Content-Aware Multimedia
Communications

Dissertation
Zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

vorgelegt der Fakultat fiir Informatik und Automatisierung
der Technischen Universitat IImenau

von

Dipl.-Inf. Alexander Eichhorn

Einreichung am 26. Juni 2007
Disputation am 5. Dezember 2007

Gutachter

Prof. Dr.-Ing. habil Winfried Kiihnhauser, TU IlImenau
Prof. Klara Nahrstedt, University of lllinois at Urbana-Champaign
Prof. Dr. Sc. Thomas Plagemann, University of Oslo

urn:nbn:de:gbv:ilm1-2007000398

Content-Aware Multimedia
Communications

Dipl.-Inf. Alexander Eichhorn

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doktor-Ingenieur (Dr.-Ing.)

Faculty of Computer Science and Automation
Technische Universitat llmenau

Submitted at 26. June 2007
Defended at 5. December 2007

Committee in Charge

Prof. Dr.-Ing. habil Winfried Kiihnhauser, TU [Imenau
Prof. Klara Nahrstedt, University of lllinois at Urbana-Champaign
Prof. Dr. Sc. Thomas Plagemann, University of Oslo

Acknowledgements

This work has its roots in the teaching, help, patience, and inspiration
of a great number of people, to whom I wish to express my gratitude.

First of all my deep thanks go to my family who supported me all the
times with aid and encouraging words. I highly appreciate their enduring
believe in me to successfully finish this thesis. I would also like to thank
Dr. Ulrich Klett for convincing me of starting to study computer science
at all. Your words and thinking of me encouraged me a lot and I will
always keep your advises.

I am deeply indebted to my supervisor Prof. Winfried Kithnhauser
for offering me an opportunity to work with the Distributed Systems
Group at TU Ilmenau. I would like to thank you for the lasting sup-
port throughout my studies, all the guiding, discussions and cooperation.
Even if the duration has been longer than originally planned, I appreci-
ate the belief you have expressed in my ability to finish the work and for
providing me with the required funding.

A lot of people have contributed to this work in various ways. Many
of the ideas presented herein evolved during discussions with my friends,
colleagues and students. I would particularly like to thank my friend
Andreas Franck for the numerous enlightening discussions during the
last years and for his detailed, insightful comments on nearly every page
of this work. I would also like to thank my friends and colleagues Dr.
Thorsten Strufe, Dr. Carsten Behn and Mario Holbe for their much
appreciated ideas, support, and feedback as well as Katja Wolf for their
great administrative support. In addition, I would like to thank all
colleagues in the Institute of Computer Science at TU Ilmenau for the
pleasant working environment.

Writing this thesis would not have been possible without the efforts of
many friends and students who contributed to the development of the
Noja platform. Special thanks go to Carsten Konig, Christian Brien, Se-
bastian Kiihn, Alexander Hans, Christoph Bohme, Alexander Senier,
Michael Roflberg, Melanie Friedrich, Holger Moller, Florian Kriener,
Jens Donhoff, Tino Jungebloud, Ives Steglich, and the numerous other
people who worked for the Noja project.

vi

Finally, I like to express my deep gratitude to all my friends, espe-
cially my flat-mates Sebastian Daume, Klemens Gobel, Stefan Hertwig,
Janosch Lax, Jana Kludas, Alexander Schultz, Carsten Riesel, Sandy
Stehr and Oliver Hitzegrad, all friends who lived in the K4, and all the
others I forgot to mention. Although I was often busy and non-present,
neither physically nor mentally, T highly appreciate the mental support I
received from all of you. I am truly glad that all of you have influenced
my way of living and thinking.

Abstract

The demands for fast, economic and reliable dissemination of multimedia
information are steadily growing within our society. While people and
economy increasingly rely on communication technologies, engineers still
struggle with their growing complexity.

Complexity in multimedia delivery originates from several sources.
The most prominent is the unreliability of packet networks like the In-
ternet. Recent advances in scheduling and error control mechanisms
for streaming protocols have shown that the quality and robustness of
multimedia delivery can be improved significantly when protocols are
aware of the content they deliver. However, the proposed mechanisms
require close cooperation between transport systems and application lay-
ers which increases the overall system complexity. Current approaches
also require expensive metrics and focus on special encoding formats
only. A general and efficient model is missing so far.

This thesis presents efficient and format-independent solutions to sup-
port cross-layer coordination in system architectures. In particular, the
first contribution of this work is a generic dependency model that enables
transport layers to access content-specific properties of media streams,
such as dependencies between data units and their importance. The
second contribution is the design of a programming model for stream-
ing communication and its implementation as a middleware architecture.
The programming model hides the complexity of protocol stacks behind
simple programming abstractions, but exposes cross-layer control and
monitoring options to application programmers. For example, our in-
terfaces allow programmers to choose appropriate failure semantics at
design time while they can refine error protection and visibility of low-
level errors at run-time.

Based on examples we show how our middleware simplifies the inte-
gration of stream-based communication into application architectures.
An important result of this work is that despite cross-layer cooperation,
neither application nor transport protocol designers experience an in-
crease in complexity. Application programmers can even reuse existing
streaming protocols which effectively increases system robustness.

vii

Kurzfassung

Der Bedarf unsere Gesellschaft nach kostengiinstiger und zuverldssiger
Kommunikation wichst stetig. Wihrend wir uns selbst immer mehr von
modernen Kommunikationstechnologien abhéngig machen, miissen die
Ingenieure dieser Technologien sowohl den Bedarf nach schneller Ein-
fiihrung neuer Produkte befriedigen als auch die wachsende Komplexi-
tit der Systeme beherrschen. Gerade die Ubertragung multimedialer
Inhalte wie Video und Audiodaten ist nicht trivial. Einer der prominen-
testen Griinde dafiir ist die Unzuverldssigkeit heutiger Netzwerke, wie
z.B. dem Internet. Paketverluste und schwankende Laufzeiten kénnen
die Darstellungsqualitdt massiv beeintréchtigen. Wie jlingste Entwick-
lungen im Bereich der Streaming-Protokolle zeigen, sind jedoch Qualitét
und Robustheit der Ubertragung effizient kontrollierbar, wenn Strea-
mingprotokolle Informationen iiber den Inhalt der transportierten Daten
ausnutzen.

