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Abstract

Linear switched differential algebraic equations (switched DAEs) are studied.
First, a suitable solution space is introduced, the space of so called piecewise-
smooth distributions. Secondly, sufficient conditions are given which ensure
that all solutions of the switched DAE are impulse and/or jump free. These
conditions are easy to check and are expressed directly in the systems original
data. As an example a simple electrical circuit with a switch is analyzed.
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1. Introduction

In this paper switched differential algebraic equations (switched DAEs)
of the form

Eσẋ = Aσx (1)

will be studied, here σ : R → {1, . . . , N}, N ∈ N, is a switching signal and
Ep, Ap ∈ Rn×n, n ∈ N, are constant coefficient matrices for each parameter
p ∈ {1, . . . , N}. Switched DAEs occur, for example, in modeling electrical
circuits with switches or when modeling possible faults in systems where
each (faulty and non-faulty) configuration is described by a “classical DAE”
Eẋ = Ax with constant matrices E,A ∈ Rn×n. There is a wide range of
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literature on classical DAEs, see for example the textbooks [1, 2, 3, 4, 5]
and the references therein, and there is also much literature on switched
differential equations, see for example the textbook [6] and the references
therein. However there seems to be no literature on switched DAEs of the
form (1). The main reason for this might be that it is not clear what the
right solution space should be: Some differentiability is needed (otherwise ẋ
in (1) is not defined) but if one considers the space of absolutely continuous
functions x : R→ Rn then most switched DAEs of the form (1) will have no
other solutions than the trivial solution. Already very simple examples show
that “solutions” of switched DAEs (1) might have jumps or even derivatives
of jumps, i.e. Dirac impulses. The obvious step to consider distributions or
generalized functions as solutions does not work either, because the space of
distributions is so big that many properties which are needed to work with
equation (1) are lost. For example, distributions can only be multiplied with
smooth functions, but in (1) the variables x and ẋ are multiplied with matrix
functions which are not even continuous.
To overcome these problems, the switched DAE (1) will be considered as a
distributional DAE as recently introduced in [7], in particular solutions are
piecewise-smooth distributions.

The aim of this paper is to give easy to check conditions which ensures
that all solutions of the switched DAE (1) are impulse free. In electrical
circuits, impulses occur as sparks and often lead to the destruction of some
components, therefore it is important to analyze circuits with respect to the
ability to produce impulses. Furthermore, switches might be induced by
faults, hence the switching signal is not known and therefore the results of
this paper will be independent of the switching signal. In addition, a simple
condition will be given, which ensures that jumps do not occur in the state
variables, i.e. a condition that guaranties that all solutions are actually clas-
sical solutions.

The conditions for impulse and/or jump freeness of the solutions of (1)
are formulated in terms of so called consistency projectors. It is possible
to construct these projectors directly in terms of the matrices (Ep, Ap), p =
1, . . . , N ; it is not necessary to explicitly calculate some normal form (see
Definition 7 together with Theorem 6).

Throughout the paper the following two assumptions will be used.

S1 The switching signal σ : R → {1, 2, . . . , N} is piecewise-constant with
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a locally finite set of jump points and right-continuous.

S2 Each matrix pair (Ep, Ap), p = 1, . . . , N , is regular, i.e. det(sEp−Ap) ∈
C[s] \ {0}.

These assumption ensure that solutions for (1) exist in the sense of [7] and
are uniquely determined by their past (see Theorem 2).

The paper is structured as follows. The next section summarizes the
necessary theoretical background which is needed to formulate and prove
the main results in Section 3. In particular, piecewise-smooth distributions
are defined and existence of unique solutions for switched DAEs is shown.
Furthermore, some specific properties of solutions of (1) are presented and
consistency projectors are defined. An important relation between the con-
sistency projectors and the solutions of (1) is shown (Theorem 8). The main
results consists of the three Assumptions A1, A2 and A3, each of which is
a sufficient condition for a certain impulse/jump freeness of solutions of (1)
under arbitrary switching (Theorems 10, 12 and 14). Finally in Section 4 a
simple circuit with a switch is analyzed and it is checked whether all solutions
are impulse and/or jump free.

