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Abstract. We study the problems to find a maximum packing of shortest edge-disjoint cycles
in a graph of given girth g (g-ESCP) and its vertex-disjoint analogue g-VSCP. In the case
g = 3, Caprara and Rizzi (2001) have shown that g-ESCP can be solved in polynomial time
for graphs with maximum degree 4, but is APX-hard for graphs with maximum degree 5,
while g-VSCP can be solved in polynomial time for graphs with maximum degree 3, but is
APX-hard for graphs with maximum degree 4. For g ∈ {4, 5}, we show that both problems
allow polynomial time algorithms for instances with maximum degree 3, but are APX-hard
for instances with maximum degree 4. For each g ≥ 6, both problems are APX-hard already
for graphs with maximum degree 3.

Keywords. algorithms; approximation algorithms; combinatorial problems; graph algo-
rithms; shortest cycles; packing; complexity

1 Introduction

In [4], Garey and Johnson show that the problem to find the maximum number of vertex-
disjoint triangles in a graph is NP-hard. In [6], Holyer proves that the problem to find the
maximum number of edge-disjoint triangles in a graph is NP-hard. Both sources actually
consider arbitrarily large cliques instead of triangles. In [2], Caprara and Rizzi study the
approximability of both triangle packing problems. Here we consider the generalisations of
these problems to shortest cycles instead of triangles. For graphs whose shortest cycles have
length g, i.e. which are of girth g, we consider the problems of finding the maximum number
of edge-disjoint g-cycles (g-ESCP) and of finding the maximum number of vertex-disjoint
g-cycles (g-VSCP). Note that for each value of g, the restrictions of g-ESCP and of g-VSCP
to graphs with maximum degree 3 coincide.

Caprara and Rizzi [2] give polynomial time algorithms for the restriction of 3-ESCP to
graphs with maximum degree 4 and for the restriction of 3-VSCP to graphs with maximum
degree 3, but they show that under all weaker maximum degree restrictions the problems are
APX-hard.

Theorem 1 (Caprara and Rizzi [2]) The restriction of 3-ESCP to graphs with maximum
degree 5 and the restriction of 3-VSCP to graphs with maximum degree 4 are APX-hard.

By considering uniform subdivisions of instances for the 3-ESCP and 3-VSCP problems, their
result immediately implies that for each k ∈ N, the restriction of 3k-ESCP to graphs with
maximum degree 5 and the restriction of 3k-VSCP to graphs with maximum degree 4 are
APX-hard.

In the present paper, we show that for any g ≥ 6, g-ESCP — and thus g-VSCP — is APX-
hard, even if restricted to graphs with maximum degree 3. For g ∈ {4, 5}, we give polynomial
time algorithms to solve g-ESCP instances — and thus g-VSCP instances — with maximum
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degree 3, but we show that both problems are already APX-hard if restricted to graphs with
maximum degree 4. Altogether we determine the exact maximum degree thresholds for the
polynomial time solvability of these packing problems.

2 Exact Algorithms

As in [2], we define

Definition 1 For a given graph G we call the graph H whose vertices correspond to the
shortest cycles of G and for which two vertices are adjacent if the corresponding cycles of G
share an edge the auxiliary graph of G.

Clearly, for any fixed g and a given graphG of girth g the problem g-ESCP can be polynomially
reduced to determining the independence number α(H) of the auxiliary graph H of G.

Theorem 2 4-ESCP and 5-ESCP can be solved in polynomial time for graphs with maximum
degree ∆ ≤ 3.

Proof: It is sufficient to show that the auxiliary graph of G is claw-free, because then its
independence number can be determined in polynomial time [8]. Indeed, if G contains a cycle
C that intersects three other cycles, each of these cycles uses two of the at most five edges
between V (C) and V (G) \ V (C), so they cannot all be edge-disjoint. �

By the same argument, auxiliary graphs of graphs with girth 4 are quasi-line graphs, i.e. the
neighbourhood of each of their vertices can be partitioned into two cliques. Indeed, only few
graphs of girth 4 do not allow trivial reductions, so we can give a proof that does not rely
on the results by Minty [8] in this case. Since the structure of graphs of girth 5 and their
auxiliary graphs is much richer than in the case of girth 4, such a very simple and direct
argument does not seem to exist in this case.

