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ABSTRACT: Discrete-event simulation is used to analyze production and logistics problems in many areas such as 
commerce, defense, health, manufacturing and logistics.  Commercial-off-the-shelf (COTS) Simulation Packages 
(CSPs) are black box visual interactive modelling environments that support the development of such simulations.  
These include CSPs such as Arena™, Anylogic™, Flexsim™, Simul8™, Witness™, etc.  There have been various 
attempts to create distributed simulations with these CSPs and their tools, some with the High Level Architecture 
(HLA).  These are complex and it is quite difficult to assess how a set of model/CSPs are actually interoperating.  As 
the first in a series of standards aimed at standardizing how the HLA is used to support CSP-based distributed 
simulations, the Simulation Interoperability Standards Organization’s (SISO) CSP Interoperability Product 
Development Group (CSPI PDG) has developed and standardized a set of Interoperability Reference Models (IRM) 
that are intended to clearly identify the interoperability capabilities of CSP-based distributed simulations.  This paper 
presents the standard and summarizes the current activities of the PDG. 
 
1. Introduction 
 
Discrete-event simulation is used to analyze production 
and logistics problems in many areas such as 
commerce, defense, health, manufacturing and 
logistics.  The first discrete-event simulation languages 
appeared in the late 1950s.  These “evolved” during the 
1960s and 1970s.  With the arrival of the IBM PC, the 
1980s saw the rise of visual interactive modelling 
environments that allowed simulation modellers to 
visually create and simulate discrete-event models.  
These have matured into the Commercial-off-the-shelf 
(COTS) Simulation Packages (CSPs) that are very 

familiar to simulation modellers today.  They include 
Arena™, Anylogic™, Flexsim™, Simul8™, 
Witness™, etc.  Each has a wide range of functionality 
including visual model building, simulation run 
support, animation, optimisation and virtual reality.  
Some have their own dedicated programming language 
and all are able to be linked to other COTS software 
(such as Microsoft Excel). Nearly all CSPs only run 
under Microsoft Windows™. CSPs are typically used 
by modellers skilled in operations/operational research 
and management science. Simulation projects in this 
area are typically used to investigate and analyze real-
world problems.  Examples include: 
 



• A supply chain distributes equipment to front line 
troops.  A model is built to represent the different 
supply centres and transportation links to various 
battlefronts.  Experimentation investigates the 
reliability of the supply chain under different 
threat conditions. 

• An automotive company is planning to build a 
new factory.  The manufacturing line is modeled 
and simulated using a CSP.  Experimentation 
investigates how many engines can be produced in 
one year against different levels of resources 
(machines, buffers, workers, etc.) 

• A regional health authority needs to plan the best 
way of distributing blood to different hospitals.  A 
model is built using a CSP.  Experimentation is 
carried out to investigate different supply policies 
against “normal” and emergency supply situations. 

• A police authority needs to determine how many 
officers need to be on patrol and how many need 
to be in the different police stations that it 
manages.  A model is built and experiments are 
carried out to investigate staffing against different 
scenarios (football matches, terrorist attacks, etc.) 

• A bank sells different financial products.  When a 
new product is planned, managers need to 
determine the resource impact against current 
financial services.  Using existing business process 
models (in BPMN for example), a new model is 
built and simulated.  Experiments investigate 
different resource levels in different departments.  

 
There are many other examples (see the Proceedings of 
the Winter Simulation Conference 
(www.wintersim.org) or the ACM Digital Library 
(www.acm.org/dl)).  What is common to these is that 
virtually all models are created using a single CSP.  To 
interoperate two CSPs together (to execute a single 
simulation run) is simply not possible without a great 
deal of very costly “bespoke” effort that requires 
computing skills out of the scope of typical modellers 
(i.e. the solution is typically created specifically for a 
model/CSP will little reuse from previous solutions – 
most current approaches are “built from scratch”).  
This is further complicated by the time management 
required for distributed discrete-event simulation.  This 
means that it is very difficult to distribute large models 
to share the processing load of the simulation (for 
example, a real-world automotive simulation can take 
several hours to run; the blood distribution example 
took over a day to complete a single run with just four 
hospitals!).  Additionally, if models are difficult to 
“move” then the lack of a low-cost interoperability 
solution means that models and their CSPs cannot be 
simply “linked” together.  For example, two or more 
police authority models cannot be linked together to 

