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Abstract. For n ∈ N and D ⊆ N, the distance graph PD
n has vertex set {0, 1, . . . , n− 1}

and edge set {ij | 0 ≤ i, j ≤ n − 1, |j − i| ∈ D}. Note that the important and very
well-studied circulant graphs coincide with the regular distance graphs.

A fundamental result concerning circulant graphs is that for these graphs, a simple
greatest common divisor condition, their connectivity, and the existence of a Hamiltonian
cycle are all equivalent. Our main result suitably extends this equivalence to distance
graphs. We prove that for a set D, there is a constant cD such that the greatest common
divisor of the integers in D is 1 if and only if for every n, PD

n has a component of order at
least n−cD if and only if for every n, PD

n has a cycle of order at least n−cD. Furthermore,
we discuss some consequences and variants of this result.

Keywords. Circulant graph; distance graph; connectivity; Hamiltonian cycle; Hamilto-
nian path

1 Introduction

Circulant graphs form an important and very well-studied class of graph [3, 18, 20, 21, 24,
28, 29]. They are Cayley graphs of cyclic groups and have been proposed for numerous
network applications such as local area computer networks, large area communication
networks, parallel processing architectures, distributed computing, and VLSI design. Their
connectivity and diameter [3, 6, 20, 21, 30, 34], cycle and path structure [1, 2, 4, 5, 7, 11, 27],
and further graph-theoretical properties have been studied in great detail. Polynomial
time algorithms for isomorphism testing and recognition of circulant graphs have been
long-standing open problems which were completely solved only recently [17,26].
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For n ∈ N and D ⊆ N, the circulant graph CD
n has vertex set [0, n−1] = {0, 1, . . . , n−1}

and the neighbourhood NCD
n

(i) of a vertex i ∈ [0, n− 1] in CD
n is given by

NCD
n

(i) = {(i+ d) mod n | d ∈ D} ∪ {(i− d) mod n | d ∈ D}.

Clearly, we may assume max(D) ≤ n
2

for every circulant graph CD
n .

Our goal here is to extend some of the fundamental results concerning circulant graphs
to the similarly defined yet more general class of distance graphs: For n ∈ N and D ⊆ N,
the distance graph PD

n has vertex set [0, n− 1] and

NP D
n

(i) = {i+ d | d ∈ D and (i+ d) ∈ [0, n− 1]}
∪{i− d | d ∈ D and (i− d) ∈ [0, n− 1]}

for all i ∈ [0, n−1]. Clearly, we may assume max(D) ≤ n−1 for every distance graph PD
n .

Every distance graph PD
n is an induced subgraph of the circulant graph CD

n+max(D). More
specifically, distance graphs are the subgraphs of sufficiently large circulant graphs induced
by sets of consecutive vertices. Conversely, our following simple observation from [13] shows
that every circulant graph is in fact a distance graph.

Proposition 1 ( [13]) A graph is a circulant graph if and only if it is a regular distance
graph.

Proof: Clearly, every circulant graph CD
n is regular and isomorphic to the distance graph

PD′
n for D′ = D ∪ {n− d | d ∈ D}.

Now let PD
n be a regular distance graph. Let D = {d1, d2, . . . , dk} with d1 < d2 < . . . <

dk ≤ n− 1. Since the vertex 0 has exactly k neighbours D, PD
n is k-regular.

Let i ∈ [1, k]. The vertex di − 1 has exactly i− 1 neighbours j with j < di − 1. Hence
di−1 has exactly k+1−i neighbours j with j > di−1 which implies (di−1)+dk+1−i ≤ n−1.
The vertex di has exactly i neighbours j with j < di. Hence di has exactly k− i neighbours
j with j > di which implies di + dk+1−i > n− 1.

We obtain di + dk+1−i = n for every i ∈ [1, k] which immediately implies that PD
n is

isomorphic to the circulant graph CD′
n for D′ = {d ∈ D | d ≤ n

2
}. 2

Distance graphs lack the symmetry and algebraic interpretation of circulant graphs and
the algebraic methods used in [17, 26] will not apply to them. In view of Proposition 1,
the recognition of distance graphs will be at least as difficult as the recognition of circulant
graphs.