Existierende Ansétze, die den Inhalt von Multimediadatenstromen be-
schreiben, sind allerdings meist auf einzelne Kompressionsverfahren spe-
zialisiert und verwenden berechnungsintensive Metriken. Das reduziert
ihren praktischen Nutzen deutlich. AuSSerdem erfordert der Informati-
onsaustausch eine enge Kooperation zwischen Applikationen und Trans-
portschichten. Da allerdings die Schnittstellen aktueller Systemarchitek-
turen nicht darauf vorbereitet sind, miissen entweder die Schnittstellen
erweitert oder alternative Architekturkonzepte geschaffen werden. Die
Gefahr beider Varianten ist jedoch, dass sich die Komplexitét eines Sys-
tems dadurch weiter erhchen kann.

Das zentrale Ziel dieser Dissertation ist es deshalb, schichteniibergrei-
fende Koordination bei gleichzeitiger Reduzierung der Komplexitit zu
erreichen. Hier leistet die Arbeit zwei Betrige zum aktuellen Stand der
Forschung. Erstens definiert sie ein universelles Modell zur Beschreibung
von Inhaltsattributen, wie Wichtigkeiten und Abhéngigkeitsbeziehungen
innerhalb eines Datenstroms. Transportschichten kénnen dieses Wissen
zur effizienten Fehlerkontrolle verwenden. Zweitens beschreibt die Ar-
beit das Noja Programmiermodell fiir multimediale Middleware. Noja
definiert Abstraktionen zur Ubertragung und Kontrolle multimedialer

Strome, die die Koordination von Streamingprotokollen mit Applikatio-
nen ermoglichen. Zum Beispiel kénnen Programmierer geeignete Fehler-
semantiken und Kommunikationstopologien auswéhlen und den konkre-
ten Fehlerschutz dann zur Laufzeit verfeinern und kontrollieren.

Contents

1

Introduction
1.1 Challenges in Multimedia Communications
1.2 Content-Aware Media Streaming
1.2.1 Design Philosophy
1.2.2 Assumptions and Objectives
1.3 Contributions of this Thesis
1.4 Dissertation Outline
Background on Multimedia Streaming Systems
2.1 Distributed Multimedia Applications
2.1.1 Application Classes
2.1.2 Application Architectures and Topologies
2.2 Streaming Protocol Standards
2.2.1 MPEG Transport Specifications
2.2.2 Multimedia Protocols for the Internet
2.2.3 Streaming in Mobile and Wireless Networks
2.3 Network-adaptive Multimedia Streaming
2.3.1 Sources and Effects of Network Errors
2.3.2 Error-Resilient Signal Encoding
2.3.3 Adaptive Error Control
2.3.4 Adaptive Rate and Congestion Control
2.3.5 Buffer Management and Synchronisation
2.4 Conclusiono
Related Work

3.1
3.2
3.3
3.4
3.5

Stream-based Programming Abstractions
Open Middleware Platforms and QoS-aware Middleware .
Multimedia Middleware Platforms
Closely related Multimedia Middleware
Content-Awareness in Streaming Protocols

13
14
14
19
24
24
26
28
29
29
31
35
38
40
41

43
43
45
47
49
50

xi

xii

Contents

4 A Framework for Content-Aware Media Streaming

4.1 Content-Aware System Layers
4.2 Objectives and Challenges
4.3 Structural Properties of Media Streams
4.3.1 Quality and Distortion
4.3.2 Dependency Relations
4.3.3 Visibility and Predictability of Structure
4.4 Modelling Dependency Relations
4.4.1 Type-based and Object-based Dependency
4.4.2 Dependency-Graph Operations
4.5 Type-Graph Attributes
4.5.1 Dependency Rules
4.5.2 Type Attributes
4.5.3 Group Semantics
4.6 Object-Graph Attributes and Operations
4.6.1 Object Graph Decoration
4.6.2 Structure and Importance Prediction
4.6.3 Dependency Validation
4.6.4 Importance Estimation
4.7 Dependency Model Implementation
4.7.1 Dependency Description Language
4.7.2 H.264/AVC Video Stream Example
4.7.3 Dependency Validation Service
4.7.4 Embedding the DVS into System Layers
4.8 Limitations of the Dependency Model
4.8.1 Estimation Accuracy
4.8.2 Horizon Size and Visibility
4.8.3 Loss-Resilience
4.9 Experimental Evaluation
4.9.1 Properties of Selected Video Sequences
4.9.2 Accuracy of Dependency-based Importance
4.9.3 Effects of Limited Horizon Size
4.9.4 Effects of Packet Loss
4.9.5 Performance Benchmarks
4.10 Conclusion Lo

Noja: A Content-Aware Streaming Middleware Platform

5.1 Design Principles
5.1.1 Assumptions on Target Environments
5.1.2 Interaction Model

Contents

xiii

5.1.3 Transparency and Cross-Layer Issues 157
5.1.4 Deliberate Omissions 160

5.2 Novelty of the Noja Middleware Platform 162
5.3 Middleware Abstractions and Operations 163
5.3.1 Communication Abstractions 163
5.3.2 Binding Semantics L 165
5.3.3 Port Configuration 170
5.3.4 Binding Portso 173
5.3.5 Data Transfer and Stream Unit Labelling 176
5.3.6 Application-Level Signalling 178
5.3.7 Flow-Control 178
5.3.8 Stream Synchronisation 180
5.3.9 Monitoring and Performance Feedback 182

5.4 Middleware Implementation 182
5.4.1 Middleware Architecture Overview 183
5.4.2 Application Programming Interface 186
5.4.3 Binding Establishment 195

5.5 Application Examples, 202
5.5.1 Case Studies for Coordinated Error Protection . . 202
5.5.2 A Newscast Application Scenario 204

5.6 Conclusion 208
6 Conclusion and Future Work 211
6.1 Achievements 212
6.2 Open Questions, 213
6.3 Future Research Directions 214
A Dependency Description Language 217

Bibliography 221

Xiv Contents

List of Tables

2.1
2.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9
4.10

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Requirements of different streaming application classes. . 15
Requirements (continued). 17
NAL unit types in H.264/AVC and H.264/SVC.. 100
Dependency-Related attributes in data unit labels. 105

