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Abstract- This work concerns a non-model-based fric-
tion compensation scheme for dynamic position control on 
nanometer scale. The main goal of this work is to build up 
and implement a simple dynamic friction observer which 
allows an estimation of the friction force in combination 
with the system inertia against displacement. Experiments 
in the pre-sliding and sliding friction regimes are con-
ducted on an experimental setup. 

After a short review of friction compensation, the ex-
perimental setup is explained in detail. Next, the observer 
is modeled mathematically and the used control scheme is 
presented. Finally, the friction observer is utilized as a 
non-model-based friction estimator combined with a clas-
sical feedback controller to compensate the nonlinear fric-
tion force and reduce tracking errors significantly. It is 
shown that the proposed controlling approach is able to 
realize a fast and ultra precise positioning over long dis-
tances. 

I. INTRODUCTION 

To measure and manipulate structures on nanometer scale, 
nowadays high resolution positioning stages are used. These 
stages are able to position a pattern in all three dimensions 
with a stationary accuracy below 1 nm. To eliminate distur-
bances introduced by sound waves, ground motion, thermal 
expansion, etc. the position has to be controlled permanently. 
States of the art are modified linear PID controllers as de-
scribed in [9, 10].  

To perform well in nano-positioning most of these control 
laws rely on high stiffness. With increasing operating range 
of the stages the typically utilized stationary positioning strat-
egy becomes unfeasible due to the proportionally rising meas-
urement time. Therefore a dynamic measurement strategy is 
desirable. While implementing such an approach, friction 
introduced by commonly used ball bearing guides is the main 
challenge. Friction is induced by interaction between two 
rubbing surfaces and depends on several parameters such as 
surface materials, surface topography, the lubricant used and 
so on.  

The literature distinguishes between two main regimes, 
called the pre-sliding and sliding regime. In the pre-sliding 
domain, the rough surfaces adhere to each other and the sys-
tem behaves like a nonlinear spring. With increasing tangen-

tial force the contacts between the asperities begin to break 
and the surfaces start to slide against each other. In the sliding 
regime friction depends mainly on the relative velocity. The 
transition between sliding and pre-sliding is continuous and it 
is affected by direction of movement, rate of the applied 
force, normal load, position and so on. As a result, of these 
effects friction has a highly nonlinear character. Applying a 
nearly linear control law leads to tracking errors, limit cycles 
and stick-slip motion [2]. In order to achieve high-precision 
dynamic positioning over wide velocity ranges, adaptive 
compensation of these nonlinear effects is essential. In the 
last 40 years, dynamic friction modeling and compensation 
has made a big progress in the control community.  

Dahl was the first to develop a dynamic friction model [3]. 
Through many experiments on servo systems with ball bear-
ings, he found that bearing friction behaves like solid friction. 
Dahl described the friction dynamics using a modified stress-
strain curve of classical solid mechanics. His model is a gen-
eralization of the static Coulomb friction model and captures 
some pre-sliding and hysteresis-related phenomena. The next 
big step was made by Canudas de Wit et al. by developing 
the well-known “Lund Grenoble” (LuGre) model [5]. The 
LuGre model based on the idea of Haessig and Friedland to 
characterize the behavior of the rough surfaces with a con-
glomerate of elastic bristles [7]. If the two interacting surfaces 
are sliding against one another the bristles deflect and begin 
to slide when the displacement is sufficient. The deflection of 
the bristles is expressed by a single state equation. In order to 
reduce the model dimension, every bristle has the same state 
and the bristles of one side are assumed as stiff. The LuGre 
model has only six parameters and is therefore quite simple. 
It captures almost all friction phenomena except the non-
drifting effect and the hysteresis with nonlocal memory. 
Therefore Dupont et al. extended the LuGre model to the so 
called “elasto-plastic” friction model [6]. This extension cap-
tures the non-drifting effect as well, but fails to describe the 
hysteresis with nonlocal memory. Based on the integrated 
friction model, called the Leuven model Lampaert et al. de-
scribed the friction dynamics with a different approach [12, 
14]. The idea is based on the assumption of modelling the 
behavior of the rubbing surfaces with M elasto-plastic ele-
ments in parallel, all having displacement as a common input. 
Each element consists of a mass connected to a spring. These 
elements are characterised by a certain spring stiffness, a slip-