Alternative Proof for 4-ESCP: We can detect and remove all edges of a given graph G that
are not contained in a 4-cycle and construct the auxiliary graph in polynomial time. We
may assume that H is connected (otherwise, we would split the edge set of G into smaller
instances) and contains no vertex of degree 1 (otherwise, we would include the corresponding
4-cycle in the packing and discard the edges that are only contained in the intersecting 4-
cycles). We may further assume that H is not a cycle, since we can compute α(Cn) =

⌊
n
3

⌋
.

Therefore G contains a 4-cycle that intersects at least three further 4-cycles. We finish the
proof by showing that under these conditions, G is one of the four graphs shown in Figure 1.

First we assume that G contains a K2,3 subgraph induced by the union of the independent
sets {v1, v2} and {w1, w2, w3}. Since this subgraph contains only three 4-cycles, we may
assume that w1 has another neighbour x. In order for the edge w1x to be contained in a
4-cycle, x must be adjacent to one of the vertices w2 and w3, w.l.o.g. it is adjacent to w2.
Therefore, G contains K3,3 − e as a subgraph. Since the vertices x and w3 have distance 3 in
the K3,3 − e subgraph and every edge of G is contained in a 4-cycle, any further edge that
contains one of them must contain them both. Therefore, in this subcase either G = K3,3− e
or G = K3,3.

Now we assume that G contains no K2,3 subgraph, i.e. each pair of different 4-cycles in
G shares at most one edge. Since H is claw-free but contains a vertex of degree at least 3,
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G contains three 4-cycles each pair of which shares exactly an edge. These three 4-cycles
form a subgraph that consists of an induced 6-cycle v1w1v2w2v3w3v1 and a vertex y with
N(y) = {v1, v2, v3}. As in the above paragraph, we may assume that G contains a path
w1xw2 for a new vertex x, and either G contains no further edge or another edge xw3. In the
first case, G = K2 × P4 − e, and in the second case, G = K2 × C4. �
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Figure 1: Graphs for Theorem 2

3 Hardness of Approximation

A MAX-SAT instance consists of a set X of some s Boolean variables x1, . . . , xs and of a set
Z of some t clauses, which are subsets of the set L of literals, where L is the disjoint union
of X and the set {x1, . . . , xs} of negations of the variables. We say that a truth assignment
X → {true, false} satisfies a clause C, if C contains a Boolean variable set to true or the
negation of a Boolean variable set to false. The maximum satisfiability problem asks for the
maximum number of clauses that can be satisfied by a truth assignment.

Our proofs of the hardness of shortest cycle packings rely on a result of Berman and
Karpinski on the 3-OCC-MAX 2SAT problem. This problem is the restriction of the maximum
satisfiability problem to instances for which each clause contains at most two variables and
each variable x occurs in at most three clauses, i.e. at most three clauses contain one of the
literals x and x.

Theorem 3 (Berman and Karpinski [1]) For every ε > 0, it is NP-hard to approximate
3-OCC-MAX 2SAT within a factor of 2012

2011 − ε.

Definition 2 We call a 3-OCC-MAX 2SAT instance reduced, if for every literal l1 ∈ L and
for every literal l2 ∈ L \ {l1},
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1. none of its clauses is of the form
{
l1, l1

}
,

2. the instance contains a clause which contains l1 and a clause which contains l1,

3. the instance does not contain both the clauses {l1, l2} and
{
l1, l2

}
,

4. the instance does not contain two clauses
{
l1, l2

}
and {l1, l2} and a third clause that

contains the literal l1.

Lemma 1 For every ε > 0, it is NP-hard to approximate the restriction of 3-OCC-MAX
2SAT to reduced instances within a factor of 2012

2011 − ε.

Proof: By Theorem 3, it is sufficient to show that for every unreduced instance I of the
3-OCC-MAX 2SAT problem, we can compute an integer d and a smaller instance I ′ with
OPT (I) = OPT (I ′) + d in polynomial time.

If the first condition on reduced instances is violated, we construct I ′ from I by removing
the clause {l1, l1} and setting d := 1.

If the second condition is violated, then let d denote the number of clauses which contain
l1 or l1. We construct I ′ from I by removing these d clauses and the variable corresponding
to l1.

If the third condition is violated, we have two clauses {l1, l2} and
{
l1, l2

}
. Let x1 and

x2 be the two variables corresponding to the literals l1 and l2. If there exists a partial truth
assignment {x1, x2} → {true, false} that satisfies all clauses in which the literals x1, x1,
x2 and x2 occur, we set d to be the number of these clauses and construct I ′ from I by
removing them. Otherwise, there are w.l.o.g. two clauses {l1, l3} and {l2, l4} for literals l3, l4
corresponding to two further variables. Any truth assignment that assigns the same value to
l1 and l2 satisfies at most three of the four clauses in which l1 and l2 occur, while a truth
assignment that assigns different values to these literals satisfies at least three of the four
clauses. Therefore, we can set d := 2 and construct I ′ from I by removing the clauses {l1, l2}
and

{
l1, l2

}
and replacing the literal l1 by the literal l2.