Originally motivated by coloring problems for infinite distance graphs studied by Eggle-
ton, Erdős, and Skilton [15, 16], most research on distance graphs focused on colorings
[9, 12,14,22,23,31,32].

One of the most fundamental results for circulant graphs is the following beautiful equiv-
alence.
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Theorem 2 (Boesch and Tindell [6], Burkard and Sandholzer [8], Garfinkel [19])
For n ∈ N and a finite set D ⊆ N, the following statements are equivalent.

(i) CD
n is connected.

(ii) The greatest common divisor gcd({n} ∪D) of the integers in {n} ∪D equals 1.

(iii) CD
n has a Hamiltonian cycle.

In 1970 Lovász [10, 25, 33] asked whether every connected vertex-transitive graph has a
Hamiltonian path. Since circulant graphs are clearly vertex-transitive, Theorem 2 is a
positive example for this well-studied problem [10,33].

In the present paper we suitably extend Theorem 2 to distance graphs. While connec-
tivity and hamiltonicity of circulants are equivalent to a simple necessary gcd-condition,
we prove that a similar condition for distance graphs is only equivalent to the existence
of a large component and a long cycle. We also discuss consequences and variants of our
result.

2 Cycles and Paths in Distance Graphs

We immediately proceed to our main result. The residue of an integer n ∈ Z modulo d ∈ N
will be denoted by n mod d.

Theorem 3 For a finite set D ⊆ N, the following statements are equivalent.

(i) There is a constant c1(D) such that for every n ∈ N, the distance graph PD
n has a

component of order at least n− c1(D).

(ii) gcd(D) = 1.

(iii) There is a constant c2(D) such that for every n ∈ N, the distance graph PD
n has a

cycle of order at least n− c2(D).

Proof: (i) ⇒ (ii): Let n be such that n is even and n > 2c1(D). By (i), more than half
the vertices are in the same component of PD

n . By the pigeonhole principle, there is some
i ∈ [0, n− 2] such that the two vertices i and i+ 1 are in the same component of PD

n . This
implies that there is a path in PD

n from i to i+1. Hence 1 is an integral linear combination
of the elements in D. It is a well-known consequence of the Euclidean algorithm that this
is equivalent to (ii).

(ii) ⇒ (iii): The essential idea in order to obtain a cycle which contains almost all vertices
of PD

n is to use increasing and decreasing paths which only use edges uv such that v − u
is one fixed element d∗ of D. Because the vertices on these paths always remain in the
same residue class modulo d∗, such paths can be overlayed without intersecting. In order
to connect these paths to a cycle, we use short paths which are close to 0 or n − 1 and
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whose end vertices are in different residue classes modulo d∗. In this way the cycle can
collect all vertices of PD

n in some middle section and only misses vertices close to 0 or n−1
in terms of D (cf. Figure 1).

Q1

Q2

Q3

Q4

Q5

Q6

P1

P3

P5

i′1 i1

i′3 i3

i′5 i5

i0
i2

i4

P2

P4

i6

P ′

Figure 1

In view of the constant c2(D) in (iii), we may tacitly assume in the following that n is
sufficiently large in terms of D.

Let dmax = max(D) and D− = D \ {dmax}. Since gcd(D) = 1, 1 is an integral linear
combination of the elements of D. Hence there are integers nd for d ∈ D− such that

1 =

(∑
d∈D−

ndd

)
mod dmax =

(∑
d∈D−

(nd mod dmax) d

)
mod dmax. (1)

This implies the existence of a path

P : v0v1 . . . vk

in PD
n such that vi − vi−1 ∈ D− for all i ∈ [1, k] and

{vi mod dmax | i ∈ [0, k]} = [0, dmax − 1],

i.e. P is a monotonously increasing path which only uses edges uv with v − u ∈ D− and
contains a vertex from every residue class modulo dmax.

We assume that P is chosen so as to be shortest possible. This implies that the residues
modulo dmax of the vertices v0 and vk appear exactly once on P . Let

r1, r2, . . . , rdmax
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denote the residues modulo dmax in the order in which they appear for the first time when
traversing P from v0 to vl. Clearly,

r1 = v0 mod dmax,

r2 = v1 mod dmax, and

rdmax = vk mod dmax.

