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1

1.1

Introduction

Notation and basic facts

The elements of R" are column vectors, e.g., z = (&;,...,€,) ", vy = (n1,..m,,) "

For vectors z,y € R™:

x > 0 denotes that all coordinates of x are nonnegative,

f = max;es f; denotes that for all = there holds the equality f(z) = max{fi(z) :i € I}
7, = max{z,0} = (max{¢,;,0},...,max{¢,,0}) ",

e; = (0,...,0,1,0,...,0)" € R™ with 1 at the j-th coordinate,

e=(1,..,1)7

RT = {z € R": £ > 0} — nonnegative orthant,

A, ={u€eR™:e"u=1u>0}— the standard simplex

B(z,a) ={y € H: ||y — z|| < a} — the ball with centre z € H and radius a > 0,

D — closure of D C H,

FixT = {# € H : Tz = z} — the subset of fixed points of an operator T : D — D, where
D CH,

Argmin ., f(z) = {2z € D : f(z2) < f(z) for all z € D}, where D C Hand f: D - R - a
subset on which the function f attains its minimum on D,

argmin, . f(z) — a minimizer of a function f : D — R, i.e., an element of Argmin_ ., f(x),
a function f :’H — R is said to be coercive if lim ;| f(2) = 400,
a continuous and coercive function f : ’H — R attains its minimum,

Np(z) ={y € H: (y,z —z) <0 for all z € D} — the normal cone to a convex subset D C 'H
in the point x € D,

H(a,p) ={x € H: (a,x) = 5}, where a € H and § € R — a hyperplane in H,

H*(a,8) ={x € H:{a,z) > B} and H (a,8) = {x € H: (a,z) < [} half-spaces in H,
S(f,a) ={x € H: f(x) < a} — the sublevel set of a function f: H — R at a level a € R.
d(z, D) = infyep ||z — y|| — the distance of © € H to a subset D C H,

V=T, T =TT, m=2,3,..., where T : D — D for D C H,

diagv — a diagonal matrix, with a vector v € R on the main diagonal.

Let z,y € H

The Schwarz inequality
(@, 9)* < [lz*llyl,

The equality holds if and only if the vectors x and y are linear dependent
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e Parallelogram law
lz +yl* + llz — ylI* = 2|z + ly]1*)-

e Strict convexity

[z +yll = ll=ll + vl == llzlly = llyll=

1.2 Convex subsets and convex functions

Let X, Y be linear spaces.
e The intersection(), ., Co of a family {C,}aca of convex subsets of X is a convex subset.
e Any norm || - || in X is a convex function

e If f: X — Ris a convex function and ¢g : R — R is a convex and nondecreasing function, then
g o fis a convex function.

e For any norm || - || in X the function || - ||? is convex

o If f, : X - R, i=1,...,m, are convex functions and F' : R™ — R is a convex function which
is nondecreasing with respect to any coordinate, then f = F(f1, ..., f,n) is a convex function.

o If f:Y — Ris a convex function and A : X — Y is a linear operator, then f o A is a convex
function.

e The sublevel set S(f, «) of a convex function f: X — R is a convex subset.
Let ‘H be a Hilbert space and let D C ‘H be closed and convex.

e The distance function d(-, D) : H — R, d(z, D) = inf.cp || z — 2z ||, is convex.

e The function d?(-, D) is convex as a composition of a convex function d(-, D) and a convex and
a nondecreasing function ¢ : R, — R, g(u) = u?.

e The function 1d*(-, D) is differentiable and its derivative has the form
Lo

1.3 Operators

In methods for the CFP the important role play nonexpansive operators, firmly nonexpansive oper-
ators and the Fejér monotone operators.
Let D C 'H be closed and convex subset.

Definition 1 We say that an operator T': D — H is nonexpansive (NE) if for all x,y € D
T2 =Ty < [lz =yl
If the inequality is strict for x # y then T is said to be strictly nonexpansive.

Definition 2 We say that an operator 7' : D — H is a contraction if for some o € (0,1) and for
all z,y € D
[Tz =Tyl < allz -y



Definition 3 We say that an operator 7' : D — ‘H is monotone if for all x,y € D
(Tz =Ty, x—y) >0

Definition 4 We say that an operator T : D — H is Fejér monotone (FM) with respect to a subset
M c Diffor all z € D and for all z € M

[Tz — 2 < [l — 2.

If T is Fejér monotone with respect to FixT then T is called quasi-nonexpansive (QNE) If the
inequality is strict for ¢ M then we say that T is strictly Fejér monotone (or strictly quasi-
nonexpansive if M = FixT) with respect to a subset M C D.

Definition 5 We say that a sequence (xy) is Fejér monotone (FM) with respect to a subset M if
for all £ and for all z € M
k1 = 2l < flox = =]

Definition 6 Let o > 0. We say that an operator T' : D — H is a-strongly Fejér monotone —
a-SFM with respect to a subset M C D, or strongly Fejér monotone — SFM, if

1Tz = 2|* < o — 2]* - ol Tz — ®

for all x € D and for all z € M. If T is a-SFM with respect to FixT" then T is called a-strongly
quasi-nonexpansive or strongly quasi-nonexpansive — SQNE.

Remark 7 A nonexpansive operator T' with Fix T # & is quasi-nonexpansive.

Definition 8 Let A € [0,2]. The operator T\ = I + A(T" — I) is called a relazation of an operator
T : D — H. The parameter \ is called a relaxation parameter. If A € (0,2) then T} is called a strict
relaxation of T.

Definition 9 We say that an operator T': D — H is firmly nonexpansive (FNE) if for all z,y € D
(Tw = Ty,x —y) > [Tz - Ty|*.

Definition 10 We say that an operator T : D — H is relazed firmly nonezpansive (RFNE) if T is
a relaxation of a firmly nonexpansive operator.

Definition 11 We say that an operator T : D — ‘H with FixT # & is separating if
(z =Tx,x—Tx) <0
for all x € D and for all z € FixT.

Definition 12 We say that an operator 7' : D — H is strongly nonexpansive (SNE) if T' is nonex-
pansive and for all sequences (zx), (yx) C D there holds the implication:

If (xy — yx) is bounded and || xx — v || — || T2x — Tyx ||— O then (xy — yx) — (Taxyp — Tyx) — O.
Definition 13 We say that an operator 7' : D — H is averaged (AV) if
T=(1-a)l+aU
for a nonexpansive operator U : D — H and for a constant a € (0, 1).
Definition 14 We say that an operator T': D — D is idempotent if T? =T
Definition 15 We say that an operator T': D — D is asymptotically reqular (AR) if for all z € D

klim | T+ — TFxz|| = 0.



1.4 Metric projection

Definition 16 Let D C H be a nonempty subset and let € H. The point y € D is called the
metric projection of a point x onto a subset D, if for any z € D there holds the inequality

ly — 2|l < [lz — 2.
The metric projection of a point x onto D is denoted by Ppx.
In one of the next sections, we show a fact which is more general than the result below.

Theorem 17 Let D C 'H be a nonempty, convexr and closed subset. Then for any x € H there exists
the metric projection Ppx and is defined uniquely.
1.4.1 Characterization and basic properties of the metric projection

The theorem below is used in many applications.