If the fourth condition is violated, at most one of the literals l2 and l2 occurs in a fourth
clause; w.l.o.g. there is no further occurrence of the literal l2. Then any optimal truth setting
remains optimal after the value of the variable corresponding to l2 is adjusted such that l2
is true. Therefore, we can set d to be the number of occurrences of the literal l2 in I and
construct I ′ from I by removing the clauses in which l2 occurs and replacing the clause

{
l1, l2

}
by {l1}. �

We can associate graphs to MAX-SAT instances via a construction from Karp’s proof of the
NP-completeness of STABLE SET [7].

Definition 3 For a given MAX-SAT instance the vertices of the SAT graph correspond to
the pairs (l, C) ∈ L×Z with l ∈ C. Its edge set is a union EC ∪EV of the set EC of clause
edges between each pair of vertices (l1, C) and (l2, C) that belong to the same clause, and of
the set EV of variable edges between each pair (x,C1) and (x,C2) of vertices.

Obviously, the solution of the MAX-SAT problem corresponds the size of a maximum inde-
pendent set in its SAT graph. For reduced 3-OCC MAX 2-SAT instances the SAT graphs
have some properties summarized in the following lemma.
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x1 x1 x1
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Figure 2: SAT graphs to two unreduced 3-OCC MAX 2-SAT instances

Lemma 2 The SAT graph corresponding to a reduced 3-OCC-MAX 2SAT instance is a sim-
ple graph, its vertex degrees range from 2 to 3, and its girth is at least 6.

Proof: Let H be the SAT graph for a reduced 3-OCC-MAX 2SAT instance. Parallel edges
in SAT graphs arise only if a clause contains two literals corresponding to the same variable,
and this case is excluded for reduced graphs. The degree of any vertex in H cannot be larger
than three because it is incident to at most one clause edge and at most two variable edges.
As both literals corresponding to each variable occur in different clauses, there is no vertex
of degree one.

Let us assume that H contains a 3-cycle T . Since the clause edges are a matching, T
contains at least two variable edges. Therefore, all three vertices in T correspond to the same
variable, so none of the three edges is a clause edge. This is impossible because (V,EV ) is a
disjoint union of paths of length one and two.

Let us assume that H contains a 4-cycle Q. Since the clause edges are a matching, and
every path with three edges in H contains at least one clause edge, clause edges and variable
edges alternate on Q. Therefore, the vertices of C correspond to two clauses of the form
{l1, l2} and

{
l1, l2

}
, but this is the third excluded case for reduced instances.

Finally, we assume that H contains a 5-cycle P . As the clause edges are a matching, P
contains at most two of them, so the vertices of P correspond to only two variables, and the
5-cycle corresponds to clauses

{
l1, l2

}
, {l1, l2} and

{
l1
}

, where the third clause may contain
another literal. This is the fourth excluded case for reduced instances. �

To prove the hardness results, we use a construction which, under suitable conditions, provides
us with graphs with given girth and given auxiliary graph.

Definition 4 For any triangle-free graph H of maximum degree ∆ and any integer g ≥
max{3,∆}, we call a graph G a C(g,H)-graph, if it is obtained from the disjoint union G′

of g-cycles Cv for each vertex v ∈ V (H) by the following identification process: For each
v ∈ V (H), we select degH(v) different glueing edges {ev,w}w∈N(v) ⊆ E(Cv) such that for
each pair w 6= w′ of neighbours of v, the distance between the vertex sets ev,w and ev,w′ is

at least
⌊
g−degH(v)
degH(v)

⌋
=
⌊

g
degH(v) − 1

⌋
. For each edge {v, w} ∈ E(H) with ev,w = {a1, b1} and

ew,v = {a2, b2}, we define two identification sets {a1, a2} and {b1, b2}. (Note that there are
two possible choices.) We obtain G from G′ as follows: For every edge {v, w} ∈ E(H) with
ev,w = {a1, b1} and ew,v = {a2, b2} and identification sets {a1, a2} and {b1, b2}, we remove
one of the two glueing edges ev,w and ew,v and identify a1 with a2 and b1 with b2.
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Figure 3: Construction of a C(g,H)-graph for g = 5 and H = K4 − e

