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Abstract: This work concerns the modelling and experimental verification of the highly nonlinear friction 
behavior in positioning on the nanometer scale. The main goal of this work is to adjust and identify a 
simple dynamic friction model which allows a model-based estimation of the friction force in combination 
with the system inertia against displacement. Experiments in the pre-sliding and sliding friction regimes 
are conducted on an experimental setup. A hybrid two-stage parameter estimation algorithm is used to fit 
the model parameters based on the experimental data. Finally, the identified friction model is utilized as a 
model-based feedforward controller combined with a classical feedback controller to compensate the 
nonlinear friction force and reduce tracking errors. 

 

1. INTRODUCTION 

In the field of micro- and nanotechnologies positioning with 
an extremely high resolution (below 1 nm) it is necessary to 
measure or manipulate surfaces on the atomic level. For this 
task, high resolution positioning tables are used nowadays. 
The position of these tables is always controlled by a feedback 
controller to avoid position errors caused by disturbances such 
as thermal expansion of the mechanical components, sound 
waves, ground motion and so on. If a positioning table with a 
big operating rage is considered, one of the main disturbances, 
in particular during dynamic motion, is the friction introduced 
by the commonly used ball bearing guides. Friction is a highly 
nonlinear phenomenon which is present in nearly all 
mechanical systems. It is induced by interactions between the 
two rubbing surfaces and depends on several parameters such 
as surface topography, surface materials, the lubricant used 
etc. The friction force can be differentiated into two regimes: 
the pre-sliding (micro-slip) and the sliding (gross sliding) 
regime. In the first case adhesive forces holding the rubbing 
surfaces together are causing the friction force to behave like 
a nonlinear spring. In the sliding regime contacts between the 
asperities are broken and the friction force depends only on 
the shearing resistance of the surface asperities. The transition 
between the two regimes mentioned is continuous and 
depends on many effects such as direction of movement, rate 
of the applied force and others. With a linearly controlled 
motion these nonlinear system characteristics lead to tracking 
errors, limit cycles, stick-slip motion and so on (Armstrong-
Héouvry, et al. 1994). Due to this dominant nonlinear impact, 
modelling friction is essential to achieve high-precision 
dynamic positioning. This is quite a challenging task since 
accurate friction modelling based on physical principles and 
material/surface properties is not possible to date. Hence 
“Greybox” and “Blackbox” models in combination with 
efficient identification methods based upon experimentally 

observed data are often used to address this problem (Al-
Bender et al. 2007). 
In this work, we consider a highly nonlinear system in the pre-
sliding and sliding friction regimes. A two-stage method is 
used to identify the parameters of a model of an experimental 
setup. After discussing some known approaches to express the 
friction dynamics mathematically, the experimental setup is 
explained. Then, the friction modelling process is presented. 
Next, a model-based control scheme is proposed with a 
modified model. It is shown by experimental results that this 
modification is able to significantly improve the performance 
of the control system used. 

2. PHYSICALLY MOTIVATED FRICTION MODELS 

This section gives a short review of the fundamental dynamic 
friction models, e.g. the Dahl model, the LuGre model and the 
generalised Maxwell-Slip model in combination with the 
related DNLRX identification method. 

2.1 The Dahl Model 

Dahl was the first to develop a dynamic friction model (Dahl 
1968). Through many experiments on servo systems with ball 
bearings, he found that bearing friction demonstrates the same 
behaviour as solid friction. Dahl described the friction 
dynamics using a modified stress-strain curve of classical 
solid mechanics: 
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Where f represents the friction force, σ the stiffness 
coefficient, α a shape parameter, Fc the Coulomb friction 
force and x the position. This is a generalization of the 
ordinary Coulomb friction model and captures some pre-



 
 

     

 

sliding and hysteresis-related phenomena. However, this 
model can not reflect the Stribeck and stiction effects. 

2.2 The LuGre Friction Model 

In order to overcome these drawbacks, Haessig and Friedland 
proposed to describe rough surfaces with a conglomerate of 
elastic bristles (Haessig and Friedland 1991). The idea of this 
is shown in figure 1. 