Theorem 18 Let x € ‘H, D C H be a nonempty, convex and closed subset and let y € D. The
following conditions are equivalent:
(1) Yy = PD:E;
(ii) (xt—y,z—y) <0 forall z € D.
Proof. (i)=(ii). Let y = Pp(x), z € D and let zy = y + Az — y) for A € (0,1). Obviously,
zx € D, since D is convex. We have by the properties of the scalar product
lz = ylI* < [lz = 2a]* = llo — y = Az = »)|I?
= |lz = yl* = 2Mz =y, 2 — y) + N[lz — y*.
Since A > 0, we have

A
<$—%z—yhéyb—yw

If we let A — 0 in the last inequality, we obtain (ii) in the limit.
(ii)=(i). By the properties of the scalar product and by (ii) we obtain for any z € D

lz=2l* = llz—y+y— =l
= le—yl* +lly— 2l +2(z —y,y — x)
>y -

which, by the definition of the metric projection, gives (i). m
The following Lemma can be easily proved.

Lemma 19 Let z,y,z € ‘H. The following conditions are equivalent:

(i) [lz = ylI* < llz = l* = ly — «I?,



Corollary 20 Let D C H be nonempty, convexr and closed. Then Fix Pp = D. Consequently, the
metric projection Pp is an idempotent operator.

Proof. If x € D, then it follows from the definition of the metric projection that x = Ppx. If
x & D, then x # Ppx since Ppz € D. =

Corollary 21 Let D C 'H be nonempty, convex and closed. Then for all x € H and z € D there
holds the inequality
1Ppz = 2| < ||lz = 2|* = || Ppz — =%,

consequently, the metric projection Pp 1s strongly Fejér monotone with respect to D.

Proof. Let x € H and let z € D. The inequality follows from the characterization of the metric
projection (Theorem 18) and from the equivalence (i)<(iii) in Lemma 19 for y = Ppr and z € D. =

Corollary 22 Let D C 'H be nonempty, convex and closed, x ¢ D andy € D. Then
y= Ppr <=z —y € Np(y).

Proof. The right side of the above equivalence can be written by the definition of the normal
cone in the form (z —y,z —y) < 0 for all z € D. Now we see that the equivalence follows directly
from the characterization of the metric projection (Theorem 18). =

1.5 Fixed points theorems

The theorem below, called Banach fixed point theorem or Banach theorem on contractions, is widely
applied in various areas of mathematics. The theorem holds for any metric complete space, in
particular for a closed subset of a Hilbert space.

Theorem 23 Let U : X — X be a contraction. Then U has exactly one fixed point x* € X.
Furthermore, for any x € X the sequence of iterations (U*x) converges to x* with a rate of geometric
PTroOgression.

Proof. See [GK90, Theorem 2.1], where three various proofs are given. m

The Banach fixed point theorem is a good tool for iterative approximation of fixed points. Nev-
ertheless, its application is restricted to contractions. We will need, however, appropriate tools for
iterative approximation of fixed points of nonexpansive operators.

Below, we present few classical fixed points theorems.

Theorem 24 (Brouwer, 1912) Let X C R" be nonempty, compact and convex and let U : X — X
be continuous. Then U has a fixed point.

Proof. See, e.g. [Brol2], [GD03, Chapter II, §5, Theorem 7.2] or [Goe02, Theorem 7.6]. m

Theorem 25 (Schauder, 1930) Let X be nonempty, compact and convez subset of a Banach space
and let U : X — X be continuous. Then U has a fized point.

Proof. See, e.g. [Sch30], [GD03, Chapter II, §6, Theorem 3.2] or [Goe02, Theorem 8.1]. =

Theorem 26 (Browder, 1965) Let X C H be a nonempty closed, convex and bounded subset of a
Hilbert space and let U : X — X be nonexpansive. Then U has a fized point.



Proof. See, e.g. [Bro65, Theorem 1], [GDO03, chapter I, §4, Theorem 1.3] or [Goe02, Theorem
4.1]. =

In one of the next sections we present theorems which can be applied in iterative methods for
finding fixed points of nonexpansive operators.

Below, we present some properties of the subset of fixed points of a nonexpansive operator.
Lemma 27 The subset of fixed points of a nonexpansive operator T : X — H 1is closed and convex.

Proof. Let z;, € FixT and let z, — x. We have z € X since X is closed. Since a nonexpansive
operator is continuous, we have

r=limx, =limTz, =Tz,
k

i.e. FixT is a closed subset. Now we show the convexity of FixT. Let z,y € FixT and let
z=(1—=MXz+ Ay for A € [0,1]. By the nonexpansivity of 7" and by the positive homogeneity of the
norm we have

|o = Tz|| = [[Te = Tz|| < [z — 2| = Allz =y

and
Tz =yl =Tz =Tyl < ||z —yll = (1 = N[lz —y]|.

Now, the triangle inequality yields
lz =yl < flz =Tz + [Tz =yl < |lz -yl
Consequently,
e =yl = llz =Tz + Tz — y]

and the strict convexity yields Tz = (1 — a)z + ay. It follows easily from the nonexpansivity of
T that o = ), consequently Tz = z. The details are left to the reader. m

The closedness and the convexity of the subset of fixed points of a nonexpansive operator follows
also from a property which will be presented in Corollary 77.

Let Uz X — X, 1 = 1,...,m. Denote U = UmUm—1-~-U1 and Qz = UiUi—l---UlUm”-Ui—i-l;
1=1,2,....m. We have ), = U. Let zg € X and let z; = U;z;_1, i = 1,2,...,m. There exists a
correspondence between fixed points of operators (); expressed by the following Lemma.

Lemma 28 A point zo € X is a fixed point of the operator U if and only if z; is a fixed point of
the operator Q;, i = 1,2,....,m — 1. Furthermore, Fix @, = U;(FixU) and FixQ; = U;(FixQ;_1),
1=2,...,m.

Proof. Suppose that Uz = 2. By the equalities z; = U;z;_1, j = 1,2, ..., m, we have

Qizi = UUi1.. U Up..Ui12i
= UUir. U Up.. Us Ui U 2
= UiUiy..Uz
= z.

The proof of the converse implication is similar. We leave the proof of the second part of the Lemma
to the reader. m

Theorem 29 Let U; : X — X and let U = U,,...U;. If U; are nonexpansive and U;(X) is bounded
for at least one j € I then FixU # &.



Proof. Since U; are nonexpansive, i € I, the boundedness of U;(X) yields the boundedness of
U(X). Therefore, Y = conv U(X) is closed and convex and bounded (see, e.g. [HUL93, Chapter III,
Theorem 1.4.3]). Since U(X) C X and X is closed and convex, we have Y C X. The operator U |y
maps a closed, convex and bounded subset Y into itself. By the Browder theorem, the operator U |y
has a fixed point z € Y. Of course, z€ Y and Uz =U |y (2) = 2. m

Theorem 30 Let U; : X — X, i € I, be nonexpansive operators with a common fixed point, let
we Ay, w>0foriclandletU =), wU;. Then

FixU = (| Fix U;.
iel
Proof. The inclusion (), ; FixU; C Fix U is obvious. We show that the converse inclusion holds
if U; are nonexpansive operators, i € I. Let z € FixU and u € (),.; FixU;. We have by the triangle
inequality

lz—ull = [[Uz—u]
= D wiliz—ull =) wi(Uiz — u)|
i€l el
< Y willUiz —ul| = wil| Uiz — U]
i€l el
< Y willz—ul = |z =l
i€l
Now we see that
1> williz —w)| =Y willUiz —ul =) willz = uf.
i€l el el

Since w; > 0 for 7 € I, the first of the equalities above yields positive linear dependence of all pair of
vectors U;z —w and Ujz —w, 4,5 € 1,1 # j, i.e.,

Uiz = ul|(Ujz — u) = [|Ujz — ul|(Uiz — u). (1)
The second equality, together with the inequality
Uiz —ul < ||z = ul,
1 € I, and with the assumption w; > 0 yields
1Uiz = ull = ||z — ull (2)
for all i € I. Now, it follows from (1) and (2) that U;z —u =z —wu,i € I,ie. Uiz =z forall i € I.
Consequently, z € ﬂ FixU;. m

icl
Lemma 31 Let C' C H be nonempty, closed and convez, let T : H — H and let A > 0. Then
Fix(PcT\) = Fix(P:T).
In particular, FixT\ = FixT.
Proof. We have by Theorem 22
Fix(PoT\) <= Po(z + ANTx —z)) ==
MTx —x) € No(z)
Tx —x € Ne(x)
PcTr=x
z € Fix(P:T).

