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Zusammenfassung 

ZUSAMMENFASSUNG 

Eya1 ist als Komponente des gene-regulatorischen Pax-Eya-Six-Dach-

Netzwerkes essentiell für die Entwicklung unterschiedlichster Organe in 

Wirbeltieren. Mutationen im menschlichen EYA1-Gen sind eng verknüpft mit 

erblich bedingten Entwicklungsstörungen des Menschen, wie zum Beispiel BOR 

(Branchio-Oto-Renales)- und BO (Branchio-Oto)-Syndrom. BOR-Patienten leiden 

unter Fehlentwicklungen des Ohres, der Kiemenbögen und der Niere, während bei 

BO-Patienten die Niere nicht betroffen ist. Die Mechanismen, durch welche EYA1-

Mutationen zu diesen Krankheiten führen, sind bisher nur schlecht verstanden. 

In dieser Arbeit wurden mehrere krankheitsassoziierte EYA1-Mutationen im 

Hinblick auf ihren Effekt auf die Funktion des Proteins analysiert. Dabei wurde 

gezeigt, dass einige der Mutationen zu einem beschleunigten proteasomalen 

Abbau des Proteins in Säugerzellen führen. Der beschleunigte Abbau des Eya1-

Proteins und der damit verbundene Verlust an Proteinmenge und -aktivität 

könnten einen neuen Mechanismus für die Entstehung von EYA1-bedingten 

Krankheitsbildern darstellen. Weitere Analysen ergaben, dass die Ubiquitinierung 

im C-Terminus von Eya1 erfolgt und durch die Interaktion mit Six1 inhibiert wird. 

Dies deutet darauf hin, dass Six1 die Stabilität des Eya1-Proteins reguliert. 

Ein Hauptziel dieser Arbeit war die Identifizierung von neuen Eya1-interagierenden 

Proteinen. Mit Hilfe des Hefe-Zwei-Hybrid-Systems wurden Sipl1 und Rbck1 als 

Interaktionspartner identifiziert und in vitro bzw. durch Ko-Immunopräzipitation aus 

Säugerzellen verifiziert. Als Bindestellen wurden der C-terminus von Eya1 und die 

Ubl-Domäne von Sipl1 bzw. Rbck1 bestimmt. Im Zebrafisch konnten Orthologe 

von Sipl1 und Rbck1 identifiziert werden. Es wurde gezeigt, dass Sipl1 und Rbck1 

in verschiedenen embryonalen Geweben der Maus und des Zebrafisches mit 

Eya1 koexprimiert sind. Interessanterweise führte der Knockdown eines Sipl1-

Orthologs zu einem BOR-Syndrom-ähnlichen Phänotyp des Zebrafisches. Diese 

Ergebnisse deuten auf eine physiologische Relevanz der Eya1-Sipl1/Rbck1-

Interaktion während der Organogenese hin und wurden durch die Identifizierung 

von SIPL1- und RBCK1-Mutationen in BOR-Patienten unterstrichen. Eine erste 

mechanistische Grundlage lieferten Transaktivierungsstudien, die zeigten, dass 

Sipl1 und Rbck1 die Funktion von Eya-Proteinen als Kofaktoren der Six-

Transkriptionsfaktoren verstärken. 
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Abstract 

ABSTRACT 

Eya1 is a component of the gene-regulatory Pax-Eya-Six-Dach network and 

essential for the development of various organs in vertebrates. Mutations in the 

human EYA1 gene are associated with several congenital disorders, as for 

example BOR (branchio-oto-renal) and BO (branchio-oto) syndrome. BOR 

patients suffer from severe malformations of the ear, the branchial arches and the 

kidneys, while in BO patients the kidney is not affected. The mechanisms by which 

EYA1 mutations cause human disease are only poorly understood. 

Several disease-associated EYA1 mutations were characterized in this work 

regarding their effect on Eya1 protein function. It was shown that some of the 

mutations lead to enhanced proteasomal degradation of the protein in mammalian 

cells. Loss of Eya1 activity due to loss of Eya1 protein might represent a so far 

unknown mechanism for the onset of EYA1-associated diseases. Further analyses 

revealed that ubiquitination occurs in the C-terminus of Eya1 and is inhibited by 

the interaction with Six1. These findings indicate that Six1 is involved in the 

regulation of Eya1 protein stability. 

A central aim of this work was the identification of novel Eya1-interacting proteins. 

Using yeast two-hybrid analysis two novel interaction partners were identified: 

Sipl1 and Rbck1. The interactions were confirmed in vitro and by co-

immunoprecipitation from mammalian cells. Binding studies demonstrated that the 

interaction is mediated via the C-terminal part of Eya1 and the Ubl domain of Sipl1 

or Rbck1, respectively. Furthermore, orthologs of Sipl1 and Rbck1 were identified 

in zebrafish. It was shown that Sipl1 and Rbck1 are co-expressed with Eya1 in 

several organs during embryogenesis of both mouse and zebrafish. Interestingly, 

the knockdown of one Sipl1 ortholog in zebrafish led to a BOR syndrome-like 

phenotype. The results of expression studies and knockdown analyses indicate 

that, indeed, the Eya1-Sipl1/Rbck1 interaction is of physiological relevance in the 

context of organ development. This hypothesis was further underlined by the 

identification of SIPL1 and RBCK1 mutations in patients suffering from BOR 

syndrome. A first mechanistic basis was provided by results from transactivation 

studies which demonstrated that Sipl1 and Rbck1 enhance the function of Eya 

proteins to act as co-activators for the Six transcription factors. 
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Introduction 

1 INTRODUCTION 

Development of a multicellular organism from a single fertilized egg is a 

fascinating process: One single cell gives rise to hundreds of different cell types 

which are precisely organized into complex tissue and organ structures. In order to 

gain a deeper insight into the associated processes, developmental biology 

focuses on deciphering the underlying mechanisms. Nowadays, it is known that 

development of the body plan of a multicellular organism is controlled by large 

gene regulatory networks. During the evolution of body plans, the architecture of 

these gene-regulatory networks has changed, while the basic principles have been 

conserved (Davidson and Erwin, 2006). One of these regulatory networks is the 

Pax-Eya-Six-Dach network, which has been first identified in the context of 

Drosophila compound eye development. During the recent years, ample evidence 

accumulated that this network is conserved throughout evolution and re-employed 

in the development of various organs in different organisms.  

1.1 THE PAX-EYA-SIX-DACH NETWORK 

Development of the compound eye in Drosophila is mediated by several genes, 

such as twin of eyeless (toy), eyeless (ey), sine oculis (so), eyes absent (eya), and 

dachshund (dach). Toy, ey and so encode transcription factors, while eya and 

dach encode transcriptional co-factors. The genes act together in a regulatory 

gene network in which toy controls ey, ey activates eya and so, which in turn 

regulate ey and activate dach (Halder et al., 1995; Chen et al., 1997; Wawersik 

and Maas, 2000). It has been shown that mutation in any of these genes leads to 

malformation or even complete loss of the Drosophila eye. Furthermore, ectopic 

expression of toy and ey leads to the formation of ectopic eyes (Halder et al., 

1995; Czerny et al., 1999). Misexpression of eya or dach induces ectopic eye 

formation of smaller size especially in the head region of the fly, which is markedly 

enhanced by ectopic co-expression of eya and so or eya and dach. The reason for 

this is the synergistic action of the respective proteins, which have been shown to 

physically interact with each other in yeast two-hybrid system (Bonini et al., 1997; 

Chen et al., 1997; Pignoni et al., 1997). Vertebrate homologs of toy and ey (Pax6), 

so (Six1-6), eya (Eya1-4), and dach (Dach1-2) have been identified (reviewed in 
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Introduction 

Kawakami et al., 2000). Interestingly, the vertebrate homologs Pax6, Six3, 

Optix2/Six6, Eya1 and Eya2 are co-expressed during eye development in mice, 

suggesting that the gene network operating in Drosophila is also conserved in 

vertebrate eye development, despite the differences in eye morphology and the 

mode of development between these two species (Halder et al., 1995; Chow and 

Lang, 2001; Lagutin et al., 2003). In addition to that, members of the Pax, Eya, Six 

and Dach gene families show overlapping expression patterns in several other 

developing organs of vertebrate embryos, implicating that the Pax-Eya-Six-Dach 

network plays important roles also in other developmental contexts (Fig. 1.1). One 

of the best studied examples is vertebrate muscle development, which is regulated 

by the concerted action of Pax3 (a Pax6 homolog), Eya2, Six1, and Dach2 in chick 

myogenesis. All genes are co-expressed in the developing somites, which are 

precursors of the axial skeleton and all skeletal muscles (Williams and Ordahl, 

1994; Oliver et al., 1995; Xu et al., 1997; Mishima and Tomarev, 1998; Heanue et 

al., 1999). Similar to the Drosophila homologs, Eya2 and Six1, as well as Eya2 

and Dach2, act synergistically to regulate expression of Pax3 and the process of 

myogenic differentiation, which is mediated by direct interactions between the 

respective proteins. 

 
Fig. 1.1. The Pax-Eya-Six-Dach network is conserved throughout evolution in different 
developmental contexts. Comparison of Pax-Eya-Six-Dach networks involved in Drosophila eye 
development (left panel) and vertebrate muscle development (right panel). Arrows indicate 
induction pathways. Six and Eya or Eya and Dach homologs form a complex, and show synergistic 
action (modified from Kawakami et al., 2000)). 

To clarify the molecular mechanisms by which members the Pax-Eya-Six-Dach 

network regulate organogenesis, it is important to understand the functions of the 

respective proteins. Activity of a protein can be regulated by post-translational 
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modifications or by interactions with other proteins. In this regard, especially 

studies on Eya proteins revealed surprising features concerning their function and 

mode of regulation, as described in the following section. 

1.2 EYA DOMAIN STRUCTURE AND FUNCTION 

Homologs of Drosophila eya have been found in several invertebrate and 

vertebrate species, including C. elegans, Xenopus, chick, mouse, and human, as 

well as in higher plants as Oryza sativa and Arabidopsis thaliana. All of them have 

been shown to share a common protein structure consisting of two domains: an N-

terminal domain and the C-terminally located Eya domain (Fig. 1.2 A).  

 
Fig. 1.2. Eya protein domain structure and function. (A) Eya protein domain structure and 
function compared between animals and higher plants. (B) Conservation of MAPK phosphorylation 
sites between Drosophila and mouse Eya homologs. Asterisks indicate targets for phosphorylation 
(modified from Hsiao et al., 2001). (C) Eya proteins of different species share a conserved catalytic 
motif and a metal-binding motif similar to that of phosphatases of the HAD (haloacid dehalogenase) 
family. Asterisks indicate conserved residues (modified from Li et al., 2003). Details are described 
in the text. 

In contrast to the plant Eya homologs, which possess only a very short N-terminal 

domain of about 20 amino acids, animal Eya homologs have an N-terminus of 

240-490 amino acids length, suggesting that the protein function located within this 

region was gained later during evolution (Xu et al., 1997; Takeda et al., 1999; 

Silver et al., 2003). The N-terminal domains of animal Eya homologs are highly 

divergent. They consist of 35-40% proline, serine and threonine residues and 
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resemble the proline-serine-threonine (PST) transactivation domains found in 

other transcription factors (Mermod et al., 1989; Theill et al., 1989). Eya proteins 

do not possess a DNA binding domain. The Eya domain is highly conserved in 

both length (271-274 amino acids) and sequence between all Eya family 

members. All described interaction partners of Eya bind to this domain. Using 

yeast two-hybrid and GST pulldown analyses, Drosophila Eya has been shown to 

physically interact with So and Dach. It was proposed that complex formation 

mediates the synergistic action of the respective proteins during Drosophila eye 

development (Bonini et al., 1997; Chen et al., 1997; Pignoni et al., 1997). The Eya-

So interaction also occurs between the respective mouse homologs, as shown by 

in vitro analysis. In contrast to Drosophila Eya, which is a nuclear protein, 

vertebrate homologs are localized in the cytoplasm. Interaction with Six leads to 

their translocation into the nucleus, where Six mediates DNA-binding and the two 

proteins synergize in activation of gene expression (Ohto et al., 1999). Natural 

target genes of the vertebrate Eya-Six complex are for example Six2, Sall1, and 

Myogenin. Activation of Six2 and Sall1 expression have been shown to be 

essential for proper kidney development in mouse, whereas activation of 

Myogenin is required for muscle development (Spitz et al., 1998; Brodbeck, 2003; 

Chai et al., 2006). Very recent results showed that expression of Six2 during 

kidney development is also activated by complex formation of Hox11, Eya1 and 

Pax2 (Gong et al., 2007). In contrast to Drosophila Eya and Dach, the interaction 

between the respective mouse homologs could be detected in mammalian two-

hybrid assays, but not in GST pulldown experiments, leading to the conclusion that 

the interaction is not direct, but rather mediated through other proteins, such as 

the co-activator CBP (CREB binding protein) (Ikeda et al., 2002). Furthermore, the 

interactions of mammalian Eya with two inhibitory Gα subunits, Gαi and Gαz, are 

quite poorly understood. Eya2 has been isolated as an interaction partner of Gαz 

in a yeast two-hybrid screen using constitutively active Gαz as bait. The interaction 

was confirmed in vitro, and further analysis implicated that binding to Gα subunits 

prevents Six-mediated translocation of Eya2 into the nucleus, and hence, Six-

Eya2-mediated transactivation (Fan et al., 2000). Conversely, interaction with 

Eya2 affects Gαi function in vitro by relieving Gαi2 mediated inhibition of adenylyl 

cyclase. The physiological relevance of this effect remains to be determined 

(Embry et al., 2004). 
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Several studies indicated that Eya proteins directly link signal transduction events 

and regulation of gene expression. In Drosophila, Eya function is positively 

regulated via phosphorylation at two MAPK (mitogen-activated protein kinase) 

phosphorylation sites located within in the N-terminal domain. In vivo, Eya 

phosphorylation by ERK (extracellular signal-regulated kinase) significantly 

enhanced its ability to induce ectopic eyes. A possible mechanism was provided 

by studies in cell culture showing that MAPK activation can potentiate Eya-

mediated transactivation (Hsiao et al., 2001; Silver et al., 2003). Examination of 

mammalian Eya protein sequences revealed similarly located MAPK 

phosphorylation sites in mouse and human Eya1, Eya2, and Eya4, but not in Eya3 

(Fig. 1.2 B). However, phosphorylation of these sites, and associated regulation of 

mammalian Eya, still needs to be shown. Moreover, in 2003, three independent 

groups discovered the function of Eya proteins as phosphatases in addition to their 

function as a co-activator of transcription, which was a unique combination of 

activities at this time point (Li et al., 2003; Rayapureddi et al., 2003; Tootle et al., 

2003). All groups performed sequence analyses showing that a consensus of two 

sequence motifs corresponding to the haloacid dehalogenases (HAD) family of 

phosphohydrolases is conserved in all Eya family members (Fig. 1.2 C). However, 

results regarding the specificity of Eya phosphatases differed between the three 

groups. Rayapureddi et al. and Tootle et al. demonstrated specificity of Eya 

towards phosphotyrosine peptides, whereas Li et al. claimed that it has dual 

specificity dephosphorylating both phosphotyrosine and phosphoserine/threonine 

peptides. Two potential substrates of Eya phosphatase activity have been 

identified in vitro: Eya itself and RNA polymerase II (Li et al., 2003; Tootle et al., 

2003). The physiological importance of this novel function of Eya proteins is not 

fully understood. It has been shown that the phosphatase activity of Eya is 

required to promote normal eye development in Drosophila in vivo (Rayapureddi et 

al., 2003). Furthermore, some EYA1 mutations, which are associated with human 

disease, result in loss of phosphatase activity (Mutsuddi et al., 2005; Rayapureddi 

and Hegde, 2006). However, in vivo substrates have not been identified so far. 

The following sections are focusing on mammalian Eya1, which is one homolog of 

Drosophila eya. The facts that Eya1 knockout mice show a severe phenotype 

affecting the development of several organs, and mutations in human EYA1 are 
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associated with several congenital disorders point to an essential role for this gene 

and the respective protein during mammalian organogenesis.  

1.3 ROLE OF EYA1 DURING MAMMALIAN ORGAN 
DEVELOPMENT 

Eya1 has been shown to be essential for the development of various organs in 

mammals, as for example the kidney. Early kidney development in mammals 

serves as a classical model of organogenesis and is described in the following 

section.  

1.3.1 Mammalian kidney development 

Development of the kidney in mammals proceeds in three successive steps from 

the initial pronephros via the mesonephros to the metanephros which is the adult 

kidney (Fig. 1.3). 

 
Fig. 1.3. Scheme of kidney development in mammals. (A) Pronephros and the caudally 
migrating Wolffian (or nephric) duct. (B) Degeneration of the pronephros and formation of the 
mesonephric tubules. (C) The outgrowth of the ureteric bud into the metanephric mesenchyme 
induces formation of the metanephros (modified from Gilbert and Singer, 2006). 

All three stages are characterized by mesenchymal-to-epithelial transformation of 

cells that are derived from the intermediate mesoderm. Bouchard et al. 

demonstrated that formation of both the pronephros and the mesonephros 
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depends on the expression of Pax2 and Pax8. In mouse embryos lacking both 

Pax2 and Pax8, the intermediate mesoderm is unable to undergo the initial 

mesenchymal-to-epithelial transitions which are required for the formation of the 

nephric duct (Bouchard et al., 2002). The expression of both Pax genes is induced 

by yet unknown signals from the adjacent paraxial mesoderm (Mauch et al., 2000). 

Development of the adult metanephros depends on the reciprocal inductive 

interactions of two tissues, the metanephric mesenchyme and the nephric (or 

Wolffian) duct. The metanephric mesenchyme arises from the posterior part of the 

intermediate mesoderm. The Wolffian duct arises initially as the pronephric duct in 

the intermediate mesoderm early in development (day 8 in mouse). In mice, 

development of the metanephros starts at embryonic day 10.5 by secretion of 

Gdnf (glial cell line-derived neurotrophic factor) from the metanephric 

mesenchyme. Gdnf is a member of the TGFβ (transforming growth factor β) family 

and acts on the receptor tyrosine kinase c-Ret which is presented by the epithelial 

cells of the Wolffian duct (Trupp et al., 1996). Activation of the receptor by binding 

of Gdnf induces outgrowth of the ureteric bud into the metanephric mesenchyme, 

which subsequently induces condensation of the metanephric mesenchyme and 

differentiation into the nephrons of the mammalian kidney. In Gdnf null mice, the 

initial interaction between the metanephric mesenchyme and the Wolffian duct 

does not occur and the mesenchymal cells undergo apoptosis (Moore et al., 1996; 

Pichel et al., 1996; Sanchez et al., 1996). Gene knockout experiments have 

identified a number of factors that regulate Gdnf expression in the kidney 

mesenchyme. Most of these regulators are transcription factors, although deletion 

of genes coding for signaling molecules, such as Gdf1 (growth differentiation 

factor 1), can also result in loss of Gdnf expression (Esquela and Lee, 2003). 

Recent studies suggested that the transcriptional co-activator Eya1 acts as key 

regulator specifically for the determination of the metanephric mesenchyme and 

ureteric bud growth by modulating the levels of Gdnf expression (Sajithlal et al., 

2005). Eya1 knockout mice show a similar phenotype as Gdnf knockout animals 

with failure of ureteric bud outgrowth and apoptosis of the metanephric 

mesenchyme (Xu et al., 1999). Gdnf expression, as well as Six1 and Six2 

expression, is lost. Several independent studies indicated that Eya1 is directly 

involved in the activation of Gdnf. Brodbeck et al. demonstrated that the Eya1-Six2 

complex directly regulates the Gdnf promoter (Brodbeck, 2003). In contrast to this, 
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a recent study by Self et al. demonstrated that in Six2 null mice Gdnf expression is 

retained. Six2-deficient mice show premature and ectopic differentiation of 

mesenchymal cells into epithelial cells which results in severe kidney hypoplasia. 

Based on these observations Self et al. claimed that Six2 is required for 

maintaining the mesenchymal progenitor population in an undifferentiated state, 

which allows continuous growth of the kidney (Self et al., 2006). However, Eya1 

has also been described to directly activate Gdnf expression after complex 

formation with the transcription factors Pax2 and Hox11 (Gong et al., 2007). In line 

with these data, inactivation of Pax2, as well as inactivation of all three Hox11 

paralogs Hoxa11, Hoxc11 and Hoxd11, leads to loss of Gdnf expression (Brophy 

et al., 2001; Wellik et al., 2002). In addition to that, in Hox11 null mice, also Six2 

expression is reduced, whereas Pax2, Wt1 (Wilms' tumor suppressor) and Eya1 

expression are unaffected (Wellik et al., 2002).  

The role of several other genes is not completely understood. Wt1-, Sall1- and 

Six1- deficient mice all exhibit a phenotype similar to that of the Gdnf knockout 

mice, even though Gdnf expression is still detectable (Kreidberg et al., 1993; 

Nishinakamura et al., 2001; Xu et al., 2003). An explanation for this might be that 

Gdnf expression is present but reduced to a level which is not sufficient for 

metanephric development. In line with this assumption, it has been described for 

Six1 and Sall1 null mice that the metanephric mesenchyme and, thus, the 

expression domain of Gdnf is reduced in size (Nishinakamura et al., 2001; Xu et 

al., 2003). Further examination of Six1 null mice revealed that expression of Pax2, 

Six2 and Sall1 is markedly reduced, whereas Eya1 expression is normal (Xu et al., 

2003). Recently, Chai et al. demonstrated that Six1 directly activates the Sall1 

promoter and this activation is significantly enhanced by interaction with Eya1 

(Chai et al., 2006). Interestingly, in Six1/Six4 double mutant animals, Gdnf, as well 

as Pax2 and Pax8 expression are completely absent. The phenotype of Six1/Six4 

knockout animals is more severe than the phenotype of each of the single 

knockouts, indicating that Six1 and Six4 have redundant roles in kidney 

development (Kobayashi et al., 2007).  

Furthermore, Kume et al. demonstrated that Foxc1 (forkhead box C1) is essential 

for the positioning of the ureteric bud (Kume et al., 2000). During embryogenesis 

of Foxc1 knockout mice, ectopic mesonephric tubules and ectopic ureteric buds 

are formed more anteriorly which results in duplex kidneys and double ureters. 
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Kume et al. suggested that this phenotype is due to abnormal expression of Gdnf 

and Eya1, since also the region of Eya1 and Gdnf expression is extended 

anteriorly in Foxc1-deficient mice. They hypothesized that Foxc1 acts as a 

repressor of Eya1 and Gdnf (Kume et al., 2000).  

To further complicate the issue, some of the identified factors seem to regulate 

expression at the post-transcriptional level. In Wt1 knockout mice for example, 

Pax2 expression can be detected at the mRNA level but not at the protein level 

(Kreidberg et al., 1993; Donovan et al., 1999). It was suggested that Wt1 acts as a 

splicing factor regulating Pax2, and perhaps also Gdnf expression (Englert, 1998). 

An overview of the gene-regulatory network which mediates the development of 

the adult metanephros in mammals is given in Fig. 1.4. The model is based on the 

described results from knockout analysis and is, presumably, not complete yet. 

 
Fig. 1.4. A complex genetic network regulates initiation of mammalian kidney development 
in the metanephric mesenchyme. The model is based on knockout studies in mice. Arrows 
represent loss of gene expression in the respective knockout mouse, dashed arrow represents 
possible post-transcriptional effect, and inhibitory lines indicate repression. (Brodbeck and Englert, 
2004) 

Taken together, the expression of members of the Pax-Eya-Six-Dach network is 

the basis for development of the adult kidney. However, in contrast to Drosophila 

eye development the network has been expanded by additional factors to allow a 

tight regulation of nephrogenesis.  
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1.3.2 Eya1-knockout studies in mice 

Analysis of an Eya1-specific knockout mouse by Xu et al. revealed an essential 

role for Eya1 not only in the development of the kidney, but also in the 

development of several different organs, as ear, thymus, thyroid gland, parathyroid 

gland, and skeleton (Xu et al., 1999; Xu et al., 2002). The phenotype of Eya1-

heterozygous mice resembled the symptoms of human patients suffering from 

BOR syndrome. Eya1 heterozygotes showed renal abnormalities, including renal 

hypoplasia and unilateral agenesis, at a low penetrance. Furthermore, Eya1 

heterozygosity led to conductive hearing loss due to abnormal sound conduction 

through the middle ear. Additionally, inner ear abnormalities were detected in 

some heterozygous mice. In contrast, all Eya1 homozygous mice died at birth 

showing severe craniofacial and skeletal defects, and absence of thymus, 

parathyroid glands, ears and kidneys. A more detailed investigation of these 

defects revealed that the otic anomalies involved structures of the inner, middle 

and outer ear. In the inner ear, the otic vesicle forms but fails to develop further 

due to abnormal induction of apoptosis. Analysis of the molecular effects of the 

Eya1 mutations regarding the expression of Pax and Six family genes 

demonstrated that expression of the corresponding Pax gene (Pax2 and Pax8 in 

the ear) was not affected, whereas expression of the respective Six gene (Six1 in 

the ear) could not be detected. Conclusively, as described for kidney development, 

also the formation of the ear seems to involve a Pax-Eya-Six-Dach network similar 

to that of Drosophila eye development. In both kidney and ear, Dach homologs 

were identified but there is no data on a possible role of the homologs in the 

development of these organs. This suggests that other genes might be involved 

(Xu et al., 1999). Similar results, as described for ear and kidney, were obtained 

for the role of Eya1 during organogenesis of thymus, parathyroid and thyroid, 

implicating that Eya1 is also critical for the regulation of early inductive events 

involved in the morphogenesis of these organs (Xu et al., 2002). The importance 

of Eya1 in mammalian organogenesis was further underlined by the identification 

of disease-associated EYA1 mutations in humans. 
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1.4 ASSOCIATION OF EYA1 WITH HUMAN DISEASE 

Mutations in the human EYA1 gene have been associated with several human 

diseases including branchio-oto (BO) and branchio-oto-renal (BOR) syndrome, as 

well as congenital cataracts and ocular anterior segment anomalies. BOR 

syndrome is an autosomal-dominant disorder characterized by branchial arch 

anomalies, hearing loss and kidney defects (Melnick et al., 1975; Melnick et al., 

1976; Fraser et al., 1978). BO syndrome is a related disorder without renal 

anomalies. BOR/BO syndrome exhibits low penetrance and variable expressivity. 