2. Preliminaries

2.1. Distributional solution theory for switched DAEs

Basic knowledge of distribution theory as introduced in [8] is assumed
and is only briefly summarized in the following. The space of distributions
is given by

D := { D : C∞0 → R | D is linear and continuous } ,

where C∞0 is the space of smooth1 functions ϕ : R→ R with bounded support.
Note that the space C∞0 has to be equipped with a special topology (see
e.g. [9, IV.12]), otherwise “continuity” is not well defined. The space of
locally integrable functions L1,loc is injectively imbedded into the space of
distributions via the homomorphism

L1,loc 3 f 7→ fD :=

(
ϕ 7→

∫
R
fϕ

)
∈ D.

1arbitrarily often differentiable
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The Dirac impulse at t ∈ R is given by

δt : C∞ → R, ϕ 7→ ϕ(t).

Distributions are arbitrarily often differentiable and the derivative of D ∈ D
is given by

D′ := (ϕ 7→ −D(ϕ′)) ∈ D.

It is easy to see that if f is a differentiable function, then this definition
coincides with the classical derivative, i.e. (f ′)D = (fD)′. Furthermore, the
Dirac impulse is the distributional derivative of the unit step function, i.e.
δt =

(
(1[t,∞))D

)′
. The k-th derivative, k ∈ N, of a distribution D ∈ D is

denoted by D(k).

Definition 1 (Piecewise-smooth distributions, [7]). Let C∞pw be the space of
piecewise-smooth functions, given by all functions α : R → R so that there
exist a locally finite strictly ordered set { ti ∈ R | i ∈ Z } and a family of
smooth functions (αi)i∈Z such that α = αi on [ti, ti+1) for all i ∈ Z.

A distribution D ∈ D is called piecewise-smooth if, and only if, there
exist a piecewise-smooth function f ∈ C∞pw and a locally finite set T ⊆ R such
that

D = fD +
∑
t∈T

Dt,

where, for each t ∈ T , the distribution Dt has support {t}, i.e. there exists
N ∈ N and a0, a1, . . . , aN ∈ R such that

Dt = a0δt + a1δ
′
t + . . .+ aNδ

(N)
t .

The space of all piecewise-smooth distributions is denoted by DpwC∞.
The impulsive part of D = fD +

∑
t∈T Dt is D[·] :=

∑
t∈T Dt and can be eval-

uated at any t ∈ R: D[t] = Dt if t ∈ T and D[t] = 0 otherwise. Furthermore,
D allows for a left- and rightsided evaluation at any t ∈ R: D(t+) = f(t)
and D(t−) = limε↘0 f(t− ε).

Note that the space of piecewise-smooth distribution is the smallest space
containing all piecewise-smooth functions (interpreted as distributions) and
is closed under differentiation. It is shown in [7] that piecewise-smooth func-
tions can be multiplied with each other and that the product rule for deriva-
tives is valid. In particular the product of a piecewise-smooth function (in-
terpreted as a piecewise-smooth distribution) with another piecewise-smooth
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distribution is possible. In the following define, for α ∈ C∞pw and x ∈ DpwC∞ ,

αx := αDx (2)

and analogously for matrix-vector products. Furthermore, it is possible to
restrict piecewise-smooth distributions to intervals, the restriction of some
piecewise-smooth distribution D ∈ DpwC∞ to some interval M ⊆ R is denoted
by DM , for details see [7].

Theorem 2 (Existence and uniqueness of distributional solutions). Consider
the switched DAE (1) with Assumptions S1 and S2. Then for every initial
trajectory x0 ∈ (DpwC∞)n and every initial time t0 ∈ R there exists a unique
x ∈ (DpwC∞)n with

x(−∞,t0) = x0
(−∞,t0)

(Eσẋ)[t0,∞) = (Aσx)[t0,∞)

Proof. Assumption S1 ensures that Eσ, Aσ ∈ (C∞pw)n×n, hence, together with
(2), the switched DAE (1) is indeed a distributional DAE as defined in [7].
Assumption S2 ensures that for each matrix pair (Ep, Ap), p = 1, . . . , N ,
there exists invertible matrices Sp, Tp ∈ Rn×n such that (SpEpTp, SpApTp) =([