 
     Fig. 1. Schematic illustration of the bristle model 

If the two interacting surfaces are moving to each other the 
bristles deflect and begin to slide when the displacement is 
sufficient.  The deflection of the bristles is expressed with the 
state variable z. In order to reduce the model dimension every 
bristle has the same state z and the bristles of one side are 
assumed as stiff.  
The most commonly used representative of this group is the 
Lund-Grenoble (LuGre) model (De Wit et al. 1995). It 
describes the friction dynamics using Equ. (2) to (4): 
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In Equ. (2), the friction force is calculated using a spring and 
damper force caused by the bristles and a micro-viscose 
velocity-dependent part. The bristle state z is calculated by 
Equ. (3), where velocity is used as the input signal. g(v)  in 
Equ. (4) describes the Stribeck curve by utilising an e-
function. Fc stands for the Coulomb friction force, FS for the 
breakaway force, vS  for the Stribeck velocity and σ0 for the 
micro-elastic bristle stiffness. This model is quite simple and 
able to capture sliding and pre-sliding behaviour in just one 
state equation. These properties make the LuGre model very 
popular in practical control engineering. Nevertheless, the 
LuGre model fails to describe some pre-sliding phenomena 
satisfactory e.g. the non-drifting property. Dupont, et al. 
(2002) extended the LuGre model to the so-called elasto-
plastic friction model. They changed the determination of the 

state variable z to enable the model to meet the non-drifting 
property. However, the elasto-plastic friction model cannot 
capture all pre-sliding phenomena. 

2.3 The Generalized Maxwell-Slip Friction Model  

Based on the integrated friction model, called the Leuven 
model (Lampaert et al. 2002, Lampaert et al. 2005) Lampaert 
described the friction dynamics with a totally different 
approach shown in figure 2. 

 
 Fig. 2. Visualization of the Maxwell-slip approach 

The idea is based on the assumption of modelling friction with 
M elasto-plastic elements in parallel, all having displacement 
as a common input. Each of these elements generates an 
output force Fi. A single element is characterised by a certain 
stiffness ki, a slipping force limit Δi and a state variable δi. 
Since it is assumed that the elements have no mass, there 
exists a static relationship between the force Fi and the 
deflection of the springs δi. With this approach it is possible to 
capture the hysteresis with non-local memory (Lampaert et al. 
2004). 
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Equ. (5) to (7) represent the generalised Maxwell-Slip (GMS) 
model structure. fcn(v) is the so-called velocity-strengthening, 
or “viscous”, component of the friction force that is usually 
set to be proportional to v. gi(v) is the Stribeck curve (see Equ. 
(4)) and Ci a viscoelastic coefficient. To simplify the model, gi 
(v) and Ci are considered as common for all elements. A 
scaling parameter γi is introduced to extend the degrees of 
freedom, so that gi (v) = γi · g(v) and Ci = γi · C . The 



 
 

     

 

drawback of the GMS model is the fact, that in many cases 
the immeasurable velocity is required as an input. Another 
shortcoming of the GMS model is the high experimental 
effort, which is needed to identify the model parameters. 

2.4 The Dynamic NonLinear Regression with direct 
application of eXcitation (DNLRX) Identification Method  

(Rizos et al. 2002a) considered a simple mechanical system 
with friction. It consists of a mass m, a linear spring with the 
spring constant c and a damper with the damping coefficient d 
(see figure 3). The system is stimulated by a force u and the 
(immeasurable) friction force f resists the excited motion.  
 

 
     Fig. 3. Simple mechanical system with friction 

The system can be described as follows: 
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a(t) is the acceleration and x(t) the displacement. The 
acceleration and velocity needed can be approximated with 
moving average representations of orders nv and na and the 
coefficients pi and qi, respectively: 
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with T is the used sample time. To determine the spring 
deformation of each Maxwell-slip element, a modified version 
of the GMS Equ. (6) and (7) in discrete time is utilised:  
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In addition to the spring deformations in this modified GMS 
model, the friction force also depends on the displacement 
history and can be expressed in discrete time as: 
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Equ. (12) suggests that the friction force is calculated by 
having the displacement driven through a finite impulse 
response (FIR) filter of order nx (with coefficients rj for j = 0, . 
. . , nx) and the spring deformation vector δ(k) = [δ1(k)… 
δM(k)]T driven through a M-dimensional FIR filter of order nδ 
(with vector coefficients Θj for j = 0, . . . , nδ). 