It occurs with a prevalence of 1:40000 in the general population and is responsible 

for 2% of profound deafness in children (Fraser et al., 1980). Up to now more than 

50 different mutations of EYA1 have been associated with BOR syndrome 

including frame shift or nonsense, missense, splice site, and complex mutations 

involving large deletions or chromosomal rearrangements. There is no single 

common mutation. Analysis of the molecular mechanisms, by which mutations in 

EYA1 lead to the disease, showed that several different aspects of Eya1 protein 

function can be affected, as for example the phosphatase activity, the interactions 

of Eya1 with Six, Dach, and Gα subunits, or both. Some mutations result in an 

altered protein conformation thereby disturbing interactions mediated via the Eya 

domain (Ozaki et al., 2002; Mutsuddi et al., 2005; Rayapureddi and Hegde, 2006). 

However, many of the BOR-associated EYA1 mutations do not affect any of these 

functions, suggesting that yet unknown functions or interactions of the Eya1 

protein might be involved. 

Interestingly, mutations in two additional genes, SIX1 and SIX5, which both code 

for interaction partners of Eya1 have been shown to be associated with BOR 

syndrome as well (Ruf et al., 2004; Hoskins et al., 2007). The fact that most of the 

BOR-associated mutations in these genes abolish the interaction of the 

corresponding protein with Eya1 further underlines the central role of Eya1 or the 

Pax-Eya-Six-Dach network in organogenesis. 
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1.5 AIM OF THIS WORK 

A central aspect of this work was to achieve a more detailed insight into the 

mechanisms by which Eya1 regulates mammalian organogenesis. At the 

beginning of this study, no antibodies for detection of endogenous Eya1 protein 

were available. In the course of this work, two Eya1-specific antibodies, which 

were generated in our lab, had to be further characterized regarding specificity and 

detection of endogenous Eya1 using different cell lines. 

Another part of this work focused on the analysis of several BOR-associated 

mutations regarding their effect on Eya1 protein function. 

Furthermore, Eya1 is essential for the development of several different 

mammalian organs, as for example ears and kidneys. The development of these 

organs is affected in human BOR syndrome which is mainly caused by mutations 

in EYA1. It is known that Eya1 acts as a co-factor for the Six transcription factors. 

Also mutations in SIX1 lead to BOR syndrome due to loss of interaction with Eya1. 

In mice, Eya1 and Six1 are co-expressed in the developing ears and kidneys, and 

both Eya1 and Six1 null mice fail to form these organs. Conclusively, these results 

suggest that the complex formation of Eya1 and Six1 is crucial for the 

development of both ears and kidneys (Xu et al., 1999; Laclef et al., 2003). It is 

therefore predictable that additional factors bind to the complex, presumably to 

Eya1, and mediate the specification of organ identity (Fig. 1.5). 

 
Fig. 1.5. Model for Eya1-Six1 transactivation complex involved in mammalian ear and kidney 
development. Eya1 directly interacts with Six1 which mediates binding to the promoter region of 
the respective genes. An unknown factor X mediates specific activation of gene expression by 
binding to the Eya1-Six1 complex potentially interacting with another adjacent transcription 
factor/complex Y (modified from Relaix and Buckingham, 1999). 

Hence, the main focus of this work was on the identification of those so far 

unknown interaction partners of Eya1 using a yeast two-hybrid approach. 

Subsequently, novel interaction partners should be characterized regarding their 

roles in organogenesis with relation to Eya1. 
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2 MATERIALS AND METHODS 

2.1 MATERIALS 

2.1.1 Bacterial strains 

Escherichia coli strains used for plasmid propagation and heterologous gene 

expression are listed in table 2.1. 

Table 2.1 Genotype of Escherichia coli strains used in this work 

Strain Purpose Genotype 

DH5 plasmid propagation 
F- φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 

hsdR17(rk
-, mk

+) phoA supE44 thi-1 gyrA96 relA1 λ–

BL21 
heterologous gene 

expression 
F- ompT hsdSB (rB

- mB
-) dcm gal (DE3) pLysS (CamR) 

TOP10F’ 

(Invitrogen) 
plasmid propagation 

F´c mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 

ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU galK rpsL 

endA1 nupG  

HB101 plasmid propagation 
F- mcrB mrr hsdS20(rB

–, mB
–) recA13 leu ara-14 

proA2lacY1 galK2 xyl-5 mtl-1 rpsL20(Smr) supE44 λ–

2.1.2 Yeast strains 

The following Saccharomyces cerevisiae strains were used for transformation and 

mating: 

Table 2.2 Genotype of Saccharomyces cerevisiae strains used in this work 

Strain Purpose Genotype 

Y187 

(Harper et al., 1993) 
mating 

MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 

112, gal4Δ,  gal80Δ, met–, URA3::GAL1UAS-GAL1TATA-

LacZ, MEL1 

KFY1 

(Kristina Fahr, PhD 

thesis, 2001) 

transformation, 

mating 

MATa, ura3-52, his3-200, lys2-801, trp1-901, leu2-3, 

112, gal4Δ, gal80Δ, cyhr2, LYS2::GAL1UAS-HIS3TATA-

HIS3, MEL1, URA3:: GAL1UAS-GAL1TATA- LacZ 
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2.1.3 cDNA library for yeast two-hybrid screening 

The Pretransformed Mouse 11-day Embryo MATCHMAKER cDNA library (in       

S. cerevisiae Y187) used for the yeast two-hybrid screening procedure was 

purchased from Clontech. 

2.1.4 Eukaryotic cell lines 

The following cell lines were used in this work: 

Cos-7:   African green monkey kidney cell line (DSMZ) 

mK3: clonal cell line representing early metanephric mesenchyme 

(Valerius et al., 2002) 

mK4: clonal cell line representing induced metanephric mesenchyme 

undergoing epithelial conversion (Valerius et al., 2002) 

Cells were cultured in 10 cm-cell culture dishes in Dulbecco’s modified Eagle 

medium (DMEM; Invitrogen) containing 10% fetal bovine serum at 37°C, 5% CO2 

and 95% humidity. 

2.1.5 Antibodies 

Anti-β-actin (ab8224): monoclonal mouse antibody directed against conserved 

region of human β-actin (Abcam); 

Anti-c-Myc (9B11): monoclonal mouse antibody directed against the c-Myc-

epitope tag (Cell Signaling); 

Anti-digoxigenin: polyclonal sheep antibody directed against digoxigenin, 

Fab fragments, alkaline-phosphatase conjugated 

(Roche); 

Anti-Eya1.1: polyclonal rabbit antibody directed against mouse Eya1 

(Jürgen Tomasch, diploma thesis, 2007) 

Anti-Eya1.2: polyclonal rabbit antibody directed against mouse Eya1 

(Jürgen Tomasch, diploma thesis, 2007) 

Anti-Flag (M2): monoclonal mouse antibody directed against the Flag-

epitope tag (Sigma-Aldrich); 

Anti-HA (12CA5): monoclonal mouse antibody directed against the HA-

epitope tag (Harlow lab, Boston, USA); 
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Anti-HA (6E2): monoclonal mouse antibody directed against the HA-

epitope tag (Cell Signaling); 

Anti-HA (Y11): polyclonal rabbit antibody directed against the HA-

epitope tag (Santa Cruz Biotechnology); 

Anti-LDH: polyclonal goat antibody directed against rabbit Lactate 

Dehydrogenase (Chemicon); 

Goat anti-mouse: polyclonal goat antibody directed against mouse 

immunoglobulins, horse radish-peroxidase conjugated 

(DakoCytomation); 

Goat anti-rabbit: polyclonal goat antibody directed against rabbit 

immunoglobulins, horse radish-peroxidase conjugated 

(DakoCytomation); 

Rabbit anti-goat: polyclonal rabbit antibody directed against goat 

immunoglobulins, horse radish-peroxidase conjugated 

(DakoCytomation); 

2.1.6 Culture media 

2.1.6.1 Culture media for E.coli 

LB medium 10 g/L Bacto-tryptone, 5 g/L yeast extract, 5 g/L NaCl 

LB agar LB medium, 1.5% agar 

M9 agar 1.5% agar, 64 g/L Na2HPO4, 15 g/L KH2PO4, 2.5 g/L NaCl,     

5 g/L NH4Cl, 4 g/L glucose, 40 µg/ml proline, 340 µg/ml 

thiamine hydrochloride, 1x Dropout solution (-Leu/Trp/Ade/His, 

Clontech), 20 µg/ml adenine, 20 µg/ml histidine, 20 µg/ml 

tryptophan 

Ampicillin (100 µg/ml) or Kanamycin (40 µg/ml) were added to liquid medium or 

agar to select for growth of colonies containing the plasmid of interest.  

2.1.6.2 Culture media for S. cerevisiae 

YPD medium  20 g/L Bacto-peptone, 10 g/L yeast extract, 20 g/L glucose 

YPD agar     YPD medium, 1.5% agar 
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selection medium  6.7 g/L Yeast Nitrogen Base, 20 g/L glucose  

selection agar   selection medium, 1.5% agar 

Amino acids (see 2.1.7) were added to selection medium or agar according to the 

auxotrophy markers of the transformed plasmids. 

2.1.7 Amino acids 

Amino acids used for cultivation of S. cerevisiae on agar plates or in liquid medium 

are listed in table 2.3. 

Table 2.3 Amino acids for cultivation of S. cerevisiae 

Amino acid Final concentration in medium 

L-Adenine, hemisulfate salt 20 µg/ml 

L-Histidine HCl monohydrate 20 µg/ml 

L-Leucine 30 µg/ml 

L-Lysine HCl 30 µg/ml 

L-Methionine 20 µg/ml 

L-Tryptophan 20 µg/ml 

2.1.8 Plasmids 

Plasmids used in this work are listed in table 2.4. 

Table 2.4 Plasmids used in this work 

Name Description Source Reference 

pGADT7 Yeast two-hybrid vector; full-length S. cerevisiae 

ADH1 promoter 5' of Gal4-AD coding sequence 

followed by a multiple cloning site (MCS); HA-

epitope tag, LEU2 marker, Ampr

Clontech  

pGBKT7 Yeast two-hybrid vector; S. cerevisiae ADH1 

promoter fragment 5' of Gal4-BD coding 

sequence followed by a multiple cloning site 

(MCS); c-Myc-epitope tag, TRP1 marker, Kanr

Clontech  

pGBT9 Yeast two-hybrid vector; S. cerevisiae ADH1 

promoter fragment 5' of Gal4-BD coding 

Clontech  
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sequence followed by MCS; TRP1 marker; Ampr

pCRII-TOPO TA-cloning vector; Ampr; Kanr Invitrogen  

pRcCMV Eukaryotic expression vector; CMV promoter; 

Ampr

Invitrogen  

pcDNA3.1-

Flag 

Eukaryotic expression vector containing Flag-

epitope tag; CMV promoter; Ampr

our lab  

pCMV-Sport6-

Sipl1 

IMAGE clone containing mouse Sipl1 coding 

sequence; ID: 4527839; Ampr

ATCC  

pCMV-Sport6-

Rbck1 

IMAGE clone containing mouse Rbck1 coding 

sequence; ID: 4192310; Ampr

ATCC  

pHM6-Eya1 

(-Eya2, -Eya3) 

Eukaryotic expression vector for N-terminal HA-

tagged mouse Eya1 (Eya2, Eya3); Ampr

Kawakami 

lab, Japan 

Ohto et al., 

1999 

pGBKT7-

E4HR19 

(-E4HR20) 

Yeast two-hybrid vector; Gal4-BD fused to 

coding sequence of the mouse Eya4 homology 

region containing exon 19 (exon 20); Kanr

Smith lab, 

Iowa, USA 

Zhang et 

al., 2004  

ED-CHD Eukaryotic expression vector for the N-terminal 

HA-tagged C-terminus of mouse Eya1; Ampr

our lab  

pcDNA3.2-

hSix1 

Eukaryotic expression vector for N-terminal 

Flag-tagged human SIX1; Ampr

Edgar Otto, 

Ann Arbor, 

USA 

 

pFlagFull pcDNA3.1-Flag containing mouse Six2 coding 

sequence 

our lab Brodbeck 

et al., 2003 

pCR3-Six4 Eukaryotic expression vector for mouse Six4; 

Ampr

Maire lab, 

Paris, France 

Spitz et al., 

1998 

pGEX-KG Bacterial expression vector; IPTG-inducible 

bacterial promoter 5' of GST coding sequence 

followed by MCS; Ampr

 Guan and 

Dixon, 

1991 

pEGFP-C2 Eukaryotic expression vector; CMV promoter 5' 

of EGFP coding sequence followed by MCS; 

Kanr

Clontech  

pEGFP-Eya1 pEGFP-C2 containing mouse Eya1 coding our lab  
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sequence 

pRFP-C2 analogous to pEGFP-C2; Eukaryotic expression 

vector; CMV promoter 5' of RFP coding 

sequence followed by MCS; Kanr

C. Hoischen, 

Diekmann 

lab, Jena, 

 

pMT107 Eukaryotic expression vector for His-ubiquitin; 

CMV promoter; Ampr

Treier lab, 

Heidelberg, 

Germany 

Treier et 

al., 1994 

pMT123 Eukaryotic expression vector for HA-ubiquitin; 

CMV promoter; Ampr

Treier lab,  

Heidelberg, 

Germany 

Treier et 

al., 1994 

pGL3-TATA Promoter-less reporter-vector, containing MCS 

5’ of a TATA box followed by Photinus pyralis 

(Firefly) luciferase cDNA; Ampr

Maire lab, 

Paris, France 

Fan et al., 

2000 

pGL3-

MEF3/TATA 

pGL3-TATA containing 6 copies of the MEF3 

element upstream of the TATA box 

Maire lab, 

Paris, France 

Fan et al., 

2000 

pGL4.74 

(hRluc/TK) 

Eukaryotic expression vector containing Renilla 

reniformis luciferase coding sequence under the 

control of HSV-TK-promoter; Ampr

Promega  

2.1.9 Oligonucleotides 

Oligonucleotides used in this work are listed in the appendix. All oligonucleotides 

were synthesized by Metabion (Matinsried) or MWG (Ebersberg). 

2.1.10 Morpholinos 

Morpholinos used for knockdown of gene expression in zebrafish were 

synthesized by Gene Tools (see table 2.5). 

Table 2.5 Morpholinos used in this work 

Target gene Morpholino Sequence (5’-3’) Target site 

sipl1 sipl1-4-4 AGGCCCTATGATATACCTGATGTCT exon4-intron4 

sipl1-rbck1-1-1 CAAGTTGGACATTTACTCACCACAC exon1-intron1 
sipl1-rbck1 

sipl1-rbck1-2-2 GCAGAAGAAATGCAAACCTCTGTGT exon2-intron2 
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2.1.11 siRNAs 

siRNAs were obtained from Qiagen or Dharmacon as shown in table 2.6. 

Table 2.6 siRNAs used in this work 

siRNA Target sequence (5’-3’) Target Source 

Eya1_1 CAGGATTATATTCAGGAAATA mouse Eya1 Qiagen 

Eya1_2 CCGAGGCAGAAGAAACAATAA mouse Eya1 Qiagen 

Luciferase TAAGGCTATGAAGAGATACTT luciferase; non-targeting 

in mouse and human 

Dharmacon 
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2.2 METHODS 

2.2.1 Standard techniques  

Molecular biology standard techniques, including plasmid transformation and 

propagation, small-scale purification of plasmid-DNA from E. coli, enzymatic 

manipulation of DNA and RNA, polymerase chain reaction, and analysis of 

proteins by SDS-PAGE and immunoblot were performed according to Sambrook  

et al. (Sambrook and Russell, 2001) or Ausubel et al. (Ausubel, 2002). 

2.2.2 Yeast two-hybrid system 

2.2.2.1 Preparation of competent yeast cells (KFY1) 

For preparation of competent yeast cells, 10 ml YPD medium were inoculated with 

cells of S. cerevisiae KFY1 and incubated overnight in a shaker at 30°C and 200 

rpm. Next morning, 5 ml of the overnight culture were transferred into 100 ml YPD 

medium and shaken at 30°C for 3 h until cells were in mid-log phase. After that, 

cells were collected by centrifugation (3,000 rpm, 10 min, 4°C). The pellet was 

resuspended in 10 ml solution A, centrifuged again (3,000 rpm, 10 min, 4°C), 

dried, and dissolved in 1 ml solution A. After addition of 55 µl of DMSO, cells were 

aliquoted into 200 µl per tube and stored at -80°C until usage. 

solution A:   0.5 M ethylene glycol, 10 mM bicin, 1 M D-sorbit 

2.2.2.2 Transformation of competent yeast cells (Klebe et al., 1983) 

For transformation of S. cerevisiae KFY1, 3 µg plasmid-DNA were added to one 

aliquot of frozen competent cells, which was directly followed by a heat-shock for 5 

min at 37°C and 800 rpm using a thermomixer. After addition of 1 ml solution B, 

cells were incubated for 1 h at 30°C and 600 rpm. Cells were collected by 

centrifugation (3,000 rpm, 3 min), washed with 1 ml solution C, and plated onto 

appropriate 10 cm-selection agar plates. Plates were incubated at 30°C for about 

3 days until c olonies were clearly visible. 

solution B:      0.4 M PEG 1000, 200 mM bicine 

solution C:    150 mM NaCl, 10 mM bicine 
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2.2.2.3 Screening of the cDNA library 

To identify interaction partners of Eya1, the MATCHMAKER Two-Hybrid system 

(Clontech) was used according to the manufacturer’s protocol. The method is 

based on the mating of two yeast strains of different mating types containing bait 

or prey plasmid, respectively. Yeast two-hybrid plasmids used for the screening 

 

procedure are shown in Fig. 2.1. 

Fig. 2.1. Schematic overview about yeast two-hybrid vectors used in this work. pGBT9 (left) 
ontains the coding region of the Gal4-BD and a TRP1 marker, and was used for construction of 
e bait plasmid. pACT2 (right) contains the coding sequence of the Gal4-AD and a LEU2 marker, 

bait plasmid, pGBT9-mEya1-C, as described above, plated onto one 15 cm-

c
th
and was used for construction of the prey constructs each containing a cDNA fragment of a mouse 
embryonic cDNA library. The auxotrophy markers TRP1 and LEU2 allow for selection of 
successfully mated colonies by growth on selection agar lacking tryptophan and leucine. (from 
„MATCHMAKER GAL4 Two-Hybrid Vectors Handbook”, Clontech) 

Briefly, three aliquots of the MATa-yeast strain KFY1 were transformed with the 

selection agar plate and grown for 3 days at 30°C. The day before mating, an 

aliquot (100 µl) of the pretransformed mouse embryonic cDNA library (in MATα 

strain Y187) was plated onto a 15 cm-selection agar plate lacking histidine, 

adenine, tryptophane, leucine and methionine to select for clones containing the 

library plasmid pACT2. On the day of mating, colonies were rinsed off the plates 

with 15 ml YPD medium each. Cells were collected by centrifugation (3,000 rpm, 

10 min, 4°C) and each pellet was resuspended in 300 µl YPD medium. Bait- and 

prey-containing suspensions were pooled and plated onto YPD agar where mating 

occurred. After 6 h of incubation at 30°C, YPD agar was rinsed with selection 

medium. Cells were pelleted by centrifugation (3,000 rpm, 10 min, 4°C), washed in 

selection medium, and resuspended in 4 ml selection medium. The cell 

suspension was evenly spread onto 20 selection agar plates and one control plate 
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(15 cm-format). The control plate contained histidine, but lacked tryptophane and 

leucine, which allows for selection of successfully mated clones. Colonies grown 

on the control plate after 3 days of incubation at 30°C were counted and mating 

efficiency was determined. Selection agar plates contained 5 mM 3-amino-1,2,4-

triazole, but lacked histidine, tryptophane and leucine, which allows for selection of 

colonies containing interacting Gal4-BD- and Gal4-AD-fusion proteins. 3-amino-

1,2,4-triazole is a competitive inhibitor of the HIS3 gene product and leads to 

reduction of background due to leaky HIS3 expression. Selection agar plates were 

incubated at 30°C for 14 days, and colonies grown on these plates were 

subsequently analyzed for β-gal expression by performing a colony-lift filter assay 

as described below. Plasmid-DNA was extracted from β-gal positive clones as 

described in section 2.2.2.6, and used for re-transformation together with the bait 

plasmid, pGBT9-Eya1-C, followed by colony-lift filter assay to verify the results. If 

re-transformation assay was positive, plasmid-DNA was sequenced.  

2.2.2.4 Qualitative colony-lift filter assay 

HIS3-expressing yeast colonies were checked for β-gal activity by performing a 

colony-lift filter assay (Breeden and Nasmyth, 1985) as described by Clontech. 

β-gal liquid assay 

(Breeden and Nasmyth, 1987) was carried out according to the Clontech protocol. 

Briefly, a sterile Whatman filter (7 cm or 12.5 cm, Sigma-Aldrich) was directly 

attached to the plate of colonies to be assayed and transferred into a pool of liquid 

nitrogen. After the filter had frozen completely, it was placed, colony side-up, on a 

second Whatman filter pre-soaked in Z/X-buffer in a clean petri dish. The filters 

were incubated at 30°C until a blue colour developed or for maximum 24 h. β-gal-

producing colonies were identified by aligning the filter to the agar plate and 

subjected to further analysis. 

Z/X buffer:      Z buffer (see 2.2.2.5), 0.8 mM X-gal, 35 mM β-mercaptoethanol 

2.2.2.5 Quantitative β-galactosidase liquid assay 

To assess the strength of a protein-protein interaction, a 

The method is based on the assumption that the strength of an interaction 

correlates with the level of lacZ expression which can be determined by measuring 

the enzymatic activity of its gene product β-gal. 
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Briefly, colonies were grown in liquid selection medium overnight at 30°C with 

shaking at 200 rpm. Next day, 2 ml of the overnight culture were transferred to 8 

bation in min 

     nt 

Thus, 1 unit l  ich hydrolyzes 1 µmol of ONPG 

to o-nitrophenol and D-galactose per min per cell. 

olony was inoculated in 10 ml 

selection medium and grown at 30°C and 200 rpm. After 48 h, 1.5 ml of the culture 

ml YPD medium. The fresh culture was incubated at 30°C and 200 rpm for 3-5 h 

until cells were in mid-log phase (OD600 of 1 ml = 0.5-0.8). For later calculation, the 

exact OD600 was recorded when cells were harvested. For harvesting, 1.5 ml of 

culture were placed into each of three 1.5-ml microcentrifuge tubes. After 

centrifugation (13,200 rpm, 30 sec), the pellet was washed in 1.5 ml Z buffer, 

centrifuged again and resuspended in 100 µl Z buffer. Tubes were placed in liquid 

nitrogen until the cells were frozen (1 min). Frozen tubes were then put into a 37°C 

water bath for 1 min to thaw. This freeze/thaw cycle was repeated two more times 

to ensure that the cells have broken open. 700 µl Z-buffer containing 35 mM β-

mercaptoethanol were added to each tube and a blank (100 µl Z buffer) before 

starting the reaction with 160 µl ONPG in Z buffer (4 mg/ml). Tubes were 

incubated at 30°C until a yellow colour developed or for maximum 24 h. Reaction 

was stopped by the addition of 400 µl of 1 M Na2CO3 and elapsed time was 

recorded. After centrifugation (13,200 rpm, 10 min) OD420 of the supernatant was 

determined relative to the blank. The amount of β-gal units was calculated 

according to the following formula: 

β-gal units = 1000 x OD420/(t x V x OD600) 

where:  t  = time of incu

    V  = volume of culture used for measureme

of β-ga is defined as the amount wh

Z buffer:      60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 0.1 mM MgSO4

2.2.2.6 Plasmid extraction from yeast cells 

For isolation of plasmid-DNA from yeast, a single c

were transferred into each of three microcentrifuge tubes and centrifuged at 

13,200 rpm for 1 min. The cell pellet was resuspended in 200 µl yeast lysis buffer. 