investigate national security response policies; the 
business processes of two or more companies cannot 
be linked together to investigate new financial 
products; manufacturing models in a supply chain 
cannot be linked together to investigate the supply of 
new products to new markets.  The lack of standards 
that specifically address the problem of CSP 
interoperability or CSP-based distributed simulation is 
therefore preventing many new and exciting modelling 
and simulation problems to be explored.   
 
This is the motivation behind SISO’s COTS 
Simulation Package Interoperability Product 
Development Group.  Dedicated to creating a 
standardized approach to CSP interoperability, the 
CSPI PDG has created the first of several standards in 
this area.  We now introduce the CSP Interoperability 
Problem and our first standard. 
 
2. The CSP Interoperability Problem 
 
Different CSPs execute their discrete-event simulation 
algorithms slightly differently.  The approaches to CSP 
interoperability developed by various researchers and 
CSP vendors are all different.  Indeed the degree of 
subtlety involved in even describing the CSP 
interoperability problem can lead to long, lengthy 
discussions where the parties involved typically finish 
with no definitive understanding of the problems that 
must be solved.  To attempt to solve this, the CSPI 
PDG has created a standardized “language” that 
attempts to capture these subtleties.  This is the 
thinking behind the CSPI PDG’s set of standardized 
Interoperability Reference Models, the “Standard for 
COTS Simulation Package Interoperability Reference 
Models”, effectively a set of simulation patterns or 
templates, that will enable modellers, vendors and 
solution developers to specify the interoperability 
problems that must be solved.  The Interoperability 
Reference Models (IRMs) are intended to be used as 
follows: 
 
• to clearly identify the model/CSP interoperability 

capabilities of an existing distributed simulation 
o e.g. The distributed supply chain 

simulation is compliant with IRMs Type 
A.1, A.2 and B.1 

• to clearly specify the model/CSP interoperability 
requirements of a proposed distributed simulation 

o e.g. The distributed hospital simulation 
must be compliant with IRMs Type A.1 
and C.1 

 
Where is the complexity?  Consider the following.  As 
an example, the owners of two factories want to find 



out how many products their factories can manufacture 
in a year.  Both factories have been modelled 
separately using two CSPs.  As shown in figure 1, the 
(extremely simplistic) factories, modelled as models 
M1 and M2, are simulated in their own CSPs running 
on their own separate computers.  Queues, activities 
and resources are represented as Q, A and R 
respectively.  The models interact, in this example, as 
denoted by the thin arrows connecting the models 
(possibly the delivery and return of some defective 
stock).  Further, the models might share resources (to 
reflect a shared set of machinists that can operate 
various workstations), events of various kind (such an 
emergency shutdown) or data (such as the current 
production volume).  The question is, how do we 
implement this distributed simulation? 
 
A distributed simulation or federation is composed of a 
set of CSPs and their models.  In this paper, a CSP will 
simulate its model using a discrete-event simulation 

algorithm.  Each model/CSP represents a federate 
normally running on its own computer.  In a distributed 
simulation, each model/CSP federate therefore 
exchanges data via a runtime infrastructure (RTI) 
implemented over a network in a time synchronized 
manner (as denoted by the thick double-headed arrow).  
Federate F1 consists of the model M1 and the COTS 
Simulation Package CSP1 and federate F2 consists of 
the model M2 and COTS Simulation Package CSP2.  
In this case federate F1 publishes and sends 
information to the RTI in an agreed format and time 
synchronized manner and federate F2 must subscribe 
to and receive that information in the same agreed 
format and time synchronized manner, i.e. both 
federates must agree on a common representation of 
data and both must use the RTI in a similar way.  
Further, the “passing” of entities and the sharing of 
resources require different distributed simulation 
protocols.  In entity passing, the departure of an entity 
from one model and the arrival of an entity at another 

