

Taylor, Simon; Straßburger, Steffen; Turner, Stephen

The SISO CSPI PDG standard for COTS Simulation Package
Interoperability Reference Models

Zuerst erschienen in:
SISO European Simulation Interoperability Workshop : EURO SIW
2008, held 16 - 19 June 2008. Edinburgh, Scotland. - Red Hook, NY :
Curran, 2008. - ISBN 978-1-605-60200-4

The SISO CSPI PDG Standard for COTS Simulation Package

Interoperability Reference Models

Dr Simon J E Taylor
School of Information Systems, Computing and Mathematics

Brunel University
Uxbridge, Middx, UB8 3PH, UK

simon.taylor@brunel.ac.uk

Prof Steffen Strassburger
School of Economic Sciences

Ilmenau University of Technology
Helmholtzplatz

98693 Ilmenau, GERMANY
steffen.strassburger@tu-ilmenau.de

Dr Stephen J Turner

Parallel and Distributed Computing Centre
School of Computer Engineering

Nanyang Technological University
Singapore 639798, SINGAPORE

assjturner@ntu.edu.sg

Keywords:
Discrete-event Simulation, Distributed Simulation, COTS Simulation Package, Interoperability, Standards.

ABSTRACT: Discrete-event simulation is used to analyze production and logistics problems in many areas such as
commerce, defense, health, manufacturing and logistics. Commercial-off-the-shelf (COTS) Simulation Packages
(CSPs) are black box visual interactive modelling environments that support the development of such simulations.
These include CSPs such as Arena™, Anylogic™, Flexsim™, Simul8™, Witness™, etc. There have been various
attempts to create distributed simulations with these CSPs and their tools, some with the High Level Architecture
(HLA). These are complex and it is quite difficult to assess how a set of model/CSPs are actually interoperating. As
the first in a series of standards aimed at standardizing how the HLA is used to support CSP-based distributed
simulations, the Simulation Interoperability Standards Organization’s (SISO) CSP Interoperability Product
Development Group (CSPI PDG) has developed and standardized a set of Interoperability Reference Models (IRM)
that are intended to clearly identify the interoperability capabilities of CSP-based distributed simulations. This paper
presents the standard and summarizes the current activities of the PDG.

1. Introduction

Discrete-event simulation is used to analyze production
and logistics problems in many areas such as
commerce, defense, health, manufacturing and
logistics. The first discrete-event simulation languages
appeared in the late 1950s. These “evolved” during the
1960s and 1970s. With the arrival of the IBM PC, the
1980s saw the rise of visual interactive modelling
environments that allowed simulation modellers to
visually create and simulate discrete-event models.
These have matured into the Commercial-off-the-shelf
(COTS) Simulation Packages (CSPs) that are very

familiar to simulation modellers today. They include
Arena™, Anylogic™, Flexsim™, Simul8™,
Witness™, etc. Each has a wide range of functionality
including visual model building, simulation run
support, animation, optimisation and virtual reality.
Some have their own dedicated programming language
and all are able to be linked to other COTS software
(such as Microsoft Excel). Nearly all CSPs only run
under Microsoft Windows™. CSPs are typically used
by modellers skilled in operations/operational research
and management science. Simulation projects in this
area are typically used to investigate and analyze real-
world problems. Examples include:

• A supply chain distributes equipment to front line
troops. A model is built to represent the different
supply centres and transportation links to various
battlefronts. Experimentation investigates the
reliability of the supply chain under different
threat conditions.

• An automotive company is planning to build a
new factory. The manufacturing line is modeled
and simulated using a CSP. Experimentation
investigates how many engines can be produced in
one year against different levels of resources
(machines, buffers, workers, etc.)

• A regional health authority needs to plan the best
way of distributing blood to different hospitals. A
model is built using a CSP. Experimentation is
carried out to investigate different supply policies
against “normal” and emergency supply situations.

• A police authority needs to determine how many
officers need to be on patrol and how many need
to be in the different police stations that it
manages. A model is built and experiments are
carried out to investigate staffing against different
scenarios (football matches, terrorist attacks, etc.)

• A bank sells different financial products. When a
new product is planned, managers need to
determine the resource impact against current
financial services. Using existing business process
models (in BPMN for example), a new model is
built and simulated. Experiments investigate
different resource levels in different departments.