This construction does not yield a unique Cg-graph, as it depends upon the choice of glueing
edges and identification sets. For fixed girth, it can be performed in polynomial time. Any
C(g,H)-graph contains the g-cycles Cv for each v ∈ V (H) as induced subgraphs, and for
each edge {v, w} ∈ H, it contains an edge e{v,w} representing the pair of glueing edges ev,w
and ew,v. Figure 3 shows a C(5,K4 − e)-graph that, besides the 5-cycles Ca, Cb, Cc, and
Cd, contains two 3-cycles and a 4-cycle, so its auxiliary graph is not K4 − e. However the
following definition and lemma describe a condition on H that guarantees that the auxiliary
graph of any C(g,H)-graph of H is H itself.

Definition 5 The g-weight of a cycle CH in a graph H is

wg(CH) :=
∑

v∈V (CH)

⌊
g

degH(v)
− 1
⌋
.

Lemma 3 If a graph H contains no cycle CH of g-weight wg(CH) ≤ g, then the girth of any
C(g,H)-graph G is g, and H is its auxiliary graph.

Proof: It suffices to show that G contains no cycle C 6∈ {Cv : v ∈ H} of length less than or
equal to g. Let us assume that C is such a cycle. Then we can split the sequence of the edges
of C into a sequence P1, P2, . . . , Pl of consecutive paths such that for 1 ≤ i ≤ l the path Pi is
entirely contained in some g-cycle Cvi . Furthermore, allowing paths of length 0, it is possible
to choose these paths such that ∀i ∈ {1, . . . , l} : vi−1vi ∈ E(H) with v0 := vl. Clearly, the
length of Pi is at least

⌊
g

degH(vi)
− 1
⌋
. Since the length of C is at most g, we obtain that

g ≥
l∑

i=1

⌊
g

degH(vi)
− 1
⌋

and that ∀i ∈ {0, . . . , l − 2} : vi 6= vi+2. As l > 1, this implies that the

sequence v0, v1, v2, . . . , vl contains a cycle CH of H with wg(CH) ≤ g. �
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Theorem 4 For every ε > 0 and every g ≥ 6, it is NP-hard to approximate the restriction
of g-ESCP to graphs with maximum degree at most 3 within a factor of 2012

2011 − ε.

Proof: Let H be the SAT graph for a given reduced instance of the 3-OCC-MAX 2SAT
problem. By Lemma 3, the theorem can be proved by a polynomial time construction of a
graph G with girth g and maximum degree 3, such that H is the auxiliary graph of G.

We choose G as an arbitrary C(g,H)-graph. Since g ≥ 2∆(H), the glueing edges in any
C(g,H)-graph G are disjoint, so ∆(G) ≤ 3. By Lemma 3, G has girth g, and H is its auxiliary
graph, provided that the g-weight of any cycle CH in H is greater than g.

As the clause edges on CH are disjoint, each vertex of CH is contained in a path of length
one or two that contains only variable edges. Now each path of variable edges contains at most
one vertex of degree three, so at least half of the vertices of CH have degree two. Therefore,
wg(CH) =

∑
v∈V (CH)

⌊
g

degH(v) − 1
⌋
≥ 3 ·

(⌊g
2

⌋
+
⌊g

3

⌋
− 2
)
. Since g ≥ 6, this implies that the

g-weight of CH is strictly greater than g. �

Theorem 5 For every ε > 0 and each g ∈ {4, 5}, it is NP-hard to approximate the restriction
of g-ESCP to graphs with maximum degree at most 4 within a factor of 6036

6035 − ε.

Proof: Let H ′ be the SAT graph to an arbitrary reduced instance of the 3-OCC-MAX 2SAT
problem. By the restrictions of the 3-OCC-MAX 2SAT instance, the vertices of degree 3
induce a subgraph of H ′ of maximum degree 1.

In polynomial time we can determine a set A of vertices of degree 2 of H ′ such that every
cycle of H ′ contains a vertex of A and subject to this property the set A is minimal with
respect to inclusion. Since A is independent, |A| ≤ α(H ′).

Let H be the graph that we obtain by replacing each vertex v ∈ A with neighbours a and
b by five vertices vi of degree 2, such that av1v2v3v4v5b is a path in H. It is easy to see that
α(H) = α(H ′) + 2|A| and that every independent set I of H efficiently yields an independent
set I ′ of H ′ with |I ′| ≥ |I| − 2|A|. This implies that every independent set I of H for which
α(H)
|I| ≤ 1 + δ would efficiently yield an independent set I ′ of H ′ for which α(H′)

|I′| ≤
1+δ
1−2δ .