0.3 g glass beads and 200 µl phenol/chloroform were added. Samples were 

vortexed for 2 min and subsequently centrifuged for 5 min at 13,200 rpm. DNA-

containing upper phases were pooled and 300 µl chloroform/isoamylalcohol were 
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added. After centrifugation (13,200 rpm, 5 min) the upper phase was transferred 

into a new tube, DNA was precipitated by addition of 50 µl 5 M NaCl and 550 µl 

isopropanol and spun down for 10 min at 13,200 rpm. The DNA pellet was washed 

in 70% ethanol and finally resuspended in 20 µl of ddH20. 

3 µl of the DNA solution were used for electroporation of E. coli HB101. Colonies 

containing the prey plasmid were selected on M9-agar plates lacking leucine. 

 Lussier et 

al. (Lussier et al., 2005). Briefly, co-transformed yeast cells were grown in 

anol, bromphenol blue 

2.2.3 GST pulldown sys

 ion proteins from E. coli BL21 

 

transformed into E. coli BL21. 5 ml LB medium were inoculated with a single 

Plasmid-DNA was purified using standard techniques and subjected to 

retransformation into yeast, or sequencing. 

yeast lysis buffer: 10 mM Tris pH 8.0, 1 mM EDTA, 100 mM NaCl, 2% Triton X-100, 1% SDS 

2.2.2.7 Protein extraction from yeast cells  

Protein extraction from yeast was basically performed as described by

appropriate selection medium for 24 h at 30°C and 200 rpm. An aliquot (1.5 ml) of 

the overnight culture was centrifuged for 5 min at 13,200 rpm and 4°C. The cell 

pellet was weighed and resuspended in 1 ml of 0.25 N NaOH containing 1% β-

mercaptoethanol. After incubation on ice for 10 min, 160 µl of 50% trichloroacetic 

acid were added. The mixture was incubated on ice for 10 min again, and 

centrifuged for 10 min at 13,200 rpm and 4°C. The pellet was washed with 1 ml of 

ice-cold acetone, dried, and dissolved in 100 µl 2x Laemmli loading buffer per 15 

mg of cell pellet. Samples were boiled for 5 min, resolved by SDS-PAGE and 

subsequently analyzed by immunoblotting. 

2x Laemmli loading buffer: 120 mM Tris pH 6.8, 20% glycerol, 4% SDS, 8% β-

mercaptoeth

tem 

2.2.3.1 Purification of GST fus

The plasmid harbouring the cDNA of the respective GST fusion construct was

colony and grown overnight at 37°C and 180 rpm. Next morning, 1 ml of the 

overnight culture was transferred into 20 ml LB medium and incubated for 1.5 h at 

37°C and 180 rpm. Induction of expression occurred by addition of 3.5 µl of 1 M 
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IPTG followed by a further incubation step (37°C, 180 rpm, 2 h). Then, bacterial 

cells were pelleted by centrifugation (5,000 rpm, 5 min, 4°C) and resuspended in 1 

ml PBS containing 1 mM PMSF and 10 mM DTT. Cells were disrupted by 

sonication. Afterwards, the cell lysate was incubated for 30 min at 4°C in presence 

of 1% Triton X-100, and cleared by centrifugation (13,200 rpm, 15 min, 4°C). In 

parallel, 250 µl of a glutathione agarose slurry (3.5 % in ddH2O, Sigma-Aldrich) 

were washed in 1 ml PBS. The cleared cell lysate was added to the pre-washed 

glutathione agarose beads and incubated for 1 h at 4°C on a rotator. Beads were 

collected by centrifugation (3,000 rpm, 5 min, 4°C), washed 4 times in PBS, and 

used for in vitro interaction assay. 10 µl of beads were analyzed by SDS-PAGE 

followed by coomassie staining of the gel to control efficient purification of GST 

fusion protein.  

PBS:      140 mM NaCl, 2 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4

2.2.3.2 In vitro interaction assay  

tro transcription and translation, the TNT T7 Coupled Reticulocyte Lysate 

System (Promega) was used according to the manufacturer’s protocol. GST fusion 

o   

 was isolated using Absolutely RNA 

Microprep Kit (Stratagene) and eluted in 30 μl pre-warmed elution buffer.  

columns 

(Qiagen) and eluted in a total volume of 30-50 μl RNase free water. 

For in vi

proteins coupled to agarose beads (see 2.2.3.1) were washed in 250 µl HBB 

containing 0.5% NP-40 (HBB-NP-40) and 0.5 mM DTT. Beads were resuspended 

in 50 µl HBB plus 50 µl HBB-NP-40, and 30 µl of in vitro synthesized protein were 

added. The mixture was incubated overnight at 4°C while rotating. Next day, 

beads were washed 6 times in 300 µl HBB-NP-40, resuspended in 25 µl of 2x 

Laemmli loading buffer and analyzed by SDS-PAGE and immunoblotting. 

HBB:            20 mM HEPES pH 7.8, 100 mM KCl, 5 mM MgCl2
2x Laemmli loading buffer:    see 2.2.2.7 

2.2.4 RNA isolati n

Total RNA from embryonic mouse tissues

Total RNA from zebrafish embryos or eukaryotic cell lines was isolated using 

RNeasy Mini Kit (Qiagen) after homogenization with QIAshredder spin 
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RNA concentration was determined by measuring the absorbance at 260 nm 

(A260) and calculated according to the following formula: 

     c = (A260 * e)/b   (modified Beer-Lambert equation) 

/µl)        

m

2.2.5.1 cDNA synthesis 

e transcribed using SuperScript 
- and oligo(dT) primers (Roche) in a 

total volume of 20 μl. For control of specificity, a parallel reaction without reverse 

iate amount of DNA-template was used with 2.5 μl 

R-Pu Cl), 1.5 mM MgCl2, 0.2 mM 

dNTPs, 0.4 μM Primers and 0.5 U Taq-Polymerase in a final volume of 25 μl. The 

 gene 

ion by qRT-PCR, the μl of a 1/2000 

dilution of SYBR Green I nucleic acid gel stain (BioWhittaker Molecular 

 where:   c = concentration in µg/µl 

     e  = extinction coefficient in ng-cm/µl (RNA: 40 ng-cm

     b  = path length in c   

2.2.5 RT-PCR analysis  

An aliquot of 10 μl of RNA (100-500 ng) was revers

II RNase H  Reverse Transcriptase (Invitrogen) 

transcriptase was performed in each case. 1 μl of cDNA was used for subsequent 

PCR analysis. 

2.2.5.2 Polymerase Chain Reaction (PCR)  

For a standard PCR, an appropr

10x PC ffer (200 mM Tris pH 8.4, 500 mM K

cycling program was started with denaturation at 94°C for 1 min followed by 35 

cycles (40 cycles for real-time RT-PCR) of denaturation at 94°C for 30 s, 

annealing at 60°C for 30 s and elongation at 72°C for 30 s.  

2.2.5.3 Quantitative Real-Time RT-PCR (qRT-PCR)  

qRT-PCR analysis was performed in 96-well format. For comparison of

express standard RT-PCR mix plus 0.75 

Applications) and 0.25 μl of 1 μM Fluorescein Calibration Dye (BioRad) was used.  

The factor difference in expression of a gene of interesting in different samples 

was calculated according to the double delta method (Livak and Schmittgen, 2001) 

including normalization to expression of the housekeeping gene β-actin. 
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2.2.6 RNA in situ hybridization  

2.2.6.1 Generation of digoxigenin-labeled riboprobes  

For generation of digoxigenin labeled riboprobes, plasmids containing cDNA 

fragments of the respective gene were linearized by restriction enzyme digestion 

n. 1-4 μg purified 

plasmid-DNA were used for transcription with T3, T7 or Sp6 RNA-Polymerase 

et al. (Leimeister et al., 1998) with some modifications. Briefly, embryos were fixed 

ropanol or ethanol 

series, infiltrated with chloroform or xylol and embedded in paraffin. Sections of   

ris/glycine buffer, sections were hybridized with  

and purified using the QiaExII Gel Extraction kit from Qiage

(Roche) in presence of DIG RNA Labeling Mix (Roche) and rRNasin (Promega).  

2.2.6.2 RNA in situ hybridization on paraffin sections  

In situ hybridizations on paraffin sections were performed according to Leimeister 

in 4% PFA/PBS, washed in PBS, dehydrated in a graded isop

10 μm were mounted on poly-lysine coated slides (Menzel), dried on a heating 

plate at 45°C and stored at 4°C.  

Sections were dewaxed in chloroform, rehydrated in a graded ethanol series, 

washed in PBS, re-fixed for 30 min in 4% PFA/PBS, digested with proteinase K 

(10 µg/ml in Proteinase K buffer) for 10 min, washed, and fixed again. After 

washing in PBS, 2x SSC, and T

0.1 μg/ml digoxigenin-labeled probes in hybridization buffer for 16-20 h at 70°C in 

a 5x SSC humified chamber. Following hybridization, sections were washed three 

times for 20 min in 5x SSC at room temperature, 1 h in 0.5x SSC/20% formamide 

at 60°C, 15 min at 37°C in RNase buffer, and treated with 10 μg/ml RNase A for 

30 min. After washes in RNase buffer for 15 min at 37°C, in 0.5x SSC/20% 

formamide for 30 min at 60°C and in 2x SSC for 30 min at room temperature, 

sections were blocked with 1% blocking reagent (Roche) in MABT and incubated 

with anti-digoxigenin antibodies (Roche) at a dilution of 1:5000 for 16-20 h at 4°C. 

Sections were washed five times for 10 min in TBS-T, once for 10 min in NTMT, 

10 min in NTMT containing 2 mM levamisol and then developed for 1-5 days in 

BM-purple substrate (Roche) containing 2 mM levamisol and 0.1% Tween20. After 

staining, sections were washed twice in NTMT for 15 min and 10 min in PBS. 

Slides were mounted in Kaiser’s glycerol gelatine (Merck).  
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PBS:          see 2.2.3.1 

4% PFA/PBS:  4% paraformaldehyde in PBS  

Proteinase K buffer:  20 mM Tris pH 7.5, 1 mM EDTA  

1x SSC:  150 mM NaCl, 15 mM tri-sodium citrate; pH 5  

Tris/glycine buffer:  100 mM Tris, 100 mM glycine  

ffer:  , 0.5% CHAPS, 5 mM EDTA, 0.2% 

 μg/ml torula yeast RNA (Sigma-

 5 mM EDTA  

TBS-T:  

NTMT:  Tris pH 9.5, 10 mM NaCl, 50 mM MgCl2, 0.1% Tween20 

Whole moun os 

n idea about the e  

embryos, the method of whole mount in situ hybridization was employed. 

, 

Hybridization bu 50% formamide, 1.3x SSC pH5

Tween20, 100 μg/ml heparin, 100

Aldrich) 

RNase buffer:  0.5 M NaCl, 10 mM Tris pH 7.5,

MABT:  100 mM maleic acid, 150 mM NaCl, 0.1% Tween20; pH 7.5  

25 mM Tris pH 7.5, 140 mM NaCl, 2.7 mM KCl, 0.1%  Tween20  

100 mM 

2.2.6.3 t in situ hybridization (WISH) of zebrafish embry

To get a xpression of Sipl1/Rbck1 orthologous genes in zebrafish

Therefore, zebrafish embryos were collected at different stages, dechorionated

and fixed in 4% PFA/PBS overnight at 4°C. Then, embryos were washed four 

times in PBS-T, resuspended in methanol, and stored at -20°C until further usage. 

Before hybridization, embryos were re-hydrated by incubation in a graded  

methanol series, washed in PBS-T, treated with proteinase K (5 µg/ml) in PBS-T 

for 1-15 min depending on the stage of the embryo, washed twice in PBS-T plus 

glycine (2 mg/ml), and then re-fixed for exactly 20 min in 4% PFA/PBS-T. After 

repeated washing of the embryos in PBS-T, embryos were pre-incubated in 

hybridization buffer for 1 h at 65°C. Afterwards, embryos were incubated with 

digoxigenin-labeled RNA probe in hybridization buffer (0.5 µg/ml) overnight at 

65°C. Following hybridization, embryos were washed twice in 2x SSC containing 

50% formamide at 65°C, once in 1x SSC at 65°C, twice in 0.2x SSC at 65°C, and 

once in PBS-T at room temperature. Embryos were blocked for 1-8 h in PBS-T 

plus 5% sheep serum (Roche) and incubated with anti-digoxigenin antibodies 

(Roche) in PBS-T (1:2000) overnight at 4°C, followed by several washing steps in 

PBS-T for 20 min each. After washing in SB buffer twice, embryos were stained in 

SS buffer in the dark until a blue colour developed. After this, embryos were 

washed three times in PBS-T, and finally fixed in 4% PFA/PBS for 30 min. Fixed 

embryos were stored in PBS-T at 4°C. 

4% PFA/PBS:      see 2.2.6.2 
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PBS-T:        PBS (see 2.2.3.1) containing 0.1% Tween20 

hybridization buffer: 5x SSC, 50% formamide, 0.1% Tween20, 50 µg/ml heparin, 5 

mg/ml yeast torula RNA (Sigma-Aldrich) 

 9.5, 100 mM NaCl, 50 mM MgCl2, 0.1% Tween20 

ablet/10 ml) 

2.2.7 RNA interfer

4 c ll w  h later 

applying 15-25 nM siRNA and siLentFect Lipid Reagent (Bio-Rad) according to the 

lls were harvested and subjected to RNA 

6-well format 

and transfected 24 h later with a total of 4 µg of plasmid-DNA, including a 

expression constructs and an internal 

 6-well cell culture dishes and transfected with 

2-3 µg of the appropriate expression vectors using Superfect transfection reagent 

 

SB buffer: 100 mM Tris pH

SS buffer:       100 mM NaCl, 0.1% Tween20, NPT/BCIP (1 t

ence 

2 x 106 
mK  e s ere seeded into 10 cm-dishes and transfected 24 

manufacturer. 72 h post-transfection, ce

isolation for confirmation of knockdown efficiency or protein analysis. 

2.2.8 Luciferase reporter assay 

For luciferase reporter assay, 1.5 x 105 Cos-7 cells were seeded into 

luciferase reporter construct, appropriate 

control plasmid, using Lipofectamin (Invitrogen). 48 h post-transfection, cells were 

harvested and luciferase activity was determined using the Dual-Luciferase 

Reporter Assay System (Promega). 

2.2.9 Lysis of eukaryotic cells for direct Immunoblotting 

1.5 x 105 Cos-7 cells were seeded in

(Qiagen) according to the manufacturer’s instruction. 48 h post-transfection, cells

were harvested in 1 ml PBS by scraping. After centrifugation (3,000 rpm, 5 min, 

4°C), cells were lysed in 150 µl RIPA lysis buffer and the lysate was passed 

through a QIAshredder spin column (Qiagen) by centrifugation (13,200 rpm, 2 

min). Protein concentration was determined by measuring absorbance at 280 nm 

(A280). 20-40 µg of protein were subsequently analyzed by SDS-PAGE and 

immunoblotting. 

PBS:          see 2.2.3.1 

RIPA lysis buffer:  50 mM Tris pH 7.5, 150 mM NaCl, 0.1% SDS 
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2.2.10 Immunoprecipitation 

48 h after transfection with siRNAs or expression constructs, cells were scraped in 

0 rpm, 5 min, 4°C), and lysed in 500 µl 

HEPES lysis buffer for 1 h on ice. The lysate was cleared by centrifugation (10,000 

0.5% NP-40, 

che) 

vo ubiqu

For in vivo ubiquitination assay, 1 x 106 Cos-7 cells were seeded into a 10 cm-cell 

dish. ere co-transfected with 10-15 µg of 

appropriate expression constructs using Superfect transfection reagent (Qiagen) 

1 ml PBS, collected by centrifugation (3,00

rpm, 5 min, 4°C) and added to the appropriate rabbit or mouse antibody which had 

been pre-incubated with protein A or G agarose (Calbiochem), respectively. The 

mixture was incubated on a rotator in the cold room overnight to allow binding of 

antigen to the antibody. After centrifugation (1,000 rpm, 2 min, 4°C), removal of 

the supernatant, and washing in lysis buffer four times, immunocomplexes were 

eluted by boiling in 25 µl 2x Laemmli loading buffer. Samples were analyzed by 

SDS-PAGE and immunoblotting using appropriate antibodies. 

PBS:         see 2.2.3.1 

HEPES lysis buffer: 25 mM HEPES pH 7.9, 0.5 mM EDTA, 150 mM NaCl, 

1x cømplete proteinase inhibitor cocktail (Ro

2.2.11 In vi itination assay 

culture  24 h after seeding, cells w

according to the manufacturer’s protocol. Again 24 h later, cells were treated with 

either 10 µM MG132 (Sigma-Aldrich) or DMSO as a control. 48 h post-

transfection, cells were washed in PBS, and then harvested by scraping in 1 ml 

PBS. 100 µl of the cell suspension were transferred into a new microcentrifuge 

tube, centrifuged (3,000 rpm, 5 min 4°C) to pellet the cells, and the supernatant 

was removed. Cells were resuspended in 100 µl 2x Laemmli loading buffer, 

sonicated, and stored at –20°C for input control. The rest of the cell suspension 

was centrifuged (3,000 rpm, 5 min, 4°C), supernatant was removed, and the pellet 

was lysed in 1 ml buffer A. To reduce viscosity, the lysate was passed through a 

QIAshredder spin column (Qiagen) by centrifugation for 2 min at 13,200 rpm. After 

addition of 75 µl Ni-NTA agarose (Qiagen), the mixture was incubated on a rotator 

in the cold room overnight. Then, agarose beads were transferred to a Micro Bio-

Spin chromatography column (Bio-Rad) and supernatant was passed through by 

centrifugation at 3,000 rpm for 30 sec. Beads were washed sequentially in 750 µl 

buffer A, 750 µl buffer B, and 750 µl buffer C before elution in 75 µl Elution buffer. 
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Both the eluate and the stored input control were boiled for 5 min and 

subsequently analyzed by SDS-PAGE and immunoblotting. 

PBS:    see 2.2.3.1 

2x Laemmli loading buffer:  see 2.2.2.7 

buffer A: 6 M guanidium hydrochloride, 10 mM β-mercaptoethanol, 100 mM 

NaH PO , 10 mM Tris, 5 mM imidazol; pH 8.0   

β-mercaptoethanol, 100 mM NaH2PO4, 10 mM 

2 4

ol 

2 x 105 Cos-7 cells were s ips in 6-well cell culture dishes and 

GFP-expression constructs using 

Superfect (Qiagen) according to the manufacturer’s instructions. 40 h post-

2 4

buffer B: 8 M urea, 10 mM 

Tris pH 8.0  

buffer C: 8 M urea, 10 mM β-mercaptoethanol, 100 mM NaH PO , 10 mM 

Tris; pH 6.3 

Elution buffer: 150 mM Tris pH 6.8, 30% glycerol, 5% SDS, 200 mM imidazol, 720 

mM β-mercaptoethan

2.2.12 Fluorescence microscopy 

eeded onto cover sl

transfected with 3 µg of appropriate RFP- or E

transfection, cells were washed in PBS, and fixed in 4% PFA/PBS for 20 min. After 

washing in PBS again, cell nuclei were stained with Hoechst 33258 (Sigma-

Aldrich-Aldrich) in PBS (1:500) for 1min. Coverslips were mounted onto 

microscope slides using Glycergel (DakoCytomation) and analyzed by microscopy 

using an Axiovert 135 TV microscope (Zeiss).  

PBS:          see 2.2.3.1 
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3 RESULTS 

At the beginning of this study, no Eya1-specific antibodies were available. 

Because of this, in the first part of this work two Eya1-specific antibodies 

generated in our lab were analyzed regarding their ability to specifically detect the 

endogenous Eya1 protein. 

3.1 CHARACTERIZATION OF EYA1-SPECIFIC ANTIBODIES 

An important tool for analyzing the function of a protein of interest in vivo is the use 

of specific antibodies, which enable you to analyze protein modifications or 

protein-protein interactions. Jürgen Tomasch, a former diploma student in our lab, 

generated two polyclonal rabbit antibodies, anti-Eya1.1 and anti-Eya1.2, directed 

against fragments located within the N-terminus of mouse Eya1, which is, in 

contrast to the Eya domain, poorly conserved between Eya family members. He 

characterized both antibodies in immunoblot, immunoprecipitation and 

immunofluorescence using cell lines overexpressing Eya1. He could show that 

both antibodies worked in immunoprecipitation with anti-Eya1.1 being more 

efficient than anti-Eya1.2, whereas only anti-Eya1.2 detected Eya1 in immunoblot 

(Jürgen Tomasch, diploma thesis, 2007). According to his results, I have used 

anti-Eya1.1 for immunoprecipitation and anti-Eya1.2 for immunoblot analyses. 

However, a point still to be investigated was whether the antibodies are specific for 

mouse Eya1 or can also recognize the family members Eya2, Eya3 and Eya4. To 

verify specificity of anti-Eya1.2 in immunoblot, all four proteins were synthesized in 

vitro, loaded on a 10% SDS-PAA gel and detected by immunoblotting using anti-

Eya1.2. Since Eya1, Eya2 and Eya3 carried HA-epitope tags at their N-terminus, 

the membrane was stripped and re-probed using anti-HA antibody to control the 

input. Input of Eya4 could not be determined because it was not fused to an HA-

tag. In a second experiment, the antibody anti-Eya1.1 was tested for its ability to 

specifically pull down Eya1 in immunoprecipitation. Eya1-4 were synthesized in 

vitro in presence of S35-labeled methionine. Part of the radioactively labeled 

protein was stored as input control, the rest was diluted in HEPES lysis buffer and 

immunoprecipitation was carried out as described. Precipitates and input controls 

were resolved on a 10% SDS-PAA gel and analyzed by autoradiography.   
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Fig. 3.1. The Eya1-specific antibodies detect Eya1, but not Eya2, Eya3 and Eya4 in 
immunoblot and immunoprecipitation. (A) HA-Eya1-3 and Eya4 were synthesized in vitro, 
resolved by 10%-SDS-PAGE and analyzed by immunoblotting using anti-Eya1.2 (upper panel). 
Membrane was stripped and re-detected using anti-HA for control of input (lower panel). (B) HA-
Eya1-3 and Eya4 were synthesized and S35-labeled in vitro, diluted in HEPES lysis buffer, and 
subjected to immunoprecipitation using anti-Eya1.1. Immunocomplexes and input control were 
analyzed by 10%-SDS-PAGE and autoradiography. 

Figure 3.1 A shows that the antibody anti-Eya1.2 specifically detected Eya1 in 

immunoblot analysis, even though the input level of Eya1 was lower compared to 

that of Eya2 and Eya3 as shown by detection with anti-HA. Weaker background 

signals were detected in all lanes. Moreover, immunoprecipitation using anti-

Eya1.1 and radioactively labeled Eya1-4 was also specific for Eya1 as seen in Fig. 

3.1 B. The amounts of protein used for immunoprecipitation were comparable 

between all four mouse Eya homologs.  

Having shown that both antibodies specifically recognize Eya1, but not Eya2, Eya3 

and Eya4, the next step was to identify a cell line which is suited for the detection 

of endogenous Eya1. Jürgen Tomasch tried to detect endogenous Eya1 protein in 

several cell lines which were positive for Eya1 expression in RT-PCR, as for 

example TM4 (mouse Sertoli) cells. But, probably due to very low Eya1 protein 

levels within these cell lines, he was not able to detect a clear signal for 

endogenous Eya1 after immunoprecipitation and immunoblot (Jürgen Tomasch, 

diploma thesis, 2007). Valerius et al. created four kidney cell lines, mK1-4, with 

mK1-3 cells representing stages of the early uninduced metanephric mesenchyme 

and mK4 cells representing a later induced stage of the metanephric mesenchyme 

(Valerius et al., 2002). Since it is known from literature that Eya1 is expressed in 

both uninduced and induced metanephric mesenchyme during mouse embryonic 

kidney development (Xu et al., 1999), mK3 and mK4 cells were checked for Eya1 

expression by RT-PCR using gene-specific primers. 
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Fig. 3.2. Eya1 is expressed in mK3 and mK4 cells. RNA isolated from mK3 and mK4 cells was 
reverse-transcribed into cDNA and analyzed for expression of Eya1 by PCR using gene-specific 
primers (upper panel). Expression of Tbp (TATA-box binding protein) was determined from the 
same samples to control input (lower panel). For verification of specificity samples without reverse 
transcriptase (-RT) and a water control were included.  

Using RT-PCR analysis Eya1 expression was detected at low levels in mK3 and at 

high levels in mK4 cells (Fig. 3.2). To check for endogenous Eya1 protein in those 

cell lines, immunoprecipitation was performed.  

 
Fig. 3.3. Endogenous Eya1 protein is detected in mK4, but not in mK3 cells. Cells were grown 
to about 90% confluency in 10 cm-cell culture dishes and lysed in HEPES lysis buffer. The cell 
lysate was subjected to immunoprecipitation using anti-Eya1.1 or anti-SF1 (steroidogenic factor 1) 
antibody. An aliquot of the lysate before immunoprecipitation and the immunoprecipitate were 
loaded on a 10% SDS-PAA gel followed by immunoblotting using anti-Eya1.2 antibody. 