T

[

|
Note that for A > 0 and for an arbitrary operator 7' we have FixT' = Fix T).
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2 Problems

H — a real Hilbert space, (-,-) — a scalar product in H, || - || = v/(*,-) — the norm induced by (-, ).
D C'H — closed and convex subset.
T : D — H a nonexpansive operator with FixT # &

find z* € FixT.

2.1 Convex minimization problem

Let f : H — R be convex and let D C H be closed and convex. The constrained minimization

problem expressed in the form
minimize f(z) (3)
with respect to z € D

is to find an 2* € D such that f(z*) < f(z) for all x € D, if such a point exists. The point z* is
called minimizer of the function f on D or optimal solution of problem (3). The value f* = f(2*)
is called the minimum of the function f on the subset D. If f is strongly convex then problem (3)
has unique solution. If F' is differentiable then problem (3) is equivalent to finding a fixed point of
the operator T': D — D,
T(x) = Pp(x =V f(z)),

where v > 0. One can prove that if V f is L-Lipschitz continuous then 7" is RFNE for v € [0, %] (see,
e.g. [Byr08, Theorem 17.12]).

2.2 Variational inequality

Let D C 'H be closed and convex and let F' : D — H be a monotone operator. The variational
inequality (VI) problem is to find = € D such that

(F(x),y —x) 20 (4)

for all y € D. If F is a strongly monotone and Lipschitz continuous operator then VI has a unique
solution z* € D. The convex minimization problem (3) is a special case of the variational inequality.
VI (4) is equivalent to finding a fixed point of the operator T': D — D,

T(x) = Pp(z —vF(x)),

where v > 0.

2.3 Convex feasibility problem

Let C; € H, i1 € I = {1,...,m} be nonempty, closed and convex. The convex feasibility problem
(CFP) has the form:
Find z € C =), C; if such a point exists

CFP can be also formulated as minimization of the convex proximity function f: H — R
1 2
fl@) =3 ; w;d?(z, C;)

where w = (w1, ...,w,n)" € R™ is a vector of weights, i.e., w; > 0,7 € I, Y, ;w; = 1. By the
necessary and sufficient optimality conditions for the unconstrained convex minimization problem
the minimization of f is equivalent to the following problem

Find a fixed point (if exists) of the operator T': H — H

10



defined as follows

T(x)= Z w; P, (x).

2.3.1 Linear feasibility problem
Let A be a real matrix of type m x n and let b € R™. The linear feasibility problem (LFP) has the

form:

Find = € R" with Ax < b, if such z exists.

Of course, LFP is a special case of CFP.

2.4 Split feasibility problem

Let C C H; and @Q C Hsy be closed and convex subsets of Hilbert spaces H; and H,. The split
feasibility problem (SFP) has the form:

Find z € C' with Az € @Q, if such x exists

where A : H; — Hy is a bounded linear operator.
SEP can be also formulated as minimization of the convex proximity function f: C'— R

£(z) = 5 |Po(Az) — As]?

By the necessary and sufficient optimality conditions for the constrained convex minimization prob-
lem the minimization of f is equivalent to the following problem:

Find a fixed point (if exists) of the operator T': C' — C,

defined as follows
T(z) = Po(x + yA*(PoAx — Ax))

for v > 0.

2.4.1 Linear split feasibility problem

Let C C R" be closed and convex, A be a real matrix of type m x n and bet b € R™. The linear
split feasibility problem (LSFP) has the form:

Find z € C' with Az <b,

if such x exists. Of course, LSFP is a special case of SFP.

Let r(x) = (py(2), ..., p,n(7))T = Ax — b be the residual vector and let r, () = max{0,r(x)} be
the nonnegative part of r(x). LSFP can be also formulated as minimization of a convex proximity
function f : C'— R defined as follows

m m

Z yi(a;x — ﬁz)i = Z vi(pi)+

i=1 =1

DN | —
DN | —

fx) =

where v = (v1,...,v)" € RT, a; = (aj,...,ain)" is the i-th row of Ai = 1,2,...,m, and b =
(Bys s B,,) . If R™ is equipped with the scalar product (-,-)y defined by (z,y)y = z'Vy, where
V' = diag v, then one can prove that PgAr — Az = —Vr (z). Consequently, the minimization of f
is equivalent to the following problem:

Find a fixed point (if exists) of the operator T': C' — C'

11



defined by

T(x) = Pe(z —yA Vi (x))
with v > 0 for all x and V' = diagwv.

3 Convergence theorems

3.1 Weak convergence in a Hilbert space

Definition 32 We say that a sequence (zj) of elements of a Hilbert space H converges weakly to
x € H if for any y € H the sequence ((y,zx)) converges to (y,z). We call the point = the weak
limit of the sequence (z) and we write z;, — x. If a point z € H is a weak limit of a subsequence
(xp) C (xk), then say that = is a weak cluster point of the sequence (xy).

3.1.1 Properties of the weak convergence

Following properties of weak convergent sequences can be found in handbooks of functional analysis.

wl) A weakly convergent sequence () C H has exactly one weak limit.
w2) A weakly convergent sequence () C ‘H is bounded.

w3) A bounded sequence (x;) C H includes a weakly convergent subsequence.

wbH) If a sequence (z) converges to z € H, then it converges weakly to = € H.

(wl)
(w2)
(w3)
(w4) If a sequence (z3) C H is bounded and has exactly one weak cluster point x € H, then z;, — x.
(w5)
(w6)

w6) A weakly convergent sequence (zy) of a finite-dimensional Hilbert space H is convergent.

Remark 33 A bounded sequence (xy) of a Hilbert space does not need contain a convergent sub-
sequence.

Example 34 Let H = [? and let 2 = ({41, &4, ---), Where
1 fori=kFk
gki_éki_{ 0 fori # k.
Then ||2x|| = 1, although (z;) does not contain a convergent subsequence since ||z — ;|| = /2 for
all k,1, k # 1. Note that z;, — 0.
Lemma 35 If z;, — = € H, then liminfy ||zx|| > ||z
Proof. Let x;, — x € H. If z = 0 the Lemma is obvious. Suppose now that z # 0. We have by
the Schwarz inequality
limkinf || - lekll > limkinf<x,xk) = ||l=||.
Consequently liminfy, ||zg|| > ||z]. =

Lemma 36 If z;, — x € H and ||z — ||z||, then x — x.