The set of standard video sequences used in our experiments. 118
The set of BBC video sequences used in our experiments. 119

NAL Units per video frame. 122
NAL Units per video frame (continued). 123
NAL Units per epoch. 123
Performance of importance estimation for standard se-

QUENCES. « v v v v v vt e e e e e e e e e e e 128
Performance of importance estimation for BBC sequences. 129
Hypothetical packet scheduler performance analysis. . . . 149
Port operations oL 171
Port properties.o L 173
Binding properties. oo oL 175
Label attributes 177
Synchronisation properties. 181
Monitoring information.o 183
QoS configuration example 190

Selected message types of the Noja signalling protocol. . . 198

XV

XVi List of Tables

List of Figures

1.1
1.2

2.1
2.2
2.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

4.19

4.20
4.21

Building blocks of the middleware vision. 6
Dissertation overview. 10
Video coding system model. 22
Data-paths and delays in streaming transport protocols. . 23
Encoder rate control model. 39
Examples of dependency structures. 61
Dependecy structures in fragmented streams. 61
Static and dynamic importance distribution example. . . 63
Visibility of data units and dependency relations. 66
Type-graph for MPEG-like streams. 75
Implicit decoration, based on type information only. . . . 81
Limits of implicit decoration and benefits of explicit dec-

oration. Lo e 83
Type prediction example. 86
Importance estimation vs. dependency validation processes. 88

Cross-Layer design using the content-awareness framework.108
MSE distortion vs. importance. 110
Statistical plots of distortion and importance in Foreman. 110
Importance distribution maps. 112
Effects of loss on dependency chains. 116
NAL unit size distribution. 121
NAL unit size and number in error-resilient sequences. . . 121
Epoch size distribution in error-resilient sequences. 124
Correlation between importance and distortion for stan-

dard sequences. 130
Correlation between importance and distortion for BBC

SEQUEIICES. .« « v v v v e e e e e e e e e e 130
Statistical plots for selected sequences. 131
Correlation between importance and distortion for error

resilient sequences. 133

xvii

xviii

List of Figures

4.22

4.23
4.24

4.25
4.26
4.27
4.28
4.29
4.30

4.31

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8

Al

Correlation between importance and distortion at differ-

ent bitrates. Lo 134
Statistical plots for error-resilient sequences. 135
Correlation between importance and distortion at differ-

ent GOP-sizes. L. 136
Statistical plots for sequences with and without B-frames. 137
Impact of horizon size on importance inversions. 140
Impact of GOP size on importance inversions. 142
Impact of loss rate on importance inversions. 144

Impact of GOP size on importance inversions under loss. . 145
Decoration and estimation performance for multiple de-

pendency patterns. Lo L 147
Decoration and estimation performance at different GOP-

SIZES. .« . o e e e 148
The Noja communication model. 156
State charts of OUT-ports and IN-ports. 179
Overview of the Noja middleware architecture. 184
Distributed synchronisation group conflicts 192
Zero-copy buffers to store stream units. 193
Binding establishment procedure. 195
Live newscast example. 204
Newscast example system model. 206

DDL syntax diagrams. 218

Listings

4.1
4.2
4.3
5.1
5.2
5.3
5.4
Al
A2

Dependency description for a MPEG-like video stream. . 95
H.264/AVC dependency description. 102
Dependency Validation Service API. 104
Object Adaptor API (selected operations). 188
QoS performance specification and the bind () operation. 189
Synchronisation interfaces. 191
Typical use-case of the port APL. 207
EBNF of the Dependency Description Language. 217
Full H.264 dependency description. 219

Xix

XX

Listings

Chapter One

Introduction

The general precept of any product
is that simple things should be easy,
and hard things should be possible.

(Alan Kay)

The demands for fast, economic and reliable dissemination of multi-
media information are steadily growing within our society. With the
availability of digital networks, efficient signal compression algorithms
and powerful end-user devices, human communication shifted from tra-
ditional analogue media like letters, newspapers, wired telephones, radio
and television broadcasts to digital technologies and new types of com-
munication.

Mobile phones quickly changed the behaviour of personal communi-
cations by decoupling availability from physical location. Novel appli-
cations such as audiovisual conferencing and collaboration systems ap-
peared, and today we are surrounded by new types of applications, like
Instant Messaging, Blogs, Podcasts and Web-based portals like YouTube,
flickr and mySpace that enable large networked communities to share in-
formation, opinions and experiences.

This trend is likely to continue as the availability of appropriate net-
work infrastructures as well as cheap, flexible and powerful communica-
tion devices increases. Equipped with new kinds of sensory inputs, such
as location and environmental sensors, new devices will enable new types
of applications and user interfaces, fostering remote interactions between
people, connecting different cultures and breaking down language bar-
riers. One flipside of this evolution is that our society puts more and
more reliance on information technology, while engineers still struggle
with their growing complexity.

1 Introduction

In reaction, this thesis contributes a middleware platform that focuses
on the end-to-end transport of real-time multimedia streams. The mid-
dleware hides the complexity of streaming protocols behind simple pro-
gramming abstractions and exposes sophisticated control and monitoring
options to application programmers. In order to raise the efficiency and
robustness of stream delivery against communication failures, this work
is based on a theoretical foundation for content-awareness that allows
transport layers to reason about the properties of the data they deliver.

This introduction discusses main challenges in the field on multimedia
communications, identifies requirements on an appropriate middleware
platform, summarises the central contributions of this thesis and presents
an outline of it’s organisation.

1.1 Challenges in Multimedia Communications

Building distributed multimedia systems requires close coordination be-
tween several disciplines. Besides signal processing, human interface
design, content-analysis, presentation and many others a prominent dis-
cipline is communication. Communication deals with protocols, network
infrastructures, and also programming environments. Because most of
the emerging application scenarios will continue to be distributed and
resource demanding, this raises demands for robust, efficient and scal-
able communication systems. While research on compression algorithms
and computer networks has led to significant improvements in terms of
quality, scalability and robustness of multimedia delivery, the proposed
mechanisms also increased the overall system complexity.

