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Indirect sampled-data control
with sampling period adaptation

Achim Ilchmann∗ Zhenqing Ke† Hartmut Logemann‡

October 2008

Abstract. It is known that if a continuous-time feedback system is exponentially stable,
then the corresponding sampled-data system obtained by sample-hold discretization with
constant sampling period is also exponentially stable, provided that the sampling period
τ > 0 is sufficiently small. In general it is difficult to estimate how small the sampling
period has to be in order to achieve stability of the sampled-data system. In this paper, we
present an adaptive mechanism for adjusting the sampling period. This mechanism has the
properties that, for every initial state, (i) the adaptation of the sampling period terminates
after finitely many time steps and (ii) the state of the adaptive sampled-data system is
integrable and converges to zero as time goes to infinity.

Keywords. Adaptive control, feedback stabilization, indirect sampled-data control, variable
sampling period.

1 Introduction

Consider the finite-dimensional continuous-time static output feedback system

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ,
y(t) = Cx(t) ,
u(t) = Fy(t) ,



 (1.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, F ∈ Rm×p and x0 ∈ Rn. System (1.1) is ex-
ponentially stable if, and only if, the matrix A + BFC is exponentially stable, that is, all
eigenvalues of A + BFC have negative real parts.
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Digital implementation of the output feedback in (1.1) requires the application of sampling
and (zero-order) hold, leading to the sampled-data feedback system

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ,
y(t) = Cx(t) ,
u(t) = Fy(jτ) , ∀ t ∈ [jτ, (j + 1)τ) ,



 (1.2)

where τ > 0 is the sampling period. It is well-known that if system (1.1) is exponentially
stable and if sampling period τ is sufficiently small, then system (1.2) is also exponentially
stable in the sense that there exist M ≥ 1 and α > 0 such that

‖x(t; x0, τ)‖ ≤ Me−αt‖x0‖ , ∀ x0 ∈ Rn, ∀ t ≥ 0 ,

where x( · ; x0, τ) denotes the solution of (1.2) (for the proof and for related results, see
[1, 2, 5, 6]).

Given that the continuous-time system (1.1) is exponentially stable, it is in general difficult
to estimate how small the sampling period has to be in order to achieve stability of the
sampled-data system (1.2) (see [10]). In this paper, we develop an adaptive strategy for
adjusting the sampling period, so that, for every initial condition x0, the adaptation of the
sampling period terminates after finitely many time steps and the corresponding solution of
(1.2) is integrable and tends to 0 as t →∞.

The use of adaptive strategies for the selection of “suitable” sampling periods has been
considered before: see [4, 7] for results in a high-gain context and [8] for an application
of sampling period adaptation to low-gain integral control. However, the general result on
adaptive sampling in the context of indirect sampled-data control presented in this paper is
new.

The statement of the main result of the paper is given in Section 2. A generalization of the
result on static feedback in Section 2 to dynamic feedback is presented in Section 3. All
proofs can be found in the Appendix (Section 4).

Nomenclature and terminology.

bσc := max{n ∈ N0 | n ≤ σ}, σ ∈ R+ ,

`∞(N0,Rn) space of bounded Rn-valued sequences (sj)j∈N0 ,

`1(N0,Rn) space of Rn-valued sequences (sj)j∈N0 with
∑∞

j=0 ‖sj‖ < ∞ ,

L1(R+,Rn) space of measurable functions f : R+ → Rn with
∫∞

0
‖f(t)‖ dt <

∞ .

A sequence (sj)j∈N0 is said to be ultimately constant if, and only if, there exists N ∈ N0 such
that sN+j = sN for all j ∈ N0.

2 Adaptation of the sampling period

The purpose of this section is to develop an adaptive feedback mechanism for adjusting the
sampling period. The use of sampling and hold in (1.1), corresponding to the sampling
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points (tj)j∈N0 , leads to the following sampled-data feedback system

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 ,
y(t) = Cx(t) ,
u(t) = Fy(tj) , ∀ t ∈ [tj, tj+1) .