There are many other examples (see the Proceedings of
the Winter Simulation Conference
(www.wintersim.org) or the ACM Digital Library
(www.acm.org/dl)). What is common to these is that
virtually all models are created using a single CSP. To
interoperate two CSPs together (to execute a single
simulation run) is simply not possible without a great
deal of very costly “bespoke” effort that requires
computing skills out of the scope of typical modellers
(i.e. the solution is typically created specifically for a
model/CSP will little reuse from previous solutions –
most current approaches are “built from scratch”).
This is further complicated by the time management
required for distributed discrete-event simulation. This
means that it is very difficult to distribute large models
to share the processing load of the simulation (for
example, a real-world automotive simulation can take
several hours to run; the blood distribution example
took over a day to complete a single run with just four
hospitals!). Additionally, if models are difficult to
“move” then the lack of a low-cost interoperability
solution means that models and their CSPs cannot be
simply “linked” together. For example, two or more
police authority models cannot be linked together to

investigate national security response policies; the
business processes of two or more companies cannot
be linked together to investigate new financial
products; manufacturing models in a supply chain
cannot be linked together to investigate the supply of
new products to new markets. The lack of standards
that specifically address the problem of CSP
interoperability or CSP-based distributed simulation is
therefore preventing many new and exciting modelling
and simulation problems to be explored.

This is the motivation behind SISO’s COTS
Simulation Package Interoperability Product
Development Group. Dedicated to creating a
standardized approach to CSP interoperability, the
CSPI PDG has created the first of several standards in
this area. We now introduce the CSP Interoperability
Problem and our first standard.

2. The CSP Interoperability Problem

Different CSPs execute their discrete-event simulation
algorithms slightly differently. The approaches to CSP
interoperability developed by various researchers and
CSP vendors are all different. Indeed the degree of
subtlety involved in even describing the CSP
interoperability problem can lead to long, lengthy
discussions where the parties involved typically finish
with no definitive understanding of the problems that
must be solved. To attempt to solve this, the CSPI
PDG has created a standardized “language” that
attempts to capture these subtleties. This is the
thinking behind the CSPI PDG’s set of standardized
Interoperability Reference Models, the “Standard for
COTS Simulation Package Interoperability Reference
Models”, effectively a set of simulation patterns or
templates, that will enable modellers, vendors and
solution developers to specify the interoperability
problems that must be solved. The Interoperability
Reference Models (IRMs) are intended to be used as
follows:

• to clearly identify the model/CSP interoperability

capabilities of an existing distributed simulation
o e.g. The distributed supply chain

simulation is compliant with IRMs Type
A.1, A.2 and B.1

• to clearly specify the model/CSP interoperability
requirements of a proposed distributed simulation

o e.g. The distributed hospital simulation
must be compliant with IRMs Type A.1
and C.1

Where is the complexity? Consider the following. As
an example, the owners of two factories want to find

out how many products their factories can manufacture
in a year. Both factories have been modelled
separately using two CSPs. As shown in figure 1, the
(extremely simplistic) factories, modelled as models
M1 and M2, are simulated in their own CSPs running
on their own separate computers. Queues, activities
and resources are represented as Q, A and R
respectively. The models interact, in this example, as
denoted by the thin arrows connecting the models
(possibly the delivery and return of some defective
stock). Further, the models might share resources (to
reflect a shared set of machinists that can operate
various workstations), events of various kind (such an
emergency shutdown) or data (such as the current
production volume). The question is, how do we
implement this distributed simulation?

A distributed simulation or federation is composed of a
set of CSPs and their models. In this paper, a CSP will
simulate its model using a discrete-event simulation

algorithm. Each model/CSP represents a federate
normally running on its own computer. In a distributed
simulation, each model/CSP federate therefore
exchanges data via a runtime infrastructure (RTI)
implemented over a network in a time synchronized
manner (as denoted by the thick double-headed arrow).
Federate F1 consists of the model M1 and the COTS
Simulation Package CSP1 and federate F2 consists of
the model M2 and COTS Simulation Package CSP2.
In this case federate F1 publishes and sends
information to the RTI in an agreed format and time
synchronized manner and federate F2 must subscribe
to and receive that information in the same agreed
format and time synchronized manner, i.e. both
federates must agree on a common representation of
data and both must use the RTI in a similar way.
Further, the “passing” of entities and the sharing of
resources require different distributed simulation
protocols. In entity passing, the departure of an entity
from one model and the arrival of an entity at another