The main objective of multimedia communication is to achieve the
optimal signal reconstruction quality for end-users despite of network
failures. In general, compressed data units in media streams have deliv-
ery deadlines, may have variable size, and they are unequally important
to signal reconstruction. While delivery over Quality-of-Service (QoS)
networks benefits from predictable bandwidth, delays and error bounds,
best effort networks show an unpredictable performance. Here, adaptive
rate- and error control algorithms are required to optimally protect a
data stream by allocating the limited bandwidth to media payload and
error control data under given quality and deadline constraints. Frame-
works for determining the relative importance of data units in media
streams already exist [1-3], but they suffer from high computational
complexity which is problematic for resource-constrained systems.

1.1 Challenges in Multimedia Communications

When rate and error performance of the delivery channel are known
at encoding time, joint approaches that consider content and network
conditions can directly adapt the encoding scheme. When, in contrast,
the channel characteristics are unknown during encoding, it is desirable
to employ scalable encoding schemes and let the sender application later
decide which parts of the stream to actually transmit, which parts to
repair after loss and which to drop. Although scalable encoding intro-
duces additional storage and processing overheads, it is regarded as the
key technology to enable large-scale real-time Internet streaming.

Regardless of encoding formats and adaptation policy, adaptation
schemes require some form of coordination between application and trans-
port layers to exchange information about channel characteristics and
stream properties. Current protocol architectures complicate the neces-
sary information flows since their interfaces are designed for information
hiding. Cross-Layer protocol architectures [4] are intended to remedy
these deficiencies, but due to the lack of clear interface designs, cur-
rent approaches decrease interoperability rather than providing generic
solutions.

Current protocol standards for streaming transport and signalling,
such as RTP [5], SIP [6] and SDP [7], provide basic services for stream
delivery and session management, including for example payload identifi-
cation, sequence numbering, time stamping and feedback. These frame-
works are already complex due to their numerous features and operation
modes, and they intentionally lack support for control algorithms. Con-
gestion control and quality-of-service negotiation, proper fragmentation,
error control and scaling is left to other protocols (such as the DCCP [8]
or RSVP [9]), but mostly delegated to the application level. While many
solutions for fragmentation, scaling and sophisticated error control algo-
rithms do exist, they are fixed to special encoding formats or network
environments. A flexible framework that is reusable in different applica-
tion scenarios is missing so far.

Given the spectrum of encoding formats and protocol mechanisms,
delivering partially loss-resilient media streams in a robust and efficient
way over best-effort packet networks requires an amount of expert knowl-
edge, that could not be expected from a typical application programmer.
Middleware platforms are known as a comfortable and appropriate tool
for constructing large-scale distributed applications. While supporting
typical communication patterns and application-centric communication
semantics they hide heterogeneity and complexity of transport protocols
and system-level interfaces. A ordinary programmer is relieved from

1 Introduction

complex and error prone tasks while an advanced programmer can se-
lectively configure and extend essential behaviour. Thus a well-designed
middleware can help to construct dependable and efficient streaming
systems. Although there are many challenges, this thesis contributes so-
lutions to three requirements we regard most important for the design
of an integrating stream-based communication middleware:

Complexity in multimedia communication originates from many sources,
such as the myriad of signalling protocol features, the heterogene-
ity of end-user devices and network infrastructures in performance,
reliability and support of Quality-of-Service and back channels.
Moreover, the diverse error resilience features of encoding formats
as well as the multitude of error control protocols, buffer manage-
ment algorithms and synchronisation schemes introduce additional
complexity for application programmers who rather prefer to in-
tegrate simple control and transport mechanisms into their appli-
cations. In order to decrease complexity and relieve programmers
from such error-prone and time-consuming tasks, simple program-
ming abstractions and reusable protocol frameworks are required.
This thesis defines such abstractions for the domain of real-time
media streaming.

Adaptation is necessary to deliver scalable and partially loss-resilient
media streams over unreliable best-effort networks like the Inter-
net. Adaptation requires cooperation between layers to exchange
information that is hidden by traditional protocol layering. Tech-
niques for unequal error protection, for example, require knowledge
about the properties of application-level data units to infer their
importance, while scalable and rate-distortion optimised streaming
as well as joint source-channel coding depend on the current chan-
nel performance. Regardless of the location of adaptation strate-
gies, access to this information must be available, but a cross-layer
design must avoid negative impacts on the overall complexity and
stability of a system. This thesis identifies relevant stream prop-
erties and defines interfaces to exchange them in order to enable
cooperative error control and scheduling between network-adaptive
applications and content-aware system layers.

Flexibility is a key challenge for a multimedia middleware platform. It is
unlikely that a single multimedia format or a single transport pro-
tocol will fit all individual requirements of streaming applications

1.2 Content-Aware Media Streaming

across diverse networking technologies and user devices. Hence, a
middleware architecture must support different network protocols,
different encoding formats, diverse application topologies, interac-
tion patterns and quality requirements. The middleware platform
proposed in this thesis contains an open and extensible architecture
to meet these requirements.

1.2 Content-Aware Media Streaming

The abstraction of communication is the primary objective of middleware
platforms in distributed computing. A great variety of multimedia mid-
dleware concepts has been investigated in recent research projects, such
as streaming extensions for object-based middleware [10,11], QoS-aware
resource management [12-16], new programming abstractions [17], syn-
chronisation and buffer control [18], and application-level management
and adaptation [19,20].

While some solutions address isolated problems only, all of them con-
tain useful algorithms, protocol frameworks and programming abstrac-
tions where we can build upon. In particular, we extend the existing work
by special interfaces to enable cross-layer cooperation between transport
protocols and applications. Because current solutions are limited to spe-
cial encoding formats, selected application scenarios or network environ-
ments this thesis proposes a novel middleware design that avoids such
restrictions.

1.2.1 Design Philosophy

The work in this thesis follows the central vision of efficient and easy-
to-use interfaces that seamlessly integrate with existing and novel ap-
plication scenarios, networking technologies and encoding formats. Our
middleware platform is based on a generic programming model that se-
lectively hides low-level details of protocols, but exposes relevant control
and feedback options to network-adaptive applications. To benefit from
content-specific protocol processing the interfaces should also allow to
pass information from an application across layer boundaries down into
the protocol stack.

Feedback would help network-adaptive applications to respond to vari-
ations in available bandwidth or channel error performance by adjusting
their transfer rate, encoding schemes and error protection strategies.