Figure 1: The COTS Simulation Package Interoperability Problem 
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can be the same scheduled event in the two models – 
most distributed simulations represent this as a 
timestamped event message sent from one federate to 
another.  The sharing of resources cannot be handled in 
the same way.  For example, when a resource is 
released or an entity arrives in a queue, a CSP 
executing the simulation will determine if a 
workstation can start processing an entity.  If resources 
are shared, each time an appropriate resource changes 
state a timestamped communication protocol is 
required to inform and update the changes of the 
shared resource state.  Further problems arise when we 
begin to “dig” further into the subtleties of 
interoperability.  It is the purpose of our IRMs to try to 
simplify this complexity.  Let us now describe the 
current set of IRMs. 
 
3. Interoperability Reference Model 

Definition 
 
An Interoperability Reference Model (IRM) is defined 
as the simplest representation of a problem within an 
identified interoperability problem type.  Each IRM 
can be subdivided into different subcategories of 
problem.  As IRMs are usually relevant to the 
boundary between two or more interoperating models, 
models specified in IRMs will be as simple as possible 
to “capture” the interoperability problem and to avoid 
possible confusion.  These simulation models are 
intended to be representative of real model/CSPs but 
use a set of “common” model elements that can be 
mapped onto specific CSP elements (see 3.1 
Clarification of Terms).  Where appropriate, IRMs will 
specify time synchronization requirements and will 
present alternatives.  IRMs are intended to be 
cumulative (i.e. some problems may well consist of 
several IRMs).  Most importantly, IRMs are intended 
to be understandable by simulation developers, CSP 
vendors and technology solution providers. 
 
3.1 Clarification of Terms 
 
As indicated above, an IRM will typically focus on the 
boundary between interoperating models.  To describe 
an interoperability problem we therefore need to use 
model elements that are as general as possible.  
Generally, CSPs using discrete-event simulation model 
systems that change state at events.  Rather than 
providing a set of APIs to directly program discrete-
event simulations, these CSPs use a visual interface 
that allows modellers to build models using a set of 
objects.  These models are typically composed of 
networks of alternating queues and activities that 
represent, for example, a series of buffers and 

operations composing a manufacturing system.  
Entities, consisting of sets of typed variables termed 
attributes, represent the elements of the manufacturing 
system undergoing machining.  Entities are 
transformed as they pass through these networks and 
may enter and exit the model at specific points.  
Additionally, activities may compete for resources that 
represent, for example, the operators of the machines.  
To simulate a model a CSP will typically have a 
simulation executive, an event list, a clock, a 
simulation state and a number of event routines.  The 
simulation state and event routines are derived from 
the simulation model.  The simulation executive is the 
main program that (generally) simulates the model by 
first advancing the simulation clock to the time of the 
next event and then performing all possible actions at 
that simulation time.  For example, this may change the 
simulation state (for example ending a machining 
activity and placing an entity in a queue) and/or 
schedule new events (for example a new entity arriving 
in the simulation).  This cycle carries on until some 
terminating condition is met (such as running until a 
given time or a number of units are made). 
 
A problem is, however, that virtually every CSP has a 
different variant of the above.  CSPs also have widely 
differing terminology, representation and behavior.  
For example, without reference to a specific CSP, in 
one CSP an entity as described above may be termed 
an item and in another object.  In the first CSP the data 
types might be limited to integer and string, while in 
the other the data types might be the same as those in 
any object-oriented programming language.  The same 
observations are true for the other model elements such 
as queue, activity and resource.  Behaviour is also 
important as the set of rules that govern the behaviour 
of a network of queues and activities subtly differ 
between CSPs (for example the rules that govern 
behaviour when an entity leaves a machine to go to a 
buffer).  Indeed even the representation of time can 
differ.  This is also further complicated by variations in 
model elements over and above the “basic” set (e.g. 
entry/exit points, transporters, conveyors, flexible 
manufacturing cells, robots, etc.) 
 