I
Np

]
,
[
Jp

I

])
, where Jp ∈ Rnp×np , np ∈ N, is some matrix, Np ∈ R(n−np)×(n−np)

is a strictly lower (and in particular nilpotent) matrix and I is an identity
matrix of appropriate size, [10], see also [5, Thm. 2.7]. Hence, with S = Sσ
and T = Tσ, [7, Cor. 25] completes the proof. qed

Remark 3 (ITP solutions and consistent solutions). Note that, strictly speak-
ing, Theorem 2 does not deal with solutions of the switched DAE (1) because
equation (1) is only valid on the interval [t0,∞) and x is not a global so-
lution. Therefore, in the following “solutions” as in Theorem 2 are called
solutions of the initial trajectory problem (ITP solutions) for (1) with initial
trajectory x0 and initial time t0. Each (global) solution of (1) will be called
in the following consistent solution. Clearly, each consistent solution is also
an ITP solution.

Lemma 4 (Explicit local solution). Let Assumptions S1 and S2 hold and
let x ∈ (DpwC∞)n be some ITP solution of (1) with initial time t0 ∈ R.
Furthermore, let s, t ∈ R with t0 ≤ s < t be such that the switching signal
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σ is constant on [s, t). Then there exists an invertible matrix T ∈ Rn×n, a
matrix J ∈ Rn1×n1, n1 ∈ N, and v0 ∈ Rn1 such that

x(s,t) = T

((
τ 7→ eJ(τ−s)v0

)
D

0

)
(s,t)

(3)

Proof. Let p := σ(s). Since x is an ITP solution, it follows that (Eσẋ)[t0,∞) =
(Aσx)[t0,∞) and, in particular (see also [7, Defn. 8,Prop. 10]),

Epẋ(s,t) = Apx(s,t).

By regularity of the matrix pair (Ep, Ap), there exist invertible matrices
S, T ∈ Rn×n such that (SEpT, SApT ) = ([ I N ] , [ J I ]) where J ∈ Rn1×n1 ,
n1 ∈ N, is some matrix and N ∈ Rn2×n2 , n2 := n− n1, is a nilpotent matrix.
Let ( vw ) := T−1x where v ∈ (DpwC∞)n1 and w ∈ (DpwC∞)n2 , then

v̇(s,t) = Jv(s,t)

Nẇ(s,t) = w(s,t).

It remains to show that a) v(s,t) =
(
(τ 7→ eJ(τ−s)v0)D

)
(s,t)

=: ζ(s,t) for some

v0 ∈ Rn1 and b) w(s,t) = 0.
To show a), it suffices to show that e := (v − ζ)(s,t) = 0, therefore consider

ė(s,t) =
((

(v − ζ)(s,t)

)′)
(s,t)

= v̇(s,t) − ζ̇(s,t) = Jv(s,t) − Jζ(s,t) = Je(s,t).

Note that in the above calculation the derivative together with the inner
restriction will produce Dirac impulses at s and t, however, the outer restric-
tion to the open interval (s, t) deletes these impulses. From the definition
of the distributional restriction it follows (it is important here that an open
interval is considered) that the equation ẋ(s,t) = Je(s,t) is equivalent to

∀ϕ ∈ C∞0 with support in (s, t) : ė(ϕ) = Je(ϕ),

now [11, 6.II.Cor.] yields that e is a constant distribution on (s, t). Choosing
v0 := v(s+), it follows that e = e(s,t) = 0 and a) is shown.
To show b), take the derivative of the equation Nẇ(s,t) = w(s,t), restrict it to
(s, t) and multiply it from the left with N to obtain

N2ẅ(s,t) = Nẇ(s,t).
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Note again, that the differentiation produces Dirac impulses which are deleted
by the restriction to the open interval (s, t). This process can be repeated
and since N is nilpotent it follows that Nn2 = 0 where n2 := n− n1, hence

0 = Nn2w(n2)
(s,t) = Nn2−1w(n2−1)

(s,t) = . . . = Nẇ(s,t) = w(s,t)

and b) is shown. qed

Remark 5. Lemma 4 only states the existence of matrices T ∈ Rn×n and
J ∈ Rn1×n1 such that all ITP solutions of (1) fulfill (3). However, the
proof of Lemma 4 reveals that (3) holds for any invertible matrix T ∈ Rn×n

and any matrix J ∈ Rn1×n1, n1 ∈ N, for which there exists an invertible
matrix S ∈ Rn×n and a nilpotent matrix N ∈ R(n−n1)×(n−n1) such that
(SEσ(s)T, SAσ(s)T ) = ([ I N ] , [ J I ]).