 (2.1)

The sampling points tj, or, equivalently, the sampling periods τj := tj+1− tj, are determined
by the following adaptive strategy:

for given α ∈ (0, 1) and (ηj)j∈N0 ∈ `∞(N0,R) with infj∈N0 ηj > 0 ,

set t0 = 0 , σ0 = 0 ,

and, for j = 0, 1, 2, . . . ,

kj = bσjc ,

τj = max
{
ηj/(j + 1)α, ηkj

/(kj + 1)α
}

,

tj+1 = tj + τj ,

σj+1 = σj + ‖y(tj)‖ .





(2.2)

The rationale for the adaptive strategy (2.2) is described in the following remark.

Remark 2.1. For simplicity, in the context of this remark, the reader may assume that
ηj = 1 for all j ∈ N0 (the role of the ηj will become clear later, see part (ii) of Remark 2.5).
Obviously, the last definition in (2.2) is a discrete-time integrator with input (‖y(tj)‖)j∈N0 ,
so that

σj =

j−1∑

l=0

‖y(tl)‖ , ∀ j ∈ N . (2.3)

The idea behind the adaptive strategy (2.2) is to decrease the sampling period as long as the
norm of the sampled output values y(tj) is “large” in the sense that the partial sums σj has
not “started to converge”. It is readily verified that the following properties are equivalent:

(i) the sequence (τj)j∈N0 is ultimately constant;

(ii) the sequence (kj)j∈N0 is ultimately constant;

(iii) (σj)j∈N0 ∈ `∞(N0,R);

(iv) (y(tj))j∈N0
∈ `1(N0,Rp).

Also note that if (τj)j∈N0 is not ultimately constant, then limj→∞ τj = 0. 3

For the following, it is convenient to define

δl := ηl/(l + 1)α , ∀ l ∈ N0 . (2.4)

Note that, for each sampling period τj generated by (2.2), there exists lj ∈ N0 such that
τj = δlj . We introduce the following detectability hypothesis.

(D) The pair (C, eAδl) is discrete-time detectable for every l ∈ N0.
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We are now ready to state the main result of this contribution. The proof can be found in
the Appendix.

Theorem 2.2. Assume that the continuous-time feedback system (1.1) is exponentially stable
and let x( · ; x0) denote the solution of the adaptive sampled-data system given by (2.1) and
(2.2). Then, for every initial state x0 ∈ Rn, the following statements hold:

(i) the sequence (τj)j∈N0 is ultimately constant, that is, the adaptation of the sampling
period terminates in finite time;

(ii) if, additionally, hypothesis (D) is satisfied, then limt→∞ x(t; x0) = 0, x( · ; x0) ∈
L1(R+,Rn) and (x(tj; x

0))j∈N0 ∈ `1(N0,Rn).

We note that in the case of state feedback (that is, p = n and C = I), hypothesis (D) is
trivially satisfied. In general however, the appearance of hypothesis (D) in statement (ii) of
Theorem 2.2 is somewhat unsatisfactory, because it is formulated in discrete-time terms and
not in terms of the original continuous-time data. The following definition will be useful in
addressing this issue.

Definition 2.3. A number δ > 0 is said to be pathological relative to A ∈ Rn×n if, and only
if, there exist q ∈ Z \ {0} and λ, µ ∈ σ(A) ∩ {s ∈ C : Re s ≥ 0} such that δ(λ− µ) = 2qπi.
Otherwise, δ is said to be non-pathological relative to A. 3

We shall see that, in Theorem 2.2, hypothesis (D) can be replaced by the following hypothesis.

(D′) For every l ∈ N0, δl is non-pathological relative to A.

Corollary 2.4. The conclusions of Theorem 2.2 remain valid if, in the statement of Theo-
rem 2.2, hypothesis (D) is replaced by hypothesis (D′).

The proof of Corollary 2.4 can be found in the Appendix.

The following remark shows that hypothesis (D′) is not very restrictive.

Remark 2.5. (i) Let α and (ηl)l∈N0 be given as in (2.2) and define (δl)l∈N0 by (2.4). Then
it can be shown that the set

{A ∈ Rn×n : δl is non-pathological relative to A for every l ∈ N0}

is open and dense in Rn×n (see [5, Appendix A.1]). Consequently, the probability that,
for a randomly chosen matrix A ∈ Rn×n, there exists l ∈ N0 such that δl is pathological
relative to A is zero.