Detection of a specific Eya1 signal in the cell lysate was difficult because of the 

presence of several signals in both mK3 and mK4 cells. After immunoprecipitation 

a specific signal of about 80 kDa was detectable in mK4 but not in mK3 cells (Fig. 

3.3). This signal is likely to represent endogenous Eya1 protein taking into account 

that Eya1 protein appears at a similar size upon overexpression, and RT-PCR 

results show higher expression of Eya1 in mK4 cells compared to mK3.  

To verify that the signal which is detected in mK4 cell extracts after precipitation 

and detection with Eya1-specific antibodies indeed represents endogenous Eya1 

protein, an RNA interference approach was employed. mK4 cells were transfected 

with specific siRNAs directed against mouse Eya1 or a non-targeting control-

siRNA directed against luciferase. 72 h post-transfection, cells were harvested and 

subjected to immunoprecipitation using anti-Eya1.1 or a rabbit control-antibody. In 

parallel, part of the cells was used for RNA isolation and cDNA synthesis followed 
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by quantitative RT-PCR (qRT-PCR) Eya1-specific primers to determine the 

knockdown efficiency. 

 
Fig. 3.4. The protein level of endogenous Eya1 is reduced after siRNA-mediated knockdown 
of Eya1 expression in mK4 cells. mK4 cells were transfected with siRNAs directed against Eya1 
or a control siRNA directed against luciferase. 72 h post-transfection, cells were harvested. (A) 
siRNA-transfected cells were lysed in HEPES lysis buffer followed by immunoprecipitation using 
anti-Eya1.1 or rabbit control antibody (anti-HA, Y11) and immunoblot analysis using anti-Eya1.2 
antibody. The asterisks indicate unspecific signals. (B) Part of the cells was used for RNA isolation. 
Efficiency of Eya1-specific knockdown was determined by qRT-PCR. Relative Eya1 expression 
compared to cells transfected with control siRNA (luciferase) and normalized to β-actin expression 
was calculated using the double delta method.  

After transfection of a control-siRNA into mK4 cells, a specific signal was detected 

after immunoprecipitation with anti-Eya1.1 and detection with anti-Eya1.2 antibody 

(Fig. 3.4 A). This signal was not present after precipitation with a control antibody 

suggesting that the detected signal represents endogenous Eya1 protein. Indeed, 

after knockdown using each of two Eya1-specific siRNAs, the respective signal 

was weakened, whereby Eya1_1 siRNA seemed to have a stronger effect 

compared to Eya1_2. This is in line with results obtained by qRT-PCR, which was 

performed from the same cells to control knockdown efficiency on the mRNA level 

(Fig. 3.4 B). Both Eya1-specific siRNAs mediated efficient knockdown of Eya1 

expression compared to the luciferase-specific control-siRNA with Eya1_1 being 

more efficient than Eya1_2. 

In summary, it was shown that both Eya1-specific antibodies generated in our lab 

specifically recognize Eya1 in immunoprecipitation and immunoblot, respectively. 

Furthermore, using those antibodies endogenous Eya1 protein could be detected 

in mK4 cells, providing a starting point for analysis of Eya1 protein function at the 

physiological level. 
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3.2 BIOCHEMICAL CHARACTERIZATION OF EYA1 

Eya1 is a multifunctional protein essential for the development of various organs 

as for example kidney, ears and thymus (Xu et al., 1999; Xu et al., 2002). It is 

known that mutations in the human EYA1 gene are associated with several human 

diseases, as branchio-oto-renal (BOR) or branchio-oto (BO) syndrome as well as 

ocular defects. However, the molecular mechanisms by which these mutations 

lead to human disease are not understood. To gain a deeper insight into the 

underlying mechanisms, seven disease-associated Eya1 mutants, all single amino 

acid substitutions clustering within the conserved Eya domain (Table 3.1), were 

characterized concerning their influence on known protein-protein interactions of 

Eya1. All mutations were analyzed in the background of mouse Eya1 which has 

been shown to be highly conserved to human Eya1 in both protein sequence and 

function. 

Table 3.1 Disease-associated Eya1 mutants analyzed in this work 

Eya1 mutant (human) associated disease corresponding 
mouse Eya1 mutant Reference 

G393S BOR G425S Azuma et al., 2000 

D396G BO D428G Namba et al., 2001 

R407Q BO R439Q Kumar et al., 1997 

S454P BOR S486P Abdelhak et al., 1997 

L472R BOR L504R Abdelhak et al., 1997 

R514G ocular defects R546G Azuma et al., 2000 

L550P BOR L582P Rickard et al., 2000 

All mutations were introduced into the yeast two-hybrid bait construct which 

encodes the conserved C-terminus of mouse Eya1 using site-directed 

mutagenesis and primers designed by Amna Musharraf, a PhD student in our lab. 

In order to test the effect of the mutations on the interaction of Eya1 with two 

already known interaction partners of Eya1, Six1 as a representative for the Six 

protein family, and the inhibitory Gα subunit Gαi2 (Buller et al., 2001; Ozaki et al., 

2002), β-gal liquid assays were performed. Therefore, human Six1 (hSix1) was 

cloned into the yeast two-hybrid prey vector pGADT7. The coding sequence of the 

Gαi2 subunit was obtained from cDNA of mouse lung tissue by RT-PCR using 
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gene-specific primers and also cloned into pGADT7. Since it is known that Eya 

proteins interact only with active Gαi2 (Fan et al., 2000), an activating mutation 

(Q205L) was introduced by site-directed mutagenesis. S. cerevisiae KFY1 cells 

were co-transformed with respective bait and prey plasmids and β-gal liquid assay 

was performed to determine the interaction strength.  

 
Fig. 3.5. Some of the disease-associated Eya1 mutations affect the interaction with Six1 and 
Gαi2. Each mutation was introduced into the yeast vector pGBT9-Eya1-C. Mutant or wild type 
pGBT9-Eya1-C or empty vector pGBT9 were introduced into yeast KFY1 together with pGADT7-
hSix1 (A) or pGADT7-Gαi2-Q205L (B). After 3 days of growth interaction strength was determined 
from 3 pooled colonies by β-gal liquid assay. Each measurement was performed in triplicates. Error 
bars represent standard deviation. 

β-gal liquid assay revealed clear differences in the interaction profile of the tested 

mutant proteins (Fig. 3.5). All Eya1 mutants interacted with hSix1 comparable to 

the wild type protein with two exceptions: L472R and L550P. The substitution of 

the leucine residue at position 472 to arginine (L472R) led to weakening of the 

interaction to about 30%. Substitution of the leucine at position 550 to proline 

(L550P) abolished the interaction completely. The two mutations L472R and 

L550P, which inhibited interaction with Six1, had a similar effect on the interaction 

with Gαi2 which was not surprising since it is has been published by Fan et al. that 

binding of Six1 and Gαi2 is mutually exclusive indicating that the two proteins bind 
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to an overlapping region of the Eya domain (Fan et al., 2000). In contradiction to 

this, there was one mutation, S454P, which led to complete loss of interaction with 

Gαi2, but did not affect the interaction with Six1. Furthermore, introduction of the 

mutation D396G led to weakening of the interaction with Gαi2 to about 50%, 

whereas the mutation R407Q stabilized the interaction to about 2 fold compared to 

the wild type. Similar results were obtained by Ozaki et al. who performed 

mammalian two-hybrid assay and showed that the Eya1 mutants G393S and 

R514G still interact with Gαi2, while S454P and L472R completely abolish the 

interaction. The other mutants have not been tested in their approach (Ozaki et al., 

2002). In summary, most of the Eya1 mutants analyzed in this work still interact 

with Six1 and Gαi2. Some, however, loose the interaction. 

To confirm that the differences in the interaction profiles of the Eya1 mutants were 

not due to alterations in the amount of protein produced within yeast, I performed 

immunoblot analysis. The bait vector pGBT9 which was used for the interaction 

studies is a so-called “low-expression” vector. Due to this low expression, it was 

not possible to directly detect the respective Gal4-BD fusion proteins in yeast cell 

lysates. Thus, Eya1-C and its mutant variants were introduced into the yeast two-

hybrid bait vector pGBKT7 which is, in contrast to pGBT9, a “high-expression” 

vector. Furthermore, pGBKT7 includes a c-Myc epitope tag allowing the detection 

of the Gal4-BD fusion proteins in immunoblot by using an anti-c-Myc antibody.  

 
Fig. 3.6. Changes in the interaction profiles of the Eya1 mutants are not due to differences in 
protein levels. S.cerevisiae KFY1 were transformed with Gal4-BD-c-Myc expression constructs 
encoding wild type or mutant Eya1-C. After 3 days of growth, proteins were extracted and equal 
amounts of extracts were analyzed by 10% SDS-PAGE and immunoblotting using anti-c-Myc 
antibody (upper panel). Equal loading was confirmed by detection of β-actin (lower panel). 

Fig. 3.6 shows that in yeast, all Eya1 mutants are present at a similar amount as 

the wild type. Thus, the possibility that the differences in the interaction profiles 

observed in yeast binding studies are caused by differences in expression levels 

can be excluded. 
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The next step was to establish a system which allows the analysis of the effect of 

the disease-associated Eya1 mutations on Eya1 function in mammalian cells. 

Therefore, all mutations were introduced into the mammalian expression vector 

pHM6-Eya1 and checked for their expression in Cos-7 cells.  

 
Fig. 3.7. The protein levels of the BOR-associated Eya1 mutants S454P, L472R, and L550P 
are dramatically decreased in Cos-7 cells. Each Eya1 mutation was introduced into the 
eukaryotic expression vector pHM6-Eya1. Cos-7 cells were transfected with mutant pHM6-Eya1, 
wild type pHM6-Eya1 or empty vector pRcCMV as a control. 48 h post-transfection cells were lysed 
in RIPA lysis buffer and equal amounts of lysate were analyzed by 10% SDS-PAGE and 
immunoblotting using anti-HA (6E2) antibody (upper panel). Equal loading was confirmed by 
detection of β-actin (lower panel).  

Surprisingly, three of the mutant Eya1 proteins (S454P, L472R, and L550P) were 

almost undetectable upon overexpression in Cos-7 cells (Fig. 3.7). To examine 

whether this fact was due to enhanced degradation of the mutant proteins via the 

proteasomal pathway, the experiment was repeated in presence or absence of the 

proteasome inhibitor lactacystin. In case Eya1 is degraded via the proteasomal 

pathway, one would expect accumulation of the protein in presence of lactacystin. 

 
Fig. 3.8. Eya1 and its mutants accumulate in presence of lactacystin. Cos-7 cells were 
transfected with mutant pHM6-Eya1, wild type pHM6-Eya1 or empty vector pRcCMV as a control. 
24 h post-transfection cells were treated with lactacystin (1 µM) or left untreated for another 24 h. 
Cells were lysed in RIPA lysis buffer and equal amounts of lysate were analyzed by 10% SDS-
PAGE and immunoblotting using anti-HA (6E2) antibody (upper panel). Equal loading was 
confirmed by detection of β-actin (middle panel) and lactate dehydrogenase (LDH; lower panel).  

Lactacystin treatment of Cos-7 cells overexpressing Eya1 led to accumulation of 

the protein indicating that Eya1 is degraded via the proteasome (Fig. 3.8). 
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Moreover, the three BOR-associated Eya1 mutants S454P, L472R and L550P 

which are present at lower levels in untreated cells accumulated to a similar 

amount as the wild type protein in lactacystin-treated cells. This suggests that 

introduction of each of those three mutations leads to instability of the protein due 

to enhanced proteasomal degradation. 

All proteins which are degraded via the proteasomal pathway are labeled for their 

degradation by covalent attachment of ubiquitin molecules to exposed lysine 

residues. A method to show that a protein indeed is ubiquitinated is the so-called 

in vivo ubiquitination assay which was established by Treier et al. (Treier et al., 

1994). To show that Eya1 is ubiquitinated, in vivo ubiquitination assay was 

performed. Therefore, Cos-7 cells were co-transfected with expression constructs 

for Eya1 and His-ubiquitin or HA-ubiquitin. As a control, Cos-7 cells transfected 

with the empty eukaryotic expression vector pRcCMV were used. Cells were 

treated with the proteasome inhibitor MG132 (10 µM) or vehicle 24 h post-

transfection, and harvested 24 h later. His-ubiquitin-labeled proteins were purified 

using Ni-NTA agarose and subsequently analyzed by SDS-PAGE and 

immunoblotting. Eya1 was detected using the anti-Eya1.2 antibody. 

 
Fig. 3.9. Eya1 ubiquitination can be detected in Cos-7 cells by in vivo ubiquitination assay. 
Cos-7 cells were co-transfected with pHM6-Eya1 or empty vector pRcCMV and expression 
construct for HA-ubiquitin or His-ubiquitin. 24 h later, cells were treated with MG132 (10 µM) or 
DMSO for 24 h. His-ubiquitin-labeled proteins were purified from cell lysates and analyzed by 8% 
SDS-PAGE and immunoblotting with anti-Eya1.2 antibody. Asterisk indicates unspecific signal. 

Similarly to treatment with lactacystin (see Fig. 3.8), presence of the proteasomal 

inhibitor MG132 led to accumulation of Eya1 protein indicating that Eya1 is a 

target of the proteasomal pathway (Fig. 3.9). After His-purification from cells 
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overexpressing Eya1, detection of higher molecular weight proteins was enhanced 

in presence of His-ubiquitin compared to HA-ubiquitin. This finding suggests that 

the higher molecular weight signals detected in presence of His-ubiquitin represent 

purified His-ubiquitin-labeled Eya1. In line with this assumption, treatment with the 

proteasomal inhibitor MG132 drastically increased the accumulation of these 

proteins. Note that, higher molecular weight proteins were also detected at a lower 

level after His-purification from cells co-transfected with empty vector and His-

ubiquitin and treated with MG132. A reason for this might be that the endogenous 

Eya1 protein of Cos-7 cells is His-ubiquitin-labeled, purified by Ni-NTA agarose 

and subsequently detected by the anti-Eya1.2 antibody in immunoblot.  Cos-7 

cells are green monkey kidney cells and express Eya1 as revealed by RT-PCR 

analysis (Jürgen Tomasch, diploma thesis, 2007). Taken together, it could be 

shown that Eya1 indeed is ubiquitinated, thus underlining earlier results regarding 

Eya1 as a target of the proteasomal pathway. 

To determine in which part of the protein ubiquitination takes place, in vivo 

ubiquitination assay was performed using N- or C-terminal fragments of Eya1 (see 

3.11 C for scheme of structure). 

 
 

 

 

 

Figure 3.10. Eya1 ubiquitination is 
mediated via the conserved C-
terminus of the protein. Cos-7 cells 
were transfected with expression 
constructs for HA-fusions of full length 
Eya1 (HA-Eya1), N-terminus (HA-Eya1-
N) or C-terminus (HA-Eya1-C) together 
with His-ubiquitin. Cells were treated with 
MG132 (10 µM) for 24 h, lysed and 
subjected to His-purification. An aliquot of 
input (lower panel) and purified proteins 
(upper panel) were loaded on a 10% 
SDS-PAA gel and detected by 
immunoblotting using anti-HA (6E2) 
antibody.  

His-ubiquitin-labeled proteins could only be purified from extracts of cells 

overexpressing full-length HA-Eya1 or its C-terminal part, but not of cells 
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overexpressing the HA-tagged N-terminal part of Eya1 (Fig.3.10), indicating that 

ubiquitination of Eya1 occurs in the conserved C-terminal part of the protein. 

The expression construct for the C-terminus of Eya1 which was used for the in 

vivo ubiquitination assay contains 13 lysine residues which can be targets for 

ubiquitination. To further narrow down the ubiquitination site, different mutants 

were created using site-directed mutagenesis: a substitution of the most N-

terminally located lysine residue to alanine (K301A), a deletion of overall 66 amino 

acids including a cluster of 6 lysine residues in the middle part of the Eya1 C-

terminus (Δ426-491), and a deletion of the C-terminally located 103 amino acids 

including 6 lysine residues (H489stop). Each mutation was introduced into 

expression constructs for full-length Eya1 (HA-Eya1) or its C-terminal part (HA-

Eya1-C). All mutants were tested for ubiquitination by in vivo ubiquitination assay 

after transfection of Cos-7 cells together with His-ubiquitin expression construct. 

An overview of the mutants used in this experiment and the results of the in vivo 

ubiquitination assay are given in Fig. 3.11 C. It has to be mentioned that 

ubiquitination of the lysine residue at position 301 could be excluded because this 

residue is also present in the N-terminal fragment of Eya1 (Eya1-N) which did not 

show ubiquitination in earlier experiments (see Fig. 3.10). Nevertheless, it was 

included in this study since the mutants had been generated before this finding. 

All mutants tested were still ubiquitinated indicating that ubiquitination occurs in 

two regions of the protein, one located in the central part and the other located in 

the C-terminal part of the Eya domain (Fig. 3.11). 
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Figure 3.11. Eya1 ubiquitination occurs in two distinct regions of the Eya domain. Cos-7 cells 
were co-transfected with His-ubiquitin and the indicated expression construct for Eya1 or the 
respective mutant form, and treated with MG132 (10 µM) 24 h post-transfection. 24 h later, cells 
were lysed and in vivo ubiquitination assay was performed as described. (A) Ubiquitination pattern 
of Eya1 mutants in the full length background compared to the wild type. (B) Ubiquitination pattern 
of Eya1 mutants in the background of the Eya1-C-terminus. (C) Schematic overview depicting 
mutants analyzed in A and B (left) and respective results of in vivo ubiquitination assay (right). 
Position of lysine residues is indicated in the scheme of full-length Eya1. Asterisk indicates point 
mutation. 
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Data from Amna Musharraf provides evidence that Eya1 protein is stabilized in 

presence of Six proteins, as for example Six1 (Amna Musharraf, PhD thesis). To 

determine the possibility that Six1 might inhibit polyubiquitination of Eya1 and 

therefore prevent its degradation, in vivo Eya1 ubiquitination assays were 

performed in presence or absence of Six1.  

 
Figure 3.12. Interaction with Six1 inhibits ubiquitination of Eya1. Cos-7 cells were co-
transfected with pHM6-Eya1 and His-ubiquitin in presence of either pcDNA-Flag-Six1 or empty 
vector. 24 h post-transfection cells were treated with MG132 (10 µM) or DMSO for another 24 h. 
His-ubiquitin-labeled proteins were purified from cell lysates and analyzed by 8% SDS-PAGE and 
immunoblotting using anti-HA (6E2) antibody for detection of HA-Eya1 and anti-Flag antibody for 
detection of Flag-Six1. An aliquot of the cell lysate before His-purification was analyzed in parallel 
for control of input. 

As shown in Fig. 3.12, polyubiquitination of Eya1 was tuned down in presence of 

Six1, which was not due to alteration of Eya1 protein levels in the input. Total Eya1 

protein level was even increased in presence of Six1 indicating that Eya1 is 

stabilized by interaction with Six1, which is in line with the data from Amna 

Musharraf. 

Conclusively, the facts that Eya1 is stabilized in presence of proteasomal inhibitors 

and the detection of Eya1 ubiquitination within the conserved Eya domain provide 

evidence for the degradation of Eya1 via the proteasomal pathway. Interestingly, 

ubiquitination and, thus, degradation of Eya1 is inhibited by interaction with Six1. 

Furthermore, some BOR associated Eya1 mutations lead to enhanced protein 

degradation providing a potential mechanism for the cause of BOR syndrome. 
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3.3 IDENTIFICATION OF EYA1-INTERACTING PROTEINS 

One aim of this work was to identify novel interaction partners of Eya1 in order to 

gain a deeper insight into the molecular mechanisms by which Eya1 is involved in 

the specific development of several organs. Method of choice was the classic 

Gal4-based yeast two-hybrid system, which is an efficient approach for the 

identification of interaction partners in vivo. The method is based on the ability of 

an interacting protein pair to bring together the DNA-binding domain and the 

transactivation domain of the transcription factor Gal4 to produce a functional 

transcriptional activator which activates the expression of reporter genes. The 

protein of interest, also called “bait”, is fused to the Gal4-binding domain (Gal4-

BD) and used for screening of a “prey” library where cDNAs have been fused to 

the Gal4-activation domain (Gal4-AD). 

3.3.1 Yeast two-hybrid analysis 

A pre-requisite for a successful yeast two-hybrid screening procedure is the use of 

a bait construct, which does not lead to activation of reporter gene expression 

itself. Transcription factors often lead to so-called “autoactivation” due to the 

presence of a transcriptional activation domain within their structure. Initially, I 

wanted to screen full length Eya1 for so far unknown interaction partners. For this 

purpose three bait constructs (Eya1-fl, Eya1-N, and Eya1-C) were generated and 

cloned into the Gal4-BD-encoding vector pGBT9 via a PCR-based strategy. Each 

was checked for autoactivation by transformation of the S. cerevisiae strain KFY1 

followed by colony-lift filter assay to detect expression of the reporter gene lacZ.  

 
Fig 3.13. Full-length Eya1 as well as the N-terminus of Eya1 mediate autoactivation of 
reporter gene expression. Protein domain structure of Eya1 bait constructs (left) and results of 
autoactivation assay (right). The respective expression constructs were used for transformation of 
S. cerevisiae KFY1. Expression of lacZ by the transformants was determined by colony-lift filter 
assay and graded on a scale from no expression (-) to high expression (++). 
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Full-length Eya1, as well as the N-terminus of Eya1 led to autoactivation of the 

reporter gene lacZ when fused to the Gal4-BD (Fig. 3.13). The reason for this is 

probably the presence of a transactivation activity located within the N-terminus of 

Eya1 (Xu et al., 1997). In contrast, the C-terminus of Eya1 did not show reporter 

gene activation when fused to the Gal4-BD. 

To further narrow down the N-terminal region which is responsible for 

transactivation, different deletion constructs of the N-terminus were analyzed for 

their ability to autoactivate the reporter gene lacZ. N-terminal deletion mutants 

were generated using a PCR-based strategy and introduced into the yeast two-

hybrid bait vector pGBT9. S. cerevisiae KFY1 cells transformed with these 

constructs and grown for 3 days were analyzed for lacZ expression by colony-lift 

filter assay. 

 
Fig 3.14. The transactivation activity of Eya1 is located between amino acids 109 and 198. 
Schematic overview of N-terminal Eya1 deletion mutants (left) and results of autoactivation assay 
(right). S. cerevisiae KFY1 cells were transformed with indicated expression constructs and grown 
for 3 days. Expression of lacZ by the transformants was determined by colony-lift filter assay and 
graded on a scale from no expression (-) to high expression (++). 

Studies in yeast revealed that the N-terminal Eya1 deletion fragments comprising 

amino acids 1-108 and 199-320 did not autoactivate reporter gene expression 

when fused to the Gal4-BD, whereas larger fragments did (Fig. 3.14). These 

results indicate that the transactivation activity of Eya1 is located between amino 

acids 109 and 198 of the protein. 

In summary, autoactivation studies demonstrated that both full length Eya1 and 

the N-terminus of Eya1 were not suited as bait constructs for the yeast two-hybrid 

screening procedure since both led to high activation of the reporter gene lacZ. It 
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was shown that this autoactivation is due to the transactivation activity of Eya1, 

which resides between amino acids 109 and 198 in the N-terminus of the protein. 

In contrast, the C-terminus of Eya1 including the conserved Eya domain did not 

autoactivate reporter gene expression and, thus, could be used as bait for 

screening of a mouse embryo cDNA library. 

3.3.1.1 Screening of a mouse embryo cDNA library 

In an attempt to identify interaction partners of Eya1, a yeast two-hybrid screen 

was performed using the C-terminus of Eya1 (Eya1-C) as a bait and a 

pretransformed cDNA library of an eleven-day old mouse embryo as a source of 

interacting proteins. 35 positive clones were isolated from approximately 2 million 

transformants. To exclude false-positive results, plasmid-DNA was extracted and 

subjected to re-transformation into yeast either alone or together with the bait 

followed by colony-lift filter assay. Retransformation analysis revealed that 25 out 

of 35 positive clones were false-positives since the interaction could not be 

reproduced. Ten potential interaction partners could be confirmed by 

retransformation assay and respective plasmid-DNA was sent to sequencing. 

Interestingly, one of the isolated cDNAs turned out to contain part of the Six2 

coding region including the conserved Six domain, which has been shown to 

mediate the interaction with Eya (Pignoni et al., 1997). Four clones corresponded 

to so far unknown ESTs (Expressed Sequence Tags) or genomic regions located 

outside of known coding regions, and were not subjected to further analysis. 

Another five clones corresponded to fragments of Sipl1, Ezh2, LAGi, and the 

ribosomal protein L17 which was isolated twice. An overview of these four 

potential interaction partners is shown in Table 3.2. 