Finally, it should be stressed that the ITP solution x in Lemma 4 is only
considered on the open interval (s, t), in particular nothing is said about the
impulsive part x[s].

2.2. Consistency projectors

The following result was partly mentioned in [12] and [13], a complete
proof is given in [14]. It is crucial for a definition of the so called consis-
tency projectors directly in terms of the original system description; here
BM := { Bx ∈ Rn | x ∈M } and B−1M := { x ∈ Rn | Bx ∈M } for
some matrix B ∈ Rn×n and some set M⊆ Rn.

Theorem 6. Consider a regular matrix pair (E,A) ∈ Rn×n, n ∈ N and let

V0 = Rn, Vi+1 = A−1EVi, i = 0, 1, . . . ,

W0 = {0}, Wi+1 = E−1AWi, i = 0, 1, . . . .

Then there exists i∗ ∈ {0, 1, . . . , n} such that

V0 ⊃ V1 ⊃ . . . ⊃ Vi∗ = Vi∗+1 = . . . =: V∗

W0 ⊂ W1 ⊂ . . . ⊂ Wi∗ =Wi∗+1 = . . . =:W∗

and V∗ ⊕ W∗ = Rn. Furthermore, choose V ∈ Rn×n1, n1 ∈ N, and W ∈
Rn×n−n1 such that imV = V∗ and imW = V∗ then T := [V,W ] and S−1 :=
[EV,AW ] are invertible matrices and

(SET, SAT ) =

([
I

N

]
,

[
J

I

])
,
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where J ∈ Rn1×n1 is some matrix, N ∈ R(n−n1)×(n−n1) is a nilpotent matrix
and I is the identity matrix of appropriate size.

Definition 7. For a regular matrix pair (E,A), let T ∈ Rn×n and n1 ∈ N be
given as in Theorem 6. The consistency projector for the pair (E,A) is

Π(E,A) := T

[
I 0
0 0

]
T−1,

where I ∈ Rn1×n1 is an identity matrix of size n1 × n1.

Note that the consistency projector does not depend on the specific choice
of T = [V,W ], because for any other choice T̂ = [V̂ , Ŵ ] with im V̂ = V∗ and
im Ŵ = W∗ there exists invertible matrices P ∈ Rn1×n1 and Q ∈ Rn2×n2

such that V̂ = V P and Ŵ = WQ, hence

T̂

[
I 0
0 0

]
T̂−1 = [V,W ]

[
P 0
0 Q

] [
I 0
0 0

](
[V,W ]

[
P 0
0 Q

])−1

= [V,W ]

[
I 0
0 0

]
[V,W ]−1 = Π(E,A)

Theorem 8. Consider the switched DAE (1) with Assumptions S1 and S2.
For each p ∈ {1, . . . , N}, let Πp := Π(Ep,Ap) be the consistency projectors as
in Definition 7. Then every ITP solution x ∈ (DpwC∞)n of (1) with initial
time t0 fulfills

∀t ≥ t0 : x(t+) = Πσ(t)x(t−)

Proof. Let p = σ(t) and for the matrix pair (Ep, Ap) choose the matrices
S, T, J,N as in Theorem 6. By Assumption S1 there exists ε > 0 such that
σ is constant on [t, t+ ε), hence Lemma 4 (together with Remark 5) yields

x(t+) = T

(
v0

0

)
for some v0 ∈ Rn1 , n1 ∈ N. Let T−1x(t−) = ( x1

x2 ), where x1 ∈ Rn1 and
x2 ∈ Rn1 . Then

Πσ(t)x(t−) = T

(
x1

0

)
so it remains to show that x1 = v0. Let T−1x = ( vw ) then v(t−) = x1 and
v(t+) = v0 and, since x is an ITP solution of (1),