Furthermore, P is the concatenation of (dmax − 1) edge-disjoint paths

P = P1P2 . . . Pdmax−1

such that for i ∈ [1, dmax − 1], the path Pi begins at the smallest vertex vj on P with
ri = vj mod dmax and ends at the smallest vertex vj′ on P with ri+1 = vj′ mod dmax; let
li = vj′ − vj for these indices.

By the choice of P , for i ∈ [1, dmax− 1], all internal vertices of Pi have residues modulo
dmax in {rj | 2 ≤ j ≤ i− 1}.

Let
l = l1 + l2 + . . .+ ldmax−1.

Note that l = vk − v0.
We now describe a long cycle C in PD

n . The general structure of C is illustrated in
Figure 1. For simplicity we will first assume that dmax is even.

Let i0 be the smallest integer at least

(dmax + l2) + (dmax + l4) + . . .+ (dmax + ldmax−2) + (dmax + l)

of residue r1 modulo dmax. Furthermore, let i′1 be the largest integer at most

(n− 1)− l1 − (dmax + l3)− (dmax + l5)− . . .− (dmax + ldmax−1)

of residue r1 modulo dmax.
We start C with an increasing path Q1 only using edges uv with v − u = dmax which

begins at i0 and ends at i′1. We continue C with P1 shifted by a multiple of dmax such that
it begins at i′1 and ends at a vertex i1.

For j from 1 up to dmax

2
− 1, we proceed as follows: We assume that we have already

constructed C until the end of a shifted path P2j−1 which ends at a vertex i2j−1. We
continue C with a decreasing path Q2j which only uses edges uv with v − u = dmax and
ends at the largest integer i2j at most i2j−2− l2j with residue r2j modulo dmax. We continue
C with P2j shifted by a multiple of dmax such that it begins at i2j. We continue C with
an increasing path Q2j+1 which only uses edges uv with v − u = dmax and ends at the
smallest integer i′2j+1 at least i2j−1 with residue r2j+1 modulo dmax. We continue C with
P2j+1 shifted by a multiple of dmax such that it begins at i′2j+1 and ends at a vertex i2j+1.

At this point, we increase j until it reaches dmax

2
− 1.

To complete C, we may assume now that we have already constructed C until the end
of the shifted path Pdmax−1 which ends at a vertex idmax−1. We continue C with a decreasing
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path Qdmax which only uses edges uv with v − u = dmax and ends at the largest integer
idmax at most idmax−2 − l with residue rdmax modulo dmax.

Let
P ′ : u0u1 . . . uk′

be a path in PD
n such that u0 = idmax , ui − ui−1 ∈ D− for all i ∈ [1, k′], r1 = uk′ mod dmax,

and l′ = uk′ − u0 is minimum possible.
Clearly, l′ ≤ l. Furthermore, no internal vertex of P ′ has residue rmax modulo dmax.

We continue C with P ′. Finally, we complete C with an increasing path which only uses
edges uv with v − u = dmax, begins at uk′ and ends at i0.

At this point we have completely described C as the concatenation of paths. Clearly,
the choices of i0 and i′1 imply that C never leaves [0, n− 1], i.e. C is in fact a closed walk
within PD

n . In order to show that C is a cycle, it remains to prove that it visits no vertex
twice. This follows easily from the facts that

• the vertices on Qi all have residue ri modulo dmax for all i ∈ [1, dmax],

• the end vertices of the shifted paths Pi are the first vertices on C - traversed as
constructed above - which have residue ri+1 modulo dmax for all i ∈ [1, dmax − 1],

• all internal vertices of Pi have residues modulo dmax in {rj | 2 ≤ j ≤ i − 1} for all
i ∈ [1, dmax − 1], and

• no internal vertex of P ′ has residue rmax modulo dmax.