Table 3.2. Potential Eya1 interaction partners isolated by yeast two-hybrid analysis 

potential interaction partner interaction strength fragment of coding region 

Sipl1 (Shank-interacting protein like 1) ++ 
1-1143 (full-length; 

containing intron 7) 

Ezh2 (enhancer of zeste homolog 2) ++ 1175-2241 

LAGi (potential LAG1 interactor homolog) ++ 233-1284 

ribosomal protein L17 + 1-552 (full length) 

47 



Results 

3.3.1.2 Verification of potential interaction partners of Eya1 

Surprisingly, the cDNAs of all four isolated potential interaction partners were not 

in frame with the Gal4-AD. Previous studies indicated that in S. cerevisiae 

translational frame-shifting can occur (Atkins et al., 1991; Weiss, 1991). It is 

therefore conceivable that, although the cDNAs were not in frame with the Gal4-

AD, frameshifting has led to synthesis of the proper protein. To analyze whether 

this was the case, all four potential interaction partners were cloned in frame to the 

Gal4-AD using a PCR-based strategy and gene-specific primers in case of Sipl1 or 

a mutagenesis approach in case of Ezh2, LAGi and L17. In-frame constructs were 

tested again for an interaction together with the bait Eya1-C by re-transformation 

of the yeast strain KFY1 and colony-lift filter assay.  

 
Fig. 3.15. In-frame constructs of Sipl1 and LAGi still interact with the C-terminus of Eya1. 
Co-transformation of S. cerevisiae KFY1 with pGBT9-Eya1-C or pGBT9 as negative control and 
the in-frame prey construct for each of the indicated potential interaction partners. Three colonies 
of each transformation plate were tested for expression of lacZ by colony-lift filter assay. 

For two of the potential interaction partners, namely Sipl1 and LAGi, an interaction 

in re-transformation assay could be detected, whereby the Eya1-Sipl1 interaction 

was much stronger and more robust compared to that of Eya1 and LAGi (Fig. 

3.15). Thus, the interaction of Eya1 with Sipl1 was confirmed and subjected to 

further analysis. 

Sequencing revealed that the cDNA clone of Sipl1, which was isolated from the 

mouse embryonic cDNA library used for yeast two-hybrid screening, contained the 

intron located between exon 7 and 8 leading to a premature STOP codon and, 

thus, a truncated protein. To verify the interaction of Eya1 with full-length Sipl1, the 

coding region of Sipl1 obtained from an I.M.A.G.E clone was introduced in the 

Gal4-AD-encoding prey vector using a PCR-based strategy. The bait construct 

48 



Results 

containing Eya1-C and the prey construct containing Sipl1 were introduced yeast 

and subsequently analyzed for an interaction by colony-lift filter assay. 

 
Fig. 3.16. Full-length Sipl1 interacts with the C-terminus of Eya1 in yeast. Co-transformation of 
S. cerevisiae KFY1 with pGBT9-Eya1-C or pGBT9 as negative control and pGADT7 containing the 
full length coding region of Sipl1. Five colonies of each transformation plate were tested for 
expression of lacZ by colony-lift filter assay. 

Indeed, colony-lift filter assay using full-length Sipl1 as a prey showed clear 

interaction with the C-terminus of Eya1 (Fig. 3.16). 

3.3.2 Characterization of the Eya1-Sipl1 interaction 

Sipl1 was previously identified as an interaction partner of Shank which functions 

as a scaffold protein at post-synaptic densities (Lim et al., 2001). The Sipl1 protein 

consists of 380 amino acids containing two conserved domains within its C-

terminal part: an Ubl (Ubiquitin-like) domain and a Ran-BP2 (Ran binding 

protein2)-type zinc finger (ZnF). An overview of the protein domain structure of 

Sipl1 is given in Fig. 3.17. So far, there is no data available on protein function.  

 
Figure 3.17. Sipl1 protein domain structure. Protein sequence was analyzed for conserved 
domains using the Conserved Domains database of NCBI (http://www.ncbi.nlm.nih.gov). 

3.3.2.1 Eya1 and Sipl1 interact in mammalian cells 

To verify the interaction of Eya1 and Sipl1 in mammalian cells, Co-

immunoprecipitation analysis was performed. Therefore, Cos-7 cells were co-

transfected with expression constructs for HA-tagged Eya1 (HA-Eya1) and Flag-

tagged Sipl1 (Flag-Sipl1). Since initial attempts had failed to detect the Eya1-Sipl1 

interaction in mammalian cells and since I could show that Eya1 levels are 

enhanced by proteasomal inhibitors (see Fig. 3.8, Fig. 3.9), cells were treated with 

1 µM MG132 24 h post-transfection. Cells were harvested 24 h later in HEPES 

lysis buffer and subjected to immunoprecipitation. HA-Eya1 was precipitated using 

anti-HA antibody, whereas in the reciprocal experiment Flag-Sipl1 was precipitated 
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using anti-Flag antibody. Precipitates and cell lysates were analyzed by SDS-

PAGE and immunoblotting. 

 
Fig. 3.18. Eya1 and Sipl1 interact in mammalian cells. Cos-7 cells were transfected with pHM6-
Eya1 and pcDNA-Flag-Sipl1 or each construct alone. 24 h post-transfection cells were treated with 
MG132 (1 µM) for another 24 h followed by lysis of cells in HEPES lysis buffer and 
immunoprecipitation with (A) anti-HA (12CA5) or (B) anti-Flag antibody. An aliquot of cell lysates 
before immunoprecipitation and the precipitated complexes were analyzed by 10% SDS-PAGE and 
immunoblotting using anti-HA (6E2) antibody for detection of HA-Eya1 and anti-Flag antibody for 
detection of Flag-Sipl1.  

As can be seen in Fig. 3.18 A, after immunoprecipitation with anti-HA antibody 

comparable amounts of HA-Eya1 were detected from cell lysates transfected with 

HA-Eya1 alone or together with Flag-Sipl1, but not from cell lysates transfected 

with Flag-Sipl1 confirming the specificity of the detected signal. Furthermore, it 

could be shown that Flag-Sipl1 co-precipitated together with HA-Eya1. In the 

reciprocal experiment (Fig. 3.18 B), a signal for HA-Eya1 was detectable after 

precipitation of Flag-Sipl1. These results indicate that the two proteins interact with 

each other in mammalian cells. 

3.3.2.2 Eya1 and Sipl1 bind directly to each other 

Both, yeast two-hybrid system and co-immunoprecipitation can show that two 

proteins of interest interact with each other in one protein complex. But whether 

the interaction is direct or indirect, can not be answered by applying these 

techniques since endogenous proteins of yeast or mammalian cells could serve as 

bridging factors mediating the interaction. To analyze whether the Eya1-Sipl1 

interaction is of direct manner, GST pulldown assay was employed. Purified GST-

Sipl1 fusion protein or GST alone as a negative control were coupled to agarose 

beads and incubated with in vitro synthesized HA-Eya1. Presence of Eya1 was 

detected by SDS-PAGE followed by immunoblotting using anti-HA antibody.  
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Fig. 3.19. Eya1 and Sipl1 interact directly with each other. In vitro synthesized HA-Eya1 was 
incubated with recombinant GST-Sipl1 or GST which had been coupled to agarose beads before 
(upper right panel). After thorough washing beads were boiled for 5 min in 2x Laemmli loading 
buffer and loaded on a 10% SDS-PAA gel. HA-Eya1 was detected by immunoblotting using anti-
HA (6E2) antibody. An aliquot (4%) of in vitro synthesized HA-Eya1 was included in the 
immunoblot analysis (upper left panel). Input of GST fusion proteins was controlled by SDS-PAGE 
and coomassie staining (lower panel). Asterisk indicates bacterial protein co-purifying with GST. 

GST and GST-Sipl1 were efficiently purified from bacterial cells as shown after 

SDS-PAGE and coomassie staining (Fig. 3.19). In the case of GST-Sipl1, a ladder 

of lower molecular weight proteins could be observed which probably represents 

degradation products. A signal for interacting HA-Eya1 was detected after 

incubation with GST-Sipl1, but not with GST alone. This result demonstrates that, 

indeed, Eya1 directly interacts with GST-Sipl1. 

3.3.2.3 Interaction of Sipl1 with other Eya family members 

The C-terminus of Eya1 which was used as a bait for the yeast two-hybrid 

screening procedure contains the so-called Eya domain, which is highly conserved 

in other Eya family members as well. An alignment of the Eya domains of murine 

Eya1-Eya4 is shown in Fig. 3.20. 

As previously described, the alignment of the Eya domains of the mouse 

homologs Eya1-4 shows that Eya4 is most closely and Eya3 most distantly related 

to Eya1 (Fig. 3.20) (Zimmerman et al., 1997; Borsani et al., 1999). Overall, there is 

conservation of about 80% within this region. 
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Fig. 3.20. Alignment of the conserved Eya domains of mouse Eya1-4. Alignment of the Eya 
domains of mouse Eya1-4 was performed using the ClustalW program (www.ebi.ac.uk/clustalw). 
The order of the alignment indicates the degree of conservation compared to Eya1 from high 
(Eya4) to low (Eya3).

The novel interaction partner Sipl1 was identified from a yeast two-hybrid screen 

using the C-terminal region of Eya1 including the conserved Eya domain as a bait. 

Hence, it could be possible that Sipl1 also interacts with other Eya family 

members. To examine whether this is the case, β-gal liquid assay was performed 

using C-terminal fragments of Eya1-Eya4 as baits and full-length Sipl1 as a prey.  

 
Fig. 3.21. Sipl1 interacts with Eya1 and Eya2, but not with Eya3 and Eya4. Co-transformation 
of S. cerevisiae KFY1 with pGADT7-Sipl1 or empty vector and pGBT9 containing C-terminal 
fragments of Eya1-4, respectively. After 3 days of growth, β-gal liquid assay was performed from 3 
pooled colonies in triplicates. Error bars represent standard deviation. 

β-gal liquid assay showed that Sipl1 interacts not only with the C-terminus of Eya1, 

but also with the C-terminus of Eya2 (Fig. 3.21). The interaction with Eya3 and two 

alternative splice forms of Eya4 could not be detected. The results were surprising 
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in that way that Eya2 is more distantly related to Eya1 compared to Eya4. 

However, comparable expression of the bait constructs for Eya2, Eya3 and Eya4 

needs to be confirmed. 

3.3.2.4 Localization of binding sites 

To localize the respective binding site in each of the interaction partners, Eya1 and 

Sipl1, β-gal liquid assay was performed. For Eya1, several deletion mutants were 

generated using a PCR-based strategy, and cloned into the yeast two-hybrid bait 

plasmid pGBT9. Each deletion construct was used for transformation of yeast 

together with the Sipl1-expressing prey plasmid. Colonies were allowed to grow for 

3 days, and expression of the reporter gene lacZ was determined by β-gal liquid 

assay. The interaction strength of wild type Eya1-C and Sipl1 was determined in 

parallel as a positive control. 

 
Fig. 3.22. The whole C-terminus of Eya1 is required for the interaction with Sipl1.                  
S. cerevisiae KFY1 cells were co-transformed with yeast expression constructs for Eya1 deletion 
fragments and Sipl1 as indicated. After 3 days of growth β-gal liquid assay was performed from 3 
pooled colonies. Each sample was measured in triplicates. (A) Results of β-gal liquid assay. Error 
bars represent standard deviation. (B) Schematic overview of C-terminal Eya1 deletion fragments 
used in A. 

As seen in Fig. 3.22, the interaction between the C-terminus of Eya1 and Sipl1 

lead to strong lacZ expression as determined by the amount of β-gal units 

produced. Deletion of any part of the C-terminus of Eya1 led to complete loss of 

the interaction suggesting that the interaction with Sipl1 requires the full-length     
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C-terminus of Eya1. An explanation for this result might be that Sipl1 binds to a 

structural motif within the Eya1-C-terminus which is composed of amino acids 

located in distinct regions of the Eya domain. 

A similar experiment was performed to narrow down the minimal Eya1 binding site 

in the Sipl1 protein. Different deletion mutants of Sipl1 were created using PCR 

and gene-specific primers, and cloned into the Gal4-AD-encoding prey vector 

pGADT7. Each was introduced into yeast together with the bait vector for Eya1-C. 

Expression of lacZ was determined by measuring the amount of produced β-gal 

units in a β-gal liquid assay.  

 
Fig. 3.23. Eya1 binds to the conserved Ubl domain of Sipl1. S. cerevisiae KFY1 cells were co-
transformed with yeast expression constructs for the Sipl1 deletion fragments and the C-terminus 
of Eya1. After 3 days of growth β-gal liquid assay was performed from 3 pooled colonies and 
measured in triplicates. (A) Results of β-gal liquid assay. Error bars represent standard deviation. 
(B) Schematic overview of Sipl1 deletion mutants used in A. 

Binding studies showed that the zinc finger in the very C-terminus of Sipl1 is not 

necessary for its interaction with Eya1, but absence of this region weakens the 

interaction to about 50% compared to full length Sipl1 (Fig. 3.23). Furthermore, it 

could be shown that the interaction is mediated via the C-terminal part of Sipl1 

since the fragment containing amino acids 1-199 did not interact with Eya1, but the 

fragment containing amino acids 184-343 did. Finally, the minimal Eya1 binding 

region could be located to the complete Ubl domain and approximately 30 amino 

acids upstream of it, which might be required for correct folding of this domain.  
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3.3.3 Interaction of Eya1 with Rbck1, a Sipl1-related protein 

The ubiquitin-like domain of Sipl1, which has been shown to mediate the 

interaction with Eya1, is a conserved domain present in other proteins as well. 

One of those is Rbck1 (RBCC protein interacting with PKC 1) (Tokunaga et al., 

1998). The N-terminus of Rbck1 is highly similar to the C-terminus of Sipl1 sharing 

both conserved regions, the Ubl domain and the Ran-BP type zinc finger (ZnF). In 

the C-terminus of Rbck1 two additional conserved domains can be found (Fig. 

3.24 A). One is a coiled-coil domain, the other a RING-IBR region consisting of 

two zinc finger domains and a cysteine/histidine-rich motif (C/H) in between. 

RING-IBR domains are mainly present in proteins with E3 ubiquitin ligase activity 

(Tian et al., 2007). Recently, it has been shown that Rbck1 acts as an E3 ubiquitin 

ligase (Yamanaka et al., 2003; Tatematsu et al., 2008). In addition to that, it is 

known that Rbck1 possesses a transactivation activity and functions as a 

transcriptional co-activator (Cong et al., 1997; Tatematsu et al., 1998).  

 
Fig. 3.24. Rbck1 is a Sipl1-related protein. (A) Schematic alignment of protein domain structures 
of Sipl1 and Rbck1. (B) Alignment of the minimal Eya1 binding region of Sipl1 (aa 184-297) to the 
corresponding region of Rbck1 using ClustalW (www.ebi.ac.uk/clustalw). Black boxes indicate 
identical amino acids. Ubl, ubiquitin-like; ZnF, zinc finger; RING, really interesting new gene; IBR, 
in between RING; C/H, cysteine/histidine-rich. 

An alignment of the minimal Eya1 binding region of Sipl1 with the corresponding 

region of Rbck1 shows 42% identities in protein sequence within this region (Fig. 

3.24 B). Based on this fact, one can assume that Eya1 also interacts with Rbck1. 

To address this question, Rbck1 was cloned into the yeast two-hybrid prey vector 

pGADT7 and checked for interaction with the C-terminus of Eya1 by yeast two-
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hybrid analysis. β-Gal liquid assay showed weak but clearly detectable interaction 

between Rbck1 and the C-terminus of Eya1 (Fig. 3.25).  

 
Fig. 3.25. Eya1 interacts with the Sipl1-related protein Rbck1. S. cerevisiae KFY1 were co-
transformed with pGADT7-Rbck1 and pGBT9-Eya1-C or empty vector pGBT9. After 3 days of 
growth 3 pooled colonies were analyzed for expression of the reporter gene lacZ by β-gal liquid 
assay. Each measurement was preformed in triplicates. Error bars represent standard deviation. 

To further verify the interaction of Eya1 and Rbck1, GST pulldown and co-

immunoprecipitation analyses were performed according to the experiments 

shown before regarding the Eya1-Sipl1 interaction. 

 

Fig. 3.26. Eya1 interacts with Rbck1 in GST pulldown and co-immunoprecipitation. (A) GST 
pulldown was performed by incubating in vitro synthesized HA-Eya1 with recombinant GST-Rbck1 
or GST alone as a control (upper right panel). HA-Eya1 was detected by 10% SDS-PAGE and 
immunoblotting using anti-HA (6E2) antibody. The input of in vitro synthesized HA-Eya1 (upper left 
panel) and GST-fusion proteins (lower panel) was determined in parallel. The asterisk indicates 
bacterial protein co-purifying with GST. (B) For co-immunoprecipitation analysis Cos-7 cells were 
transfected with pHM6-Eya1 and pcDNA-Flag-Rbck1 or each construct alone, and treated with 
MG132 (1 µM) 24 h post-transfection. 24 h later cells, were lysed in HEPES lysis buffer and HA-
Eya1 was precipitated using anti-HA (12CA5) antibody. An aliquot of cell lysates before 
immunoprecipitation and precipitated complexes were analyzed by 10%-SDS-PAGE and 
immunoblotting using anti-HA (6E2) antibody for detection of HA-Eya1 and anti-Flag antibody for 
detection of Flag-Rbck1. 
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GST pulldown analysis showed that HA-Eya1 is precipitated by GST-Rbck1, but 

not by GST alone, indicating that Eya1 and Rbck1 interact directly with each other 

in vitro (Fig. 3.26 A). Furthermore, the interaction of Eya1 and Rbck1 could be 

confirmed in mammalian cells by co-immunoprecipitation (Fig. 3.26 B). 

Comparable amounts of HA-Eya1 were precipitated by anti-HA antibody, and a 

clear signal for co-precipitated Flag-Rbck1 was only visible in presence of HA-

Eya1 leading to the conclusion that, indeed, the two proteins interact in 

mammalian cells. 

In summary, two novel interaction partners of Eya1 were identified: Sipl1 and 

Rbck1. It could be shown that the interaction with Eya1 is mediated via the Ubl 

domain present in both proteins. Thus, it is likely that Eya1 also interacts with 

other proteins containing this conserved domain. Both Sipl1 and Rbck1 were 

subjected to further analysis regarding the functional consequences of their 

interaction with Eya1.  

3.4 FUNCTIONAL RELEVANCE OF THE INTERACTIONS 

3.4.1 Cellular localization of Eya1, Sipl1, and Rbck1 

A pre-requisite for an interaction between two proteins is co-localization of both 

proteins within the same compartment of a cell. Localization of Eya1 has been 

extensively studied, and it has been shown that Eya1 is localized in the cytoplasm. 

Furthermore, interaction of Eya1 with Six proteins, as for example Six2, leads to 

it’s translocation into the nucleus where the Eya1-Six complex activates gene 

expression (Ohto et al., 1999). In order to determine if Eya1 and its novel 

interaction partners Sipl1 and Rbck1 are located within the same cellular 

compartment, an immunofluorescence approach was employed. Therefore, Cos-7 

cells were co-transfected with an EGFP-fusion construct of Eya1 (EGFP-Eya1) 

and an RFP-fusion construct of Sipl1 (RFP-Sipl1) or Rbck1 (RFP-Rbck1), 

respectively. To check the influence of Six2-mediated translocation of Eya1 on the 

localization of Sipl1 and Rbck1, each experiment was performed in presence or 

absence of Six2. 
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Fig. 3.27. Eya1 and Sipl1 are localized in the cytoplasm and translocated into the nucleus in 
presence of Six2. Cos-7 cells were grown on coverslips and co-transfected with indicated 
expression constructs. 40 h post-transfection cells were fixed, nuclei were stained with Hoechst 
dye, and fluorescence-labeled proteins were visualized by microscopy using an Axiovert 135 TV 
microscope (Zeiss). (A) Localization of RFP-Sipl1 in presence of EGFP. (B) Localization of RFP-
Sipl1 in presence of EGFP-Eya1. (C) Effect of Six2 on localization of RFP-Sipl1. (D) Effect of Six2-
mediated translocation of EGFP-Eya1 on localization of RFP-Sipl1. Scale bar: 10 µm. 

Sipl1 protein alone was mostly localized in the cytoplasm and to less extent also in 

the nucleus (Fig. 3.27 A). Presence of Eya1 led to clear accumulation of Sipl1 in 

the cytoplasm (Fig. 3.27 B). Furthermore, Six2 mediated translocation of both 

Eya1 and Sipl1 into the nucleus arguing for an interaction between the proteins 

(Fig. 3.27 D). Interestingly, in some cells also in absence of Eya1, Six2-mediated 

translocation of Sipl1 into the nucleus was observed (Fig. 3.27 C). One reason for 

this could be that endogenous Eya1 serves as a bridge between Sipl1 and Six2, 

thereby allowing translocation of the complex. RT-PCR analysis showed that, 

indeed, Cos-7 cell express endogenous Eya1 (Jürgen Tomasch, diploma thesis, 

2007). Another possibility for the Six2-mediated translocation of Sipl1 is direct 

interaction of the two proteins. 
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Fig. 3.28. Eya1 and Rbck1 are localized in the cytoplasm. Cos-7 cells were co-transfected with 
the indicated expression constructs. 40 h post-transfection cells were fixed, and nuclei were 
stained with Hoechst dye. Protein localization was analyzed by fluorescence microscopy using an 
Axiovert 135 TV microscope (Zeiss). (A) Localization of RFP-Rbck1 in presence of EGFP.           
(B) Localization of RFP-Rbck1 in presence of EGFP-Eya1. (C) Effect of Six2 on localization of 
RFP-Rbck1. (D) Effect of Six2-mediated translocation of EGFP-Eya1 on localization of RFP-Rbck1. 
Scale bar: 10 µm 

As Eya1, Rbck1 was localized in the cytoplasm (Fig. 3.28). In contrast to Sipl1, its 

localization did not change in presence of Six2 indicating that the Eya1-Rbck1 

interaction only occurs in the cytoplasm.  

3.4.2 Co-expression of Eya1 and Sipl1 or Rbck1 in mouse 

An important point for the relevance of an interaction in vivo is tissue-specific 

coexpression of the interaction partners. In a first attempt to address the functional 

relevance of the interactions of Eya1 with its novel interaction partners Sipl1 and 

Rbck1 in vivo, expression studies were performed. RNA from several tissues of a 

13.5 day old mouse embryo was analyzed for expression of Sipl1 and Eya1 by 

RT-PCR. Primers used for the detection of Sipl1 expression were located in exon 

6 and 8, primers for Eya1 in exon 3 and 11. In parallel, expression of the house-

keeping gene Tbp (TATA-box binding protein) was monitored for control of input.    
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Fig. 3.29. Sipl1 and Eya1 are co-expressed in several tissues of a developing mouse 
embryo. Indicated tissues of a 13.5 day old embryo were used for RNA isolation and cDNA 
synthesis. Sipl1 and Eya1 expression was analyzed by RT-PCR using gene-specific primers. For 
control of cDNA input Tbp expression was determined from the same samples. 

Sipl1 expression was detected in every tissue tested, whereby adrenal, gonad and 

lung showed lowest expression, and heart and gut highest expression (Fig. 3.29). 

Furthermore, Eya1 expression could also be detected in several of those tissues, 

as for example gut, kidney and limb. Thus, RT-PCR analyses show that Sipl1 and 

Eya1 are co-expressed in several tissues of a developing mouse embryo. 

A second approach to examine expression of Sipl1 and Rbck1 during mouse 

embryonic development was carried out by in RNA in situ hybridization on paraffin 

sections of a female mouse embryo of embryonic day 13.5. Therefore, gene-

specific probes for Sipl1 and Rbck1 were used in either sense or antisense 

orientation to make sure that a specific signal is detected. For comparison, Eya1 

expression was determined in parallel. 

In the case of Sipl1, high overall background staining was observed in the sense 

control (Fig. 3.30 A). However, a specific signal for Sipl1 expression significantly 

higher than background was detectable in the kidneys, the dorsal root ganglia and 

a spot-like pattern most likely representing parts of the sympathetic nervous 

system (SNS) of the developing mouse embryo (Fig. 3.30 B). The sense control 

for Rbck1 expression showed only slight background staining in the dorsal region 

of the neural tube (Fig. 3.30 C). In contrast, using an antisense probe against 

Rbck1, bright staining was detected in nearly every region of the section 

suggesting ubiquitous expression of Rbck1. Especially high signals for Rbck1 

expression were detected in kidneys, pancreas, stomach and the SNS (Fig. 3.30 

D). Analysis of Eya1 expression by in situ hybridization on comparable sections 

showed that also Eya1 is highly expressed in developing kidneys and the SNS 

(Fig. 3.30 E, F). 

60 



Results 

 
Fig. 3.30. Analysis of Sipl1, Rbck1 and Eya1 expression by in situ hybridization. Analysis of 
the expression of Sipl1 (A,B), Rbck1 (C,D) and Eya1 (E,F) by in situ hybridization on sections of 
the kidney region of a 13.5 day old female mouse embryo using gene-specific probes in sense 
(A,C,E) or antisense (B,D,F) orientation. Expression in the kidney is indicated by black arrow, in the 
sympathetic nervous system (SNS) by black arrowhead. White arrow marks expression in 
stomach, white arrowhead expression in pancreas, asterisk expression in the dorsal root ganglion. 

In summary, RNA in situ hybridization demonstrated that both Sipl1 and Rbck1 are 

expressed in several tissues of a mouse embryo including regions overlapping 

with Eya1 expression. 