12



Proof. Let 2, = x € H and ||z¢|| — ||z||. Then it follows from the parallelogram law

lo = 2il* = 2(l2 ] + lloxl®) — o + 2]®
= 2(ll= 0" + lze 1) = (2l + llzall* + 2(z, z4))
= ll® + ll2xl* — 2(z, 2) — 0.

In 1967 Zdzistaw Opial has proved the following property of a Hilbert space, known also under
the name Opial’s property.

Lemma 37 (Opial, 1967) If z, — y € H, then for any y' € H, y # y there holds the inequality

limkinf ey — || > limkinf lzr =yl (5)

Proof. Let 7, — y € H, v € H be different from y and let § = ||y — ¢/||> > 0. Since a weakly
convergent sequence is bounded both limits in (5) are finite. Further, we have by the properties of
the scalar product

o, =P = llax—y+y—yI°
= Nz —yl*+ ly—¥'I* + 2(zr — v,y — V)
= |z —ylP+0+2,—y.y—9)

Since (zx —y,y —y') — 0
limkinf lzx —o/|1* = limkinf ek =yl + 6 > limkinf [z —yll,
ie., liminfy ||z — ¢/|| > liminfy ||zx —y|. =

Lemma 38 (Opial, 1967) Let T : H — H be a nonexpansive operator, y be a weak cluster point
of a sequence (xy) and let ||Tzy — xx|| — 0. Theny € FixT.

Proof. Let z,, — y for a subsequence (x,,) C (x). Suppose that Ty # y. Then we have by
Lemma 37

lilgninf |z, —yl| > lilgn inf | Tz, — Ty||
= lilgninf | Txn, — T, + Tn, — Ty
> limint(ea, — Tyl — [ T0, — 0]}

liminf ||z, — Ty||
k—o0
> liminf ||z, —y|.
k—o0
We have obtained a contradiction, what shows that the Lemma is true. m

Lemma 38 is also known under the name Opial’s demi-closedness principle.

Lemma 39 Let C C H be a conver and closed subset and let a sequence (xy) be Fejér monotone
with respect to C. Then there exists the unique element y* € C' such that

I — || = inf l -
im [z, —y*|| = inf lim [|lz; — y]| (6)
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Proof. Let d(y) = limy ||z — y|| for y € C, § = inf{d(y) : y € C'} and let the sequence (y,,) C C
be such that d(y,,) — 6. First we show that the sequence (y,,) is a Cauchy sequence. By the
parallelogram law we obtain for all k,m,l € N

lym —ull> = @k — ym) — (ze — )|
= 2lzk = yml® + 2lzk — wll® — (@6 — ym) — (2x — 0)|I°
Ym + Y
= 2|z — ymll* + 2/|zk — will* — 42k — 5 aE

Obviously ¥ ¢ ' since C' is convex. Hence, we obtain by the Fejér monotonicity of (z) with
respect to C' that
Ym + Y
2

ym+yl ym+yl

2

ek — | = lim [l — | = d( ) = 0.

Now we see that
1ym — will® < 2)|l2% = ym|* + 2l 2r — will* — 46°.

If we set k — oo in the above inequality, we obtain in the limit
lym = wll* < 2d(yon)* + 2d(y)* — 467

Consequently,

”lggloo Hym - ylH2 =0,
i.e., (ym) C H is a Cauchy sequence. Since the Hilbert space is complete the sequence (y,,) converges
to a point y* € H. Since C is a closed subset y* € C. It is clear that d(y*) = 0 since by the triangle
inequality we have for all m € N

0 < d(y") = lim ||z — || < lim(llze =yl + [ym = ¥ )) = d(ym) + lym = 4"l = 0.

Now we show the uniqueness of y* € C' with the property d(y*) = §. Suppose that d(y') = ¢ for some

y' € C. We have y*;y, € C, since C' is a convex subset. Furthermore d(y*;y/) > ¢§ by the definition

of §. By the parallelogram law we have

Iy =1 = (e —y*) — (z —y)|I
= 2z — v 1P+ 2z — NP = (@ — v°) + (@ — )P
. vy
= 2|z, — 1P+ 2)|lze — Y7 — 4o — 5 12
and we obtain in the limit for k¥ — +oo
. . *+ !
ly* — /| = 2d(y*)* + 2d(y')* — 4d(L—=2L)? < 0

2

since d(yTer/) > §. Therefore y' = y*, which proves the uniqueness of y*. =
Remark 40 Observe that the theorem of the existence of the metric projection of a point x € H

onto a convex and closed subset C' C ‘H follows directly from Lemma 39. To see it, it is enough to
take ry =2, k=1,2,....

14



3.2 Opial’s Theorem

Recall that an operator U : H — H is asymptotically reqular if for any x € H limy_o |[U* 2 —
U*z|| = 0 (see Definition 15).

Theorem 41 (Opial, 1967) Let U : H — H be a nonexpansive operator with FixU # &. Fur-
thermore, let U be asymptotically reqular. If a sequence (xy) is generated by an iterative procedure
1y, = Ukx then x;, converges weakly to an element x, € FixU for any v € H.

Zdzistaw Opial (1930-1974)
Proof. Let € H, x;, = U*x and let z € FixU. Since U is a nonexpansive operator
zhi1 — 2l = [|U* e — 2| = U e = Uz|| < ||URz — 2| = [ — ||

i.e., (x) is Fejér monotone with respect to Fix U, consequently, (xy) is bounded. Let y € H be a
weak cluster point of (z). Let (x,,) C (x;) be a subsequence which is weakly convergent to the
point y. Since U is an asymptotically regular operator

UM e — Urs|| = | Uz — 21| — 0

It follows from Lemma 38 that y € Fix U. Since U is nonexpansive, Fix U is closed and convex (see
Corollary ??). Let y* € Fix U be such that

. o e B
lim |z, —y"| = inf lim |l —y].

The existence and uniqueness of y* follows from Lemma 39. We show that z,, — y*. Suppose that
y* # y. Then we obtain by Lemma 37 that

lim [z, — || = lim [z, —y7[| > lim [l2n, =yl > lim [z =y

The contradiction shows that y = y*. We have shown that y* is the unique weak cluster point of any
subsequence of (zj). Consequently, x; — y* by the property (w2). =

3.3 Krasnoselskii—-Mann Theorem

In one of the next sections we prove that for A € (0,2) a A-RFNE operator U is asymptotically
regular. Therefore, Theorem below is an immediate consequence of the Opial Theorem.

Theorem 42 (Krasnoselskii-Mann, 1953) Let T : H — H be a firmly nonexpansive operator
with FixT # @ and let x € H. If x, = T¥x for X € (0,2) then x converges weakly to an element
. € FixT.

15



4 Algorithmic operators

In the next Section we present several methods for solving convex optimization problems. We focus
our study of iterative methods (we also call them iterative procedures or algorithms) which are given
in the form of recurrence z;,; = Tx; that is defined on a closed and convex subset X C H,
where T : X — X. We suppose that the starting point xy is an element of a starting subset
Xo C X. Usually, one supposes that Xqg = X. A sequence generated by an iterative method is
called approximating sequence. Any iterative method for solving a convex optimization problem
will be constructed in such a way, that the approximating sequences () generated by this method
converge (at least weakly) to an optimal solution of the optimization problem. As we will see, the
optimal solution is a fixed point of the operator T': X — H. The form of this operator depends on
the considered optimization problem.