Figure 1: The COTS Simulation Package Interoperability Problem

Federate F1

COTS Simulation Package CSP1
Model M1

Federate F2

COTS Simulation Package CSP2
Model M2

Runtime Infrastructure

Time synchronized
data exchange

Q

A A A

Q Q Q

Q

A A A

RR

Q A Q

A A

Q Q

A A

Q

A

R

Intermodel
relationships

can be the same scheduled event in the two models –
most distributed simulations represent this as a
timestamped event message sent from one federate to
another. The sharing of resources cannot be handled in
the same way. For example, when a resource is
released or an entity arrives in a queue, a CSP
executing the simulation will determine if a
workstation can start processing an entity. If resources
are shared, each time an appropriate resource changes
state a timestamped communication protocol is
required to inform and update the changes of the
shared resource state. Further problems arise when we
begin to “dig” further into the subtleties of
interoperability. It is the purpose of our IRMs to try to
simplify this complexity. Let us now describe the
current set of IRMs.

3. Interoperability Reference Model

Definition

An Interoperability Reference Model (IRM) is defined
as the simplest representation of a problem within an
identified interoperability problem type. Each IRM
can be subdivided into different subcategories of
problem. As IRMs are usually relevant to the
boundary between two or more interoperating models,
models specified in IRMs will be as simple as possible
to “capture” the interoperability problem and to avoid
possible confusion. These simulation models are
intended to be representative of real model/CSPs but
use a set of “common” model elements that can be
mapped onto specific CSP elements (see 3.1
Clarification of Terms). Where appropriate, IRMs will
specify time synchronization requirements and will
present alternatives. IRMs are intended to be
cumulative (i.e. some problems may well consist of
several IRMs). Most importantly, IRMs are intended
to be understandable by simulation developers, CSP
vendors and technology solution providers.

3.1 Clarification of Terms

As indicated above, an IRM will typically focus on the
boundary between interoperating models. To describe
an interoperability problem we therefore need to use
model elements that are as general as possible.
Generally, CSPs using discrete-event simulation model
systems that change state at events. Rather than
providing a set of APIs to directly program discrete-
event simulations, these CSPs use a visual interface
that allows modellers to build models using a set of
objects. These models are typically composed of
networks of alternating queues and activities that
represent, for example, a series of buffers and

operations composing a manufacturing system.
Entities, consisting of sets of typed variables termed
attributes, represent the elements of the manufacturing
system undergoing machining. Entities are
transformed as they pass through these networks and
may enter and exit the model at specific points.
Additionally, activities may compete for resources that
represent, for example, the operators of the machines.
To simulate a model a CSP will typically have a
simulation executive, an event list, a clock, a
simulation state and a number of event routines. The
simulation state and event routines are derived from
the simulation model. The simulation executive is the
main program that (generally) simulates the model by
first advancing the simulation clock to the time of the
next event and then performing all possible actions at
that simulation time. For example, this may change the
simulation state (for example ending a machining
activity and placing an entity in a queue) and/or
schedule new events (for example a new entity arriving
in the simulation). This cycle carries on until some
terminating condition is met (such as running until a
given time or a number of units are made).

A problem is, however, that virtually every CSP has a
different variant of the above. CSPs also have widely
differing terminology, representation and behavior.
For example, without reference to a specific CSP, in
one CSP an entity as described above may be termed
an item and in another object. In the first CSP the data
types might be limited to integer and string, while in
the other the data types might be the same as those in
any object-oriented programming language. The same
observations are true for the other model elements such
as queue, activity and resource. Behaviour is also
important as the set of rules that govern the behaviour
of a network of queues and activities subtly differ
between CSPs (for example the rules that govern
behaviour when an entity leaves a machine to go to a
buffer). Indeed even the representation of time can
differ. This is also further complicated by variations in
model elements over and above the “basic” set (e.g.
entry/exit points, transporters, conveyors, flexible
manufacturing cells, robots, etc.)