(ii) It is clear that, for every A ∈ Rn×n and every α ∈ (0, 1), there exists a bounded se-
quence (ηl)l∈N0 with inf l∈N0 ηl > 0 and such that δl (defined in (2.4)) is non-pathological
relative to A for every l ∈ N0 (that is, hypothesis (D′) holds). 3
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3 Generalization to dynamic output feedback

Consider a dynamic output feedback system with plant given by

ẋp = Apxp + Bpup ; xp(0) = x0
p ,

yp = Cpxp ,
(3.1)

controller given by
ẋc = Acxc + Bcuc ; xc(0) = x0

c ,
yc = Ccxc + Dcuc ,

(3.2)

and feedback interconnection equations

uc = yp , up = yc , (3.3)

where Ap ∈ Rnp×np , Bp ∈ Rnp×m, Cp ∈ Rp×np , Ac ∈ Rnc×nc , Bc ∈ Rnc×p, Cc ∈ Rm×nc ,
Dc ∈ Rm×p, x0

p ∈ Rnp and x0
c ∈ Rnc . Defining

A := diag(Ap, Ac), B := diag(Bp, Bc), C :=

(
Cp 0
DcCp Cc

)
, F :=

(
0 I
I 0

)
, (3.4)

a routine calculation shows that the continuous-time dynamic feedback system given by
(3.1)–(3.3) can be written as

ẋ = (A + BFC)x ; x(0) = x0 =

(
x0

p

x0
c

)
, where x :=

(
xp

xc

)
. (3.5)

Let (tj)j∈N0 be the sampling points to be determined adaptively. As before, we define the
associated sampling periods τj := tj+1 − tj for j ∈ N0. Consider the corresponding sample-
hold discretization of (3.2)

xd
c (j + 1) = eAcτjxd

c (j) +
∫ τj

0
eAcsdsBcu

d
c (j) ; xd

c (0) = x0
c ∈ Rnc ,

yd
c (j) = Ccx

d
c (j) + Dcu

d
c (j) ,

(3.6)

together with the feedback interconnection equations

ud
c (j) = yp(tj) , up(tj + θ) = yd

c (j) , ∀ θ ∈ [0, τj) , ∀ j ∈ N0 . (3.7)

The adaptive strategy for determining the sampling points is very similar to that in the case
of static feedback, the only difference being in the equation for (σj)j∈N0 :

for given α ∈ (0, 1) and (ηj)j∈N0 ∈ `∞(N0,R) with infj∈N0 ηj > 0 ,

set t0 = 0 , σ0 = 0 ,

and, for j = 0, 1, 2, . . . ,

kj = bσjc ,

τj = max
{
ηj/(j + 1)α, ηkj

/(kj + 1)α
}

,

tj+1 = tj + τj ,

σj+1 = σj +
∥∥(

yp(tj), y
d
c (j)

)∥∥ .





(3.8)
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Remark 3.1. Remark 2.1 remains true in the context of the adaptive strategy (3.8), pro-
vided that, in (2.3), ‖y(tj)‖ is replaced by ‖(yp(tj), y

d
c (j))‖ and, in item (iv), (y(tj))j∈N0 and

`1(N0,Rp) are replaced by (yp(tj), y
d
c (j))j∈N0 and `1(N0,Rp+m), respectively. 3

The sampled-data feedback system given by (3.1), (3.6), (3.7) and (3.8) has a unique solution
which will be denoted by

(
xp(tj + θ; x0)
xd

c (j; x
0)

)
, ∀ θ ∈ [0, τj) , ∀ j ∈ N0 . (3.9)

The corollary below is the main result of this section. The proof can be found in the
Appendix.