Since each cycle in H ′ contains at least two vertices of degree 2, each cycle CH in H
contains at least six vertices of degree 2, so wg(CH) ≥ 6 > g, and by Lemma 3, any C(g,H)-
graph has girth g, and its auxiliary graph is H.

The vertices of degree 3 in H induce a subgraph of maximum degree 1 as they do in H ′,
i.e. a collection of isolated vertices and disjoint edges. We shall now argue why this allows
us to use the freedom of choosing the glueing edges and the identification sets in such a way
that we obtain a C(g,H)-graph G of maximum degree at most 4. For vertices v of H of
degree 3 all neighbours of which are of degree 2, the identification processes involving the
edges of Cv cannot create vertices of degree more than 4. If vw is an edge of H between
two vertices of degree 3, then we choose the glueing edge ev,w = xy in Cv such that y is not
contained in another glueing edge of Cv and the glueing edge ew,v = x′y′ in Cw such that x′

is not contained in another glueing edge of Cw. Furthermore, for the edge vw we choose the
identification sets {x, x′} and {y, y′}. By these choices, the identification processes involving
the edges of Cv and Cw cannot create vertices of degree more than 4. Hence G is of maximum
degree at most 4.

By Lemma 1, we can finish the proof by showing that the modified graph H is still the
SAT graph of a reduced instance of the 3-OCC-MAX 2SAT problem. It suffices to show that
for each vertex v of degree 2 in the SAT graph of a reduced instance J of the 3-OCC-MAX
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2SAT problem, we can construct an instance J ′ whose SAT graph is the graph obtained by
replacing v with a path v1v2v3v4v5 as above.
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Figure 4: Replacement of a vertex v of degree two in Theorem 5

If v corresponds to the only literal l in a clause {l}, then there exist two further clauses
C1 and C2 containing the literal l. In this case, we construct J from J ′ by replacing the
occurrence of l in C2 with a new variable x1 and adding two new clauses

{
l, x2

}
and {x2, x1},

where x2 is a second new variable. Otherwise, v corresponds to a literal l in a clause {l, α}
that contains another literal α, and the literal l occurs in precisely one clause. In this case,
we construct J from J ′ by replacing the occurrence of l by a new variable x and adding three
new clauses

{
l
}

, {l, x}, and {x}. �

Finally, we show the APX-hardness of g-VSCP for g < 6 by a similar construction in which
each two g-cycles intersect in at most an edge.

Theorem 6 For every ε > 0 and every g ∈ {3, 4, 5}, it is NP-hard to approximate the
restriction of g-VSCP to graphs with maximum degree at most 4 within a factor of 2012

2011 − ε.

Proof: Let H be the SAT graph for a given reduced instance of the 3-OCC-MAX 2SAT
problem. We are going give a polynomial time construction of a graph G of girth g and
maximum degree at most 4 whose shortest cycles are a set {Cv}v∈V (H), such that two cycles
Cv and Cw are vertex-disjoint if and only if {v, w} 6∈ E(H). Since vertex-disjoint packings of
shortest cycles in G correspond to stable sets in H, Lemma 1 then implies the statement.

Let G′ be the disjoint union of |H| g-cycles Cv. Since the maximum degree of H is at
most 3, we can select vertices xv,w ∈ Cv and xw,v ∈ Cw for each edge {v, w} ∈ E(H), such
that all 2|E(H)| selected vertices are pairwise different. We construct G by identifying xv,w
with xw,v for each {v, w} ∈ E(H). Then each vertex of G is contained in at most two g-cycles
Cv, so the maximum degree of G is at most 4. It remains to show that the length of any cycle
CG 6∈ {Cv}v∈H is greater than g.

Indeed, the edge sequence CG can be uniquely decomposed into maximal non-empty sub-
paths P1, P2, . . . , Pl, such that l > 2, and for each 1 ≤ i ≤ l the edges of the path Pi are
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contained in some cycle Cvi for vi ∈ H. Then the edges v1vl and vivi+1 for i ∈ {1, . . . , l − 1}
are contained in H, and since ∀i ∈ {1, . . . , l − 2} : vi 6= vi+2, the vertex sequence contains a
cycle of H. Since the girth of H is at least 6 by Lemma 2, we have |E(CG)| ≥ l ≥ 6 > g. �
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