Since C contains all vertices between i0 and i′1, it misses at most

2dmax + l1 + (dmax + l2) + (dmax + l3) + . . .+ (dmax + ldmax−1) + (dmax + l)

= dmax(dmax + 1) + 2l

many vertices of PD
n . Since this expression is bounded in terms of D, the proof of (iii) in

the case that dmax is even is complete.
Next, we consider the case that dmax is odd.
Let i0 be the smallest integer at least

(dmax + l3) + (dmax + l5) + . . .+ (dmax + ldmax−2) + (dmax + l)

of residue r1 modulo dmax. Furthermore, let i′2 be the largest integer at most

(n− 1)− l2 − (dmax + l4)− (dmax + l6)− . . .− (dmax + ldmax−1)

of residue r2 modulo dmax.
Let d′ = v1 − v0. In the above construction, we replace the path Q1 by the path Q1,2

illustrated in Figure 2 with

Q1,2 : i0(i0 + d′)(i0 + dmax + d′)(i0 + dmax)(i0 + 2dmax)

(i0 + 2dmax + d′)(i0 + 3dmax + d′)(i0 + 3dmax)(i0 + 4dmax)

. . . i′2
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i0

. . .
i′2

Figure 2

Note that Q1,2 visits all but at most one of the vertices between i0 and i′1 of residues r1 or
r2 modulo dmax. The rest of the above construction is adapted accordingly as illustrated
in Figure 3 replacing Pi and Qi with Pi+1 and Qi+1 for all i ∈ [1, dmax − 1].

Q1,2

Q3

Q4

Q5

Q6

Q7

P2

P4

P6

i′2 i2

i′4 i4

i′6 i6

i0
i3

i5

P3

P5

i7

P ′

Figure 3

Again the same residue properties as before imply that the closed walk C is a cycle. Also
as before, the number of vertices of PD

n missed by C is at most dmax(dmax + 1) + 2l which
is bounded in terms of D. This completes the proof of the implication “(ii) ⇒ (iii)”.

(iii) ⇒ (i): Since this implication is trivial, the proof is complete. 2

We add some comments concerning Theorem 3.
It is easy to see that a distance graph PD

n with gcd(D) = 1 and n ≥ 2 max(D) + 1 is
actually connected. Hence (i) in Theorem 3 could be replaced by:

(i)’ There is a constant c3(D) such that for every n ∈ N with n ≥ c3(D), the distance
graph PD

n is connected.

For (iii) in Theorem 3, a similar change is not possible, i.e. no lower bound on the order
n would imply that PD

n has a Hamltonian cycle. If n as well as all elements of D are odd
for instance, then PD

n is bipartite and every cycle misses at least one vertex. In this sense,
Theorem 3 is best-possible.

It follows easily from (1) that our proof yields the estimate

c2(D) = O
(
max(D)2 + l

)
= O

(
max(D)3|D|

)
.

For the case that gcd(D) is different from 1, Theorem 3 implies the following corollary.
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Corollary 4 For a finite set D ⊆ N and d ∈ N, the following statements are equivalent.

(i) There is a constant c4(D) such that for every n ∈ N, the distance graph PD
n has a

component of order at least n
d
− c4(D).

(ii) gcd(D) ≤ d.

(iii) There is a constant c5(D) such that for every n ∈ N, the distance graph PD
n has a

cycle of order at least n
d
− c5(D).

Theorem 3 trivially implies yet another condition which is equivalent to (i), (ii) and (iii)
in Theorem 3:

(iv) There is a constant c6(D) such that for every n ∈ N, the distance graph PD
n has a

path of order at least n− c6(D).

Clearly, such a path can be obtained from the cycle in (iii) by deleting one edge. It traverses
[0, n−1] several times back and forth just like the cycle does. We believe that there is also
always a path containing almost all vertices of PD

n which is essentially monotonic, i.e. it
traverses [0, n− 1] once. The following conjecture makes this precise.

Conjecture 5 For a finite set D ⊆ N, the following statements are equivalent.

(i) gcd(D) = 1.

(ii) There are two constants c7(D) and c8(D) such that for every n ∈ N, the distance
graph PD

n has a path u0u1 . . . ul of order at least n− c7(D) such that uj > ui for all
0 ≤ i, j ≤ l with j − i ≥ c8(D).

A simple modification of the construction used in the proof of Theorem 3 implies the
following weak version of Conjecture 5.