3.2 Interoperability Reference Model Types

There are four different types of IRM. These are:

Type A: Entity Transfer
Type B: Shared Resource
Type C: Shared Event
Type D: Shared Data Structure

Briefly, IRM Type A Entity Transfer deals with the
requirement of transferring entities between simulation
models, such as an entity Part leaves one model and

arrives at the next. IRM Type B Shared Resource
refers to sharing of resources across simulation models.
For example, a resource R might be common between
two models and represents a pool of workers. In this
scenario, when a machine in a model attempts to
process an entity waiting in its queue it must also have
a worker. If a worker is available in R then processing
can take place. If not then work must be suspended
until one is available. IRM Type C Shared Event deals
with the sharing of events across simulation models.
For example, when a variable within a model reaches a
given threshold value (a quantity of production, an
average machine utilisation, etc.) it should be able to
signal this fact to all models that have an interest in this
fact (to throttle down throughput, route materials via a
different path, etc.) IRM Type D Shared Data
Structure deals with the sharing of variables and data
structures across simulation models. Such data
structures are semantically different to resources, for
example a bill of materials or a common inventory.

Note that the above classification previously appeared
as:

Type I: Asynchronous Entity Passing
Type II: Synchronous Entity Passing (Bounded

Buffer)
Type III: Shared Resources
Type IV: Shared Events
Type V: Shared Data Structures
Type VI: Shared Conveyor

This has been rationalised to the Type A-D
classification to “group” IRM problems (essentially
new Entity Transfer problems were identified). Note
that the “Shared Conveyor” IRM has been deleted as it
was felt by the PDG that this would usually be
represented as a separate model and therefore fall into
the other IRM Types.
4. Interoperability Reference Model Type

A: Entity Transfer

4.1 Overview

IRM Type A Entity Transfer represents interoperability
problems that can occur when transferring an entity
from one model to another. Figure 2 shows an
illustrative example of the problem of Entity Transfer
where an entity e1 leaves activity A1 in model M1 at
T1 and arrives at queue Q2 in model M2 at T2. For
example, if M1 is a car production line and M2 is a
paint shop, then this represents the system where a car
leaves a finishing activity in M1 at T1 and arrives in a
buffer in M2 at T2 to await painting.

Note that the IRM subtypes are intended to be
cumulative, i.e. a distributed simulation that correctly
transfers entities from one model to a bounded buffer
in another model should be can be compliant with both
IRM Type A.1 General Entity Transfer and IRM Type
A.2 Bounded Receiving Element.

4.2 Interoperability Reference Model Type A

Sub-types

There are currently three IRM Type A Sub-types

• IRM Type A.1 General Entity Transfer
• IRM Type A.2 Bounded Receiving Element
• IRM Type A.3 Multiple Input Prioritization

4.3 IRM Type A.1 General Entity Transfer

4.3.1 Overview

IRM Type A.1 General Entity Transfer represents the
case, as described above and shown in figure 2, where
an entity e1 leaves activity A1 in model M1 at T1 and
arrives at queue Q2 in model M2 at T2 (see above for
an example). This IRM is inclusive of cases where

Figure 2: IRM Type A.1: General Entity Transfer

COTS Simulation Package CSP1

Federate F1

COTS Simulation Package CSP2

Federate F2

Model M1

Q
1 A1

Model M2

Q
2 A2

Entity e1 leaves A1 at
T1 and arrives at A2 at

T2

COTS Simulation Package CSP1

Federate F1

COTS Simulation Package CSP2

Federate F2

Model M1

Q
1 A1

Model M2

Q
2 A2

Entity e1 attempts to
leave A1 at T1 and

arrive at A2 at T2 in a
bounded element (e.g.

queue)

Bounded

Figure 3: IRM Type A.2: Bounded Receiving Element

• there are many models and many entity
transfers (all transfers are instances of this
IRM).

This IRM does not include cases where

• the receiving element is bounded (IRM Type
A.2), and

• multiple inputs need to be prioritized (IRM
Type A.3).

4.3.2 Definition

The IRM Type A.1 General Entity Transfer is defined
as the transfer of entities from one model to another
such that an entity e1 leaves model M1 at T1 from a
given place and arrives at model M2 at T2 at a given
place and T1 =< T2 or T1<T2. The place of departure
and arrival will be a queue, workstation, etc. Note that
this inequality must be specified.