1 Introduction

Content-aware transport layers on the other hand can consider prop-
erties of the data they deliver in strategic decisions. A protocol can,
for example, protect important data stronger and avoid forwarding data
after a specified delivery deadline.

Adjusting application-layer processing and protocol processing requires
coordination to gain efficiency and increase robustness. It is therefore
necessary to (1) select relevant properties of data units that are worth
exploiting at lower system layers, (2) select relevant characteristics of
lower system layers that are relevant for adaptive applications, and (3)
find interaction patterns and interfaces that allow for efficient metadata
passing and coordination across system layers without breaking layer as-
sumptions. In order to build the envisioned middleware platform, we
regard the following four steps as essential (see figure 1.2.1):

First, a Content-Awareness Model is required to universally ex-
press and reason about properties of data streams such as error resilience,
dependency, deadlines, data rate and the quantity of information con-
tained in each data unit. The model should allow mathematical anal-
ysis, be computationally tractable and it should use information that
is already available or that may be generated at low overheads to be
efficiently implementable. Based on this model, we will define a set of
meta-information that can be universally shared with transport proto-
cols.

Second, Streaming Protocols that can utilise content metadata are
required. Such protocols can use the additional information to adjust
their error control and packet scheduling mechanisms, perform optimal
error protection, packet drop and packet forwarding in different appli-

Content-
Awareness
Framewor|

Fig. 1.1 : Building blocks of the middleware vision.

1.2 Content-Aware Media Streaming

cation scenarios. Because different applications have different optimisa-
tion constraints and reliability requirements, different configurations are
likely. A large spectrum of mechanisms does already exist. Hence, this
thesis does not develop novel protocols or error-protection schemes. In-
stead, it defines metadata passing mechanisms break the tight coupling
between existing protocols and specific applications and codecs.

Third, a Communication Model that defines simple programming
abstractions and flexible communication semantics is required. This
model should hide details of transport and signalling protocols from
programmers, but expose cross-layer coordination facilities. This model
should define operations for session handling, signalling and real-time
stream delivery, and it should allow programmers to choose between
different communication semantics to tune the behaviour of operations.
Semantics should define how operations behave in the presence of com-
munication failures, interaction patterns and application topologies.

Forth, a Middleware Platform is required to integrate the above
models into a single building block that can be used by application pro-
grammers to delegate all communication-related tasks. The middleware
should implement the communication model and provide a runtime envi-
ronment for protocols. It should define interfaces to control and monitor
stream delivery and it may contain support for automated selection of
protocols. We expect this middleware to considerably reduce the overall
system complexity of distributed multimedia streaming because proto-
cols can be reused in different application scenarios without requiring
an application programmer to maintain intimate knowledge of proto-
col details and networks. This will increase efficiency and robustness of
applications and foster the innovation of novel applications.

1.2.2 Assumptions and Objectives

In the context of this thesis, multimedia streaming is seen as the uni-
directional delivery of a continuous sequence of time-sensitive data units
between a single sender and one or more receivers over a packet net-
work. We assume that applications may generate live-encoded streams
or deliver offline-encoded streams over unicast, multicast or broadcast
topologies. Because back-channels may be unavailable, feedback is not
necessarily part of this definition. When available, feedback may be used
by protocols and the application to adjust stream delivery. In particu-
lar, we do not consider relations between multiple streams that share a
common network path or streams that are multiplexed.

1 Introduction

Because packet networks are vulnerable to contention and packet loss,
media streams may be affected by unpredictable loss, bandwidth varia-
tions and variable transmission delays. We assume that an application
may either be network-aware or not and it may have reliability and tim-
ing requirements that change over time. Host devices may have limited
resources and may be concurrently connected to multiple networks for
multi-path streaming or network handover. We further assume that the
network may or may not support multicasting and different qualities of
service with predictable performance or priority levels.

These assumptions suite a variety of real-world scenarios of general
interest, such as large-scale broadcast distribution of stored or live en-
coded streams, on-demand delivery of pre-encoded streams, and deliv-
ery of interactive streams over wired and wireless packet networks, over
broadcasting and multicasting networks of telephone carriers, and over
dedicated networks with predictable QoS or over the best-effort Internet.

In conclusion, the general objectives behind the work presented in this
thesis are:

o foster the seamless integration of real-time multimedia streaming
into application architectures,

e be independent of stream formats, application topologies, and in-
teraction patterns to reuse protocol implementations,

e support simple programming abstractions and communication se-
mantics to hide system complexity, location and network diversity,

e expose relevant channel properties and dynamics to network-adaptive
applications,

e express, share and exploit error-resilience properties of media streams
to increase efficiency and robustness of transport protocols.

1.3 Contributions of this Thesis

The main contributions of this thesis are:

1. A generic framework for content-awareness that enables system
layers to access and track properties of media streams such as
dependency, importance and deadlines with a low computational
complexity.

1.3 Contributions of this Thesis

2. A cross-layer design philosophy that uses hints as the gen-
eral means to exchange meta-data in combination with data units.
Hinting extends layered system architectures without violating lay-
ering assumptions. It can be used to efficiently implement the
integrated layer processing (ILP) concept.

3. The Noja programming model for cross-layer coordinated mul-
timedia streaming that defines simple programming abstractions,
extensible binding semantics and flexible communication interfaces.

4. The Noja middleware platform which implements the novel
programming model. The middleware selectively hides details of
streaming and signalling protocols and exposes relevant feedback
to network-adaptive applications.

The presented work deliberately omits to define special rate-control,
error-control or scheduling schemes. It is also not our intention to de-
sign another streaming protocol because many proper solutions do al-
ready exist. Instead, we identify a generic set of meta-data attributes
about a media stream which is required by existing protocols. Our mid-
dleware interfaces will enable applications to efficiently propagate this
information to transport layers. we do also not consider coordination
with protocols below the transport layer although this may gain further
efficiency benefits. In contrast, we focus on problems that require an
end-to-end view of the system architecture.

Furthermore this work does not propose a new quality-of-service frame-
work or policies to enforce real-time constraints nor mechanisms for QoS
negotiation. Instead, we build upon results of recent QoS research. We
do also not propose a novel adaptation framework or policies to adap-
tively control resource consumption of applications and streaming proto-
cols. We do, however, provide basic adaptation support at the interface
level by allowing an application to monitor channel characteristics and
execution times. Existing adaptation frameworks can build upon this
feature.