3.2 Interoperability Reference Model Types 
 
There are four different types of IRM.  These are: 

Type A:  Entity Transfer 
Type B:  Shared Resource 
Type C:  Shared Event 
Type D:  Shared Data Structure 

Briefly, IRM Type A Entity Transfer deals with the 
requirement of transferring entities between simulation 
models, such as an entity Part leaves one model and 



arrives at the next.  IRM Type B Shared Resource 
refers to sharing of resources across simulation models.  
For example, a resource R might be common between 
two models and represents a pool of workers.  In this 
scenario, when a machine in a model attempts to 
process an entity waiting in its queue it must also have 
a worker.  If a worker is available in R then processing 
can take place.  If not then work must be suspended 
until one is available.  IRM Type C Shared Event deals 
with the sharing of events across simulation models.  
For example, when a variable within a model reaches a 
given threshold value (a quantity of production, an 
average machine utilisation, etc.) it should be able to 
signal this fact to all models that have an interest in this 
fact (to throttle down throughput, route materials via a 
different path, etc.)  IRM Type D Shared Data 
Structure deals with the sharing of variables and data 
structures across simulation models.  Such data 
structures are semantically different to resources, for 
example a bill of materials or a common inventory.   
 
Note that the above classification previously appeared 
as: 
 
Type I:  Asynchronous Entity Passing 
Type II:  Synchronous Entity Passing (Bounded 

Buffer) 
Type III:  Shared Resources 
Type IV:  Shared Events 
Type V:  Shared Data Structures 
Type VI:  Shared Conveyor 
 
This has been rationalised to the Type A-D 
classification to “group” IRM problems (essentially 
new Entity Transfer problems were identified).  Note 
that the “Shared Conveyor” IRM has been deleted as it 
was felt by the PDG that this would usually be 
represented as a separate model and therefore fall into 
the other IRM Types. 
4. Interoperability Reference Model Type 

A: Entity Transfer 
 

4.1  Overview 
 
IRM Type A Entity Transfer represents interoperability 
problems that can occur when transferring an entity 
from one model to another.  Figure 2 shows an 
illustrative example of the problem of Entity Transfer 
where an entity e1 leaves activity A1 in model M1 at 
T1 and arrives at queue Q2 in model M2 at T2.  For 
example, if M1 is a car production line and M2 is a 
paint shop, then this represents the system where a car 
leaves a finishing activity in M1 at T1 and arrives in a 
buffer in M2 at T2 to await painting.   
 
Note that the IRM subtypes are intended to be 
cumulative, i.e. a distributed simulation that correctly 
transfers entities from one model to a bounded buffer 
in another model should be can be compliant with both 
IRM Type A.1 General Entity Transfer and IRM Type 
A.2 Bounded Receiving Element. 
 
4.2 Interoperability Reference Model Type A  

Sub-types 
 
There are currently three IRM Type A Sub-types  
 

• IRM Type A.1 General Entity Transfer 
• IRM Type A.2 Bounded Receiving Element 
• IRM Type A.3 Multiple Input Prioritization 

 
4.3 IRM Type A.1 General Entity Transfer 
 
4.3.1 Overview 
 
IRM Type A.1 General Entity Transfer represents the 
case, as described above and shown in figure 2, where 
an entity e1 leaves activity A1 in model M1 at T1 and 
arrives at queue Q2 in model M2 at T2 (see above for 
an example).  This IRM is inclusive of cases where 
 
 

Figure 2: IRM Type A.1: General Entity Transfer 
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• there are many models and many entity 
transfers (all transfers are instances of this 
IRM). 

 
This IRM does not include cases where 
 

• the receiving element is bounded (IRM Type 
A.2), and 

• multiple inputs need to be prioritized (IRM 
Type A.3). 