4.4 IRM Type A.2 Bounded Receiving Element

4.4.1 Overview

Consider a production line where a machine is just
finishing working on a part. If the next element in the
production process is a buffer in another model, the
part will be transferred from the machine to the buffer.
If, however, the next element is bounded, for example
a buffer with limited space or another machine (i.e. no
buffer space), then a check must be performed to see if
there is space or the next machine is free. If there is no
space, or the next machine is busy, then to correctly
simulate the behavior of the production process, the
current machine must hold onto the part and block, i.e.
it cannot accept any new parts to process until it
becomes unblocked (assuming that the machine can
only process one part at a time). The consequences of
this are quite subtle. This is the core problem of the
IRM Type A.2 . Figure 3 shows an illustrative
example, where an entity e1 attempts to leave model
M1 at T1 from activity A1 and to arrive at model M2 at
T2 in bounded queue Q2. If A1 represents a machine
then the following scenario is possible. When A1
finishes work on a part (an entity), it attempts to pass
the part to queue Q2. If Q2 has spare capacity, then
the part can be transferred. However, if Q2 is full then
A1 cannot release its part and must block. Parts in Q1
must now wait for A1 to become free before they can
be machined. Further, when Q2 once again has space,
A1 must be notified that it can release its part and
transfer it to Q2. Finally, it is important to note the
fact that if A1 is blocked the rest of model M1 still

functions as normal, i.e. a correct solution to this
problem must still allow the rest of the model to be
simulated (rather than just stopping the simulation of
M1 until Q2 has unblocked).

This IRM is therefore inclusive of cases where

• the receiving element (queue, workstation,
etc.) is bounded.

This IRM does not include cases where

• multiple inputs need to be prioritized (IRM
Type A.3).

A solution to this IRM problem must also

• be able to transfer entities (IRM Type A.1).

4.4.2 Definition

The IRM Type A.2 is defined as the relationship
between an element O in a model M1 and a bounded
element Ob in a model M2 such that if an entity e is
ready to leave element O at T1 and attempts to arrive at
bounded element Ob at T2 then:

• If bounded element Ob is empty, the entity e
can leave element O at T1 and arrive at Ob at
T2, or

• If bounded element Ob is full, the entity e
cannot leave element O at T1; element O may
then block if appropriate and must not accept
any more entities.

• When bounded element Ob becomes not full
at T3, entity e must leave O at T3 and arrive at
Ob at T4; element O becomes unblocked and
may receive new entities at T3.

• T1=<T2 and T3=<T4.
• If element O is blocked then the simulation of

model M1 must continue.

Note:

• In some special cases, element O may
represent some real world process that may
not need to block.

• If T3<T4 then it may be possible for bounded
element O to become full again during the
interval if other inputs to Ob are allowed.

4.5 IRM Type A.3 Multiple Input Prioritization

4.5.1 Overview

As shown in figure 4, the IRM Type A.3 Multiple
Input Prioritization represents the case where a model
element such as queue Q1 (or workstation) can receive
entities from multiple places. Let us assume that there
are two models M2 and M3 which are capable of
sending entities to Q1 and that Q1 has a First-In-First-
Out (FIFO) queuing discipline. If an entity e1 is sent
from M2 at T1 and arrives at Q1 at T2 and an entity e2
is sent from M3 at T3 and arrives at Q1 at T4, then if
T2<T4 we would expect the order of entities in Q1
would be e1, e2. A problem arises when both entities
arrive at the same time, i.e. when T2=T4. Depending
on implementation, the order of entities would either
be e1, e2 or e2, e1. In some modelling situations it is
possible to specify the priority order if such a conflict
arises, e.g. it can be specified that model M1 entities
will always have a higher priority than model M2 (and
therefore require the entity order e1, e2 if T2=T4).
Further, it is possible that this priority ordering could
be dynamic or specialised.

This IRM is therefore inclusive of cases where

• multiple inputs need to be prioritized.

This IRM does not include cases where

• the receiving element is bounded (IRM Type
A.2).

A solution to this IRM problem must also

• be able to transfer entities (IRM Type A.1).

4.5.2 Definition

The IRM Type A.3 Multiple Input Prioritization is
defined as the preservation of the priority relationship
between a set of models that can send entities to a
model with receiving queue Q, such that priority
ordering is observed if two or more entities arrive at
the same time.

Note:

• The priority rules must be specified.
• Priority rules may change during a simulation

if required for the real system being
simulated.