 Equs. (9), (10) and (12) represent approximations of 
acceleration, velocity and friction force based on the 
displacement history. Placing these expressions into Equ. (8) 
leads to a time-discrete system model: 
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This can be rewritten as an inverse model of the mechanical 
system: 
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with n = max{na, nv, nx} and gj = m·qj + d·pj + c + rj. 
This representation enables the possibility to model the 
inverse system dynamics with two FIR filters out of the 
displacement history. For further information see (Rizos et al. 
2002a). 

3. EXPERIMENTAL SET-UP 

A one-dimensional guideway driven by a voice coil actuator 
produced by BEI-KIMCO was used for experimental analysis 
(see figure 4). The motor was driven by an analog amplifier, 
which provides the needed current with a high precision. The 
operating range of this system is 25 mm. Friction is 
introduced by the ball bearings of the guideway.  
 

 
Fig. 4. Experimental set-up 

The position is measured by a laser interferometer of the type 
SP-2000 (manufactured by SIOS Messtechnik GmbH) with a 
resolution below 0.1 nm (SIOS 2004). The test bed was 
assembled with parts of the Nanopositioning and 
Nanomeasuring Machine (Hausotte 2002). A modular 
dSpace® real-time hardware system in combination with 
Matlab/Simulink® was utilised for data acquisition and 
control. The position was sampled at a rate of 25 kHz and the 
control algorithm operated at a sampling rate of 6.25 kHz.  
More detailed information on the experimental set-up can be 
found in (Zimmermann et al. 2005). Since the motor force has 
a linear relationship with respect to the applied current, the 
motor force was calculated using the motor parameters 
provided by BEI-KIMCO.  



 
 

     

 

3.1 Parameter Estimation Algorithm 

The parameter identification algorithm proposed in (Rizos et 
al. 2002b) uses pairs of displacement-applied force signals to 
determine the model parameters via a quadratic cost function: 
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e2(t) is calculated as the quadratic difference between the 
measured force u(k), and the calculated force û(k): 
 
 ˆe(k) u(k) u(k)= −    (16) 
 
Substituting Equ. (14) in Equ. (16) yields: 
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⎡ ⎤Φ = Θ Θ⎢ ⎥⎣ ⎦ contains all model parameters to be 
identified, including an additional offset. The model is linear 
with respect to Φ and nonlinear with respect to the threshold 
vector d = [∆1…∆M]. 
A sequential two-stage optimisation algorithm is used to 
identify the model parameters: 
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In the first stage, a genetic algorithm is utilised to detect the 
areas of local minima in the parameter space (Houk et al. 
1998). In the second stage the Nelder-Mead simplex 
algorithm is used to locate the global minimum in the regions 
provided in the first stage (Wernstedt 1989). In the case of the 
DNLRX model first the nonlinear threashold vector is 
identified followed by the linear model parameters. For 
initialisation of the proposed identification algorithm, initial 
values for the maximum deflection thresholds of the springs 
(∆i) are required. To find these initial values, a data pair is 
selected where the system is in the sliding regime. At this 
moment (tsl) all Maxwell-Slip elements are sliding and the 
assumption δl = sgn[x(tsl)]·∆l is satisfied.  
To obtain an optimal identification result, the ‘dominant’ 
displacement extremum of the time series is selected. For the 
identification process only data pairs with t > tsl are used. To 
determine the quality of identification, the normalised output 
error (NOE)  is utilized: 
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Where mu is the sample mean of the actual applied force, N 
the signal length (number of samples) and λ is specified in 
Equ. (15). While identifying the described system the model 
order was selected according to the algorithm proposed in 
Rizos et al. (2002a).  
 

3.2 Identification Results 

Figure 5 shows the identification data-set composed of the 
displacement (a) and the related applied force (b). The data-
set consists of displacements in the sliding as well as in the 
pre-sliding regime. The data were low-pass filtered with a 
cutoff frequency of 50 Hz.  
 