Theorem 6 If D ⊆ N is a finite set with gcd(D) = 1 and ε > 0, then there are constants
c9(D, ε) and c10(D, ε) such that for every n ∈ N, the distance graph PD

n has a path u0u1 . . . ul

of order at least
(1− ε)n− c9(D, ε)

such that uj > ui for all 0 ≤ i, j ≤ l with j − i ≥ c10(D, ε).

Proof: Since gcd(D) = 1, D contains at least one odd element dodd. Replacing the increas-
ing and decreasing paths Qi from the proof of Theorem 3 with increasing and decreasing
paths Ri which only use edges uv with v−u = dodd, and using the paths P1, P2, . . . , Pdodd−1

and P ′ for parity changes as indicated in Figure 4, we obtain a path R from a vertex i0 to
a vertex idodd

> i0 which both have residue r1 modulo dodd.
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i0 R1

R2

R3

R4

R5

P1

P3

P ′ i5

P2

P4

Figure 4

Note that R only visits vertices within [i0, idodd
]. Furthermore, the number of vertices

in [i0, idodd
] which R misses is bounded in terms of D. Therefore, increasing all paths

R1, R2, . . . , Rdodd
by the same sufficiently large multiple of dodd, we can ensure that R has

order (1− ε) (idodd
− i0 + 1). Concatenating shifted copies of R yields the desired path and

completes the proof. 2

Note that Conjecture 5 is trivial, if D contains only one element. If D contains exactly
two elements, then Conjecture 5 easily follows from the following result.

Proposition 7 If d1, d2 ∈ N are such that d1 > d2 and gcd({d1, d2}) = 1, then P
{d1,d2}
d1+d2+1

has a Hamiltonian path which begins at 0 and ends at d1 + d2.

Proof: Consider the sequence i0, i1, . . . , id1+d2 produced by Algorithm 1 below.

i0 := 0;
n := 0;
n1 := 0;
n2 := 0;
while n < d1 + d2 do

if in ≥ d2 and n2 < d1 − 1 then
in+1 := in − d2;
n2 := n2 + 1;

else
in+1 := in + d1;
n1 := n1 + 1;

end
n := n+ 1;

end
Algorithm 1

Clearly, ij ≥ 0 for j ∈ [0, d1 + d2].
If n1 > d2 + 1 after the termination of the algorithm, then n2 = n − n1 < d1 − 1 and

hence
id1+d2 = n1d1 − n2d2 ≥ (d2 + 2)d1 − (d1 − 2)d2 = 2d1 + 2d2.
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Let j ∈ [1, d1 + d2 − 1] be maximum such that ij+1 = ij + d1. Clearly, ij+1 ≥ d2 and the
algorithm would have set ij+1 = ij−d2 instead, which is a contradiction. Hence n1 ≤ d2+1.
Since n2 ≤ d1 − 1, we obtain n1 = d2 + 1 and n2 = d1 − 1. This implies

id1+d2 = (d2 + 1)d1 − (d1 − 1)d2 = d1 + d2.

If ij > d1 +d2 for some j ∈ [1, d1 +d2−1], then let j be largest with this property. Clearly,
ij−1 ≥ d2 and at this moment of the execution of the algorithm n2 < d1−1. Therefore, the
algorithm would have set ij = ij−1−d2 instead, which is a contradiction. Hence ij ≤ d1+d2

for all j ∈ [0, d1 + d2],
If ir = is for some r, s ∈ [0, d1 + d2] with s > r, then is − ir = a1d1 − a2d2 = 0 for some

a2 ∈ [1, d1 − 1]. This implies a1d1 = a2d2. Since gcd({d1, d2}) = 1, we obtain that a2 must
be a multiple of d1, which is a contradiction. Hence all d1 + d2 + 1 integers i0, i1, . . . , id1+d2

are distinct and define the desired Hamiltonian path of P
{d1,d2}
d1+d2+1. This completes the proof.

2

It seems possible that Proposition 7 generalizes to sets D with more elements. For D =
{6, 10, 15} for instance, the pattern 0, 6, 12, 2, 8, 14, 4, 10, 16, 1, 7, 13, 3, 9, 15, 5, 11, 17 yields
a Hamiltonian path in PD

18 which begins at 0 and ends at 17.
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