 
4.3.2 Definition 
 
The IRM Type A.1 General Entity Transfer is defined 
as the transfer of entities from one model to another 
such that an entity e1 leaves model M1 at T1 from a 
given place and arrives at model M2 at T2 at a given 
place and T1 =< T2 or T1<T2.  The place of departure 
and arrival will be a queue, workstation, etc.  Note that 
this inequality must be specified.  
 
4.4 IRM Type A.2 Bounded Receiving Element 
 
4.4.1 Overview 
 
Consider a production line where a machine is just 
finishing working on a part.  If the next element in the 
production process is a buffer in another model, the 
part will be transferred from the machine to the buffer.  
If, however, the next element is bounded, for example 
a buffer with limited space or another machine (i.e. no 
buffer space), then a check must be performed to see if 
there is space or the next machine is free.  If there is no 
space, or the next machine is busy, then to correctly 
simulate the behavior of the production process, the 
current machine must hold onto the part and block, i.e. 
it cannot accept any new parts to process until it 
becomes unblocked (assuming that the machine can 
only process one part at a time).  The consequences of 
this are quite subtle.  This is the core problem of the 
IRM Type A.2 .  Figure 3 shows an illustrative 
example, where an entity e1 attempts to leave model 
M1 at T1 from activity A1 and to arrive at model M2 at 
T2 in bounded queue Q2.  If A1 represents a machine 
then the following scenario is possible.  When A1 
finishes work on a part (an entity), it attempts to pass 
the part to queue Q2.  If Q2 has spare capacity, then 
the part can be transferred.  However, if Q2 is full then 
A1 cannot release its part and must block.  Parts in Q1 
must now wait for A1 to become free before they can 
be machined.  Further, when Q2 once again has space, 
A1 must be notified that it can release its part and 
transfer it to Q2.  Finally, it is important to note the 
fact that if A1 is blocked the rest of model M1 still 

functions as normal, i.e. a correct solution to this 
problem must still allow the rest of the model to be 
simulated (rather than just stopping the simulation of 
M1 until Q2 has unblocked). 
 
This IRM is therefore inclusive of cases where 
 

• the receiving element (queue, workstation, 
etc.) is bounded.  

 
This IRM does not include cases where 
 

• multiple inputs need to be prioritized (IRM 
Type A.3). 

 
A solution to this IRM problem must also 
 

• be able to transfer entities (IRM Type A.1).  
 
4.4.2  Definition 
 
The IRM Type A.2 is defined as the relationship 
between an element O in a model M1 and a bounded 
element Ob in a model M2 such that if an entity e is 
ready to leave element O at T1 and attempts to arrive at 
bounded element Ob at T2 then: 
  

• If bounded element Ob is empty, the entity e 
can leave element O at T1 and arrive at Ob at 
T2, or 

• If bounded element Ob is full, the entity e 
cannot leave element O at T1; element O may 
then block if appropriate and must not accept 
any more entities. 

• When bounded element Ob becomes not full 
at T3, entity e must leave O at T3 and arrive at 
Ob at T4; element O becomes unblocked and 
may receive new entities at T3.   

• T1=<T2 and T3=<T4. 
• If element O is blocked then the simulation of 

model M1 must continue. 
 
Note: 
 

• In some special cases, element O may 
represent some real world process that may 
not need to block. 

• If T3<T4 then it may be possible for bounded 
element O to become full again during the 
interval if other inputs to Ob are allowed.   