ping force limit and a state variable, which reflect the spring 
deflection. Since it is assumed that the elements have no 
mass, the relationship between the force and the deflection of 
the springs is static. With this approach, called the “General-
ized Maxwell Slip” (GMS) model it is possible to mathemati-
cally incorporate the hysteresis with non-local memory as 
well as all other friction phenomena [13]. Based on the GMS 
model Rizos et al. developed the “The Dynamic NonLinear 
Regression with direct application of eXcitation Identification 
Method” (DNLRX) approach which models the behavior of a 
simple mechanical system with two FIR filters [20, 21]. Main 
advantage of this model is its capacity to describe friction and 
inertia of the system in one model which is driven by the dis-
placement. 
All these “physically motivated” models describe the dy-
namic friction behavior very well, but the amount of model 
parameters increases proportional to their prediction quality. 
Due to uncontrollable variations in humidity, temperature, 
wear or lubricant condition these parameters have to be iden-
tified online to ensure a constant performance. For the rela-
tively simple Dahl and LuGre model this has already been 
achieved [4, 15, 17]. However, estimating simultaneous all 
model parameters is a challenging task, due to the fact that 
almost all “physically motivated” dynamic friction models 
contain parameters that appear nonlinear in the model equa-
tions. Thus a fast online estimation of all parameters, espe-
cially of the elaborate ones, is not possible to date. The men-
tioned drawback of the described “Greybox” models makes 
adaptive non-model-based observers desirable. 

The authors of [1] give a very good review of non-model-
based friction modeling approaches. The biggest groups of 
“Blackbox” models are neural networks (NN). Recurrent NN, 
Generalised shunting NN or classical multilayer perceprons 
[19] were already used to predict and compensate nonlinear 
friction effects. Stochastic models like nonlinear ARX models 
were utilized, too.  

Based on the estimation algorithm proposed by Kalman in 
the sixties [10] Ray et al. modeled the friction force of a DC 
motor driven inertia by dint of an extended Kalman-Bucy 
Filter. Compared with LuGre and Dahl model based adaptive 
observers, the Kalman-Bucy filter performed very well [16]. 
A closed-loop stability analysis of the proposed method was 
provided two years later [17]. 

In this work, we consider a positioning stage with an oper-
ating range of 200mm. Based on the approach of Ray et al. a 
modified Kalman Filter is used as disturbance observer to 
compensate the friction introduced by the ball bearing guides. 
After explaining the experimental setup, the employed control 
scheme is presented. Next the architecture of the disturbance 
observer is described. At the end it is shown by experimental 
results that the proposed control approach works properly 
over wide ranges and significantly improves the dynamical 
behavior of the controlled system. 

II. EXPERIMENTAL SET-UP 
The experimental set-up is a two dimensional fine positioning 
stage (see Fig. 1). It was constructed by members of the col-
laborative research centre SFB 622. 

 
Fig. 1: Two-dimensional fine positioning stage  

As can be seen, every axis is driven by two ULIM3-2P-66 
linear voice coil actuators of IDAM [8]. The motors are pow-
ered by proprietary developed analog amplifiers, which pro-
vide the needed current with the required precision. Commu-
tation of the motors is achieved by the controlling system 
upon magnetic field intensity measurements provided online 
by Hall sensors. The operating range of this positioning stage 
is 200x200 mm2. Each axis is supported by two R6-300-RF-
SQ-HA linear guide ways of SCHNEEBERGER [23]. The 
position is measured by a laser interferometer of the type SP 
2000 (manufactured by SIOS Messtechnik GmbH) with a 
resolution of less than 0.1 nm [24]. For data acquisition and 
control a modular dSpace® real-time hardware system in 
combination with Matlab/Simulink® is utilized. The position 
is provided by the SIOS interferometer unit as a 32-bit digital 
signal and is sampled by the dSpace® system at a rate of 25 
kHz. The control algorithm uses a slower sampling rate of 
6.25 kHz and operates on the analog amplifiers with a 16 bit 
resolution. For the presented study only the outer axis of the 
demonstrator is used. The inner axis is mechanically jammed 
at the position shown in Fig. 1. 

Neglecting the friction force based on the second Newton’s 
axiom the dynamical behavior of the outer axis can be de-
scribed as follows:  

( )F m a t= ⋅  (1) 

F is the applied force, m the mass and a(t) the resulting ac-
celeration of the slider. Since the motor force has a linear 
relationship with respect to the applied current, the control 
algorithm controls the position via the current. The dynamical 
behavior of the amplifier can be neglected, because its cut-of-
frequency is higher than 10 kHz. Hence the force/current rela-
tion could be is simply modeled as a gain kA using the motor 
parameters provided by IDAM: 

( ) ( )Ak i t m a t⋅ = ⋅  (2) 

 



In state space notation the system can be expressed as: 
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where x(t) is the position and dx(t)/dt the velocity of the 
slider. 

