounded and the tracking errer= C'xz — r evolves within the

performance funnef(v); more precisely,

60 = lel 2 = min {3, 2% 60) - @)} vezo. @)

(iif) The gain functionk is bounded, with|k||« < 1/¢.

(iv) There existsr > 0 such that/|u(7)|| < u (i.e. the input is unsaturated at some timje

(v) If 7 > 0 is such that|u(7)|| < @, then|u(t)|| < w for all t > 7 (i.e. if the input is
unsaturated at time, then it remains unsaturated thereafter).

(vi) The input is globally unsaturated (i.¢u(¢)|| < w for all ¢ > 0) if, and only if,
|C2° — r(0)]| < ¥(0)T/(1+ 7). (4.18)

(In which case, the first of equations (4.16) takes the sirfgu@ u(t) = —k(t)e(t)).

Remark 4.2:Some commentary on the content of the above theorem arentedira
(a): In view of the potential singularity in (4.16), some €anust be exercised in formulating
the initial-value problem (2.4), (4.16). This we do as falk Define
1
K: 5(@@ - ]Rmv (tag) = K’(tag) = TN e
e(t) — gl

D= {(t,n) € Ry xR")| (t,Cn—r(t)) € F(¢)},

F:D—R" (t,n)— F(t,n):= An— Bsag(k(t,Cn —r(t))(Cn — r(t))).

March 19, 2009 DRAFT
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The closed-loop initial-value problem (2.4), (4.16) is nowerpreted as

i(t) = F(t,z(t), x(0)=21° (0,2°) €D, (4.19)

By a solution of (4.19) we mean a continuously differentahinctionz: [0,w) — R™ which
satisfies (4.19) and has graph Iy 2 is maximal if it has no right extension that is also a
solution;z is global if w = co. Assertion (i) of the theorem confirms the existence of welyi
one maximal solutior of (4.19) and, moreover, this solution is global. Note tihat tequirement
that grapliz) is in D implies that the graph of the tracking errer= Cx — r is in F(¢): this

— together with boundedness of— is the content of Assertion (ii). Assertion (ii) estabksh
boundedness of both the control gain functign = (-, e(-)). Assertions (iv) and (v) imply that
the control input cannot remain saturated fortalt 0 and, when it becomes unsaturated then
it remains so thereafter. Assertion (vi) is an immediateseguence of Assertions (iv) and (v)
and consists of the observation that, if the control is afiiti unsaturated (i.e. ifju(0)| < w),

then the saturation bound is never attained.

(b): The first feasibility condition (4.14) is a necessarndition for attainment of the control

objective and is equivalent to the requirement tftat:°) € D.

(c): The second feasibility condition (4.15) is a sufficienhdition for attainment of the control
objective. It quantifies a saturation bound (sufficientlygéato ensure performance) in terms
of plant data, funnel data, initial data and reference digasa. The nature of the dependence
of the saturation bound on these data is not surprising. kample, (i) the minimum-phase
condition ensures exponential stability of the zero-dyicamof the linear triple( A, B, C') — this
translates into the condition (2.11) on the matdx in (2.9) — the parameter quantifies the
exponential decay rate of the zero dynamics and is inverstjed to the saturation bound; (ii) it
is to be expected that tracking of “large and rapidly varyirgference signals would require
control inputs capable of taking sufficiently large valuethis is reflected in the dependence of
the saturation bound on botr|., and ||7||«; (iii) transient and asymptotic behaviour of the
tracking error is influenced by the choice of funi¥&l)) determined by the globally Lipschitz
function € G(A, \) — a stringent requirement that transient behaviour decgyislly would be
reflected in a large Lipschitz constafitwhich, not unexpectedly, appears as an additive term

in the saturation bound.
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5. EXAMPLE
For purposes of illustration, we choose a single-inputglstoutput system in normal form:

11 1 1 y’
d v _ 1 -2 1 oy 0 | u(t), O 0 (5.20)
dt \ -(p) Lo s =(t) . z(0) 0

subject to the saturation constraint
lu(t)] <u:=10 Vt > 0.
It is readily verified that (2.5) and (2.6) hold (with= 1 in the latter) and that
JAi =1, Aol = 45 = v2, and [|ed|| < e vt >0,

wherea = (5 — v/2)/2. As reference signal we choosé) = &(+) the first component of the

solution of the Lorentz system

=866,  &=(286/10) — (&/10) — &&, &= G& — (883/30),

with the initial values(&;(0), &2(0), £3(0)) = (1, 0, 3). It is shown in [9, App. C] that this
solution is chaotic and yields a bounded) with bounded derivative. Note that0) = 1 and

numerical computation yield§r||. < 9/5, and ||7[| < 6/5.