 
4.5 IRM Type A.3 Multiple Input Prioritization 



 
4.5.1 Overview 
 
As shown in figure 4, the IRM Type A.3 Multiple 
Input Prioritization represents the case where a model 
element such as queue Q1 (or workstation) can receive 
entities from multiple places.  Let us assume that there 
are two models M2 and M3 which are capable of 
sending entities to Q1 and that Q1 has a First-In-First-
Out (FIFO) queuing discipline.  If an entity e1 is sent 
from M2 at T1 and arrives at Q1 at T2 and an entity e2 
is sent from M3 at T3 and arrives at Q1 at T4, then if 
T2<T4 we would expect the order of entities in Q1 
would be e1, e2.  A problem arises when both entities 
arrive at the same time, i.e. when T2=T4.  Depending 
on implementation, the order of entities would either 
be e1, e2 or e2, e1.  In some modelling situations it is 
possible to specify the priority order if such a conflict 
arises, e.g. it can be specified that model M1 entities 
will always have a higher priority than model M2 (and 
therefore require the entity order e1, e2 if T2=T4).  
Further, it is possible that this priority ordering could 
be dynamic or specialised.    
 
This IRM is therefore inclusive of cases where 
 

• multiple inputs need to be prioritized.  
 

This IRM does not include cases where 
 

• the receiving element is bounded (IRM Type 
A.2). 

 
A solution to this IRM problem must also 
 

• be able to transfer entities (IRM Type A.1). 
 
4.5.2  Definition 
 
The IRM Type A.3 Multiple Input Prioritization is 
defined as the preservation of the priority relationship 
between a set of models that can send entities to a 
model with receiving queue Q, such that priority 
ordering is observed if two or more entities arrive at 
the same time.   
 
Note: 
 

• The priority rules must be specified. 
• Priority rules may change during a simulation 

if required for the real system being 
simulated. 

 
 
 

Figure 4: IRM Type A.3 Multiple Input Prioritization 
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5. Interoperability Reference Model Type  
B: Shared Resource 

 
5.1 Overview 
 
IRM Type B deals with the problem of sharing 
resources across two or more models in a distributed 
simulation.  A modeller can specify if an activity 
requires a resource (such as machine operators, 
doctors, runways, etc.) of a particular type to begin.  If 
an activity does require a resource, when an entity is 
ready to start that activity, it must therefore be 
determined if there is a resource available.  If there is 
then the resource is secured by the activity and held 
until the activity ends.  A resource shared by two or 
more models therefore becomes a problem of 
maintaining the consistency of the state of that 
resource in a distributed simulation.  Note that this is 
similar to the problem of shared data.  However, in 
CSPs resources are semantically different to data and 
we therefore preserve the distinction in this standard. 
 
5.2 Interoperability Reference Model Type B  

Sub-types 
 
There is currently one IRM Type B Sub-types  
 

• IRM Type B.1 General Shared Resource 
 
5.3  IRM Type B.1 General Shared Resource 
 
5.3.1  Overview 
 
IRM Type B.1 General Shared Resource represents the 
case, as outlined above and shown in figure 5, where 
the state of a resource R shared across two or more 
models must be consistent.  In a model M1 that shares 
resource R with model M2, M1 will have a copy RM1 
and M2 will have a copy RM2.  When M1 attempts to 

change the state of RM1 at T1, then it must be 
guaranteed that the state of RM2 in M2 at T1 will also 
be the same.  Additionally, it must be guaranteed that 
both M1 and M2 can attempt to change their copies of 
R at the same simulation time as it cannot be 
guaranteed that this simultaneous behavior will not 
occur. 
 
5.3.2 Definition 
 
The IRM Type B.1 General Shared Resources is 
defined as the maintenance of consistency of all copies 
of a shared resource R such that  
 

• if a model M1 wishes to change its copy of R 
(RM1) at T1 then the state of all other copies 
of R will be guaranteed to be the same at T1, 
and 

• if two or more models wish to change their 
copies of R at the same time T1, then all 
copies of R will be guaranteed to be the same 
at T1. 

 
6  Interoperability Reference Model Type 
C: Shared Event 
 
6.1  Overview 
 
IRM Type C deals with the problem of sharing events 
(such as an emergency signal, explosion, etc.) across 
two or more models in a distributed simulation.   
 