3.4.3 Effect of Sipl1 and Rbck1 on transactivation function of Eya1 

Eya proteins have been shown to act as co-activators for the Six transcription 

factors. A question, which arose during the course of this work, was whether the 

interaction of Sipl1 or Rbck1 influences this function. Based on already reported 

data, a transactivation assay was established using a luciferase reporter construct 

containing 6 MEF3 (myogenic enhancing factor 3) sites in the background of a 

minimal TATA promoter. Both Six1 and Six4 have been shown to bind to MEF3 
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sites which are naturally occurring in the regulatory regions of muscle-specific 

genes, e.g.  Myogenin. The MEF3 consensus sequence is 5’-TCAGGTT-3’ (Spitz 

et al., 1998). Binding of Six1 and Six4 to these sites leads to activation of 

transcription with Six4 having the stronger effect compared to Six1 (Spitz et al., 

1998). Furthermore, Six4-mediated transactivation is enhanced by interaction with 

Eya1 or more efficiently by interaction with Eya2 (Fan et al., 2000; Ruf et al., 

2004). As shown before, Sipl1 also interacts with Eya2, which can also be 

assumed for Rbck1 because the binding region of the two proteins is conserved. 

In order to analyze the effect of the two interaction partners on the ability of Eya2 

to act as a co-activator for Six4, luciferase reporter assays were performed. 

Therefore, Cos-7 cells were transfected with the appropriate expression 

constructs, the MEF3-luciferase reporter construct and a renilla reporter construct 

as an internal control. 48 h post-transfection, reporter activity was determined 

using the Dual-Luciferase Reporter Assay System (Promega). 

 
Fig. 3.31. Sipl1 and Rbck1 enhance Eya2-Six4 mediated transactivation. Cos-7 cells were 
seeded in 6-well format and co-transfected with pGL3-MEF3/TATA or pGL3-TATA reporter 
construct, indicated expression constructs, and Renilla control-plasmid. Each transfection was 
performed in triplicates. 48 h after transfection, cell lysates were prepared for measurement of 
luciferase activity. After normalization to Renilla activity, foldness of reporter gene activation of 
samples containing pGL3-MEF3/TATA was calculated relative to respective samples containing 
pGL3-TATA. Activity of the reporter alone was set to 1. Graph represents one of three experiments 
showing similar results. Error bars indicate standard deviation. 

In line with the already published data, it was observed that Six4 alone activated 

the reporter to about 4 fold, and this activation was further enhanced to about 12 

fold in presence of Eya2 (Fig. 3.31). Presence of Sipl1 or Rbck1 did not influence 

transactivation by Six4 alone, but enhanced transactivation by Eya2 and Six4 to 
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about 16 fold indicating that this effect is mediated via interaction of Sipl1 and 

Rbck1 with Eya2. 

3.4.4 Identification of orthologs of Sipl1 and Rbck1 in zebrafish 

To further address the functional importance of the Eya1-Sipl1/Rbck1 interaction 

the zebrafish model system was used. The zebrafish has several advantages 

compared to other model organisms. First of all, it is a vertebrate and, thus, more 

closely related to mouse or human compared to other established models, e.g. 

Drosophila and C. elegans. Second, development is fast and can easily be 

monitored by microscopy. And finally, gene-specific knockdown can be achieved 

quite simply by injection of morpholinos directed against the gene of interest. Aim 

of the zebrafish studies was to investigate the role of Sipl1 or Rbck1 during 

embryonic development in relation to Eya1. In 1999, Sahly et al. identified a 

zebrafish ortholog of Eya1, which has recently been shown to be involved in ear 

development (Sahly et al., 1999; Kozlowski et al., 2005). The zebrafish 

experiments were performed in collaboration with Frank Bollig and Christina Ebert. 

At the beginning of this study no zebrafish orthologs of Sipl1 or Rbck1 had been 

characterized. Using bioinformatics analysis, three putative orthologs could be 

identified (Fig. 3.32).  

 
Fig. 3.32. Protein domain structure of zebrafish orthologs of Sipl1 and Rbck1. Protein 
domains of each of the orthologs were predicted using the Conserved Domains database of NCBI 
(http://www.ncbi.nlm.nih.gov). 

Zebrafish sipl1 is an ortholog of mouse Sipl1 and encodes a protein which 

contains both the conserved regions the Ubl domain and the RanBP-type ZnF in 

its C-terminal part. Zebrafish rbck1 is an ortholog of mouse Rbck1 with the 

respective proteins also sharing all conserved domains: the Ubl domain, the 

RanBP-type Znf, the coiled-coil region and the RING-IBR domain. In addition to 

that, a third ortholog, called sipl1-rbck1, could be identified, which seems to be a 

fusion of both, sipl1 and rbck1 (Fig. 3.32). Bioinformatics analysis showed that a 

63 



Results 

similar fusion gene seems to be present in other fish species as well, as for 

example stickleback and fugu (data not shown). The coding regions of all three 

zebrafish orthologs were cloned by RACE (sequences are listed in the appendix). 

In the case of sipl1-rbck1, primers were designed based on known ESTs. For sipl1 

and rbck1 no ESTs were available and primers used for RACE were located within 

regions highly conserved to the mouse orthologs. Obtained cDNA sequences were 

translated into protein sequences and aligned to the minimal Eya1 binding region 

of the respective mouse proteins using the ClustalW program 

(www.ebi.ac.uk/clustalw). Results are shown in Table 3.3. 

Table 3.3.  Amino acid sequence conservation of the minimal Eya1 binding region 
between zebrafish and mouse 

 identities within the Eya1-binding region compared to 

Zebrafish protein mouse Sipl1 mouse Rbck1 

Sipl1 50% 43% 

Sipl1-Rbck1 49% 38% 

Rbck1 28% 41% 

Alignment of the minimal Eya1 binding region of mouse Sipl1 or Rbck1 to each of 

the identified zebrafish proteins revealed that both zebrafish Sipl1 and Sipl1-Rbck1 

are more closely related to mouse Sipl1, whereas zebrafish Rbck1 is more closely 

related to mouse Rbck1 within this region (Table 3.3). Therefore, zebrafish Sipl1 

and Sipl1-Rbck1 are further designated as Sipl1 orthologs, and zebrafish Rbck1 

as an Rbck1 ortholog. 

3.4.4.1 Co-expression of Eya1 and Sipl1/Rbck1 orthologs in zebrafish 

In order to analyze the expression pattern of the Sipl1 orthologs during zebrafish 

embryonic development in comparison to that of Eya1, whole-mount RNA in situ 

hybridization was performed as described in 2.2.6.3 using zebrafish embryos of 

different stages (35-72 hpf) and gene specific probes.  

As already described by Sahly et al., high levels of eya1 expression were detected 

in all three stages in the region of the branchial arches and the otic vesicle which 

corresponds to the developing ear (Fig. 3.33) (Sahly et al., 1999). Zebrafish sipl1 

was expressed at high levels in the whole zebrafish head at earlier stages (35 
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hpf), while at later stages (72 hpf) its expression was more restricted to the region 

of the midbrain-hindbrain barrier and the otic vesicle of the zebrafish embryo. In 

contrast, the expression pattern of sipl1-rbck1 was more restricted with high 

expression in the region of the midbrain-hindbrain barrier and the region of the 

developing ear. 

 
Fig. 3.33. Analysis of eya1, sipl1 and sipl1-rbck1 expression in zebrafish by whole-mount in 
situ hybridization. Analysis of the expression of eya1 (A-C), sipl1 (D-I), and sipl1-rbck1 (J-P) by 
whole-mount in situ hybridization on different stages of zebrafish embryos using gene-specific 
probes in sense (G-I, M-P) or antisense ( A-C, D-F, J-L) orientation. Position of the otic vesicle is 
indicated by white arrow.  

Taken together, analysis of the expression of eya1 and the Sipl1-orthologs sipl1 

and sipl1-rbck1 showed that all 3 are co-expressed in the developing ear of the 

zebrafish embryo. 
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To have a closer look at this region, RNA in situ hybridization was performed on 

transverse sections of the ear region of a zebrafish embryo at 72 hpf. Again, gene-

specific RNA probes for sipl1 and sipl1-rbck1 were tested in comparison to an 

eya1 probe.  

 
Fig. 3.34. eya1 and sipl1-rbck1 are co-expressed in the developing inner ear of the zebrafish 
embryo. Analysis of expression of eya1 (A,B) and sipl1-rbck1 (C,D) in the otic vesicle of a 72 h old 
zebrafish embryo was performed by in situ hybridization on paraffin sections using gene-specific 
probes in sense (B,D) or antisense (A,C) orientation. Expression in the sensory epithelium of the 
otic vesicle is indicated by white arrow. ov, otic vesicle. 

As can be seen from Fig. 3.34, eya1 is expressed in a defined region of the inner 

ear which corresponds to the sensory epithelium. A signal for sipl1 expression was 

detected in this region, but was also present in the sense control indicating that 

this signal is not specific (data not shown). In contrast, for sipl1-rbck1 a clear 

signal could be detected in a similar region, which was not present in the sense 

control. In conclusion, both eya1 and sipl1-rbck1 are expressed in an overlapping 

region of the inner ear of a developing zebrafish embryo which is compatible with 

a possible interaction between the respective proteins. 

To get an idea about the expression pattern of the Rbck1 ortholog during zebrafish 

embryogenesis, whole-mount RNA in situ hybridization was performed using 72 h 

old embryos and a gene-specific probe. 
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Fig. 3.35. Comparison of eya1 and rbck1 expression in zebrafish by whole-mount in situ 
hybridization. Comparison of the expression pattern of rbck1 (A, B, D, E) and eya1 (C) by whole-
mount in situ hybridization on 72 hours old zebrafish embryos using gene-specific probes in sense 
(D,E) or antisense (A, B, C) orientation. Position of branchial arches is indicated by white arrow. 

In the case of rbck1, the sense control showed high unspecific staining (Fig. 3.35). 

However, a specific signal, which was not present in the sense control, was 

detected in the region of the branchial arches of the zebrafish embryo. A closer 

look on eya1 expression showed that also eya1 is expressed in this region of the 

developing zebrafish. 

Taken together, it has been demonstrated that the identified Sipl1 and Rbck1 

orthologs are expressed in different tissues during zebrafish embryonic 

development. While both sipl1 and sipl1-rbck1 are co-expressed with eya1 in the 

developing ear, rbck1 shows overlapping expression with eya1 in the region of the 

branchial arches. 

3.4.4.2 Knockdown of Sipl1/Rbck1 orthologs in zebrafish 

To gain insight into the importance of a gene of interest during embryonic 

development, a common approach is the knockdown of the respective gene. 

Knockdown of genes in zebrafish can be achieved by the injection of morpholino 

antisense nucleotides (morpholinos) into 1- or 2-cell stage embryos. Morpholinos 

are nucleic acids analogs which can mediate knockdown of gene expression by 

binding to complementary regions in the mRNA. They can be designed to block 

translation initiation (by targeting the 5’-untranslated region) or to modify pre-

mRNA splicing (by targeting splice junctions). To address the question whether the 
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two Sipl1 orthologs, sipl1 and sipl1-rbck1, are involved in developmental 

processes a morpholino-mediated knockdown approach was employed. cDNA 

sequences of sipl1 and sipl1-rbck1 were aligned with zebrafish genomic DNA by 

performing a BLAT search in the UCSC genome browser to determine intronic 

sequences of the respective gene (http://genome.ucsc.edu/). According to this 

data, morpholinos were created which were directed against splice donor sites of 

the respective mRNA. Sequences and target site of morpholinos used in this work 

are listed in Table 2.5. 

 
Fig. 3.36. Morpholino-mediated knockdown of sipl1 expression in zebrafish results in severe 
malformations of the embryo. (A) Non-injected control-embryos at 35 hpf. (B) Embryos injected 
with morpholino directed against the exon4-intron4 splice donor site of sipl1 (sipl1-4-4 MO) at 35 
hpf. (C) Confirmation of knockdown by RT-PCR using primers located in exon 2 and exon 6 of 
sipl1, respectively. 

As shown by RT-PCR analysis (Fig. 3.36 C), injection of sipl1-morpholinos 

directed against the splice donor site of exon 4 led to efficient knockdown of sipl1 

expression via exclusion of exon 4 from the mRNA leading to a frameshift and an 

early stop codon. Knockdown of zebrafish sipl1 resulted in complete malformation 

of the zebrafish embryos (Fig. 3.36 B). Both, head and tail region of the embryos 

are shortened in size, and structures, as for example the eye, are either 

completely absent or severely malformed. This data is in line with the more 
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ubiquitous expression pattern of sipl1 during zebrafish embryonic development 

suggesting a more general role of this gene in embryonic development. 

In contrast to sipl1, knockdown of sipl1-rbck1 using two independent splice donor 

site morpholinos led to a BOR (branchio-oto-renal) syndrome-like phenotype 

mainly affecting the region of the branchial arches and the ear of the zebrafish 

embryo (Fig. 3.37). 

 
Fig. 3.37. Morpholino-mediated knockdown of sipl1-rbck1 expression in zebrafish affects 
the development of the ear and the lower jaw. (A) Non-injected control-embryos at 4 dpf. (B) 
Embryos injected with morpholino directed against the exon1-intron1 splice donor site of sipl1-
rbck1 (sipl1-rbck1 MO1-1) at 6 dpf. (C) Embryos injected with morpholino directed against the 
exon2-intron2 splice donor site of sipl1-rbck1 (sipl1-rbck1 MO2-2) at 4 dpf. Black arrow indicates 
region of the branchial arches. White arrowhead indicates position of the otic vesicle. (D) Lateral 
view of the otic vesicle of a non-injected control embryo at 4 dpf. (E) Lateral view of the otic vesicle 
of an embryo injected with sipl1-rbck1 MO1-1 at 6 dpf. (E) Lateral view of the otic vesicle of an 
embryo injected with sipl1-rbck1 MO2-2 at 4 dpf. (G) Confirmation of knockdown by RT-PCR 
shown exemplarily for sipl1-rbck1 MO1-1 using primers located in exon 1 and exon 3 of sipl1-
rbck1, respectively. β-actin expression was determined from the same samples to control input. 

As seen in Fig. 3.37, the region of the branchial arches including the lower jaw 

seems to be shortened after knockdown of sipl1-rbck1. A closer look at the region 

of the otic vesicle of the morphant zebrafish embryos revealed that knockdown of 
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sipl1-rbck1 inhibited proper development. The otic vesicle of knockdown embryos 

is smaller in size and structures are not properly formed in comparison to control 

embryos (Fig. 3.37 D-F). This phenotype is partly similar to the phenotype of 

embryos after eya1 knockdown, which has been shown to mainly affect the 

developing ear leading to reduced size and improper structure formation. 

Knockdown was confirmed by RT-PCR analysis (Fig. 3.37 G).  

In summary, data from zebrafish knockdown experiments provided evidence that 

both, sipl1 and sipl1-rbck1 are involved in processes essential for embryonic 

development. While sipl1 seems to have a more general role during embryonic 

development, sipl1-rbck1 is mainly involved in development of the ear and the jaw 

which is derived from the branchial arches. Strikingly, knockdown phenotypes as 

well as expression pattern of sipl1-rbck1 and eya1 show a large overlap in the 

region of the zebrafish ear leading to the notion that either the genes or the 

respective proteins might act together during ear development. 

3.5 ASSOCIATION OF SIPL1 AND RBCK1 WITH HUMAN 
DISEASE 

Mutations in human EYA1 have been shown to be associated with branchio-oto-

renal (BOR) syndrome which is a severe human disease associated with kidney 

defects, branchial arch anomalies and hearing loss. BOR syndrome is a 

autosomal dominant disorder and occurs with a prevalence of 1:40000 in the 

general population (Fraser et al., 1980). In about 40% of cases mutations in EYA1 

have been found (Chang et al., 2004). In addition to that, some cases have been 

associated with mutations in SIX1 and SIX5 which both encode for interaction 

partners of Eya1, and it has been shown that most of the BOR-associated 

mutations identified in those genes lead to weakening of the interaction with Eya1 

(Ruf et al., 2004; Hoskins et al., 2007). In the course of this work, two novel Eya1-

interaction partners, Sipl1 and Rbck1, have been identified. Furthermore, it has 

been shown that each is co-expressed together with Eya1 in certain tissues as for 

example kidney and ears. Strikingly, knockdown of an ortholog of Sipl1 in 

zebrafish leads to a BOR-like phenotype of the zebrafish embryo. Thus, an 

interesting question was whether mutations in the respective human genes SIPL1 

or RBCK1 are associated with BOR syndrome.  
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3.5.1 Screening of BOR patients for mutations in SIPL1 or RBCK1 

In collaboration with Friedhelm Hildebrandt from the University of Michigan, 

material from 91 BOR patients was screened for mutations in SIPL1 and RBCK1. 

For SIPL1 exons 2-8 were sequenced and one heterozygous mutation c.1093>T 

leading to substitution of the arginine at position 365 to cysteine (R365C) was 

found (Fig. 3.38 A). The arginine residue affected by the mutation is conserved in 

human, mouse and both zebrafish orthologs, Sipl1 and Sipl1-Rbck1.  

For RBCK1 10 out of 12 exons were sequenced and also one mutation c.682>G 

was identified leading to substitution of the glutamine at position 228 to glutamate 

(Fig. 3.38 B). The affected residue is conserved between human and mouse, but 

not in zebrafish.  

Both mutations were absent in 86 European healthy control individuals. 

 
Fig. 3.38. BOR-associated mutations in SIPL1 and RBCK1. (A) Position of potential BOR- 
associated SIPL1-mutation R365C within the conserved ZnF region of the protein is indicated by 
asterisk. Alignment of the amino acid sequences shows that the affected residue is conserved 
between human, mouse and zebrafish. (B) The potential BOR-associated RBCK1 mutation Q228E 
is located in between the coiled coil domain and the conserved RING finger region of the protein as 
indicated by asterisk. The mutated residue is conserved in human and mouse.     

3.5.2 The BOR-associated mutation Sipl1R365C comprises the 
interaction with Eya1 

As a first attempt to analyze the effect of the BOR-associated mutations of SIPL1 

and RBCK1 on the function of the respective proteins, interaction studies were 
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performed. Using site-directed mutagenesis the mutations were introduced into the 

respective expression constructs for mouse Sipl1 or Rbck1 used before for yeast 

two-hybrid analysis, and tested for their influence on the interaction with Eya1 by 

β-gal liquid assay. 

 
Fig. 3.39. The BOR-associated Sipl1 mutation R365C compromises the interaction with 
Eya1. S. cerevisiae KFY1 were co-transformed with pGBT9-Eya1-C and pGADT7-Sipl1 or its 
mutant variant pGADT7-Sipl1R365C (R358C in mouse, respectively). After 3 days of growth all 
colonies of each transformation plate were pooled and analyzed by β-gal liquid assay and 
immunoblot. (A) Results of β-gal liquid assay. Amount of β-gal units produced was calculated from 
results of three independent transformations. Each measurement was performed in triplicates. 
Error bars represent standard deviation. (B) Samples used in A were analyzed for protein levels by 
10%-SDS-PAGE and immunoblot. Sipl1 was detected using anti-HA antibody. Equal loading was 
confirmed by detection of β-actin. 

Using yeast two-hybrid analysis an influence of the RBCK1 mutation Q228E 

(Q258E in mouse, respectively) on the interaction with Eya1 could not be detected 

probably due to the weakness of the interaction between the two proteins (data not 

shown). The mutation of SIPL1 which was isolated from a BOR patient, however, 

weakened the interaction with Eya1 to about 50% compared to the wild type 

protein which was not due to differences in expression levels as confirmed in 

parallel by immunoblot (Fig. 3.39). 
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4 DISCUSSION 

The overall goal of this work was to unravel the mechanisms by which Eya1 

regulates organ development in more detail. This was addressed by two 

approaches: First of all, BOR-associated Eya1 mutations were analyzed for their 

effect on Eya1 function. Second, novel interaction partners of Eya1 were identified 

in a yeast two-hybrid screen and characterized.  

An indispensable pre-requisite to analyze the function of a protein of interest at the 

physiological level is the availability of specific antibodies. In the first part of this 

work, two Eya1-specific antibodies generated in our lab were examined for their 

ability to specifically detect endogenous Eya1 protein. 

4.1 IMPORTANCE OF EYA1-SPECIFIC ANTIBODIES 

Jürgen Tomasch, a former diploma student in our group, had generated two Eya1-

specific antibodies and characterized both regarding their ability to detect Eya1 

protein in immunoblot, immunoprecipitation, and immunofluorescence using cells 

overexpressing Eya1 (Jürgen Tomasch, diploma thesis, 2007). A still open 

question was whether the two antibodies are specific for Eya1, or whether they 

also recognize the homologs Eya2-4. Results from this work showed that the 

antibodies specifically detect Eya1, but not Eya2-4, in immunoprecipitation or 

immunoblot, respectively. The next step was to use these antibodies for the 

detection of the endogenous Eya1 protein. For this purpose, two murine cell lines, 

mK3 and mK4, have been analyzed. Both are clonal cell lines with mK3 

representing an early, uninduced and mK4 a later, induced stage of the 

metanephric mesenchyme of the developing kidney (Valerius et al., 2002). Several 

studies have shown that Eya1 is expressed in both these stages, and involved in 

the reciprocal inductions between the metanephric mesenchyme and the ureteric 

bud, which initiate formation of the mature kidney (Xu et al., 1999; Sajithlal et al., 

2005). In contrast, microarray analysis by Valerius et al. detected expression of 

Eya1 only in mK4 cells (Valerius et al., 2002). However, RT-PCR analysis done in 

this work confirmed Eya1 expression in both cell lines with low levels in mK3 and 

high levels in mK4 (Fig. 3.2). After immunoprecipitation using one antibody (anti-

Eya1.1) and detection using the other antibody (anti-Eya1.2), endogenous Eya1 

protein was detected in mK4, but not in mK3 cells. The specifity of this signal was 
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verified using an RNA interference approach. Taken together, the Eya1-specific 

antibodies have been shown to be suitable for detection of endogenous Eya1 

protein in mK4 cells when used in combination for immunoprecipitation and 

immunoblot. Strikingly, results in this work demonstrate the first successful 

detection of endogenous Eya1 protein by immunoprecipitation and immunoblot, 

providing an important tool for the analysis of Eya1 function in vivo. In fact, 

interaction of Eya1 with all so far described interaction partners, such as Six and 

Dach or inhibitory Gα subunits, has only been verified in vitro. Furthermore, the 

observation that Eya1 is translocated to the nucleus or the cell membrane by 

interaction with Six proteins or inhibitory Ga subunits, respectively, is based on in 

vitro data (Ohto et al., 1999; Fan et al., 2000). Using the Eya1-specific antibodies 

described in this work and an appropiate cell line or tissue, it would now be 

possible to confirm the respective interactions and their effect on the subcellular 

localization of Eya1 at the physiological level. 

Eya1 has been suggested to act as a co-activator of several transcription factors, 

as Six, Pax, or Hox during the development of various organs, but only few target 

genes have been identified so far (Spitz et al., 1998; Brodbeck, 2003; Chai et al., 

2006; Gong et al., 2007). Chromatin-immunoprecipitation (ChIP) using an Eya1-

specific antibody represents a powerful tool to identify novel target genes of Eya1-

containing transcription activation complexes under physiological conditions. 

Moreover, it is not clear how the transcriptional activity of Eya1 is regulated. 

Transcriptional activity can be enhanced or repressed by various post-translational 

modifications as for example phosphorylation, sumoylation or acetylation 

(Polevoda and Sherman, 2002; Gill, 2003; Gardner and Montminy, 2005). Several 

studies indicated that the transactivation function of Drosophila Eya is positively 

regulated via phosphorylation at two MAPK phosphorylation sites (Hsiao et al., 

2001; Silver et al., 2003). Interestingly, these sites are conserved in Eya1 as well, 

but phosphorylation of these sites and associated regulation of Eya1 function has 

not been investigated so far. In a first attempt this issue could be addressed in 

vitro, but for the verification of the physiological relevance the use of Eya1-specific 

antibodies is inevitable.  

In addition to that, the Eya1-specific antibodies generated in our lab provide a 

useful tool for the identification of novel Eya1-interacting proteins by co-

immunoprecipitation from mK4 cells or animal tissues followed by mass 
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spectrometry. The great advantage of this approach is that interacting proteins 

would be isolated under physiological conditions. The identification of novel 

interaction partners of Eya1 could provide important insights in the molecular 

mechanisms by which Eya1 mediates its central function in organogenesis. 

4.2 CHARACTERIZATION OF DISEASE-ASSOCIATED EYA1 
MUTANTS 

To further investigate the molecular mechanisms by which Eya1 regulates 

organogenesis, seven disease-associated EYA1 mutations, all substitutions 

located within the conserved Eya domain, were analyzed for their effect on Eya1 

function. Among them four mutations were identified from BOR patients, two 

mutations from BO patients, and one mutation from a patient suffering from ocular 

defects (see Table 3.1). Several studies indicated that some of the BOR-

associated Eya1 mutations compromise the interaction with known interaction 

partners of Eya1 (Buller et al., 2001; Ozaki et al., 2002). In the course of this work, 

the disease-associated Eya1 substitutions were examined for their influence on 

the interaction with Six1 and Gαi2, two described interaction partners of Eya1, in a 

yeast two-hybrid approach.  