Corollary 3.2. Assume that the continuous-time dynamic feedback system given by (3.1)–
(3.3) (or, equivalently, system (3.5)) is exponentially stable. Then, for every initial state
x0 ∈ Rnp+nc, the sampled-data feedback system given by (3.1), (3.6), (3.7) and (3.8) has the
following properties:

(i) the sequence (τj)j∈N0 is ultimately constant, that is, the adaptation of the sampling
period terminates in finite time;

(ii) if, additionally, ηl/(l+1)α is non-pathological relative to A = diag(Ap, Ac) for every l ∈
N0, then limt→∞ xp(t; x

0) = 0, xp( · ; x0) ∈ L1(R+,Rnp), (xp(tj; x
0))j∈N0 ∈ `1(N0,Rnp)

and (xd
c (j; x

0))j∈N0 ∈ `1(N0,Rnc).

4 Appendix

To facilitate the proofs of the results in Sections 2 and 3, it is convenient to first state and
prove a technical lemma. To this end, consider the sampled-data feedback system (2.1) with
a prespecified sequence t := (tj)j∈N0 of sampling points satisfying

t0 = 0 , tj+1 > tj , ∀j ∈ N0 , tj →∞ as j →∞ .

Let x( · ; x0, t) denote the corresponding solution of system (2.1).

The following lemma shows that if the continuous-time system (1.1) is exponentially stable
and if the sampling periods τj := tj+1− tj converge to 0 as j →∞, with rate of convergence
sufficiently small in a suitable sense, then the sequence (x(tj; x

0, t))j∈N0 is summable.

Lemma 4.1. Assume that the continuous-time feedback system (1.1) is exponentially stable.
Let the sequence t = (tj)j∈N0 be such that t0 = 0 and tj+1 > tj for all j ∈ N0. Set τj :=
tj+1 − tj and assume that

lim
j→∞

τj = 0 and inf
j∈N

τjj
α > 0 for some α ∈ (0, 1) . (4.1)

Then, for every x0 ∈ Rn, the sequence (x(tj; x
0, t))j∈N0 is in `1(N0,Rn).
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Proof. The variation-of-parameters formula yields

x(tj+1; x
0, t) =

(
eAτj +

∫ τj

0

eAsdsBFC

)
x(tj; x

0, t) , ∀ j ∈ N0 . (4.2)

Writing

∆j := eAτj +

∫ τj

0

eAsdsBFC and xj := x(tj; x
0, t) ; ∀ j ∈ N0 ,

(4.2) becomes
xj+1 = ∆jxj , ∀ j ∈ N0 ; x0 = x0 . (4.3)

It follows from the exponential stability of (1.1) that there exists a unique matrix P = P T >
0, such that

(A + BFC)T P + P (A + BFC) = −I (4.4)

(see, for example, [9, Theorem 18, p. 231]). Let ‖ · ‖P be the norm on Rn defined by

‖z‖2
P := 〈z, Pz〉 , ∀ z ∈ Rn .

Using the power series expansion of eAt, we may decompose

∆j = I + τj(A + BFC) + τ 2
j Γ(τj) , ∀ j ∈ N0 , (4.5)

where

Γ(τ) :=
∞∑

l=0

τ l

(l + 2)!
Al+1(A + BFC) , ∀ τ ≥ 0 .

The boundedness of (τj)j∈N0 implies the boundedness of the sequence (Γ(τj))j∈N0 and hence,
invoking (4.3) and (4.5), we conclude that there exists a constant L ≥ 0 such that

‖xj+1‖2
P − ‖xj‖2

P = 〈∆jxj, P∆jxj〉 − 〈xj, Pxj〉
≤ τj〈xj,

[
(A + BFC)T P + P (A + BFC)

]
xj〉+ Lτ 2

j ‖xj‖2, ∀ j ∈ N0 .

Combining this with (4.4) shows that

‖xj+1‖2
P − ‖xj‖2

P ≤ (−τj + Lτ 2
j )‖xj‖2, ∀ j ∈ N0 ,

and therefore, in view of limj→0 τj = 0, we obtain that there exists N ∈ N such that

‖xj+1‖2
P − ‖xj‖2

P ≤ −τj

2
‖xj‖2 , ∀ j ≥ N .