In this Chapter we deal with general properties of operators which define algorithms for solving
convex optimization problem. In one iteration of the algorithm an operator U : X — X defines an
actualization 2" of the current approximation x of a solution of the convex optimization problem.
Usually, this actualization has the form z* = Ux. We call this operator algorithmic operator.
One can also consider algorithms, where an actualization has the form zt € Ux for a mapping
(multifunction) U : X = X. In this case the mapping U is called algorithmic mapping.

An operator defining the iteration of an algorithm can depend on some parameters which are
constant or vary during the iteration process. The properties of approximation sequences depend on
the properties of algorithmic operators defining the iterative method.

Let T:D—HiU=I1I+XNT—-1), X €(0,2). In the sequel we will prove that there hold the
following correspondences between the defined algorithmic operators

& = U xe <= A U = =
TAelo,2] ) X8 %
U 2
S FixT#Y
& (i} = =7 =yl
U* )\—RFNE
<:ﬁ 7 2) (4T # @)
) v P -
a:u U - NE
= - s WU Ao
U
N8 4
Ukgy —
U - oxe xr*EriU

4.1 Properties of a firmly nonexpansive operator
4.1.1 Correspondences between FNE and NE and FM operators

Theorem 43 A firmly nonexpansive operator T : H — H is monotone and nonexpansive.
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Proof. Let T be firmly nonexpansive. We have by the Schwarz inequality
[T — Tyl - |l —y|| > (Te —Ty,x —y) > Tz - Ty|* > 0.
The Theorem follows now easily from the above inequalities. m

Theorem 44 Let T : X — H be an operator which has a fixed point. If T is firmly nonexpansive,
then T is a separator, i.e.
(z =Tz, —Tx) <0 (7)

for all x € X and z € FixT. If, furthermore, T is an idempotent operator, then the converse
implication also holds.

Proof. Let x € H and let z € Fix T for a firmly nonexpansive operator 1. We have

(x —=Tx,z—Tzx) = (x—z+2z—Tx,Tz—Tx)

= —(z—a,T2z—Ta)+ (Tz—Tx,Tz—Tx)
—||Tz — Tz|* + ||Tz — Tx|?
0,

IN

i.e. T is separating.
Now, suppose that 7" is an idempotent operator and that inequality (7) holds for all z € X and
z € FixT. Let u,v € X. Taking x = u and z = Tv in (7) we get

(Tv —Tu,u—Tu) <0
and taking = v and z = T'u in (7) we get
(Tu — Tv,v—Tv) <0,
since in both cases z € FixT. After adding the inequalities above we get
(Tu —Tv,(Tu—Tv) — (u—v)) <0,

ie.
|Tu — To|* < (Tu — Tv,u —v)

and we see that T is firmly nonexpansive. =

Corollary 45 Let D C 'H be nonempty, convex and closed. Then the metric projection Pp s a firmly
nonexpansive operator. Consequently, the metric projection Pp is monotone and nonexpansive.

Proof. Since the metric projection is an idempotent operator we obtain, by the characterization
of the metric projection (Theorem 18), that for all x € H and for all z € D = Fix Pp

(x — Ppx,z — Ppzx) <0

i.e., there are satisfied the conditions of the second part of Theorem 44. Consequently, Pp is a firmly
nonexpansive operator. The second part of the Corollary follows now from Theorem 43. m

Lemma 46 LetT : H — H and let T\ = \T' + (1 — \)I, where A > 0, be a relazation of the operator
T. The following conditions are equivalent:

(i) T is a firmly nonexpansive operator,

(ii) Ty is a nonexpansive operator for any A € [0,2],

17



(iii) T has the form T = %(S + I), where S : ' H — H is a nonexpansive operator,
(iv) I —T is a firmly nonexpansive operator.

Proof.

(i)=(ii) Suppose that T is a firmly nonexpansive operator. Then for any A € [0,2] and for the
operator T\ = AT + (1 — \)I we obtain by the definition of a firmly nonexpansive operator, by the
Schwarz inequality and by the monotonicity of 7' (see Theorem 43)

ITae = Tayll> = [ATz+ (1 =Nz — ATy — (1= Ny|?

= ATz —Ty)+ (1 - XN (z—y)|?

= N(|Tz — Ty|> = (Tz — Ty,z — y))
+(2A = ) (T2 — Ty,z — y) + (1 = \)?[lz — y||?
@A = N) Tz — Ty, x —y) + (1 — A)?[Jz — y||°
2X = X)||Tz — Ty|lllz — yll + (1 — X)?|lz — gl
X=Xz —yllP + (1 = X)?[|lz -y
Iz —yl*.

VANVANRVAN

We have obtained that T) is a nonexpansive operator.

(ii)=(iii) By the assumption, the operator T = 2T — I is nonexpansive. Since T' = $[(2T —1)+1]
the implication is obvious.

(iii)=(iv) Let S be a nonexpansive operator, T' = (S + I) and let G = I — T. Then we have
G=3(-S)and

|Gz — Gy|* = (Gz—Gy,z —y) +(Gz — Gy, (Gz — Gy) — (x —y))

1
+7{(Sz = 5y) — (z —y), (Sz = Sy) + (z —y))
1

= (Ge—Gy,x —y) + (|52 = Syl* — ll= - y[I*)

(iv)=-(i) Let G = I — T be a firmly nonexpansive operator, i.e.,

(Gr = Gy,z —y) > ||Gz — Gyl|*.

The above inequality is equivalent to
(Gz — Gy, (v — Gz) — (y — Gy)) > 0

or to
(x=Tz) = (y—Ty), Tz —Ty) > 0

which is equivalent to
(T — Ty,x —y) > ||Tz - Ty|?,

i.e., T is a firmly nonexpansive operator. m

Remark 47 One can also prove that any condition (i)-(iv) in Lemma 46 is equivalent to any of the
following conditions

(v) forall z,y € X
1Tz = Tyl|* < ||z = ylI* = (I = D)z — (I = T)y]*, (8)
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vi) for all z,y € X and for any o > 0
(vi) Y y
Tz =Tyl < la(z —y) + (1 — ) (Te = Ty)|.
Some authors define the FNE-operators as operators satisfying (v) or (vi).

Corollary 48 Let S : H — H. The following conditions are equivalent:

(i) S is a nonexpansive operator,
(ii) S =2F — I, where F : H — H is a firmly nonexpansive operator.

Proof.

(ii)=(i) Let S = 2F — I for a firmly nonexpansive operator F. It follows from the implication
1)=(11) in Lemma 46 that 5 1s a nonexpansive operator.
(i)=(ii) in L 46 that S i pansive op

(i)=(ii) Let S = 2F — I be a nonexpansive operator. We have F' = (S + I). By the implication
(iii)=-(i) in Lemma 46 the operator F firmly nonexpansive. ®

Corollary 49 An operator U : H — H is averaged if and only if U is a strict relaxation of a firmly
nonexpansive operator.

Proof. Let U be averaged. Then we have by Corollary 48, for a nonexpansive operator S and
for a constant o € (0, 1),

U=(1-a)+aS=1—-a)l+al2F —-1)=(1-NI+\F

where F'is FNE and A = 2a € (0,2). Let now U = (1 — A\)I + AF for a FNE operator F' and for
A € (0,2). Then, by the implication (i)=-(iii) in Lemma 46

1 A A
U=1-MNI+-AXI+8)=010-:1)+3S
2 2 2
for a nonexpansive operator S, i.e. U is averaged. m

Corollary 50 A conver combination of nonexpansive operators is nonerpansive. A convex combi-
nation of firmly nonexpansive operators is firmly nonexpansive.