SettingA = 0.1 and A = 0.2, the funnelJ () is determined by the function € G(\, A) given

by
Y(t) := max{2e %" 0.1} vVt >0.

Note that this prescribes exponential (expongm) decay of the tracking error in the transient

phasel0, 7|, whereT = 101n 20 ~ 30, and a tracking accuracy quantified hy= 0.1 thereafter.

The constant. is given by
_ 926+ 76v2
B 105

and so the second feasibility condition is satisfied. In opre satisfy the other feasibility

L 10=1u

condition, the initial datum,° must be such thae(0)| = |y° — r(0)| < 2 and soy° € (-1, 3).
To illustrate the occurrence of saturation of the contrgduinin our simulations, we choose
y € (—1,3) to be such that the inequality in Assertion (vi) fails to hgid which case, there
existsT > 0 such that the control is saturated @nr)). For this reason, we choogé = —0.9,
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in which cases is given bye = \/(2u) = 0.005.

Figure 5.2 depicts the behaviour of the closed-loop systefd], (4.16). The simulations confirm
the result of Theorem 4.1: the tracking error remains unifgrobounded away from the funnel
boundary; moreover, the second picture suggests that libatdlculated bound = 0.005 is
conservative. Non-monotonicity of gain functié®-) is also evident: it increases when the error
approaches the funnel boundary and decreases when theegenles from the boundary. The
final picture confirms that the input is initially saturatetiremains so on an interval of short

duration and thereafter remains unsaturated.

6. APPENDIX: PROOF OFTHEOREM 4.1

Reiterating comments in Remark 4.2(a), some care must becigae in formulating the
initial-value problem (2.4), (4.16) (equivalently, (2.§%.16)). Define

D= {(t,;1,¢) € Ry xR™ x R"™)| (t,n—r(t)) € F()},
and
f: D— Rm> (tv 22 C) = f(tv 22 C) = Al,u + AQC - CBS&E(KJ(t, H—= r(t))(u - ’I“(t))) :

The initial-value problem (2.8), (4.16) may now be expressethe form

y(t> = f(tv y(t>7 Z(t>>7 y(O) - Cl’o }

(6.21)
2(t) = Asy(t) + Agz(t), 2(0) = Nav.

Clearly, (y,2): [0,w) — R™ x R*™™ is a (maximal/global) solution of (6.21) if, and only fif,
r=B(CB)'y+Vz:[0,w) — R™ is a (maximal/global) solution of (4.19).

Now, it is readily verified that
F (tv H, C) = (f(ta M, C) ) ASM + A4C)

satisfies a local Lipschitz condition on the (relatively ppdomainD® C R, x R™ x R*™, in
the sense that, for eacdh, 11, () € D, there exists an open neighbourhdddof (7, i, () and a

constantK such that

1F(ty,2) = F(tn, Ol < K(ly — ull + [z = <ll) V(ty.2) €U
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By the standard theory of ordinary differential equatiosse( e.g. [10, Theorem 111.10.VI]),
the initial-value problem (6.21) has a uniqgue maximal sohufy, z): [0,w) — R™ x R*~™
0 < w < oo; moreover, grapfty, z)) = {(t,y(t), 2(t))| t € [0,w)} C D does not have compact

closure inD.

Next we show that the absolutely continuous tracking etratefined bye(t) := y(t) — r(t) for

all t € [0,w), satisfies
(e(t),e(t)) < |le®)||[L — A] — (e(t), CBsat(k(t)e(t))) fora.a.t € [0,w), (6.22)
wherein, for notational convenience, we have introducedftimction
1
k:0,w) =Ry, t— k(t):=k(te(t)) = OEECIR
Since graph(y, z)) is in D, it follows that graplie) is in F(¢) and so
le@)] < () < [[¢lle VEe€[0,w). (6.23)
By the second subsystem in (6.21), we have
2(t) = eM Nz + /Ot e Ay (e(s) +7(s)) ds YVt € [0,w).
In view of (2.11) and (6.23), it follows that
lz(®)]l < M = B[ N2®|| + gHA:aH ¢l + lIrlls] ¥t € [0,w). (6.24)
By absolute continuity ot and the first subsystem in (6.21), we have
é(t) = f(t,e(t) +r(t),z(t)) —r(t) foraa.te€|0,w),
whence
(e(t),e()) < lle@N I Adlllle®l + 1A= + N AlllIrllso + [17]loc]
— (e(t),CBsat(k(t)e(t))) fora.a.t € [0,w),
The conjunction of (4.15), (6.23) and (6.24) yields
[A[[lle@Il + [ A2lllzO1 + [[Alllirfloc + 7lle < L= A Vi€ [0,w)

and so, we have (6.22).
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Next, we show that, for as in (4.17),
(t) = lle®)] =& Vit e0,w). (6.25)