Figure 4: IRM Type A.3 Multiple Input Prioritization

COTS Simulation Package CSP1

Federate F1

Model M1

Q
1 A1

Entities arrive from different
models potentially at the same

simulation time

5. Interoperability Reference Model Type
B: Shared Resource

5.1 Overview

IRM Type B deals with the problem of sharing
resources across two or more models in a distributed
simulation. A modeller can specify if an activity
requires a resource (such as machine operators,
doctors, runways, etc.) of a particular type to begin. If
an activity does require a resource, when an entity is
ready to start that activity, it must therefore be
determined if there is a resource available. If there is
then the resource is secured by the activity and held
until the activity ends. A resource shared by two or
more models therefore becomes a problem of
maintaining the consistency of the state of that
resource in a distributed simulation. Note that this is
similar to the problem of shared data. However, in
CSPs resources are semantically different to data and
we therefore preserve the distinction in this standard.

5.2 Interoperability Reference Model Type B

Sub-types

There is currently one IRM Type B Sub-types

• IRM Type B.1 General Shared Resource

5.3 IRM Type B.1 General Shared Resource

5.3.1 Overview

IRM Type B.1 General Shared Resource represents the
case, as outlined above and shown in figure 5, where
the state of a resource R shared across two or more
models must be consistent. In a model M1 that shares
resource R with model M2, M1 will have a copy RM1
and M2 will have a copy RM2. When M1 attempts to

change the state of RM1 at T1, then it must be
guaranteed that the state of RM2 in M2 at T1 will also
be the same. Additionally, it must be guaranteed that
both M1 and M2 can attempt to change their copies of
R at the same simulation time as it cannot be
guaranteed that this simultaneous behavior will not
occur.

5.3.2 Definition

The IRM Type B.1 General Shared Resources is
defined as the maintenance of consistency of all copies
of a shared resource R such that

• if a model M1 wishes to change its copy of R
(RM1) at T1 then the state of all other copies
of R will be guaranteed to be the same at T1,
and

• if two or more models wish to change their
copies of R at the same time T1, then all
copies of R will be guaranteed to be the same
at T1.

6 Interoperability Reference Model Type
C: Shared Event

6.1 Overview

IRM Type C deals with the problem of sharing events
(such as an emergency signal, explosion, etc.) across
two or more models in a distributed simulation.

6.2 Interoperability Reference Model Type C

Sub-types

There is currently one IRM Type C sub-type

• IRM Type C.1 General Shared Event

A shared resource R exists at two models M1 and M2. If shared resource R
changes at time T1 in model M1 then it must change at T1 in model M2

COTS Simulation Package CSP1

Federate F1

COTS Simulation Package CSP2

Federate F2

Model M1 Model M2

R R

Figure 5: IRM Type B.1: General Shared Resource

6.3 IRM Type C.1 General Shared Event

6.3.1 Overview

IRM Type C.1 General Shared Event represents the
case, as shown in figure 6, where an event E is shared
across two or more models. In a model M1 that shares
an event E with model M2 at T1, then we are
effectively scheduling two local events EM1 at M1 at
T1 and EM2 at M2 at T1. We must therefore
guarantee that both copies of the event take place.
Care must also be taken to guarantee if two shared
events E1 and E2 are instigated at the same time by
different models, then both will occur.

6.3.2 Definition

The IRM Type C.1 General Shared Event is defined as
the guaranteed execution of all local copies of a shared
event E such that

• if a model M1 wishes to schedule a shared
event E at T1, then the local copies EM1,
EM2, etc. will be guaranteed to be executed at
the same time T1, and

• if two or more models wish to schedule shared
events E1, E2, etc. at T1, then all local copies
of all shared events will be guaranteed to be
executed at the same time T1.

7. Interoperability Reference Model Type

D: Shared Data Structure

7.1 Overview

IRM Type D deals with the problem of sharing data
across two or more models in a distributed simulation
(such as a production schedule, a global variable, etc.)
A shared data structure that is shared by two or more
models therefore becomes a problem of maintaining
the consistency of the state of that data structure in a

distributed simulation. Note that this is similar to the
problem of shared resources. However, in CSPs
resources are semantically different to data and we
therefore preserve the distinction in this standard.
Note also that we consider the sharing of a single data
item such as an integer as being covered by this IRM.