Proof. Let w = (wi,...,wm)' € A, be a vector of weights. If S;, i € I, are nonexpansive
operators and S = )., w;S; then, by the convexity of the norm || - ||, we have for any =,y € H

1Sz =Syl = > wi(Siz = Siy)|
el
< Y willSir — Sy
iel
< Y wille—yll =z —yl,
icl
i.e., S is a nonexpansive operator. Let now Tj, i € I, be firmly nonexpansive and let 7' = . _; w;T;.
By the implication (i)=-(iii) in Lemma 46 we have T; = %(Sl + I), for a nonexpansive operator S;,
i € I. The Corollary follows now from the equality 7' = £ (S + I) and from the implication (iii)=(i)
in Lemma 46. m

Corollary 51 A convex combination of relaxed firmly nonexpansive operators is relaxed firmly non-
expansive.
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Proof. Let T; = I + \;(U; — I), where the operators U; are FNE, \; € [0,2], i € I, and let

W = (Wi, .., W) € A It is clear that A = 377 w;A; € 0,2] and 377, s 1A = 1. Therefore
u=>%", %Uz is FNE as a convex combination of FNE operators U; (see Corollary 50). Let

T =>" wT;. We have

T = Zl will + X\i(U; — 1)) —I+Zwﬂ

m

m Wi s Wi s
S 0 NS W10 Y N A . A S § W SR V{5 G O
; 7 ;ijle)‘j ;ijrwj)‘j

Theorem 52 Let T : H — H be a firmly nonexpansive operator with FixT # &, X € (0,2) and let
T\ = (1 — N)I + AT be a relazation of T. Then Ty is 52-SQNE, i.e.

2—-A
T = 2| < flo = 2I* = —— [Tz — x|

for all x € H and for all z € FixT.

Proof. Since a FNE-operator having a fixed point is separating (see Theorem 44), by the prop-
erties of the scalar product and by the obvious equality Tz —x = %(T,\x —x), we obtain for all z € H
and for all z € FixT

IThe —z)* = Iz —2) + ATz —2)|*
|z — 2||> + M| Tz — z|* = 2\ z — 2, Tz — x)
= |z — 2|+ N2|| T2z — z||* = 2\| Tz — z|* + 2\ (2 — Tz, 2 — Tx)
Iz = 2[* = A2 = N[ Tz — 2|
2—A

= |z -2l - ——IThz - =|*

A

IN

Theorem 53 A composition of relaxed firmly nonexpansive operators is relazed firmly nonexpansive.

Proof. Let T\U : H — H be FNE and let A\, u € (0,2). It follows from Lemma 46 and from
Corollary 50 that

NE
NE -
——
\ \ \ NE NE NE
= (11— 1 - = 2T — 1)+ ——(2 I)o T 1
Uely= ==+ == 5l ATt o T+
i.e., U oT) is a v-relaxation of the FNE-operator
1. A 2
= [—2T—-1)+ ——QRU —1)oT\+1
2153 ISy JoTh+]l

withy =1+ % Now we see that
UpoTy=[1—p) I+ pUlo Ty = (1= p)Tx+ pU o Ty,

ie., U,oT) is RFNE as a convex combination of RFNE operators Ty and U o T (see Corollary 51).
Furthermore, it follows from the proof of Corollary 51 that U, 0T} is v-RFNE, where v = i+ X — %A
[ ]
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Remark 54 A composition of firmly nonexpansive operators needs not to be firmly nonexpansive.

Example 55 Let A = {r e R? : {&, =0} and B = {z € R? : {; = &}. Forz = (2,2)" and
y = (4,0)" we have for a composition T = PgP, of FNE operators Py and Pg: Tx = (1,1)" and
Ty = (2,2)". Therefore, (Tx — Ty,x —y) =0 < 2 = ||[Tx — Ty|* and we see that T is not FNE.

Theorem 56 Let T : H — H be a firmly nonexpansive operator, C' C 'H be convex and closed and
let X € (0,2). Then

(i) PcT)y is nonexpansive.

(ii) If Fix(PcT) # @ then the operator PcT) is SJ:—:\\-SQNE, i.e.

2 -\
P-Tr — 2|2 < ||z — 2> = —Z||P-Tha — z? 9
|PcThr — z[|° < ||z — 2| 2+)\|| cThr — x| 9)

Proof.

(i) By Lemma 46 the operator Ty = (1 — A\)I + AT is nonexpansive. The nonexpansivity of PcT)
follows now from the nonexpansivity of the metric projection Px (Corollary 45) and from the obvious
fact that the composition of nonexpansive operators is nonexpansive.

(ii) It follows from the proof of Theorem 53 that PcT) is v-RFNE operator with v = 1+3 € (1,2).
Theorem 52 yields now

2 —
|PeDa = 2? <l = 2| = —= || PeTyw — a
2—-A
= ||z —z||? = =—=||PcThx — 2|
o =21 = 551 PeToe — 2
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4.2 Asymptotically regular operators
Definition 57 An operator U : X — X is called asymptotically reqular (AR) if

Jim | UM e — Urz|| = 0.
for all x € X.

Remark 58 It is clear, that any idempotent operator is asymptotically regular. In particular, the
metric projection onto a nonempty, closed and convex subset C' C ‘H is asymptotically regular.

Since the notion of an asymptotically regular operators plays an important role in iterative meth-
ods for finding fixed points of operators, we give below some theorems which are useful in the
construction of asymptotically regular operators.

Theorem 59 Let U : X — 'H be an operator with nonempty FixU. If U 1is strongly quasi-
nonexpansive, then U is asymptotically reqular.

Proof. Let U be strongly quasi-nonexpansive, let x € X and let z € FixU. For z;, = U*z and
for some constant o > 0, we have

ok — 21 = |Uzg — 2[|* < llzw — 2[1* = al|Uzi — a3

Consequently, the sequence (||zx — z||) is monotone and therefore, it converges. By setting k — oo
in the above inequality, we obtain in the limit

Uz — Ua® = [|Uzy, — 2| — 0,
i.e. U is asymptotically regular. =

Corollary 60 Let C C 'H be nonempty, closed and convex and let T' : X — H be a firmly nonez-
pansive operator with Fix(PcT) # @. Then, for any A € (0,2), the projected relaxation Ry = PcoT)
of the operator T is asymptotically regular.

Proof. Let A € (0,2), let x € X and let 7, = R¥x, k = 1,2, ... . By Theorem 56(iii) we have

2—-A
2 2 2 2
— = |Ryzy — < — — 2 Rz —
laer = 2" = 1 Bazi — 2|7 < [l — 2l — 5o 1 Bawi — i
for all z € Fix(PcT). Since Fix(PcT) = Fix Ry (see, Theorem 56(ii)), the inequality above says that
the operator R, is strongly quasi-nonexpansive. The asymptotic regularity of R, follows now from
Theorem 59. m

Corollary 61 Let T : X — H be a firmly nonexpansive operator with FixT # @. Then, for any
A € (0,2), the relaxation Ty of the operator T is asymptotically regular.

Corollary 62 LetT;: X — H, 1 =1,...,m, be relaxed firmly nonexpansive and let the composition
T =1T:..T,, have a fized point. Then T is asymptotically reqular.