Seeking a contradiction, suppose there exists [0,w) such thaty(t;) — ||e(t1)]| < . Since
1(0) — ||e(0)]| > &, the following is well defined

to := max{t € [0,;)] ¥(t) — [le(t)]| = £} € (0,4)).

Moreover,
le(D)]| > ¥(t) —e > A—e > \/2 Vi€ [to, 1]
and so
le(?)]] A
k) |le(®)] = ——— > 2 >0 Vi€ [ty t1].
()H ()H ¢(t>_H€(t>H —2€—u [0 1]
Therefore,

sat(k(t)e(t)) = dlle(t)]|"e(t) Yt € [to, ]

which, together with (2.6), implies that
(e(t), CBsat(k(t)e(t))) = 7alle(t)]| ¥t € [to. 1],

and so, in view of (4.15) and (6.22), we may infer that

(e(t),é(t)) < —Alle(t)]| for a.a.t € [to,t1].
Integration, together with the Lipschitz property ©f now yields

le(t)]] — lle(to)ll < —Afty —to] < —[¥(t1) — b(to)| < (t1) —P(to),

whence the contradiction:

e =1(to) — [le(to)| < (1) —[le(t)]| <e.

Therefore, (6.25) holds. It immediately follows that theadtion & is bounded, withk(t) < 1/¢
for all ¢ € [0,w). Moreover, in view of (6.23) and (6.24) and boundedness, afe may infer

boundedness of the solution

z:[0,w) =Rt z(t) = B(CB) 'y(t) + Vz(t).
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To establish Assertions (i)-(iii), it remains only to sholatw = co. Suppose that < oo and

define

C:={(t,£,0) € [0,w] x R™ x R"™| 4(t) = [I¢] = &, llEN < [[Wllo, €] < MO}

Then, in view of (6.23), (6.24) and (6.25), it follows th@tis a compact set which contains
graph((e, z)) = {(t,e(t), 2(t))| t € [0,w)}, thereby contradicting the fact that the closure of the

latter is not a compact subset Df. Thereforew = co.

Next, we show the Assertion (iv) holds, i.e. we establish ¢ixestence ofr > 0 such that

|lu(7)]| < u. Seeking a contradiction, suppose
k@lle®l =u vt=0.

Then saf(k(t)e(t)) = ulle(t)|| " e(t) for all t > 0 and so, by (2.6),

(e(t), CBsati(k(t)e(t))) = ~ulle(t)]| Vi=0
which, in conjunction with (6.22), yields

{e(t),e(t)) < =[yu+ A= Lfle(®)]| vt =0,
with [yu + A — L] > 0. Integration gives the contradiction:

0 <fle@®ll < [le(O)} = [yu+A— Lt Vi=0.

We proceed to establish Assertion (v). Assufnér)|| < u for somer > 0. In view of (4.15),
there exists) € (0, 1) such that

|lu(r)|| < (1—=46)u and (1 —0)yu > L.
Seeking a contradiction, suppose Assertion (v) is fals@nTihere exist; > ¢y > 7 such that
|lu(tr)]| =u and @ > |Ju(t)|| > (1 —d0)u> L/y Yt € [to,t1). (6.26)

Then,

6

(e(t).e(6) = el [L — A] — k(t) et), CBe(t))

L — A] — kO lle(®)]

= (L - A=A lu®[]le®] S ~Alle(®]| for aat € fto, 1]
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which, on integration and invoking the Lipschitz properfyyg yields

le(t)]| — lle(toll < —Atr — to] < —[¢(t1) — ¥(to)| < ¥(tr) — Y(to),
whence the contradiction

le(t)]l
Y(t1) — lle(t)]]

u = [lu(t)ll = k(t)lle(t)]] =

le(to)]
= (o) — [le(to)]

= k(to)lle(to) | = l[ulto) || < u.

Finally, we turn to Assertion (vi). Note thadt:(0)|| = |le(0)]|/((0) — ||le(0)]]) < u is equivalent
to ||e(0)|| < ¥(0)u/(1+u) and so the claim follows from Assertion (v) and setting 0. This

completes the proof. O
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