Epẋ[t,t+ε) = Apx[t,t+ε),
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multiplying from the left with S and substituting x by T ( vw ) yield

v̇[t,t+ε) = Jv[t,t+ε)

It remains to show that v(t−) = v(t+). Restricting the last differential equa-
tion to the point t, i.e. considering the impulsive part of it, gives v̇[t] = Jv[t]
and since v[t] is a distribution with point support there exists a0, a1, . . . , aN ∈
Rn1 , K ∈ N, such that

v[t] = a0δt + a1δ
′
t + . . .+ aKδ

(n),

hence, invoking [7, Prop. 11],

(
v(t+)− v(t−))δt +

K∑
k=0

akδ
(k+1)
t =

K∑
k=0

akδ
(k)
t ,

or

0 =
K+1∑
k=0

bkδ
(k)
t ,

where bN+1 = aN , bk = ak−1−ak, k = N, . . . , 1, and b0 = v(t+)− v(t−)−a0.

Since δt, δ
′
t, . . . , δ

(N+1)
t are linearly independent it follows that 0 = bN+1 =

. . . = b0. Hence 0 = aN = . . . a0 = 0 and finally v(t+) − v(t−) = 0 which
completes the proof. qed

Combining Lemma 4 and Remark 5 with Theorem 8 immediately gives

Corollary 9. Consider the switched DAE (1) with assumptions S1 and S2
and let x ∈ (DpwC∞)n be an ITP solution of (1) with initial time t0 ∈ R.
Then

∀t > t0 : σ(t−) = σ(t+) ⇒ x(t+) = x(t−),

i.e. jumps in the solutions can only occur at switching times or at the initial
time t0.

3. Main results

In general, a solution of (1) will have jumps and impulses. In the follow-
ing, sufficient conditions will be given which ensure that every solution of (1)
under arbitrary switching is impulse free or, additionally, has no jumps.
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Assumptions. For the switched DAE (1) and p = 1, . . . , N , let Πp :=
Π(Ep,Ap) be the consistency projectors as in Definition 7.

A1 ∀p ∈ {1, . . . , N} : Ep(I − Πp) = 0.

A2 ∀p, q ∈ {1, . . . , N} : Ep(I − Πp)Πq = 0.

A3 ∀p, q ∈ {1, . . . , N} : (I − Πp)Πq = 0.

Since the consistency projectors Πp can easily be calculated by a finite
sequence of subspaces (see Theorem 6 and Definition 7) only depending on
the original matrix pairs (Ep, Ap), the Assumptions A1-A3 can be checked
directly in terms of the original data. The following theorems state the
properties of the solutions if one of the Assumptions A1-A3 is fulfilled.

Theorem 10 (A1). Consider the switched DAE (1) satisfying Assumptions
S1, S2 and A1. Then, for every impulse free initial trajectory and any initial
time, the unique ITP solution x ∈ (DpwC∞)n is impulse free, i.e. x[t] = 0 for
all t ∈ R or, in other words, the distributional solution is actually a piecewise-
smooth function.

Proof. Let x ∈ (DpwC∞)n be the ITP solution to some given initial trajectory
and initial time t0 ∈ R and let t0 < t1 < t2 < . . . be the switching times
of the switching signal σ after the initial time t0. Lemma 4 already shows
that x(ti,ti+1) is impulse free for all i ∈ N, hence it remains to show that
x[ti] = 0 for all i ∈ N. Therefore, consider a fixed i ≥ 0 and let p = σ(ti).
For the matrix pair (Ep, Ap), choose matrices S, T, J,N as in Theorem 6, i.e.
(SEpT, SApT ) = ([ I N ] , [ J I ]) and let T−1x = ( vw ). Then x[ti] = 0 if and
only if v[ti] = 0 and w[ti] = 0, where v and w fulfill

v̇[ti] = Jv[ti],

Nẇ[ti] = w[ti].