Proof. It follows from Theorem 53 that T is relaxed firmly nonexpansive. Therefore, the asymp-
totic regularity of T' follows from Theorem 59. m
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5 Projection methods

5.1 Cyclic projection method (ART) for CFP

Definition 63 Let C; C H be nonempty, convex and closed subset, i € I. The operator
T=PFg,0oF:, ,0..0F

is said to be the cyclic projection operator.

The cyclic projection method (CPM) has the form x;, = T*x for a cyclic projection operator T'
and for x € H. If C; are hyperplanes, the cyclic projection method is also known also under the
name the Kaczmarz method or the algebraic reconstruction technique (ART).

e Stefan Kaczmarz (1937) — the cyclic projections method for a nonsingular system of linear
equations

0.8 -

0.6 -

0.4

0.2

0.2

04|

-0.6

-0.81-

The Kaczmarz method
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Stefan Kaczmarz (1895 - 1939)
polish mathematician, associated professor
of the Technical University in Lwow,
where he has collaborated with

Stefan Banach and with Hugo Steinhaus.
The area of his research was algebra,
theory of real functions,

Fourier series, orthogonal series.

Author of 35 books and articles, member
of the Lwéw School of Mathematics

Died in a battle in the World War II.

His Kaczmarz Method provided the basis
for many modern imaging technologies,
including the computerized tomography.

. ). e
ol -

Photo from the article:

Stefan Kaczmarz (1895-1939) by L. Maligranda

Mathematicians from Lwéw (1930)
(2 — S. Banach, 4 — K. Kuratowski, 5 — S. Kaczmarz, 6 — J. Schauder, 10 — S. Ulam)
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Przyblizone rozwiqzywanie ukfadéw réwnarn liniowych. —

Angendherte Auflésung von S, linearer Gleich
1937 Stefan Kaczmarz >
has published the paper: do M. 8. KACZARZ,
présentée le 14 Juin 1937 par M. Th. ‘Banachiewicz m. t.
Angenahrte AUHOSU-ng Obgleich die angeniherte Auflsung der Gleichung f(2)=0
: . mit einer Unbekannten zahlreiche Bearbeitungen in der Literatur
von Systemen linearer Gleichungen anfweiat, wissen wir donnoch sehr wenig ther dis Auflosung von
. Gleichungssystemen, sogar wenn sie linear sind. Hs gibt zwar
Bull _[nte’rn Acad Polonazse einige Methoden?), welche die Auflssung gestatten, doch sind sie
’ ¥ : auf Gleichungen beschrinkt, fir welche die Diagonalkoeffizienten
1 y @, tiberwiegend grof sind im Vergleich mit den tibrigen Koeffi-
SCZ' LettV Cl SC@' Ma’th N(It z;lenten; so findet man z B. bei Mises und Pollaczek-Gei-
ringer die Bedingung a,=>(n — 1)@, und desgleichen.
A7 35 (1937) 355_357- Man kann jedoch die Aufgabe mittels eines Iterationsverfahrens
. . . ganz allgemein losen. Nehmen wir an, daB ein System
translated into English in1993: s 7 i A By g D ) 61
S A : . gegeben ist, welches eine einzige Losung @, @5, ..., besitat. Wir
. Kaczmarz, pproximate solution sotzon voraus, dab die Gleichungen (1) durch Multiplikation mit
. . entsprechenden Konstanten so umgeformt wurden, daf
of systems of linear equations, e
G
. D
International Journal of Control .

57 (1993) 1269—1271 9 Vgl R. Mises und H. Pollaczek-Geiringer, Praktische Ver-

fahren der Gleichungsauflssung, Zeit. ang. Math. u. Mech. 9 (1929), S.58—17,
152—164.

J. Morris, A successive approximative process for solving simultaneous
linear equations, Aeronaut. Res. Com. Rep. N* 1711 (1936) p. 1—12.

The first page of the Kaczmarz paper

e Bregman (1965) — CPM for CFP (A = 1)
e Gurin—Polyak-Raik (1967) — CPM for CFP (X € (0,2))
e Gordon—Bender—Herman (1970) — application of the Kaczmarz method in radiology

e Tanabe (1971) — a generalization of the Kaczmarz method for arbitrary (also inconsistent)
system of linear equations

e McCormick (1977) — the Kaczmarz method in a Hilbert space

e Censor (1981) — almost cyclic control

e Bauschke-Borwein (1996) — general model for projection methods
e Popa—Zdunek (2004) — extended Kaczmarz method

e Haller-Szwarc (2005) — the Kaczmarz method in a Hilbert space

e Herman (since 1970) — application of the Kaczmarz method in the computerized tomography
and in the intensity-modulated radiation therapy

Theorem 64 Let C; C 'H be nonempty, convex and closed subset, i € I, andletT = Pe, Pe,, ,...Pe
Cy, — Cy, be the cyclic projection operator. If (,.; C; # &, then

el
Fix T = ﬂ o
el

Proof. The inclusion (),.;C; C FixT is obvious. We show the converse inclusion. Since
Fix P, = C; we have for z € (,.; C;

icl

Tz = Pcmpcmil...Pclz =z,
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i.e., z € FixT. Suppose now that (,.; C; # @, € FixT and that = ¢ (,.; C;. Let j = min{i € I :
x ¢ C;}. Then we have Pg,...Pc,x € C; for i < j and Pg,...Po,x ¢ Cj. Since the metric projection
P, is strictly Fejér monotone with respect to Cj, @ € I, we have for any z € (,.; C;
lz =zl = [Tz — 2|

= HPCmPCm_l...PCI.’L' — ZH

S S ||PCJ-PCJ-_1'--P01$ — ZH

< Hch_l...Pclm — ZH

= ”ch72...PCI.’E — Z”

o=l —z||
The contradiction shows that FixT = (,.;C;. m

Corollary 65 Let C; C 'H be nonempty, convexr and closed subset, + € I. The cyclic projection
operator T'= Pe, Pe, ,...Po, @ C, — C,, 1S nonexpansive.

Proof. T is nonexpansive as a composition of nonexpansive operators Pr,, 1 € [. m

Theorem 66 Let C; C H be nonempty, convex and closed subset, v € I andletT = P, Pe,, ,...Pey ¢
Cy — C, be the cyclic projection operator.

(i) T is a relazation of a firmly nonexpansive operator.

(i) If at least one of C;, i € 1, is bounded, then has a fixed point z € C,,.

Proof. (i) The property follows from Theorem 53.