 
Fig. 5. Identification data-set: (a) displacement, (b) applied 
and predicted force, (c) model based error (NOE) 

 
Fig. 6. Validation data-set: (a) displacement, (b) applied and 
predicted force, (c) model based error (NOE)  

To speed up the identification process the algorithm was only 
carried out at every hundredth datapair. In comparison with an 
identification run using every data sample, the performance 
did not degrade significantly (about 0.01%) and the 
computing time was reduced by a factor of 30.  
Regarding the model order, a DNLRX (M=5,nx=3,nδ=3) 

(a) 

(c) 

(b) 

(a) 

(b) 

(c) 



 
 

     

 

model leads to the best results. As shown in figure 3 (c), the 
NOE after identification is below 0.083%. This demonstrates 
the effectiveness of the proposed two-stage identification 
algorithm to find nearly a global minimum in the parameter 
space. Figure 6 shows the ability of the identified model to 
predict the system behaviour for a different validation data-
set. In that case, the NOE is 1.33%. It should be mentioned 
that tsl is the first sample of the plots in figure 5.  

4.  FRICTION COMPENSATION CONTROL 

To verify the capability of the DNLRX model as part of a 
model-based control, we use this model in a feed-
forward/feedback friction compensation scheme shown in 
figure 7. The advantage of such a control scheme is its 
potential to speed up the dynamic behaviour of a controlled 
system. It is thus possible for the controlled system to follow 
highly dynamic set points. 
 

 
Fig. 7. Schematic diagram of the model-based friction 
compensation scheme proposed 

With the friction compensation scheme the experimental set-
up described in section 3 was controlled by a combination of a 
DNLRX based feed-forward controller and a nonlinear PID 
controller (Hausotte 2005) in the feedback loop. 
While testing the feed-forward control with a DNLRX model 
of the order (5,3,3), a problem appeared. The DNLRX (5,3,3)  
sometimes predicted stepwise changes in the force u(t). Figure 
8 shows a zoomed version of figure 5(b).  
 

 
Fig. 8. Steps predicted by the DNLRX (5,3,3) 

These steps cause large tracking errors on nanometer scale 
while using the DNLRX (5,3,3) as a feed-forward controller. 
Further examinations show that the steps were introduced by 
the second FIR filter from Equ. (14). In order to avoid this 
effect, we modified the model order to DNLRX (10,0,3). The 
identification effort and the identification quality are almost 
the same as before. The benefit of this modification is 
demonstrated in figure 9. With this adaptation it was possible 

to predict the manipulated variable very precisely and 
smoothly. 
 

 
Fig. 9. Results of the DNLRX (10,0,3) 

A sine trajectory with amplitude of 370 nm and a frequency of 
1 Hz is applied as set-point to the control system. Figure 10 
shows the behaviour of the controlled system without the 
DNLRX as a feed-forward controller. As it can easily be seen 
the PID controller is not able to follow the set-point trajectory. 
 

 
Fig. 10. Tracking performance without feed-forward control 

If the DNLRX model is utilised as a feed-forward controller 
the hybrid control system is able to follow the trajectory (see 
figure 11) satisfactorily. Since the DNLRX model predicts the 
force which will be needed to reach the next set-point, the task 
of the feedback controller is only to compensate the model 
uncertainty and external disturbances. With the proposed 
model-based control design the tracking error can be reduced 
by a factor of nearly 100. Experiments also indicated that the 
DNLRX model is quite robust against disturbances, e.g. 
variations in temperature and so on. 



 
 

     

 

 
Fig. 11. Tracking performance with feedforward control 

5.  CONCLUSIONS 

Modelling and control a mechanical system with friction on 
nanometer range is addressed. The identified model is used as 
a part of a highly dynamic controlling system, which is able to 
control the position on nanometer scale.  
The DNLRX friction model is utilised to model the dynamics 
of a one-dimensional ball bearing guide on nanometer scale. 
The reason for selecting this model is its capability to capture 
nearly all nonlinear phenomena including the pre-sliding 
friction hysteresis with non-local memory. To obtain a proper 
model it is first necessary to implement the DNLRX model as 
well as a two-stage identification algorithm. After the 
implementation and identification process the usability of the 
DNLRX model to reflect the dynamic system behaviour is 
examined. The model is used as a feed-forward controller 
combined with a nonlinear PID controller in the feedback 
loop. After some modifications it can be shown that the 
DNLRX model is able to predict the system characteristics on 
the nanometer scale very precisely and reduce the tracking 
error by a factor of nearly 100.  
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