Interestingly, the mutant R514G, which is associated with ocular defects in 

humans, does not affect any of the interactions with known Eya1 interaction 

partners addressed in this work or in previous studies (Buller et al., 2001; Ozaki et 

al., 2002). This finding suggests that other factors are probably involved in the 

regulation of eye development together with Eya1.  

Furthermore, both BO-associated mutants, D396G and R407Q, do not affect the 

interaction of Eya1 with Six1. Regarding the interaction with Gαi2 they showed 

different effects: D396G led to about 50% loss of interaction, whereas R407Q 

stabilized the interaction to about 2-fold. It is described that interaction with active 

Gαi2 leads to translocation of Eya to the cell membrane (Fan et al., 2000). Thus, 

stabilization as well as loss of interaction might cause an aberrant subcellular 

localization of Eya1 which could be involved in the onset of BO-syndrome. 

The BOR-associated substitutions L472R and L550P lead to weakening or even 

complete loss of the interaction with both Six1 and Gαi2. It has been reported 

before that binding of Six1 and Gαi2 is mutually exclusive, suggesting that the two 

proteins bind to an overlapping region of Eya1 (Fan et al., 2000). In contrast, two 
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mutants, S454P and D396G, inhibited the interaction with Gαi2, but had no effect 

on the interaction with Six1. An explanation for this could be that the subregions of 

the Eya domain which mediate binding of Gαi2 and Six1 are only partially 

overlapping. Another possibility is that the binding of one interaction partner leads 

to a conformational change of the Eya domain which prevents binding of the 

respective other interaction partner. Interestingly, the two BOR-associated 

substitutions, S454P and L472R, have also been shown to weaken or abolish the 

interactions with other known interaction partners of Eya1 including Six5, Dach1, 

and Gαz (Ozaki et al., 2002). Studies on Drosophila Eya implicated that the 

homologs of Six5 and Dach1, So and Dach, bind to distinct regions of the Eya 

domain (Bui et al., 2000). Because of this Ozaki et al. assumed that introduction of 

the mutations S454P and L472R leads to a gross conformational change of Eya1 

protein structure thereby disturbing interactions mediated via the Eya domain. To 

support this hypothesis, Ozaki et al. analyzed the protease digestion patterns of 

the proteins. Interestingly, digestion with trypsin or V8 protease resulted in 

differences in the digestion patterns of wild type Eya1 and the mutants S454P and 

L472R. Ozaki et al. concluded that in the mutants S454P and L472R the 

accessibility of protease sites is changed because of an altered protein 

conformation (Ozaki et al., 2002). An independent study performed by Zhang et al. 

showed similar results. They examined the protein structures of wild type Eya1 

and the mutant L472R in silico by molecular modelling. Again, structural 

differences were observed (Zhang et al., 2004). Results from this work showed 

that, similarly to L472R, the substitution L550P inhibits the interaction with both, 

Six1 and Gαi2, indicating that the respective mutation also results in an altered 

protein conformation. Strikingly, data presented in this work demonstrate that the 

three BOR-associated Eya1 mutants, S454P, L472R and L550P, are present at 

lower protein levels in mammalian cells. Reason for this might be that the incorrect 

folding of the respective proteins mediates enhanced protein degradation which 

might represent a novel mechanism for the cause of BOR-syndrome. 

4.3 EYA1 IS DEGRADED VIA THE PROTEASOMAL PATHWAY   

It has been demonstrated that Eya1 is degraded via the proteasomal pathway. 

Proteins which are degraded by the proteasome are labeled for their degradation 

by attachment of ubiquitin to structurally exposed lysine residues. Ubiquitination is 
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mediated by the sequential action of 3 enzymes: The ubiquitin-activating enzyme 

(E1), the ubiquitin-conjugating enzyme (E2), and the ubiquitin ligase (E3), whereby 

the E3-ubiquitin ligase controls both the specificity and timing of substrate 

ubiquitination. Eya1 ubiquitination occurs in two distinct regions of the Eya domain, 

each containing a cluster of 6 lysine residues. Moreover, results from Amna 

Musharraf indicate that Eya1 protein accumulates in presence of Six1 and Six2 

(Amna Musharraf, unpublished data). An underlying mechanism was provided by 

results obtained in this work, indicating that presence of Six1 prevents 

ubiquitination of Eya1. But still many questions remain to be answered as for 

example: How is the inhibition of ubiquitination mediated? Is Six-mediated 

stabilization of Eya1 relevant in vivo? It is known that Six1 mediates translocation 

of Eya1 into the nucleus, where both proteins act together to activate target gene 

expression (Ohto et al., 1999). Interestingly, Six1 binds to the conserved Eya 

domain of Eya1 where also ubiquitination of the protein has been demonstrated to 

occur. Thus, it is possible that interaction with Six1 prevents Eya1 ubiquitination 

because an important ubiquitination site is not accessible. Another explanation 

could be that ubiquitination and subsequent degradation of Eya1 exclusively occur 

in the cytoplasm of the cell and nuclear translocation of Eya1 by Six proteins 

sequesters the protein away from the place of ubiquitination. Evidence for the 

latter hypothesis is provided by the observation that both Six- and homeo-domain 

of Six1 are necessary to stabilize Eya1 (Amna Musharraf, unpublished data). Both, 

Six- and homeo-domain have also been described to be essential for nuclear 

translocation of Eya, whereas for interaction with Eya the Six domain alone is 

sufficient (Pignoni et al., 1997; Ohto et al., 1999). A similar mechanism is known to 

regulate protein levels of the tumor suppressor p53. Activity of p53 is primarily 

regulated by its protein stability. Under normal growth conditions, p53 is present at 

extremely low levels because upon synthesis the protein is rapidly degraded via 

the proteasomal pathway. p53 translocates between the cytoplasm and the 

nucleus by its intrinsic nuclear localization signal (NLS) and nuclear export signal 

(NES) sequences. Blocking nuclear export leads to stabilization of p53 indicating 

that degradation occurs exclusively in the cytoplasm (Freedman and Levine, 

1998). DNA damage and other stress signals lead to accumulation of p53 in the 

nucleus where it activates target gene expression. This nuclear accumulation is 

induced by inhibition of nuclear export and, hence, inhibition of cytoplasmic 
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degradation, and can be achieved by various mechanisms, as post-translational 

modifications or interaction with other proteins (Ashcroft and Vousden, 1999; 

Sionov et al., 2001). Interestingly, sequence analysis revealed that Eya1 contains 

a leucine-rich NES motif similar to that of p53 in its C-terminus (Fig. 4.1). 

 
Fig. 4.1. Eya1 contains a leucine-rich NES similar to that of p53. Alignment of the predicted 
Eya1 NES with the NES of human p53. Eya1 NES was predicted using the NetNES 1.1 program 
(www.cbs.dtu.dk/services/NetNES/). Conserved residues are indicated in bold type. In the NES 
consensus sequence, X can be any amino acid and L (leucine) can be substituted by other 
hydrophobic residues. 

Whether the NES of Eya1 is functional and mediates nuclear export of the protein 

remains to be elucidated and could be addressed by localization studies using an 

Eya1 construct harbouring mutations within the NES. In this regard, it would be 

interesting to analyze whether nuclear localization of Eya1 is sufficient for its 

stabilization independent of its interaction with Six. However, an important point is 

to show that stabilization of Eya1 by interaction with Six proteins is relevant in vivo. 

If so, regulation of Eya1 stability could represent a novel mechanism for the 

regulation of Eya1 activity. Moreover, identification of the E3-ubiquitin ligase which 

mediates Eya1 ubiquitination and therefore its degradation could further clarify the 

regulation of Eya1 protein stability.  

4.4 IDENTIFICATION OF NOVEL EYA1-INTERACTING 
PROTEINS 

A central aspect of this work was the identification of novel interaction partners of 

Eya1. For this purpose, the classic Gal4-based yeast two-hybrid system has been 

employed. Eya1 should be used as a bait for the screening of a cDNA library of an 

11 day-old mouse embryo. Several studies implicated that Eya1 is required for 

initiation of the development of several organs at this stage of mouse 

embryogenesis, as for example kidney, ear, thymus and muscle (Xu et al., 1999; 

Xu et al., 2002; Grifone et al., 2007). It was not possible to use full-length Eya1 as 

bait for the screening procedure due to autoactivation of the reporter genes when 

fused to the Gal4-BD. The reason for this is the transactivation activity located 
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within the N-terminal domain of Eya1 (Xu et al., 1997). In line with this assumption, 

also a bait construct containing the N-terminal part of Eya1 autoactivated the 

system to a high degree. The region responsible for transactivation was narrowed 

down to amino acids 109-198. In contrast, a bait construct containing the Eya1-C-

terminus did not lead to autoactivation of the reporter genes and, hence, was used 

for the screening procedure. From approximately 2 million transformants, 10 

potential interaction partners were identified. Two of them could be confirmed by 

further analysis in yeast. One was Six2, an already known interaction partner of 

Eya1 (Buller et al., 2001). Isolation of Six2 confirmed that the approach designed 

in this work indeed was suitable to identify Eya1 interacting proteins. The other 

was Sipl1 (Shank-interacting protein like 1; also termed Sharpin) which is a novel 

interaction partner of Eya1.  

4.4.1 Sipl1 as a novel interaction partner of Eya1 

Sipl1 was first described as an interaction partner of Shank1 in rat (Lim et al., 

2001). Shank1 is one of three vertebrate Shank homologs, which have been 

shown to function as scaffold proteins in the formation and maintenance of 

postsynaptic densities by integrating neurotransmitter receptors into the cortical 

cytoskeleton (Sheng and Kim, 2000). Sipl1 protein is enriched in the postsynaptic 

densities and forms a complex with Shank in brain. Complex formation of Shank 

and Sipl1 is mediated via the C-terminal part of Sipl1 while its N-terminus is 

important for homomultimerization. Interaction of Shank with Sipl1 has been 

suggested to mediate cross-linking of Shank proteins (Lim et al., 2001). However, 

Sipl1 is not only expressed in the brain, but also in many other adult tissues, as for 

example heart, muscle, kidney and spleen (Lim et al., 2001). Homologs of Sipl1 

have been identified in human and mouse, where they have been implicated in 

enteric nervous system function (Daigo et al., 2003). Furthermore, recent studies 

indicated that mutations in the mouse Sipl1 gene result in multiorgan inflammation, 

immune system dysregulation and dermatitis (Seymour et al., 2007). The 

mechanisms by which Sipl1 is involved in these processes are unclear. In the 

course of this work, Sipl1 has been isolated as an interaction partner of Eya1 from 

a yeast two-hybrid screen of an embryonic cDNA library. The interaction between 

the two proteins was verified in vitro by GST pulldown assay and co-

immunoprecipitation. Both Sipl1 and Eya1 are localized in the cytoplasm and 
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translocate into the nucleus in presence of Six protein, indicating a complex 

formation of the proteins. It should be noted, that Six-mediated Sipl1 accumulation 

in the nucleus was observed to some degree also in absence of co-transfected 

Eya1, which could either be caused by the interaction with endogenous Eya1 or by 

direct interaction of Sipl1 and Six. The Sipl1 protein possesses two conserved 

domains in its C-terminal part: an Ubl domain and a Ran-BP2 type zinc finger. 

Both these domains are conserved in other proteins as well, as for example Rbck1 

(RBCC protein interacting with PKC 1; also termed HOIL-1, XAP3, or UIP28). In 

fact, the N-terminus of Rbck1 is highly similar to the C-terminus of Sipl1 and was 

previously considered to be an independent domain, termed as Rbck1 homology 

domain (Lim et al., 2001). Binding studies in yeast demonstrated that the Eya1-

Sipl1 interaction is mediated via the Eya domain of Eya1 and the Ubl domain of 

Sipl1. Based on the fact that the Ubl domain shows high similarity between Sipl1 

and Rbck1, it was assumed that Rbck1 can also interact with Eya1. 

4.4.2 Rbck1 as a novel interaction partner of Eya1 

Indeed, the interaction of Rbck1 and Eya1 could be detected by yeast two-hybrid 

analysis, GST pulldown and co-immunoprecipitation experiments. As mentioned 

above, the N-terminus of Rbck1 is similar to the C-terminus of Sipl1 including both 

conserved domains the Ubl domain and the RanBP2 type ZnF. In addition to that, 

in the C-terminus of Rbck1 a coiled coil region and a RING-IBR domain can be 

found. RING-IBR-containing proteins have been shown to be involved in E3 

ubiquitin ligase activity (Marin and Ferrus, 2002). Rbck1 has been described to act 

as an E3 ubiquitin ligase mediating the degradation of several unrelated proteins, 

as IRP2 (iron regulatory protein-2), PKC (protein kinase C), Bach1, and TAB2/3 

(TAK1-binding protein 2/3) (Yamanaka et al., 2003; Nakamura et al., 2006; Tian et 

al., 2007; Zenke-Kawasaki et al., 2007). In addition to that, Rbck1 includes a 

transactivation activity and has been shown to act as a transcriptional co-activator 

upon HBV (hepatitis B virus) infection (Cong et al., 1997). Within this work, 

localization studies in transfected Cos-7 cells revealed that Rbck1 is a cytoplasmic 

protein. In contrast to Sipl1, Rbck1 was not translocated into the nucleus by Six2 

neither in presence nor in absence of Eya1. Tatematsu et al. compared 

localization of overexpressed and endogenous Rbck1 in HEK293 cells, showing 

that there are striking differences. Overexpressed Rbck1 was exclusively detected 
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in the cytoplasm, whereas endogenous Rbck1 was present in both, cytoplasm and 

nucleus (Tatematsu et al., 2005). Thus, localization of overexpressed Rbck1 does 

not necessarily reflect localization of the endogenous protein, which could be 

affected by presence of Eya1 and/or Six2.  

4.4.3 Physiological relevance of the Eya1-Sipl1/Rbck1 interaction 

Both Sipl1 and Rbck1 are expressed together with Eya1 in many tissues of a 

mouse embryo, which is in line with the hypothesis that the proteins act together 

during embryonic development. To further underline this assumption studies in 

zebrafish have been performed. A zebrafish ortholog of Eya1 was identified by 

Sahly et al. in 1999. Results by Sahly et al. indicated that there is a remarkable 

similarity in both structure and expression pattern between Eya1 orthologs of 

higher and lower vertebrates (Sahly et al., 1999). In zebrafish, eya1 expression 

was detected in several organs during embryogenesis, as for example the ear, the 

branchial arches and the somites. In fact, the expression pattern of eya1 during 

zebrafish embryogenesis reflects the expression pattern of its mouse ortholog. 

One has to point out that, in contrast to mammalian Eya1, zebrafish eya1 is not 

expressed during renal development. This is due to the fact that teleosts do not 

form a metanephros which has been described to be the major site of Eya1 

expression during mammalian kidney development (Kalatzis et al., 1998; Sahly et 

al., 1999).  

In the course of this work, one Sipl1 ortholog, one Rbck1 ortholog, and one 

ortholog, termed sipl1-rbck1, which seems to be a fusion of both, have been 

identified in zebrafish. Based on the conservation within the minimal Eya1 binding 

region, zebrafish Sipl1 and Sipl1-Rbck1 were shown to be more closely related to 

mouse Sipl1 whereas zebrafish Rbck1 is more closely related to mouse Rbck1 

within this region. Expression analysis by in situ hybridization revealed that sipl1 is 

widely expressed during zebrafish embryonic development, especially in the head 

region of the embryo. In contrast, sipl1-rbck1 expression was restricted to the 

region of the midbrain-hindbrain area and the developing ear. A more detailed 

analysis of the expression in the developing zebrafish ear revealed that sipl1-rbck1 

and eya1 are co-expressed in a region corresponding to the sensory epithelium of 

the inner ear. Knockdown of sipl1-rbck1 expression by injection of each of two 

independent morpholinos led to a similar phenotype with malformations of the 
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zebrafish ear and the lower jaw which is derived from the branchial arches. In fact, 

the observed phenotype resembles the characteristic symptoms of BOR syndrome 

in human. Strikingly, eya1 has also been reported to be essential for proper 

formation of the zebrafish ear as shown by knockdown experiments in previous 

studies (Kozlowski et al., 2005). Conclusively, the data presented is compatible 

with the assumption that the two zebrafish proteins, Eya1 and Sipl1-Rbck1, 

interact with each other during embryonic development.  

In contrast, knockdown of sipl1 resulted in severe malformations of the whole 

zebrafish embryo with truncated head and tail region, and improperly developed 

brain and eyes. This phenotype reflects the more ubiquitious expression pattern of 

sipl1 during zebrafish embryogenesis and suggests a more general role for this 

gene in embryonic development. Analysis of the rbck1 expression pattern during 

zebrafish embryogenesis also revealed an overlap with that of eya1. In situ 

hybridization showed that both are expressed in the branchial arches of the 

developing zebrafish. Knockdown of rbck1, which was performed by my colleague 

Christina Ebert, resulted in malformation of the zebrafish head especially in the 

region of branchial arches (Christina Ebert, unpublished data). 

However, the interaction between the zebrafish orthologs of Eya1 and Sipl1 or 

Rbck1 needs to be confirmed. An elegant approach to address the importance of 

the interactions in vivo would be a comparison of the ability of wild type mRNA or 

mutant mRNA which harbours a deletion of the interaction site to rescue the 

knockdown phenotype. 

The zebrafish studies performed in this work provide a first insight into the 

physiological importance of the Eya1-Sipl1/Rbck1 interactions. The physiological 

importance of the interactions in the context of mouse and human embryogenesis 

is not clear. The endogenous interaction between the proteins during mammalian 

embryogenesis needs to be verified. From Eya1 knockout analysis in mice it is 

known that Eya1 is essential for the development of many organs, as kidney, ear, 

thymus etc. (Xu et al., 1999; Xu et al., 2002). Knockout studies of Sipl1 or Rbck1 

in mice could clarify the role of the genes in organ development. Furthermore, they 

could provide first hints for the importance of the Eya1-Sipl1/Rbck1 interactions in 

organogenesis. Unfortunately, by now, no knockout mice for Sipl1 or Rbck1 are 

available. 
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4.4.4 Functional consequences of the Eya1-Sipl1/Rbck1 interaction 

Eya proteins have been shown to act as co-activators in several transcriptional 

activation complexes which mediate activation of gene expression during 

embryonic development. One of the best studied examples is the activation of the 

myogenin promoter by complex formation of Eya2 and Six1/4. Six1 and Six4 bind 

to conserved MEF3 sites within the Myogenin promoter, thereby activating gene 

expression (Spitz et al., 1998). This activation is significantly increased by 

interaction with Eya2 (Fan et al., 2000). Furthermore, it has been described that 

binding of other co-factors to Eya2, as for example Dach2, can even further 

enhance the transactivation potential of the Eya2-Six4 complex (Pascal Maire, 

personal communication). It has been shown that Sipl1, and presumably Rbck1 as 

well, can interact with Eya2. Furthermore, it has been demonstrated that 

interaction of Eya2 with Sipl1 increases Eya2-Six4-mediated transactivation. 

Presumably, Sipl1 has a comparable effect on the transactivation function of Eya1. 

Interestingly, also Rbck1 enhanced the transactivation potential of the Eya2-Six4 

complex, although localization studies showed that Rbck1 is a cytoplasmic protein. 

This discrepancy between the transactivation and localization studies might be 

due to the use of different Rbck1 fusion constructs (Flag-Rbck1 or RFP-Rbck1, 

respectively). In fact, Rbck1 has been described before to function as a co-

activator of transcription upon HBV infection (Cong et al., 1997). Furthermore, 

endogenous Rbck1 has been shown to shuttle between the cytoplasm and the 

nucleus (Tatematsu et al., 2005). Therefore, it is conceivable that Rbck1 indeed 

acts together with Eya2 and Six4 in the activation of target gene expression in the 

nucleus.  

Based on the results from transactivation analyses the following model can be 

proposed: Eya1/2 bind to Six proteins leading to translocation of the complex into 

the nucleus where the proteins activate expression of organ-specific genes. Sipl1 

and Rbck1 bind as co-factors to Eya1/2 thereby enhancing the transactivation 

potential of the complex (Fig. 4.2). 
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Fig. 4.2. Model for an Eya-Six-Sipl1/Rbck1 complex involved in the activation of organ-
specific genes. Eya1/2 directly interacts with Six which mediates binding to the promoter region of 
the respective genes. The transactivation activity of the complex is increased by interaction of Eya1 
with Sipl1 or Rbck1 which potentially interact with another adjacent transcription factor/complex Y 
(modified from Relaix and Buckingham, 1999). 

Another interesting question is, whether the interaction of Eya1 with Sipl1 or 

Rbck1 has an effect on the binding of other known interaction partners to Eya1. 

Localization studies performed in this work suggest that the three proteins Eya1, 

Sipl1 and Six2 form one complex since both Eya1 and Sipl1 are translocated into 

the nucleus in presence of Six2. This hypothesis was further underlined by results 

from transactivation experiments showing that Sipl1 acts synergistically together 

with Eya2 and Six4 in activation of gene expression. However, biochemical 

analysis is necessary to verify that Sipl1 and Six proteins can bind simultaneously 

to Eya1. Interestingly, Eya1 and Rbck1 have a common interaction partner: CBP 

(CREB binding protein). CBP is a well-characterized co-activator that functions as 

a key-integrator in various transcription activating complexes (Agalioti et al., 2000). 

CBP has been described to act as a linker for the interaction between mammalian 

Eya and Dach proteins thereby mediating target gene activation (Ikeda et al., 

2002). Strikingly, interaction with CBP has also been implicated in the regulation of 

Rbck1 transactivation function (Tatematsu et al., 2005). It is tempting to speculate 

that CBP is also part of the Eya1-Rbck1 complex and presumably involved in 

target gene activation. 

As described above, Rbck1 has been shown to function as an E3 ubiquitin ligase 

for several unrelated proteins. Interestingly, most of the described targets bind to 

the conserved Ubl domain of Rbck1. Results from this work implicated that also 

the interaction with Eya1 occurs via the Ubl domain of Rbck1 leading to the 

possibility that Eya1 is a target of Rbck1 E3 ubiquitin ligase activity. Preliminary 

studies in cell culture did no show evidence for enhanced Eya1 degradation in 

presence of Rbck1 (data not shown). Also the results regarding the ability of 

Rbck1 to enhance Eya-Six-mediated transactivation speak against a role of Rbck1 

in the degradation of Eya1. But, similar to other Rbck1 targets, Eya1 could be 
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degraded in a context-specific manner dependent on a specific post-translational 

modification of the protein. Another possibility is that Rbck1 function requires the 

association with adaptor proteins, as it was described for the degradation of 

activated PKC (Nakamura et al., 2006). However, the hypothesis that Rbck1 might 

act as an E3 ubiquitin ligase involved in the degradation of Eya1 has to be 

validated by further experiments.  

A poorly understood feature of Eya proteins is their activity as phosphatases. The 

phosphatase activity of Eya1 has been indicated to be essential for normal kidney 

development since only EYA1 mutations associated with BOR syndrome, but not 

with BO-syndrome or ocular defects, abolish dephosphorylation of target peptides 

in vitro (Rayapureddi et al., 2006; Musharraf et al., in press). To date, nothing is 

known about the regulation of this function. Also, in vivo targets have not been 

identified so far. In this regard, it would be interesting to examine whether Sipl1 

and Rbck1 have an effect on the activity of Eya1 as a phosphatase or whether 

they are target proteins themselves.  

Of course, it is also possible that Eya1 influences the functions of its interaction 

partners Sipl1 and Rbck1. No protein function of Sipl1 has been described so far. 

Identification of a specific activity of Sipl1 could provide important insights into the 

role of the Eya1-Sipl1 interaction. In contrast, Rbck1 has been demonstrated to 

function as a transcriptional activator and as an E3-ubiquitin ligase. A possible 

effect of interacting Eya1 on these activities remains to be elucidated.   

4.4.5 SIPL1 and RBCK1 mutations in BOR syndrome 

Mutations in the human EYA1 gene are associated with branchio-oto-renal (BOR) 

syndrome. Interestingly, also mutations in SIX1 and SIX5 have been identified 

from BOR patients (Ruf et al., 2004; Hoskins et al., 2007). Both SIX1 and SIX5 

encode interaction partners of Eya1. All BOR-associated SIX1 mutations lead to 

weakening of the interaction with Eya1 (Ruf et al., 2004). Strikingly, two of the four 

so far identified BOR-associated SIX5 mutations also compromise the interaction 

with Eya1 (Hoskins et al., 2007). In the course of this work, Sipl1 and Rbck1 were 

identified as novel interaction partners of Eya1. Hence, an intriguing question was 

whether mutations in human SIPL1 or RBCK1 are associated with BOR syndrome. 

Indeed, one SIPL1 as well as one RBCK1 mutation was identified from screening 

of 91 patients suffering from BOR syndrome. These finding suggests that both 
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genes play an essential role in the development of the organs affected in BOR 

patients, which are the ears, the kidneys and the branchial arch derivatives. 