(ii) We can suppose for the simplicity that C,, is a bounded subset. We see that 7" maps a closed,
convex and bounded subset into itself. Furthermore, 7" is a nonexpansive operator (see Corollary
65). It follows from the Browder fixed point theorem that 7" has a fixed point z € C,,. =

Corollary 67 Let C; C H be nonempty, convex and closed subset, i € I, andletT = P¢, Pc,, ,...Pc, :
C,. — C,, be the cyclic projection operator with FixT # @. Then for any x € H the sequence
x, = T*x converges weakly to an element z € FixT

Proof. By Corollary 62 T is asymptotically regular. The Corollary follows now from the Opial
Theorem. =

5.2 Simultaneous projection method (SPM) for CFP

The simultaneous projection method (SPM) has the form

Tht1 = T + )\k(z wiPo,x, — xx), (10)

icl
where )\, € (0,2) is a relaxation parameter and w = (wy, ...,w,,)" € A,, is a vector of weights

e Cimmino, (1938) — SPM for a system of linear equations,
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e Auslender, (1976) — SPM for CFP (A = 1 and equal weights),

e Censor—Elfving (1982)

e Pierra (1988) — SPM as the alternating projection method in a product Hilbert space
e Iusem—de Pierro (1987) — SPM for CFP (A € (0,2) and w > 0,

e Aharoni—Censor (1989),

e Butnariu—Censor, (1990) — A € (0,2) and weights w;, depending on iteration, C' # &
e Flam—Zowe (1990) — A € (0,2) and weights wy, depending on iteration, C' # &

e Combettes (1994) — A\, € [,2 —¢], e >0

e Bauschke-Borwein (1996) — a general model for SPM, C' # @&

Define the simultaneous projection operator T': 'H — H by equality

T=> wl,

il
and its relaxation T\ = I + A(T'— I). The SPM can be written in the form xy.; = Thz.

e The operator 7' is firmly nonexpansive as a convex combination of firmly nonexpansive operators
Pg,, i € I (Corollary 50)

Define the proximity function f : H — R by equality
1 2
f@) = 5 S will Pea — ol
i€l
Lemma 68 There holds the equality

FixT = Argmin f(x)
z€H

and FixT # @ if at least one C; is bounded and the corresponding weight w; > 0.

28



Proof. Since f is convex and differentiable we have

r € Argergilin f(z) <= Df(z) =0

Zwi(:v — Pe,z) =0
iel
T = ZwiPcix
iel
x € FixT
S FiXT)\.

1o

Furthermore, if at least one C; is bounded and the corresponding weight w; > 0 then f is coercive,
consequently Argmin ,, f(z) # &. =

There holds the inclusion
C c FixT.

Let w > 0. If C' =(,.; C; # @ then
C =FixT and arélﬁf(x) =0

Theorem 69 Let FixT # &. Then for any z € FixT' there holds the inequality
2—A

|2k =217 < flow = 21" = == Taw — l* (11)

Consequently x; — x, € FixT

Proof. Since T is firmly nonexpansive inequality (11) follows from Corollary 52. Consequently,
|IThz, — x| — 0, ie., (x) is asymptotically regular. Furthermore, T\ is nonexpansive by Lemma
46. Therefore, the convergence follows from the Opial theorem. m

5.3 Surrogate constraints method (SCM) for LFP
Consider the linear feasibility problem (LFP) in the form

Find x € R" with Az < b,

where A is a real matrix of type m x n with rows a; = (a1, ..., a;n) " and b = (84, ..., 3,,) " € R™, and
suppose that M = {x € R": ATz < b} # @. Of course the LFP is a particular case of the CFP with

Ci=Hi={reR":a/x < B}

Multiply the particular inequalities by weights w; > 0 and add the formed inequalities. We obtain
so called surrogate inequality
(Aw)Tz < w'bh,

where w = (w1, ...,wm)" € A,,. Of course
MCHy,={recR": (Aw) 'z <w'b}.

Let Z ¢ M be the current approximation of a solution x, € M. Let r = (p;,...,p,,) = ATZ —b
be the residual vector (for 7). Suppose that 7' w > 0 (e.g., the weights for nonviolated constraints

vanish: w; = 0 for p; < 0, ¢ € I). In this case T ¢ H,. One iteration of the surrogate constraints
method (SCM) has the form

Trr1 = T + M (Pr,,, Tk — k),

where A € (0,2) and the weights for nonviolated constraints vanish.
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Lemma 70 There holds the following inequality
lwrsr = 2l* < llow = 2I1* = M2 = M| Prr,, 20 — x|,
i.e., the SCM is strongly Fejér monotone with respect to M.

Theorem 71 (Yang—Murty, 1992) If all positive weights are greater than some constant v > 0
then for any starting point x1 the sequence () generated by the SCM converges to a solution x, € M.

One can prove that the SPM can be described as a ”short step” version of the SCM (AC, 2005).
Consequently,

e the SCM produces longer steps than the SPM and
e behaves numerically better than the SPM if M # &.
If M = & then the SPM converges to Fix T, for T' = . _; w; Py, but the SCM diverges.

5.4 (C(@-method for the SFP
Consider the split feasibility problem in the form:
Find x € C with Az € Q

if such z exists, where C' C R™ and ) C R™ are closed and convex and A is a real matrix of type
m X n. Define an operator 7" : R" — R",

1
T(x) = — AP, —DA
(@) =+ 5 A (P~ DAs
and its projected relaxation Ry = PcT) for A € (0,2), i.e.
A T
R)\JZ = Pc(ZL’ + mA (PQ - I)AI), (12)

Furthermore, define the proximity function f : C' — R,
1

() = 51 Pa(Az) — Azl

Lemma 72 (Byrne, 2002) There holds the equality
Fix Ry = Argmin f.
c
Proof. (Compare [Byr02, Proposition 2.1]) Observe that f is differentiable and that

V(@) = AT(Po(As) - Aa)

There holds the following equivalences

r € Argcminf < —Vf(z) € Ne(x)

< —Vf(z) € Ne(z)

< x=Po(x—~Vf(x))

<= 1= Po(r+v(AT(Py(Az) — Az)))

<~ $2P0<$+mAT(PQ—I)AZIZ):R)\J]
<— z €FixR)

[ |
The iterative step in the C'Q)-method for the SFP has the form

Tp+1 = R)\(Jfk) (13)
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Lemma 73 Let () C R" be convex and closed and let A be an m x n matrixz. The operator G : R" —
R",
1
Amax(ATA)

s firmly nonexpansive. Consequently, the operator T' =1 — G is firmly nonexpansive.

G(z) = AT(I — Py)Ax)

Proof. Since P is firmly nonexpansive (see Corollary 45) then, by Lemma 46, the operator
I — Py is also firmly nonexpansive, i.e.,

((u— Pou) = (v — Pov),u —v) > |[(u — Pou) — (v — Pou)|

for all u,v € R™. If we take u = A'x and v = ATy for z,y € R" in the above inequality and apply
the property ||ATz||? < Anax(AT A)||z||? then we obtain

(Gl)— Gly)o—y) — mwu ~ o)Az — AT(I — Po)Ay,x —y)
_ m«f — Py)Ax — (I — Py)Ay, Az — Ay)
> mnu — Po)Az — (I — Pg)Ay|]?
> mnmu — Py Az — (I — Po) Ay
= s U~ Pa)Ar — 5 AT = Py
= ||G(z) - Gyl

i.e., the operator G is firmly nonexpansive. Again, by Lemma 46, the operator 7' = I — G is also
firmly nonexpansive. m

Theorem 74 (Byrne, 2002) Let the sequence (xy) generated by the CQ-method (13) where the
operator Ry is given by (12). IfFix Ry # & then for any starting point xo the sequence () converges
to an element z € Fix F).

Proof. (Compare [Byr02, Theorem 2.1]) Observe that the CQ-method has the form
Trr1 = Po((1 — N)ag + AT ()

where the operator T has the form

1
T(z) = ———A"(Py — 1Az — x.
(@) = 5 A (P~ DAz —a
The operator T is firmly nonexpansive by Lemma 73, consequently, for A € (0,2) the operator Ry
is NE and SQNE by Theorem 56 and the sequence (xj) generated by the C'Q-method is asymptot-
ically regular by Theorem 59. Now we see that all conditions of the Opial Theorem are satisfied.
Consequently, the sequence (z}) converges to a point z € Fix F. =
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