In the proof of Theorem 8 it was already shown that v̇[ti] = Jv[ti] implies
v[ti] = 0. Hence it remains to show that Nẇ[ti] = w[ti] together with
Assumption A1 implies w[ti] = 0. First observe that Nẇ[ti] = w[ti] implies,
invoking [7, Prop. 11],

N(w[ti])
′ = w[ti]−N

(
w(ti+)− w(ti−)

)
δti ,
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taking the derivative of the equations and multiplying it from the left with
N yields

N2(w[ti])
′′ = N(w[ti])

′ −N2
(
w(ti+)− w(ti−)

)
δ′ti

= w[ti]−N
(
w(ti+)− w(ti−)

)
δti −N2

(
w(ti+)− w(ti−)

)
δ′ti .

Repeating this process yields, since N is nilpotent,

0 = Nn1(w[ti])
(n1) = w[ti]−

n1−1∑
k=0

Nk+1
(
w(ti+)− w(ti−)

)
δ
(k)
ti

or

w[ti] =

n1−1∑
k=0

Nk+1
(
w(ti+)− w(ti−)

)
δ
(k)
ti .

Assumption A1 and Theorem 8 yield

0
A1
= Ep(I − Πp)x(ti−)

Thm. 8
= Ep

(
(x(ti−)− x(ti+)

)
= S

[
I 0
0 N

](
v(ti−)− v(ti+)
w(ti−)− w(ti+)

)
and, in particular,

0 = N
(
w(ti−)− w(ti+)

)
, (4)

hence w[ti] = 0. qed

Remark 11. Lemma 4 together with (4) reveals that Assumption A1 is equiv-
alent to the condition that all matrix pairs (Ep, Ap), p = 1, . . . , N , have index
one or less [5, Def. 2.9].

Theorem 12 (A2). Consider the switched DAE (1) satisfying Assumptions
S1, S2 and A2. Then every consistent solution x ∈ (DpwC∞)n of (1) is
impulse free, i.e. x[t] = 0 for all t ∈ R.

Proof. Let x ∈ (DpwC∞)n be some consistent solution of (1) for some switch-
ing signal σ ∈ S. Using the same notation as in the proof of Theorem 10 the
proof can be repeated identically up to where Assumption A1 was used. Let
q = σ(ti−) and choose for the matrix pair (Eq, Aq) the matrices Sq, Tq, Jq, Nq

and n1,q ∈ N as in Theorem 6 then Lemma 4 applied to the interval (ti−ε, ti)
for sufficiently small ε > 0 yields that there exists some vq ∈ Rn1,q such that

x(ti−) = Tq

[
vq
0

]
= Tq

[
I 0
0 0

]
T−1
q Tq

[
vq
0

]
= Πqx(ti−).
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Therefore, Assumption A2 implies

0 = Ep(I − Πp)Πqx(ti−) = Ep(I − Πp)x(ti−)

and the claim follows as in the proof of Theorem 10. qed

Remark 13. In general Assumption A2 is independent of the index of the
matrix pairs (Ep, Ap), p = 1, . . . , N . However, if the index of one matrix
pair (Eq, Aq), q ∈ {1, . . . , N}, is zero, i.e. Eq is invertible, then the consis-
tency projector Πq is the identity matrix and Assumption A2 is equivalent to
Assumption A1.

Theorem 14 (A3). Consider the switched DAE (1) satisfying Assumptions
S1, S2 and A3. Then every consistent solution x ∈ (DpwC∞)n of (1) is
impulse free and has no jumps, i.e. x[t] = 0 and x(t−) = x(t+) for all
t ∈ R or in other words, the distribution x is actually a absolutely continuous
function.

Proof. Since Assumption A3 implies Assumption A2, Theorem 12 already
shows that all solutions of (1) are impulse free, hence it remains to show
that all solutions have no jumps, i.e. every solution x ∈ (DpwC∞)n fulfills
x(t−) = x(t+) for all t ∈ R. Let σ ∈ S be the switching signal of (1),
x ∈ (DpwC∞)n an arbitrary solution of (1), t ∈ R, q := σ(t−) and p := σ(t+).
If p = q then Corollary 9 already shows that x(t−) = x(t+), hence it remains
to consider p 6= q. Identically as in the proof of Theorem 12 it follows that
Πqx(t−) = x(t−), hence Assumption A3 together with Theorem 8 yield

0 = (I − Πp)Πqx(t−) = (I − Πp)x(t−) = x(t−)− x(t+).