Consequently,

‖xj+1‖2
P ≤ ‖xj‖2

P −
τj

2
‖xj‖2 ≤

(
1− τj

2‖P‖
)
‖xj‖2

P , ∀ j ≥ N , (4.6)

and hence,

‖xj‖2
P ≤

[
j−1∏

l=N

(
1− τl

2‖P‖
)]

‖xN‖2
P , ∀ j ≥ N + 1 . (4.7)
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If xj0 = 0 for some j0 ≥ N , then it follows from (4.6) that xj = 0 for all j ≥ j0, and
thus (xj)j∈N0 ∈ `1(N0,Rn). Assume now that xj 6= 0 for all j ≥ N . Then, by (4.6),
1 − τj/(2‖P‖) > 0 for all j ≥ N . Moreover, since M := infj∈N{τjj

α} > 0, we have that
τj ≥ M/jα for all j ∈ N, and thus

0 < 1− τj

2‖P‖ ≤ 1− M

2‖P‖jα
, ∀ j ≥ N .

Combining this with (4.7) yields

‖xj‖P ≤
[

j−1∏

l=N

(
1− M

2‖P‖lα
)1/2

]
‖xN‖P , ∀j ≥ N + 1 . (4.8)

Define a positive sequence (vj)j∈N0 by

vj :=

N+j∏

l=N

(
1− M

2‖P‖lα
)1/2

=

N+j∏

l=N

(
1− γ

lα

)1/2

,

where γ := M/(2‖P‖). By (4.8), to show that (xj)j∈N0 ∈ `1(N0,Rn), it suffices to prove that
(v)j∈N0 ∈ `1(N0,R). Invoking the inequality 1− t ≤ e−t (which holds for all t ∈ R), we have

k∑
j=0

vj ≤
k∑

j=0

exp

(
−γ

2

N+j∑

l=N

1

lα

)
≤

k∑
j=0

exp

(
− γ(j + 1)

2(N + j)α

)
, ∀ k ∈ N0 . (4.9)

Since α ∈ (0, 1), it follows that

exp

(
− γ(j + 1)

2(N + j)α

)
≤ 1

j2
for all sufficiently large j.

Hence, the right-hand side of (4.9) converges to a finite limit as k → ∞, showing that
(vj)j∈N0 ∈ `1(N0,R). 2

Proof of Theorem 2.2. Let x0 ∈ Rn be fixed, but arbitrary.

To prove statement (i), we adopt a contradiction argument and suppose that the sequence of
sampling periods (τj)j∈N0 is not ultimately constant. Then, by Remark 2.1, limj→∞ τj = 0.
Moreover, invoking the definition of τj in (2.2), we obtain

τjj
α ≥ ηj

(
j

j + 1

)α

, ∀ j ∈ N .

By assumption, infj∈N0 ηj > 0, and thus,

inf
j∈N

τjj
α > 0 .

Therefore, (4.1) is satisfied and Lemma 4.1 yields that (x(tj; x
0))j∈N0 ∈ `1(N0,Rn), and

hence, (y(tj))j∈N0 ∈ `1(N0,Rp). Invoking again Remark 2.1 shows that (τj)j∈N0 is ultimately
constant, contradicting the supposition that (τj)j∈N0 is not ultimately constant.
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To prove statement (ii), we first note that, by the variation-of-parameter formula,

x(tj + θ; x0) =

(
eAθ +

∫ θ

0

eAsdsBFC

)
x(tj; x

0) , ∀ θ ∈ [0, τj], ∀ j ∈ N0 . (4.10)

By statement (i), there exists N ∈ N0 such that

τj = τN =: τ , ∀ j ≥ N .

Hypothesis (D) guarantees that the pair (C, eAτ ) is discrete-time detectable. Hence there
exists H ∈ Rn×p such that eAτ + HC is power stable, i.e., all eigenvalues of eAτ + HC are in
the open unit disc {s ∈ C : |s| < 1}. Setting Bτ :=

∫ τ

0
eAsdsB, it follows from (4.10) with

θ = τ that

x(tj+1; x
0) = eAτx(tj; x

0) + BτFCx(tj; x
0)

= (eAτ + HC)x(tj; x
0) + (BτF −H)y(tj) , ∀j ≥ N .