We do also not consider security and privacy issues, but we believe
that proper mechanisms can be easily integrated into our middleware
using familiar concepts. Where appropriate, we make a side-note on
how protocols and mechanisms for authentication, authorisation and key
exchange could be integrated.

10

1 Introduction

1.4 Dissertation Qutline

Figure 1.4 displays a graphical overview of the thesis organisation. Chap-
ter 2 discusses relevant background information on application require-
ments, multimedia communication protocols and advances in the area of
multimedia delivery over best-effort packet networks. We identify gen-
eral problems and shortcomings of current communication technologies
and draw some general conclusions which will guide the following design
decision.

In chapter 3 we will briefly review work that is related to this thesis.
Because our work combines approaches from different research commu-
nities, the multimedia and systems community and the signal process-
ing community, we focus on recent developments in both areas. This
comprises programming models for stream-based interactions and mid-
dleware platforms for multimedia systems. Furthermore, related work
includes models and metrics to express content-specific attributes of me-
dia streams as well as cross-layer protocol design issues.

1
Introduction

Application
Requirements

Programming
Abstractions

!

Standard
Protocols

2
Background

3
Related Work

Multimedia
Middleware

Advanced |
Protocol Features

Content-Awareness

Relevant Stream
Properties
Dependency
Modelling
Design
Principles
Communication
Abstractions

Fig. 1.2 : Dissertation overview.

\4

Cross-Layer Design

4
Content-Awareness
Framework

ion &
Examples

Y

Evaluation &
Limitations

5
Content-Aware
Middleware

ion
Concepts

Y

Application
Examples

6
Conclusion &
Future Work

1.4 Dissertation Outline

11

In chapter 4 we develop a generic content-awareness framework which
allows us to express and reason about properties of media streams with-
out bothering about encoding formats. We first identify properties that
are relevant for transport layer tasks, such as dependencies and impor-
tance. We then propose a model for robust and efficient tracking of
dependency relations and importance estimation. We present an im-
plementation of our framework and provide examples to show how it
integrates with system layers. Finally, we statistically compare the esti-
mation accuracy of our framework to existing solutions and investigate
several effects that may influence its precision.

Based on this framework we develop a content-aware middleware plat-
form in chapter 5. Starting from general design principles, we develop
common communication abstractions and semantics that are intended
to fit a broad range of streaming application. We then present relevant
implementation details of our middleware and show, how applications
can use it to coordinate network-adaptive streaming with content-aware
transport layers.

Chapter 6 finally concludes with the main results and gives an outlook
on open research topics in the context of content-aware system layers.

12

1 Introduction

Chapter Two

Background on Multimedia
Streaming Systems

Research is to see what everybody
else has seen, and think what
nobody else has thought.

(Szent-Gyorgyi Nagyrdpolt)

Digital multimedia systems in general and multimedia communication
systems in particular are an active research area for more than 20 years.
Since the late 1980’s researchers and engineers have tremendously im-
proved the efficiency of signal compression technologies, the robustness
of communication mechanisms, the quality-of-service support in net-
works and operating systems, as well as the scalability of system ar-
chitectures. There are several comprehensive surveys on recent develop-
ments [3,21-26].

The general objective of multimedia communications is the delivery
of multimedia data at the optimal quality and under acceptable costs.
With the pervasive availability of packet networks, the trend in mul-
timedia communications shifts from expensive QoS-controlled networks
towards stream delivery over wireless packet networks and the best-effort
Internet. Fundamental challenges in these environments remain the un-
controllable end-to-end delay, the unknown and time-varying availability
of bandwidth, the different types of transmission errors, and the demands
for mechanisms to ensure fairness, security and privacy [23].

In this section we will briefly discuss relevant types of multimedia
applications and their requirements on communication systems, trans-
port protocols and advanced coding algorithms. For brevity we neglect
fairness, security and privacy issues.

13

14

2 Background on Multimedia Streaming Systems

2.1 Distributed Multimedia Applications

Although the diversity of multimedia applications is large, all applica-
tions that handle continuous media streams share some common char-
acteristics in topologies, interaction patterns and quality requirements.
This section summarises common types of streaming applications and
their communication requirements. We will later use this knowledge to
design proper abstractions and communication semantics for our mid-
dleware platform.

2.1.1 Application Classes

Multimedia systems integrate several types of non-continuous and con-
tinuous data such as text, images, textures, speech, music, video, haptics,
location and other sensory inputs. Depending on device capabilities and
application purpose the data is processed and transmitted in different
qualities and under different reliability and real-time constraints.

Although the solutions proposed in this thesis are generally applicable
to all applications that exchange continuous data streams, we are in
particular interested in distributed streaming applications which make
use of continuous audio-visual data types such as video, audio and voice
data (see table 2.1 and 2.2). We identified the following main application
classes which use audio-visual content:

Broadcasting Applications Broadcasting is used to efficiently deliver
popular content simultaneously to many receivers. The content
is either pre-encoded when a program is produced offline or live
encoded in real-time when live events such as news and sports
events are broadcasted. Users demand high resolutions and high
quality from broadcasting services.

Broadcasting applications typically use one-way channels with high
and constant bandwidth. Feedback is often undesired and chan-
nel conditions are unknown. Although this ensures scalability, er-
ror protection schemes must prepare streams for the worst-case
receiver conditions to provide adequate quality to all receivers.
Complexity of encoding algorithms is allowed to be high because
resources are available at the sender side, while decoder complexity
must be low, in particular for mobile devices. The total end-to-end
delay is fixed and generally less important than short startup and

2.1 Distributed Multimedia Applications

15

Application Class Broadcasting On-Demand Editing
E2E Delay moderate long low
Startup Delay low moderate low
Rebuffering no yes yes
Resolution high high very high
Coding efficient, efficient, loss-less,

loss-resilient,
low-complexity

loss-resilient,
low-complexity

random access

decoder decoder
Error Control FEC FEC + ARQ ARQ
Channel controlled uncontrolled uncontrolled
exclusive shared exclusive
Topology broadcast uni/multicast unicast

no back-channel

back-channel

back-channel

Tab. 2.1 : Requirements of different streaming application classes [27,28].

channel switching delays. Fixed channel bandwidth and switch-
ing requirements limit predictive encoding schemes to constant bi-
trates and reasonably frequent self-containing data units (I-frames)
to generate closely spaced switching points. Although stream data
experiences a fixed delay and arrives in-order, a stream may still
be corrupted by bit and burst errors.