III. CONTROL SYSTEM WITH DISTURBANCE OBSERVER 

A. Control Scheme 

To verify the capability of the proposed non-model-based 
disturbance observer a control scheme as depicted in Fig. 2 is 
utilized. The advantage of such an approach is its potential to 
speed up the dynamic behaviour of a controlled system and 
improve its robustness against external disturbances. It is thus 
possible for the controlled system to follow highly dynamic 
set points. 
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Fig. 2. Block diagram of a position control system with a friction observer 

B. Observer design 

In order to design a non-model-based friction estimator a 
Kalman Filter approach is utilized. Considering an estimated 
friction force term Equ. (1) is extended to: 

2
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 (5) 

with m is the mass of the accelerated system, kA·i(t) the 
applied force, x(t) the displacement and      the (immeasur-
able) friction force which resists the excited motion. After 
transforming the system into state space notation, choosing 
x(t), dx(t)/dt,       and            as states and discretize the system 
using a zero order hold with the sample time T leads to the 
internal model of the friction observer: 
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In the presented approach the friction force is treated as an 
unknown state element. By measuring motion along with the 
applied force, one can estimate the external friction force us-
ing the algorithm proposed by Kalman [10]. This method of 
friction cancellation has already been proven in other applica-
tions, e.g. by Ray et al. [15, 17].  

The Kalman filter has two tuning parameters, the variance 
of the measured signal, in this case the measured position, 
and the variance of the state vector. These parameters influ-
ence directly the quality of the estimated friction force and 
are tuned to minimize the Normalized Root Mean Square 
Error (NRSME) over a wide spectrum of reference trajecto-
ries. The NRSME is defined as: 
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x

x x
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with Θx is the variance of the reference position, N the num-
ber of samples, xref the reference position and x the measured 
position.  

IV. EXPERIMENTAL STUDY 

The control scheme described in section III is used to con-
trol one axis of the positioning stage to test the performance 
of the presented friction cancellation method on nanometer 
scale. A well tuned nonlinear PID controller works in the 
feedback loop [10]. 

For experimental study two significant reference trajecto-
ries are chosen. First a sinusoidal reference input is utilized 
with a desired position, xref(t) = a·sin(2πft). Three different 
frequencies are employed with f = 0.5 Hz, 1 Hz and 1.5 Hz. 
Also the amplitude of the sine was varied with a = 1000 nm, 
2000 nm, 5000 nm and 10000 nm.  

Second a linear motion (with return fare) of 10,000,000 nm 
distance is carried out. It should be mentioned that this trajec-
tory is generated by a trajectory generation algorithm, which 
accounts for kinematic constraints in velocity, acceleration 
and jerk. 

ˆ ( )F t

ˆ ( ) /F t dtˆ ( )F t
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Fig. 3: (a) Reference position, (b) reference velocity, (c) reference accelera-
tion 

The used constraints are vmax = 400,000 nm/s, amax = 
2,000,000 nm/s2 and jmax = 300,000 nm/s3. For more detailed 
information about the trajectory generation algorithm the 
reader is referred to [22]. The used trajectories in position (a), 
velocity (b) and acceleration (c) are shown in figure 3. 

After comprehensive tests the two tuning parameters of the 
Kalman filter are defined as follows: 

1. Variance of the states in the internal model (Equ. (6)): 
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2. Variance of the measurement noise: 

2710R =  

A. Sinusoidal motion 

Figure 4 shows an experimental data-set composed of the 
reference, actual position trajectory (a) and the related 
position error (b). In the example depicted, the reference 
trajectory has a frequency of 0.5 Hz and an amplitude of  
2000 nm. The position is controlled without a friction 
cancellation and it can be clearly seen, that the feedback 
controller is not able to follow the reference trajectory 
satisfyingly. The NRMSE is 8.42 % and a significant phase 
shift is observable. 
For comparison figure 5 shows the behavior of the controlled 
system under operation of the proposed friction 
compensation. If the Kalman filter is utilised the system is 
able to follow the trajectory (see figure 5b) satisfactorily. 
Since the disturbance observer predicts the force which will 
be needed to reach the next set-point, the task of the feedback 
controller is only to compensate the estimation error and 
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Fig. 4: Position reference vs. actual position and (b) tracking error without 
friction compensation 

external disturbances. As easily can be seen, the disturbance 
observer is able to reduce the amplitude of the tracking error 
nearly by factor 10. The NRSME is alsominimized to 0.56%. 
This is a remarkable improvement compared to the perform-
ance shown in figure 4. 
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Fig. 5: Position reference vs. actual position and (b) tracking error with fric-
tion compensation  

Regarding the other experiments conducted with sinusoidal 
reference trajectories, the results are almost similar to figure 4 
and figure 5. Figure 6 shows the NRMSE without a friction 
observer and figure 7 presents the NRMSE with friction ob-
server in the control system. 