qed

4. Example

As an example consider a simple circuit with a switch as depicted in
Figure 1. The switch in the circuit can be in three different position: 1) Left
position, the capacitor is connected with the voltage source and is charged, 2)
middle position, the switch is between the two connections, 3) right position,
the capacitor is short-circuited. For the analysis the input source is assumed
to be constant and can therefore be included as state variable described by
the simple equation u̇ = 0. Furthermore, Cu̇C = iC and uR = RiR hold
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Figure 1: Example circuit with switch in three different positions.

independently of the switch. If the switch is in the left position, then the
two equations iC = iR and uc + uR + u = 0 hold, if the switch is in the
middle position, then iR = 0 = iC and if the switch is in the right position
then iR = 0 and uC = 0. Writing x = (u, uC , uR, iC , iR) the corresponding
switched system (1) is described by some switching signal σ : R → {1, 2, 3}
satisfying Assumption S1 and the matrix pairs (E1, A1), (E2, A2), (E3, A3)
given by

E1 = E2 = E3 =

(
1 0 0 0 0
0 C 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
and

A1 =

(
0 0 0 0 0
0 0 0 1 0
0 0 1 0 −R
0 0 0 1 −1
1 1 1 0 0

)
, A2 =

(
0 0 0 0 0
0 0 0 1 0
0 0 1 0 −R
0 0 0 1 0
0 0 0 0 1

)
, A3 =

(
0 0 0 0 0
0 0 0 1 0
0 0 1 0 −R
0 1 0 0 0
0 0 0 0 1

)
.

Constructing the subspaces as in Theorem 6 yields the consistency projectors

Π1 =

( 1 0 0 0 0
0 1 0 0 0
−1 −1 0 0 0
−1/R −1/R 0 0 0
−1/R −1/R 0 0 0

)
, Π2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
, Π3 =

(
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
.

For Assumption A1 the condition Ep(I − Πp) = 0, p = 1, 2, 3, must be
checked:

E1(I − Π1) = 0, E2(I − Π2) = 0, E3(I − Π3) =

(
0 0 0 0 0
0 C 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
.

Hence Assumption A1 is not fulfilled and impulses in the solution cannot be
excluded. But it is still possible that impulses cannot occur if only consistent
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solutions are considered, for this, Assumption A2 must be verified, i.e. Ep(I−
Πp)Πq = 0 for p, q = 1, 2, 3 must be checked (note that for p = q the condition
is always fulfilled because Π2

p = Πp):

E1(I−Π1)Π2 = 0, E1(I−Π1)Π3 = 0, E2(I−Π2)Π1 = 0, E2(I−Π2)Π3 = 0,

E3(I − Π3)Π1 =

(
0 0 0 0 0
0 C 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
, E3(I − Π3)Π2 =

(
0 0 0 0 0
0 C 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
.

Therefore, impulses cannot be excluded. However, if the switch is not allowed
to move into the right position, i.e. σ : R → {1, 2}, then Assumptions A1
and A2 are fulfilled and no impulses can occur. In this case one can also
check condition A3:

(I − Π1)Π2 =

( 0 0 0 0 0
0 0 0 0 0
1 1 0 0 0

1/R 1/R 0 0 0
1/R 1/R 0 0 0

)
, (I − Π2)Π1 =

( 0 0 0 0 0
0 0 0 0 0
−1 −1 0 0 0
−1/R −1/R 0 0 0
−1/R −1/R 0 0 0

)
.

So jumps cannot be excluded.

5. Conclusions

For switched differential algebraic equations a suitable concept of solu-
tions was introduced. Solutions are so called piecewise-smooth distributions
which, roughly speaking, consists of a sum of piecewise-smooth functions and
impulses. The main result of this paper are sufficient conditions which ensure
that the solutions are impulse free and/or have no jumps. These conditions
are based on so called consistency projectors which can be calculated easily
in terms of the original data. Furthermore, the conditions are independent
of the specific switching signal and guarantee impulse/jump freeness under
arbitrary switching. However if more is known about the switching signal
it might be possible in future research to refine the results. Furthermore,
throughout this paper it was assumed that all matrix pairs are regular, it
is also of interest whether similar results can be obtained for non-regular
matrix pairs.
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