6.2 Interoperability Reference Model Type C  

Sub-types 
 
There is currently one IRM Type C sub-type  
 

• IRM Type C.1 General Shared Event 
 

A shared resource R exists at two models M1 and M2. If shared resource R 
changes at time T1 in model M1 then it must change at T1 in model M2
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Figure 5: IRM Type B.1: General Shared Resource 



6.3  IRM Type C.1 General Shared Event 
 
6.3.1  Overview 
 
IRM Type C.1 General Shared Event represents the 
case, as shown in figure 6, where an event E is shared 
across two or more models.  In a model M1 that shares 
an event E with model M2 at T1, then we are 
effectively scheduling two local events EM1 at M1 at 
T1 and EM2 at M2 at T1.  We must therefore 
guarantee that both copies of the event take place.  
Care must also be taken to guarantee if two shared 
events E1 and E2 are instigated at the same time by 
different models, then both will occur. 
 
6.3.2  Definition 
 
The IRM Type C.1 General Shared Event is defined as 
the guaranteed execution of all local copies of a shared 
event E such that  
 

• if a model M1 wishes to schedule a shared 
event E at T1, then the local copies EM1, 
EM2, etc. will be guaranteed to be executed at 
the same time T1, and 

• if two or more models wish to schedule shared 
events E1, E2, etc. at T1, then all local copies 
of all shared events will be guaranteed to be 
executed at the same time T1. 

 
7. Interoperability Reference Model Type  

D: Shared Data Structure 
 
7.1  Overview 
 
IRM Type D deals with the problem of sharing data 
across two or more models in a distributed simulation 
(such as a production schedule, a global variable, etc.)  
A shared data structure that is shared by two or more 
models therefore becomes a problem of maintaining 
the consistency of the state of that data structure in a 

distributed simulation.  Note that this is similar to the 
problem of shared resources.  However, in CSPs 
resources are semantically different to data and we 
therefore preserve the distinction in this standard.  
Note also that we consider the sharing of a single data 
item such as an integer as being covered by this IRM. 
 
7.2 Interoperability Reference Model Type D  

Sub-types 
 
There is currently one IRM Type D Sub-type.  
 

• IRM Type D.1 General Shared Data Structure 
 
7.3  IRM Type D.1 General Shared Data Structure 
 
7.3.1  Overview 
 
IRM Type D.1 General Data Structure represents the 
case, as outlined above and shown in figure 7, where a 
data structure D shared across two or more models 
must be consistent.  In a model M1 that shares a data 
structure D with model M2, M1 will have a copy DM1 
and M2 will have a copy DM2.  When M1 attempts to 
change the value of DM1 at T1, then it must be 
guaranteed that the value of DM2 in M2 at T1 will also 
be the same.  Additionally, it must be guaranteed that 
both M1 and M2 can attempt to change their copies of 
D at the same simulation time as it cannot be 
guaranteed that this simultaneous behavior will not 
occur. 
 
7.3.2  Definition 
 
The IRM Type D.1 General Shared Data Structure is 
defined as the maintenance of consistency of all copies 
of a shared data structure D such that  
 

• if a model M1 wishes to change its copy of D, 
DM1 at T1 then the value of all other copies 

Figure 6: IRM Type C.1: General Shared Event 

A shared event E takes place in two models M1 and M2 at T1. 
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of D will be guaranteed to be the same at T1, 
and 

• if two or more models wish to change their 
copies of D at the same time T1, then all 
copies of D will be guaranteed to be the same 
at T1. 

 
8. Conclusions 
 
This paper has presented the CSPI PDG Standard for 
COTS Simulation Package Interoperability Reference 
Models.  At the time of writing, the Standard is 
currently undergoing balloting as SISO-STD-006-2007 
(DRAFT). The next activities of the CSPI PDG is to 
classify current CSPI approaches and to begin work on 
a set of Data Exchange Specifications and 
Interoperability Frameworks to support each IRM.  
The full standard can be found at the CSPI PDG’s site 
at www.sisostds.org.  The CSPI PDG welcomes new 
members and volunteers.  Please email the CSPI PDG 
chair simon.taylor@brunel.ac.uk for further details. 
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Figure 7: IRM Type D.1: Shared Data 