Strikingly, knockdown of the zebrafish orthologs of Sipl1 and Rbck1 affects the 

development of the same organs. In particular, knockdown of the Sipl1 ortholog 

sipl1-rbck1 results in a BOR-syndrome-like phenotype, including malformations of 

the ear and the lower jaw which is derived from the branchial arches. The 

knockdown of rbck1 expression leads to malformations of the zebrafish head, 

especially in the region of the branchial arches. 

Binding studies in yeast demonstrated that the SIPL1 mutation leads to loss of the 

interaction with Eya1. In contrast, an effect of the RBCK1 mutation on the Eya1-

Rbck1 interaction could not be detected. However, how the mutations influence 

the functional consequences of the interactions remains to be determined. It has 

been shown that both Sipl1 and Rbck1 act together with the Eya-Six complex to 

activate gene expression. In this regard, it would be interesting to analyze if the 

BOR-associated mutants of Sipl1 and Rbck1 are still able to do so. 

In summary, it has been demonstrated that Sipl1 and Rbck1 are two novel 

interaction partners of Eya1. The interaction with Eya1 is mediated via the 

conserved Ubl domain of Sipl1 and Rbck1. Furthermore, the respective zebrafish 

orthologs of Sipl1 and Rbck1 are expressed together with that of Eya1 in several 

tissues during vertebrate embryogenesis. Strikingly, the Sipl1 ortholog sipl1-rbck1 

and eya1 are co-expressed in the developing zebrafish ear and essential for its 

development which is in line with the hypothesis that the respective proteins 

interact with each other during organogenesis. Both Sipl1 and Rbck1 have been 

shown to act as co-activators of the Eya-Six complex in transactivation studies 

providing a first hint for the functional consequences of the interaction. 

Furthermore, by screening of BOR-patient material one SIPL1 as well as one 

RBCK1 mutation were identified. Further experiments regarding the functional 

consequences of the interaction of Sipl1 or Rbck1 with Eya1 should clarify the 

importance of the interaction during human organogenesis and reveal how the 

BOR-associated mutations in the respective genes lead to disease. 
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Appendix 

APPENDIX A: OLIGONUCLEOTIDES 

Generation of Eya1 mutants for in vivo ubiquitination assays 

N-term-STOPf  5’-CCCGGATTCTGACCTTTAAAGAGTGTTCATCTGGGAC-3’ 

N-term-STOPr  5’-GTCCCAGATGAACACTCTTTAAAGGTCAGAATCCGGG-3’ 

K301Af     5’-CGAGGTTCAGATGGGGCGTCACGTGGCCGA-3’ 

K301Ar     5’-TCGGCCACGTGACGCCCCATCTGAACCTCG-3’ 

Δ426-491f    5’-ACTGGTGTCCGAGGTACGAACTGTGTGAAT-3’ 

Δ426-491r    5’-ATTCACACAGTTCGTACCTCGGACACCAGT-3’ 

H489stop-f   5’-GCCCTCTCCCTCATCTAGTCCCGGACGAAC-3’ 

H489stop-f   5’-GTTCGTCCGGGACTAGATGAGGGAGAGGGC-3’ 

Generation of Eya1 fragments for cloning into pGBT9: 

(1)   Bait constructs for the yeast two-hybrid analysis 

YmEya1f    5’-ACGTGAATTCGAAATGCAGGATCTAACCAGC-3’ 

YmEya1Df   5’-ACGTGAATTCTCCGAGCGGCTGCGTCG-3’ 

YmEya1r    5’-ACGTGTCGACTTACAGGTACTCTAATTCCAAG-3’ 

YmEya1r2    5’-ACGTGAATTCGAAATGCAGGATCTAACCAGC-3’ 

(2)   Localization of the transactivation domain 

mEya1-N106f  5’-ACGTGAATTCGCTGCATATGGGCAAACACAG-3’ 

mEya1-N159f  5’-ACGTGAATTCCAGACGGGATTTCTTAGCTATG-3’ 

mEya1-N179f  5’-ACGTGAATTCTACAGCTACCAGATGCAAGG-3’ 

mEya1-N199f  5’-ACGTGAATTCAATTCACTCACCAACTCCTCC-3’ 

mEya1-N239f  5’-ACGTGAATTCATGACGAGCAGTAACACCAG-3’ 

mEya1-N108r  5’-ACGTGTCGACTTAATATGCAGCCATAGTTTGTGAG-3’ 

mEya1-N161r  5’-ACGTGTCGACTTATCCCGTCTGTCCAGGTGAC-3’ 

mEya1-N241r  5’-ACGTGTCGACTTAGCTCGTCATGTAGTGTGCTG-3’ 

mEya1-N320r  5’-ACGTGTCGACTTAAAGGTCAGAATCCGGGGGA-3’ 
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(3)   Localization of the Sipl1-binding site 

mEya1-N366f  5’-ACGTGAATTCTTCAACTTGGCAGACACACATC-3’ 

mEya1-N441f  5’-ACGTGAATTCAAAGAGATCTACAACACCTACA-3’ 

mEya1-N440r  5’-ACGTGTCGACTTATACTCGTCTGTAGCGGAAGG-3’ 

mEya1-N515r  5’-ACGTGTCGACTTATCCATATAGCAGGACTTTTGCC-3’ 

Generation of Eya2 C-terminal fragment for cloning into pGBT9: 

YmEya2Df   5’-ACGTGAATTCACAGAGAGGCCACATCGAG-3’ 

YmEya2r    5’-ACGTGTCGACTTATAGATACTCCAGTTCCAGGG-3’ 

Generation of Eya3 C-terminal fragment for cloning into pGBT9: 

YmEya3Df   5’-ACGTGAATTCGATGCTGATGATCAGGCCAG-3’ 

YmEya3r    5’-ACGTGTCGACTTAGAGGAAGTCAAGCTCTAAAG-3’ 

Generation of Sipl1 fragments for cloning into pGADT7: 

(1)   Full-length Sipl1 for yeast two-hybrid analysis 

Sipl1fw     5’-ACGTGAATTCATGTCGCCGCCCGCCGG-3’ 

Sipl1rv     5’-ACGTCTCGAGCTAGGTGGAAGCTGCAGCA-3’ 

(2)   Localization of the Eya1-binding site 

Sipl1-184f    5’-ACGTGAATTCGATGAGAAAGCAGCGGCCC-3’ 

Sipl1-219f    5’-ACGTGAATTCCTACAAGTCACAGTTGAAGA-3’ 

Sipl1-261f    5’-ACGTGAATTCCCACCAGCTGTGCAGCGC-3’ 

Sipl1-199r    5’-ACGTCTCGAGCTAATGATGCTGCGCCAGG-3’ 

Sipl1-266r    5’-ACGTCTCGAGTTAGCGCTGCACAGCTGGTGG-3’ 

Sipl1-297r    5’-ACGTCTCGAGTTAGAGCAAGTAAAGAAAAGCAG-3’ 

Sipl1-343r    5’-ACGTCTCGAGTTACTGAGAGGGACTTGGGAGA-3’ 

Generation of the Sipl1 mutant R365C by site-directed mutagenesis: 

mSipl1-R365Cf  5’-CAATGCCTCAAACTGCCCTGGCTGTGAGATG-3’ 

mSipl1-R365Cr  5’-CATCTCACAGCCAGGGCAGTTTGAGGCATTG-3’ 
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Generation of the full-length hSix1 fragment for cloning into pGADT7: 

YhSix1f     5’-ACGTGGATCCTGCCGTCGTTTGGCTTTAC-3’ 

YhSix1r     5’-ACGTCTCGAGTTAGGACCCCAAGTCCACCAGAC-3’ 

Generation of the full-length Gαi2 fragment for cloning into pGADT7: 

Galphai2f    5’-ACGTGGATCCGCTGCACCGTGAGCGCC-3’ 

Galphai2r    5’-ACGTCTCGAGTCAGAAGAGGCCACAGTCC-3’ 

Introduction of the Gαi2-activating mutation Q205L into pGADT7-Gαi2: 

Galphai2Q205Lf 5’-GATGTGGGTGGACTGCGGTCTGAGCG -3’ 

Galphai2Q205Lr 5’-CGCTCAGACCGCAGTCCACCCACATC -3’ 

Generation of the full-length Rbck1 fragment for cloning into pGADT7: 

YmRBCK1f   5’-ACGTGAATTCGCCCTGAGCCTTGCCCG-3’ 

YmRBCK1r   5’-ACGTCTCGAGTTAGTGGCAGTTTTGACAGCT-3’ 

Generation of the Rbck1 mutant Q228E by site-directed mutagenesis: 

mRbck1-Q228Ef 5’-TGCAGCTGGAGGAGAGGAGCCTGGTG -3’ 

mRbck1-Q228Er 5’-CACCAGGCTCCTCTCCTCCAGCTGCA -3’ 

In-frame cloning of potential interaction partners by mutagenesis: 

in-frame1-fw   5’-CATGGAGGCCCCGGGATCCGAATTC-3’ 

in-frame1-rv   5’-GAATTCGGATCCCGGGGCCTCCATG-3’ 

Oligonucleotides used for qRT-PCR from mouse tissues: 

mmeya1.1-for  5’-TGGCCCTACCCCTTCCCCAC-3’ (J. Tomasch, diploma th.) 

mmeya1.1-rev  5’-TGACAATCCACTTTCCGTCTT-3’ (J. Tomasch, diploma th.) 

actb_1f     5’-TGTTACCAACTGGGACGACA-3’ (J. Klattig, PhD thesis) 

actb_2r     5’-GGGGTGTTGAAGGTCTCAAA-3’ (J. Klattig, PhD thesis) 
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Oligonucleotides used for RT-PCR from mouse tissues: 

YmEya1f    5’-ACGTGAATTCGAAATGCAGGATCTAACCAGC-3’ 

YmEya1r2    5’-ACGTGAATTCGAAATGCAGGATCTAACCAGC-3’ 

Sipl1_exon6f   5’-CCTGTGTATGCCTGAACGAA-3’ 

Sipl1_exon8r   5’-AGAGGATCCCAAGCACAGG-3’ 

Tbp-1f     5’-GGCCTCTCAGAAGCATCACTA-3’ (J. Klattig, PhD thesis) 

Tbp-2r     5’-GCCAAGCCCTGAGCATAA-3’        (J. Klattig, PhD thesis) 

Oligonucleotides used for RT-PCR from zebrafish: 

sipl1-exon2f   5’-ATGAGCTGCGTCTCCTCAAG-3’ 

sipl1-exon6r   5’-GCACAAACACTGAGAGATGATCC-3’ 

sipl1-rbck1-e1f  5’-TATACGGCCGCTATGTCTCC-3’ 

sipl1-rbck1-e3r  5’-GGAGGTAGTCGCCCTTCTTC-3’ 

Oligonucleotides used for generation of mouse-specific riboprobes: 

Sipl1fw     5’-ACGTGAATTCATGTCGCCGCCCGCCGG-3’ 

Sipl1rv3    5’-ACGTCTCGAGCTAGTCGAGGAAGTGCACGCTG-3’ 

mRBCK1_fw1  5’- CCCTCAGGGTGCAAGTAAAA-3’ 

mRBCK1_rv2  5’- CTCAAGGTGCTTCGGTTCTC-3’ 

Oligonucleotides used for generation of zebrafish-specific riboprobes: 

dr_eya1-F3   5’-GGACTATCCTTCCTACCCGACG-3’ (Kozlowski et al., 2005) 

dr_eya1-R4   5’-GTGGCAGCAGCGTGGAATCCG-3’ (Kozlowski et al., 2005) 

sipl-f1     5’-GTGGGCTCCGACTCTCTG-3’ 

sipl-r1     5’-GCACAAACACTGAGAGATGATCC-3’ 

sipl1-rbck1-e2f  5’-AGTTTGGCAACACCTCCACA-3’ 

sipl1-rbck1-e5r  5’-CAATTGTGGAGTGTGGGAAG-3’ 

rbck1_fw1    5’-TATGGCTTCCATCCGTCTCT-3’ 

rbck1_rv2    5’-TCCAGCATCTCTGTGGTCTG-3’ 
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Cloning of the full-length coding sequences of the zebrafish orthologs: 

sipl1Chr12s    5’-ACGTGGATCCGCCACCATGTCGACGAGCACGGGCTG-3’ 

sipl1Chr12as   5’-ACGTCTCGAGCTCTGTGTGTTTACGCCGCAC-3’ 

sipl1-rbck1f   5’-ACGTGGATCCACCATGTCGCTGAGCTCCGGCG-3’ 

sipl1-rbck1r   5’-ACGTCTCGAGTTAGTGACAGTTCTGGCATTTTG-3’ 

rbck1f     5’-ACGTGAATTCGCTGCTCTTGATGCCTCTAG-3’ 

rbck1r     5’-ACGTCTCGAGTTAGTGGCAGTTCTGGCATTG-3’ 
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APPENDIX B: ZEBRAFISH SIPL1 

CODING SEQUENCE 

    1 ATGTCGACGA GCACGGGCTG CAGTACGGTG CTGATGTCGG TGCGGGTCTC 
   51 CGTGCGGCCG CTGCCGGTGG GCTCCGACTC TCTGCGGCTG CAGCTCAGCA 
  101 TGAACCCGAA CCGCGCGGGG CTCTTCACCC TCACACTGAG ACACACCGAC 
  151 CGCGGGGGAC GTAGCGTGTC TCTGGCAGAG TTCGACCTGC GCTCGGTGCA 
  201 GTATGAGCTG AAGTCTCCGC GCTGTCATGA GCTGCGTCTC CTCAAGCCGC 
  251 CGCACGACTG TCTGAGCTTC AGCTTCCGCA GCGAGCAGGA GGCGCAGGAG 
  301 TGGGCGACCG TCGTCATGTC CTCACTGCGG GAGTCACACA GAGTTGCCAG 
  351 TATTTGTCAG GAAGGCCTGC AGTATGTGAA GAGTGGAGAG AAAAGCGCAG 
  401 TCCTGTCTCT GTCAATGAAA GAGGAGCTGT GTGTGGAGCT TTCCAGAGCG 
  451 ATAGAGGCTG GAGATGCTCA GGCCGCTGCG CGTTACGCCA CAGATCTGGC 
  501 CCAGCAGCAG ATGACGCTCA GCATTCAACC AGCGCCGCGC GACACCGACG 
  551 ACAAAGACAT CAGCTTGGCT GTGATAGTGG AAGATGCGTC GTCTTCCTGC 
  601 TGTGTGACGG TGAAAATCCA CCCGCACGTG ACCGTCGCCT CGCTAAAGCA 
  651 GCAGATGTTT GTGGAGTACG GTTTTCACCC GCGGGTGCAG CGCTGGATCA 
  701 TCTCTCAGTG TTTGTGCTCT GACAGTCGCT CGGTGTCGTC CTATGGCGTC 
  751 TGCAGGGATG GAGACACTGC GTTCCTCTAC CTGTTATCCG CAGGTCACGC 
  801 CAGCCTCAGC CAGCAGCAGG AGAACGGGCT CTCCGTGCCC ACAGCGGCTC 
  851 CAGCAAACGC TTCACTTTCA GCCCCGGCGG GCGGCGGCAG CAGCGGGCAC 
  901 GACTGGAGGG CGTACAGCAC TCTACCACCA CGCTTCAGCC ACGCCAGCAC 
  951 AGGCAGCGGC GGCTCAGAAA AGCCCAGCGT CACTGACATC ATTAACCTGG 
 1001 AGATGCTGCA ACTCGGAGGC TCCAAACTCA AGTCCAGTAA CACACAGTCA 
 1051 GGCTGGCCCT GCCCGTCCTG TACGTTCATA AATAAATCTA CGAGACCCGG 
 1101 CTGTGAAATC TGCAGCACTG ACCGGCCCAA TCCTCCACAT CACACTCATC 
 1151 TTCAACAGGA GAAGTCAAGA AGATCCAACC AGTGA 
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APPENDIX C: ZEBRAFISH SIPL1-RBCK1 

CODING SEQUENCE 

     1 ATGTCGCTGA GCTCCGGCGG GTGGACTCGA GCATCTCCGC CGGCCCAGTC 
    51 CTCGTCGTCT CACCTCGGCC ACGAGGCCTC GCAGTCGGCA TGCAGCACTG 
   101 TTTTGATGTC GGTGAAGGTG TCGGTATGCC ATTCCGGTAT ACGGCCGCTA 
   151 TGTCTCCCCG GAGCAGGAGA CGAATCTCTC CGTCTTCAGC TGAGCATGGA 
   201 CCCCGGGAAA GCAGGGGAAT TCCGCCTCGC GCTGCGGGAT ATCAGCGCTA 
   251 CAGCGGCCGG GCGCAGTGTG TTTATTGCTG AATTTGACCT CAAGACTGTT 
   301 CAATATGAAG TCAAGACGCC ACTGTGCCAT GAACTGAGTT TGGCAACACC 
   351 TCCACATGAC CGTATCTCGT TCAAATTTCG GTGTGAACAG GAAGCGCAGG 
   401 AGTGGGCCAC CGTGGTGATG TCATCCCTCC TGGCAATTAG TTCCTCCACT 
   451 GAAGAAGGGC GACTACCTCC TCCACCTCTG GCCACACAGA GCAAAGCACC 
   501 CATGCCACGC ACAGAGGAGA TCTGTGCGGA GCTGGTCAGT GCGATAGAGG 
   551 CAGGTGATGT ACGGTCTGCA TCAGTCTGTG CATCGTCTTT AGCTAAACAG 
   601 AAAGCTGCTC TGAGCATTCA GCCCTCGAAA CGAAACTACA CAGACTCTGA 
   651 AGTTTGCTTG GCTGTGGTGG TGGAAGATGC ATCCTCTTCC TGTTGTGTCT 
   701 CGGTGAAAGT CTTCCCACAC TCCACAATTG GTGCTCTCAA ACAGCAGGTC 
   751 TTCTCAGACT ATGGTTTTCA TCCACGTGTT CAGCGCTGGG TCATTGGTCA 
   801 GTCTTTGTGC TCTGACCATC GCTCTCTGGC ATCCTATGGA GTCCAGCGAG 
   851 ATGGAGACAC TGCGTTCCTT TATCTCATTT CTGCCCGTCA GGCTCGTCTC 
   901 AGTCGAGGGA TCTACCAGCA AGATCAGGAA AGTGCTTTAC TCATGGTGCC 
   951 AACGACTCAC CAGGCCCACC AAGAAGCAGT TAGCAATGGG CCAGCAGCAC 
  1001 TCAACACAGC CTCAAGACCA TACAGCACCC TGCCTACAAG ACTTCATAAC 
  1051 AGCCATAATA CTCTGAGTAA CAATGCTGGA GGATCAGAGA GGTTGGGTTT 
  1101 AAGTGATATT CGTGACCTGA TCAACCTTGA GCTGCCACAG CTAAATGAAG 
  1151 CCCTGGGTCC CAACAGAACA AGCATACAGC CGGGATGGGC CTGCCCGACC 
  1201 TGTACGTATA TTAATAAACC AACCCGTCCA GGCTGTGAAA TGTGCAGCGC 
  1251 AGACAGACCT GAAGGATACA CTGTTCCTGG CAACTACAGA CCAGATGCTT 
  1301 TAGAGCTGCG ACGCATTCAG CAAGAAAAAG AAGCAATAAG GCAGTACCAA 
  1351 CAGGCCAGGG AAACAGAGCG CAGAGAGAAC TTTGCTCGCC TGGTACAGAT 
  1401 GGACGGGCAG GATCTGGTGC CAAACCCGGA GCGAGTGGAG TGCAGGATCT 
  1451 GTTACGTGGA GCTGGAGTCT GGTGAAGGAG TGCTCCTGAG AGAGTGTTTG 
  1501 CACTGCTTCT GCAAAGAGTG TCTGCGCTCT GTGATTCTGA TGTCGGAGGA 
  1551 CCCTCAGGTG GCTTGTCCAT ACAGAGACGA GTCCTACGCC TGTGACTGCG 
  1601 TCCTGCAGGA AAGAGAAATT CGAGCTCTGG TGTCAGTGGA TGATTATCAG 
  1651 CACTGGCTGC AGAGGGGTCT GTCTGTGGCG GAGTCTCGCT GTGAGGGCAG 
  1701 TTATCACTGC GCTACTGCCG ACTGTCCTGG CTGGTGTGTT TATGAGGACA 
  1751 CTGTCAACAC TTTCCACTGT CCAGTGTGCA AGAAACAAAA CTGCCTGCTC 
  1801 TGCAAGGCTA TTCATGAAGG GATGAACTGT AAGCAGTATC AGGATGATCT 
  1851 TACAGCTCGA GCCATCAATG ACTCTGCAGC TCGAAGGACC AGAGACCTGC 
  1901 TGAAGACTCT TGTTAATTCT GGAGAGGCGA TGCATTGCCC CCAGTGCGGA 
  1951 ATCATTGTCC AGAAGAAGGA GGGCTGTGAT TGGCTGCGCT GTACCGTCTG 
  2001 CCACACTGAG ATCTGCTGGG TCACCAGAGG GCCGCGCTGG GGGCCCAAAG 
  2051 GTCCAGGAGA CATAAGTGGA GGCTGCCGCT GCAATGTCAA CAAGCAGAGA 
  2101 TGCCATCCAA AATGCCAGAA CTGTCACTAA 

 



Appendix 

APPENDIX D: ZEBRAFISH RBCK1 

CODING SEQUENCE   

    1 ATGGCTGCTC TTGATGCCTC TAGAAATGTA ACGGAAGCGG AGGATGCCGC 
   51 TCGACTTCTT AGTGACGCCA TCAACTCCAG AGACAAAGAT GAAGCAACTA 
  101 AATACCTGAA TCAACTTCTG GATCTGAAAC TCCCAGTGAG CGTCAAAATT 
  151 AATCCAGATG CATATTCTCA AGACAACATC AGATTAAGAG TTGGAGTGGC 
  201 TGATGCTGAA TCAGAACATC ACATCCCAAT AACAGTGATG GTACCAGTTT 
  251 ACATGACAAT ATCCGAGCTG AAGGAAAAGA TCAACGGTGA CTATGGCTTC 
  301 CATCCGTCTC TCCAGCGCTG GGTGATCGGG AAGCGTCTCG CCCAGGACAA 
  351 AGAAACCCTT TATTTTTATG GGATCCGAAA CCACGATGAT TCTGCCTTCC 
  401 TCTTCATCCG CTCTGCTCAG TCTGTCAATC TGCGCCGCGA ACAAGAGAGA 
  451 AGAGAGAAAG AGGAGAGGCA GATCGATGTT ATAATGGAGA CCATTGAACG 
  501 TCCTCTTCAA CGTCCACCAG AGCGCATCAC TAGAGGAAAC ACTCGCCCTG 
  551 CTCTACCTCC AAAACCCAAA TTTCTGGATG GTTGGGCATG TCCTCAGTGC 
  601 ACGTACCTGA ATAAACCGAC ACGTCCAGGT TGTGAGATGT GCAGCACGGC 
  651 GAGACCCGAC AACTATCAGG TGCCGGACTT GTACCAGCCG GACGAGTCTG 
  701 AAACCAGGAG ACTACAGCAG GAGGAACTCG CCAGCCTGCA GTATGAGCAG 
  751 TCTCTGTTAC AAGAGGAAGA AAGAAATTTC CTTGAACGGC AGAGGAATTA 
  801 CGAAGAACTC CTGCAAACAG ATGCACACAG CCTGGTGGGA AACACAGATC 
  851 AGCTGGAGTG CGCCATTTGT TTTGGCACCA TCATGCCAGG AGAGGGCGCC 
  901 GTTTTAAGAG AGTGCCTTCA TAGCTTCTGC AGGGACTGTC TGAAAGGGAC 
  951 CGTAGTGAAC TGCCTGGACG CTGAGGTTTG TTGTCCTTAT GGAGACAACG 
 1001 CTTATGCCTG TAACTGCAAA CTCCAAGATC GAGAGATCAA ATCTCTTCTC 
 1051 ACTCAGGACG AGTACCAAAA ATTCCTAGAA CTGCGGCTGA ATATCGCTGA 
 1101 GTCCCGCAGT GAGAACAGTT ACCATTGCAA AACCCCGGAC TGCGCTGGCT 
 1151 GGTGCATCTT CGAAGATGAC GTTAACGAAT TTAAGTGCGA CATCTGCAAT 
 1201 GAGACCAACT GCCTCCTCTG CAAGGCTATT CATAAAGGAA TGAACTGCAA 
 1251 GGAGTACCAG GACGACCTAC GTGTGAGAGC GCAGAACGAT GAAGCGGCTC 
 1301 GGCAGACCAC AGAGATGCTG GATCAACTGC TAAAGAATGG CGAGGCGATG 
 1351 AACTGTCCCA AATGTCAGGT GATCGTCCAG AAGAAAGACG GCTGTGACTG 
 1401 GATCTGTTGT CTAATGTGCA AAACCGAGAT CTGCTGGGTG ACCAAACAAG 
 1451 CCCGATGGGG ACCTTTGGGT GCTGGAGACA CATCAGGCGG ATGCAAATGT 
 1501 CGAGTAAACG GAGTCCTTTG TCATCCGCAA TGCCAGAACT GCCACTAA 
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