7.2 Interoperability Reference Model Type D

Sub-types

There is currently one IRM Type D Sub-type.

• IRM Type D.1 General Shared Data Structure

7.3 IRM Type D.1 General Shared Data Structure

7.3.1 Overview

IRM Type D.1 General Data Structure represents the
case, as outlined above and shown in figure 7, where a
data structure D shared across two or more models
must be consistent. In a model M1 that shares a data
structure D with model M2, M1 will have a copy DM1
and M2 will have a copy DM2. When M1 attempts to
change the value of DM1 at T1, then it must be
guaranteed that the value of DM2 in M2 at T1 will also
be the same. Additionally, it must be guaranteed that
both M1 and M2 can attempt to change their copies of
D at the same simulation time as it cannot be
guaranteed that this simultaneous behavior will not
occur.

7.3.2 Definition

The IRM Type D.1 General Shared Data Structure is
defined as the maintenance of consistency of all copies
of a shared data structure D such that

• if a model M1 wishes to change its copy of D,
DM1 at T1 then the value of all other copies

Figure 6: IRM Type C.1: General Shared Event

A shared event E takes place in two models M1 and M2 at T1.

COTS Simulation Package CSP1

Federate F1

COTS Simulation Package CSP2

Federate F2

Model M1 Model M2

E E

of D will be guaranteed to be the same at T1,
and

• if two or more models wish to change their
copies of D at the same time T1, then all
copies of D will be guaranteed to be the same
at T1.

8. Conclusions

This paper has presented the CSPI PDG Standard for
COTS Simulation Package Interoperability Reference
Models. At the time of writing, the Standard is
currently undergoing balloting as SISO-STD-006-2007
(DRAFT). The next activities of the CSPI PDG is to
classify current CSPI approaches and to begin work on
a set of Data Exchange Specifications and
Interoperability Frameworks to support each IRM.
The full standard can be found at the CSPI PDG’s site
at www.sisostds.org. The CSPI PDG welcomes new
members and volunteers. Please email the CSPI PDG
chair simon.taylor@brunel.ac.uk for further details.

Acknowledgments

The authors would like to thank the CSPI PDG
members for their enthusiasm and comments in the
development of this standard.

References

Please see the extensive bibliography in the draft
standard available from www.sisostds.org.

Author Biographies

SIMON J E TAYLOR is the Founder and Chair of
the COTS Simulation Package Interoperability Product
Development Group (CSPI-PDG) under the Simulation

Interoperability Standards Organization. He is the co-
founding Editor-in-Chief of the UK Operational
Research Society’s (ORS) Journal of Simulation and
the Simulation Workshop series. He is the current
Chair of ACM’s Special Interest Group on Simulation
(SIGSIM) (2005+). He is a Senior Lecturer in the
School of Information Systems, Computing and
Mathematics at Brunel and has published over 100
articles in modeling and simulation. His recent work
has focused on the development of standards for
distributed simulation in industry. His email address is
<simon.taylor@brunel.ac.uk>.

STEFFEN STRASSBUGER is a professor at the
Ilmenau University of Technology in the School of
Economic Sciences. In previous positions he was
working as head of the “Virtual Development”
department at the Fraunhofer Institute in Magdeburg,
Germany and as a researcher at the DaimlerChrysler
Research Center in Ulm, Germany. His research
interests include simulation and distributed simulation
as well as general interoperability topics within the
digital factory context. He is also the Vice Chair of
SISO’s COTS Simulation Package Interoperability
Product Development Group. His email address is
<Steffen.Strassburger@tu-ilmenau.de>.

STEPHEN J. TURNER joined Nanyang
Technological University (NTU), Singapore, in 1999
and is Director of the Parallel and Distributed
Computing Centre in the School of Computer
Engineering. Previously, he was a Senior Lecturer in
Computer Science at Exeter University (UK). His
current research interests include parallel and
distributed simulation, distributed virtual
environments, grid computing and multi-agent
systems.. He is the secretary of the CSPI PDG. His
email address is <assjturner@ntu.edu.sg>.

A shared data item D exists at two models M1 and M2. If shared data item D
changes at time T1 in model M1 then it must change at T1 in model M2

COTS Simulation Package CSP1

Federate F1

COTS Simulation Package CSP2

Federate F2

Model M1 Model M2

D D

Figure 7: IRM Type D.1: Shared Data