Combining this with the power stability of eAτ+HC and the fact that (y(tj))j∈N0 ∈ `1(N0,Rp)
(guaranteed by Remark 2.1), we conclude that (x(tj; x

0))j∈N0 ∈ `1(N0,Rn). This implies in
particular that

lim
j→∞

x(tj; x
0) = 0 . (4.11)

Setting

τ̄ := sup
j∈N0

τj < ∞ and M := sup
θ∈[0,τ̄ ]

∥∥∥∥eAθ +

∫ θ

0

eAsdsBFC

∥∥∥∥ ,

we obtain from (4.10) that

‖x(tj + θ; x0)‖ ≤ M‖x(tj; x
0)‖ , ∀ θ ∈ [0, τj], ∀ j ∈ N0 .

Consequently, by (4.11),
lim
t→∞

x(t; x0) = 0 .

Finally, ∫ ∞

0

‖x(t)‖dt =
∞∑

j=0

∫ tj+1

tj

‖x(t; x0)‖dt ≤ Mτ̄

∞∑
j=0

‖x(tj; x
0)‖ < ∞ ,

showing that x ∈ L1(R+,Rn) and completing the proof of statement (ii). 2

Proof of Corollary 2.4. Since the continuous-time feedback system (1.1) is exponentially
stable, the pair (C, A) is continuous-time detectable. By assumption, δl is non-pathological
relative to A for all l ∈ N0, and therefore, by a standard result (see [3, Lemma 8]), the pair
(C, eAδl) is discrete-time detectable for all l ∈ N0, showing that hypothesis (D) holds. The
claim now follows from Theorem 2.2. 2

Proof of Corollary 3.2. Let x0 ∈ Rnp+nc be fixed, but arbitrary. Moreover, let the
matrices B, C and F be defined as in (3.4). Invoking the variation-of-parameters formula,
we conclude that(

xp(tj + θ; x0)
xd

c (j + 1; x0)

)
=

[(
eApθ 0
0 eAcτj

)
+

( ∫ θ

0
eApsds 0

0
∫ τj

0
eAcsds

)
BFC

](
xp(tj; x

0)
xd

c (j; x
0)

)
,

∀ θ ∈ [0, τj) , ∀ j ∈ N0 . (4.12)
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Since, by continuity of xp( · ; x0), xp(tj + θ; x0) → xp(tj+1; x
0) as θ ↑ τj, we obtain from

(4.12), as θ ↑ τj,(
xp(tj+1; x

0)
xd

c (j + 1; x0)

)
= ∆j

(
xp(tj; x

0)
xd

c (j; x
0)

)
, ∀ j ∈ N0 ;

(
xp(0; x0)
xd

c (0; x0)

)
= x0 , (4.13)

where ∆j := eAτj +
∫ τj

0
eAsdsBFC with A, B, C and F given by (3.4). Now consider the

adaptive sampled-data system defined by (2.1) and (2.2), where again A, B, C and F are
given by (3.4) and, furthermore, n = np + nc. Denoting its solution by x( · ; x0), it follows
that

x(tj+1; x
0) = ∆jx(tj; x

0), ∀ j ∈ N0 ; x(0; x0) = x0.

Combining this with (4.13) shows that

x(tj; x
0) =

(
xp(tj; x

0)
xd

c (j; x
0)

)
, ∀ j ∈ N0 .

An application of Corollary 2.4 to the sampled-data system defined by (2.1) and (2.2), with
A, B, C and F given by (3.4), then shows that (τj)j∈N0 is ultimately constant and the
sequence (x(tj; x

0))j∈N0 is in `1(N0,Rn). In particular,

lim
j→∞

x(tj; x
0) = lim

j→∞

(
xp(tj; x

0)
xd

c (j; x
0)

)
= 0 . (4.14)

Finally, we note that by using (4.12) and (4.14) in combination with an argument similar to
that adopted at the end of the proof of Theorem 2.2 (after equation (4.11)), it follows that
limt→∞ xp(t; x

0) = 0 and xp( · ; x0) ∈ L1(R+,Rnp), completing the proof. 2
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