Examples of already deployed broadcasting systems are Digital
Video Broadcasting! (DVB) for television, Digital Audio Broad-
casting (DAB) [29] for radio, and DVB-H? as well as Digital Mul-
timedia Broadcasting (DMB)? for hand-held devices.

On-demand Streaming Applications On-demand applications deliver pre-
encoded content individually to large numbers of receivers at re-
quest. While users expect high resolutions and tolerate limited
quality degradation only, they accept startup delays and rebuffer-
ing. For scalability reasons the topologies are based on multi-

Thttp://www.dvb.org/
2http://www.dvb-h.org/
Shttp://webapp.etsi.org/action/PU/20050628/ts_102428v010101p. pdf

http://www.dvb.org/
http://www.dvb-h.org/
http://webapp.etsi.org/action/PU/20050628/ts_102428v010101p.pdf

2 Background on Multimedia Streaming Systems

ple streaming servers and streaming proxies [30], where a sin-
gle receiver is served by a single unicast or multicast connection.
An alternative approach are peer-to-peer overlay networks where
each receiver is provided with short stream sections from multiple
peers [31,32].

Channel characteristics are often unknown because on-demand streams
are usually delivered over shared best-effort packet networks like
the Internet. Although back-channels are available, scalability re-
quirements limit the amount of receiver feedback. FError-control
schemes such as forward error protection, retransmission and hy-
brid approaches are feasible, but they depend on scalability re-
quirements of the stream sender. In order to serve receivers with
diverse device capabilities, scalable encoding may be employed to
scale down resolution and decoding complexity of a stream.

Examples of on-demand streaming systems range from Video Blogs
and community platforms like youTube to on-line TV recorders,
education platforms, commercial-grade video-on-demand services
for movies and Digital Cinema systems.

Editing and Composing Applications Editing and composing systems
are used in TV and video-studio environments, newscast produc-
tion and movie post-production environments. Common tasks are
transcoding, effect rendering and re-encoding, whereas stream for-
mats are typically loss-less. Streams are either pre-encoded or live
encoded by camera hardware. As such systems require quick and
random access to high-quality streams for searching and editing,
the focus lies on reliability, quality and scalability to large data
streams rather than on many users and many concurrent streams.
Although the common access patterns require low startup delays,
the end-to-end delay is of secondary interest. Hence, networks,
storage systems and workstations are well provisioned for high-
throughput and dedicated exclusively to a single application. Be-
cause network errors are unlikely and rebuffering is allowed, re-
transmission schemes are adequate. Application topologies are
fixed to a small set of storage systems and streaming servers and
a moderate number of workstations.

Conversational Applications Conversational applications interactively ex-
change voice and video streams for personal communications and
multi-party conferences. The content is live encoded under strict

2.1 Distributed Multimedia Applications

17

Application Class Conversational Live Art
E2E Delay very low very low
Startup Delay low low
Rebuffering no no
Resolution low high
Coding efficient, efficient,
loss-resilient, loss-resilient,
low-complexity
decoder decoder
Error Control FEC FEC
Channel uncontrolled uncontrolled
shared exclusive/shared
Topology uni/multicast unicast
back-channel back-channel

Tab. 2.2 : Requirements of different streaming application classes (continued).

real-time constraints (delay < 100ms), which heavily restricts
error-control options and playout-buffering at receivers. Hence,
conversational applications are sensitive to jitter. Therefore for-
ward error protection techniques are preferred. Low resolution and
short time quality degradation is acceptable in some applications.
The stream pattern often divides into talkspurts and periods of
silence which may be exploited for error control and resynchroni-
sation. Due to limited device capabilities, encoder and decoder

complexity must be low.

Application topologies of multi-party conferences either consist of
direct point-to-point connections or multiple point-to-multipoint
connections. Network handover procedures are common in mobile
wireless communication systems. When a back-channel exists, it
may be used for feedback to make the sender aware of the forward-
channel quality experienced by each receiver. Although feedback
has limited utility for retransmission schemes due to short delays, it
can be used for channel estimations to protect future data more ef-
ficiently and for encoder control to limit loss propagation by adap-

tive refresh schemes.

2 Background on Multimedia Streaming Systems

Examples of conversational applications are personal videophones
and interactive games, business-quality conferencing and telepres-
ence systems, highly reliable systems for rescue services as well as
smart rooms and augmented reality systems for research, engineer-
ing and construction.

Multi-Party Live Performance Applications Live performance applica-
tions virtually interconnect and assist artists, such as musicians,
video artists and dancers during performances, rehearsals and record-
ing sessions. The multimedia contents is either captured and en-
coded live (e.g. sensor input, video, audio, and MIDI signals) or
pre-encoded and stored off-line (e.g. video sequences, sound sam-
ples, pictures, and 3D object models). The performance require-
ments are very strict. For interactivity, musicians require ultra-low
delays (< 20ms) and exact synchronous delivery of events from
multiple sources. Loss or quality degradation may be intolerable.
Visual art may tolerate larger delays especially when output is ren-
dered frame-wise (e.g. every 40 ms), while distortion due to loss
may be distracting. Although low delays restrict error control to
forward correction schemes, receiver feedback can be used to tailor
the amount of redundancy to observed channel conditions. Local
studio or stage networks are usually exclusively available to a single
application, but when members are connected via Internet paths,
they experience bandwidth and delay variability.

In general, streaming applications are delay-sensitive, bandwidth-intense,
and partially loss-tolerant. There are, however, differences between ap-
plication classes with diverse requirements that can considerably af-
fect the overall system design. Real-time constraints differ between
application classes. While conversational systems have very tight con-
straints (< 20—200ms), live broadcasting is less severe affected by delays
(< 500ms—2s) and on-demand applications have even looser constraints
(> 500ms — 2s) [26,27]. Live-encoding requires real-time processing and
may be less efficient than offline-encoding which can employ an addi-
tional analysing stage for pre-processing.