In the case of a normal PID controller it could be noticed 
that the NRMSE decreases with an increasing amplitude and 
behaves relatively independent from the used frequency of 
the reference signal. The reason for this observation is the 
relation between sliding and pre-sliding phases. The pure PID 
is tuned for the sliding regime and therefore the controller 
works well in this domain. In contrast to the sliding domain 
as expected, the PID controller fails in pre-sliding regime. 

(b) 
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(c) 
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Using the friction observer in the control system, the sys-
tem performed much better. Regarding the dependency of the 
control performance to the amplitude of the reference signal, 
the same relation as using the pure PID controller could be 
observed. The tracking error of the controlled system de-
creases with rising amplitudes. But one difference attracts 
attention in figure 7. With a rising frequency of the reference 
trajectory the performance degrades slightly. Cause of this 
deterioration of performance is probably the limited band 
width of the friction observer.  
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Fig. 6: NRMSE without friction cancellation 
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Fig. 7: NRMSE with friction cancellation 

B. Linear motion  

The major task of measuring machines is following a 
straight line. Therefore a trajectory shown in figure 3 was 
executed several times. Using only a pure PID controller the 
tracking error is quite big – almost 2000 nm at peak. Figure 8 
shows the tracking error over time. Most significant are the 
peaks in the tracking error at motion reversal. This clearly 
shows the weakness of the PID controller in pre-sliding do-
main. 
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Fig. 8: Tracking error while following a straight line without friction com-
pensation 

In the next step the friction observer is utilized in the position 
control loop. Carrying out this experiment a problem oc-
curred. As shown in figure 9 the system started to oscillate 
around 6000 nm when nearly constant velocities were 
reached.  
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Fig. 9: Tracking error while following a straight line with friction compensa-
tion 

These oscillations are caused by the interaction between the 
PID controller and the Kalman filter. As a result of nonlinear 
effects like e.g. stick-slip, the system starts to vibrate around 
the reference trajectory. A rising measurement noise is caused 
by this increasing vibration. The Kalman filter starts to ac-
commodate this growing measurement noise due to the fact 
that the beforehand tuned parameter R was not valid any 
more. Result of this accommodation is an oscillation in the 
estimated friction force and this leads to further rising vibra-
tions of the overall system and so on. The system behavior 
can be compared to an oscillating circuit at resonance fre-
quency. Thus the system becomes unstable while performing 
high velocities. 

To solve this problem an adaptive variance R is imple-
mented. With rising velocity, the variance R is scaled up in a 
certain ratio. Due to this modification the adaption rate of the 
Kalman filter is very high at low velocities to compensate 
minimal deviations. With increasing velocity the adaption 
capability is degrading in order to increase the damping 
within the Kalman filter. These finding guarantee a stable 
system behavior over the hole traveling range shown in figure 
10. 
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Fig. 10: Tracking error while following a straight line with a modified fric-
tion compensation 

Compared to figure 8 the tracking error is uniform and sig-
nificantly smaller. The friction observer reduces the NRSME 
nearly by factor 20. These results show clearly the capability 
of the proposed non-model-based friction compensation 
scheme to enhance the performance of a position control sys-
tem on nanometer scale. Also the Kalman filter is able to 
adapt to new conditions, shown by the experiments conducted 



with sinusoidal reference trajectories. It has to be mentioned, 
that while scaling up/down the amplitudes of the reference 
sine the system behaved stable and followed the varying am-
plitudes very quickly. The experiments also indicate that the 
Kalman filter is quite robust against disturbances, e.g. varia-
tions in temperature and so on. 

V. CONCLUSION 

A non-model-based friction compensation scheme on nano-
meter range is addressed. Basis of the proposed friction ob-
server is the well known adaptive estimation algorithm devel-
oped by Kalman. The implemented observer is used as part of 
a highly dynamic controlling system, which is able to control 
the position on nanometer scale.  

The friction observer is utilised to estimate nonlinear ef-
fects introduced by friction of a one-dimensional ball bearing 
guide on nanometer scale. The reason for selecting this non-
model-based approach is its capability to capture nearly all 
nonlinear phenomena and perform well without deeper 
knowledge about the friction dynamics. Furthermore the Kal-
man filter is adaptive and accommodates to changing refer-
ence trajectories and new external conditions. After modeling 
the system behavior in state space, the original algorithm pro-
posed by Kalman was implemented. For constant variances R 
and Q the controlling system performs well in the case of 
sinusoidal reference trajectories. Trying to carry out a long 
straight motion planed by a trajectory generator, the observer 
fails. After deeper analysis the Kalman algorithm was modi-
fied to assure a stable system behavior. Using this modifica-
tion, the friction observer is able to precisely predict the sys-
tem characteristics on the nanometer scale and reduce the 
tracking error by a factor of nearly 20 while performing sinu-
soidal as well as linearly motions. 
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