Channels can be static with fixed or guaranteed bandwidth, delays
and loss, or dynamic where these properties vary over time. In general,
pre-encoded streams are harder to adapt to variable channel conditions
than live encoded streams, but scalable video coding schemes [33] try
to close the gap. For low loss rates it is important to match stream bi-
trate to channel bandwidth. For static channels, constant bitrate (CBR)

2.1 Distributed Multimedia Applications

19

streams are more appropriate although the encoding quality may vary
due to variable complexity of sequences. Variable bitrate streams (VBR)
in combination with adaptive rate-control schemes (see section 2.3.4) are
preferred for dynamic channels and for high-quality applications. The
sender-side knowledge about the channel may differ between applica-
tion classes, depending on back-channel availability and scalability con-
straints. With back-channel and receiver feedback, a sender can adapt a
stream to estimated channel condition, while without feedback streams
must be prepared for worst-case conditions.

This taxonomy is intended to show the diversity of available stream-
ing systems. It is not supposed to be complete and exclusive in any
sense. Some applications may not fit into a single class, for example
Internet-based radio broadcasting stations. Although they clearly have
broadcasting character, they also share some attributes with on-demand
systems, when receivers request a stream.

2.1.2 Application Architectures and Topologies

Designing useful middleware interfaces heavily depends on knowledge
about how streams are generated, processed and consumed by applica-
tions and how streaming mechanisms integrate into application architec-
tures. Hence we first discuss common components found in virtually any
streaming application. We then show how encoders are embedded into
distributed architectures and which protocol modules and wait queues
are placed along a stream’s data path. Finally, we present some common
communication topologies.

Application Components The general architecture of any streaming
applications resembles the pipe-and-filter pattern [17,34, 35], composed
of multiple processing stages, interconnected by abstract communication
channels. In combination with stream splitters and stream multiplexers,
programmers can build complex filter graphs.

Single filter stages are self-containing entities with a clearly defined
interface, while communication channels loosely couple filters by explicit
data paths. Filters contain, for example, stream encoders and decoders,
mixer, filter, I/O and display components. Filters are not required to be
aware of the total graph, they must only know their direct neighbours
or the channels which connect them. This decouples topology and com-
munication aspects from filter implementations and reduces application
complexity. An application can compose the filter graph from simple

20

2 Background on Multimedia Streaming Systems

building blocks, and configure, control and monitor its operation. Pro-
grammers may use special execution models to define which filters may
run concurrently and which filters must run sequentially [17,36]. By a
clever combination of communication transparency, anonymity between
filters and encapsulation of complex functionality, the pipe-and-filer pat-
tern is thus inherently scalable and adaptable.

The following architectural components and data-flow entities are com-
mon to distributed streaming applications:

Filters represent the processing nodes of a filter graph. They are application-
level entities which generate, process or consume one or multiple
media streams. Hence, there are three types of filters, stream pro-
ducers, stream filters and stream consumers. While a producer
initially generates or imports a stream in a specific format from
external devices such as cameras or storage media, a consumer
finally exports a stream for display, storage or further external
processing. Stream filters actually manipulate streams, either by
changing the encoding format, or by changing the content. Filter
implementations may use a private thread or may share threads
from a common pool, but they may also be passive entities that
are called from application threads.

Bindings [37] represent directed edges of a filter graph, used to pass
stream data between adjacent filters, either in a point-to-point
or point-to-multipoint topology. Bindings abstract from location,
communication failures and the actual implementation details of
transport protocols. They usually have a configuration interface
to configure communication properties and sometimes a monitor-
ing interface to unveil lower-layer transport channel characteristics.
Bindings can define semantics that identify which operations are
available and which communication guarantees the binding is will-
ing to give. Bindings are usually passive, thus they require an
external thread for execution.

Ports [34] represent typed input and output interfaces of filters which
are used by the filter as communication end-points for receiving
and sending stream data. Filters can have multiple input and out-
put ports. Ports ensure the type-safety of streams by validating the
type of opposite ports when connections are established. Note that
ports and bindings are alternative concepts to interconnect stream
processing stages. Like bindings, ports can hide protocol details

2.1 Distributed Multimedia Applications

and allow for the inspection and control of communication-related
aspects such as channel state, flow-control and error-control. The
difference is that bindings can recursively contain graphs of filters
and other bindings, while the external interfaces of the contained
graph are exported as the interface of the new binding. This al-
lows for greater flexibility in composing applications, but effectively
prevents network-adaptive applications from monitoring channel
conditions when hidden by a binding

Streams represent sequences of semantically related and typed data
units that flow through a potentially distributed filter graph. A
single stream originates from one producer and ends at one or
multiple consumers or multiplexers. At its path through the filter
graph, a stream may pass multiple filters, may be transcoded, mul-
tiplexed and split. When two streams are multiplexed, the seman-
tical relationship between the data units in each original stream
are enhanced by a new relationship to data units in other streams.
Therefore, incoming streams loose their identity and end at a mul-
tiplexer while a new stream with new semantics and a new identity
originates there.

Flows represent sections of a stream which pass through a particular
port or a particular binding. A flow begins at the output port of
a filter and ends at the input port of a second filter. Hence, in
multicast settings there exist multiple flows. At the first glance,
flows seem similar to streams, but there are important differences:
Streams describe high-level information flows through the applica-
tion, whereas flows describe low-level data flows between applica-
tion modules. While streams are defined from the global perspec-
tive of an application, a flow is defined from the local perspective
of a single port or a single binding. Hence flows share content at-
tributes with the stream (e.g. creation time, author and location),
but they may have specific formats and bitstream layouts. Two
flows of the same scalable bitstream, for example, may represent a
similar content but at different operation points and thus different
qualities.

We will later use and extend the abstractions of ports and bindings to
design our middleware interfaces. The definitions of streams and flows
currently have no counterpart in one of our middleware abstractions.

22

2 Background on Multimedia Streaming Systems

They are provided for completeness and as references for future exten-
sions, for example as an abstraction for global resource management or
security and privacy concepts.

Encoders in a System Model When media encoders and decoders are
integrated into the architecture of a streaming system their control and
data paths must be carefully designed to avoid extra delay. Figure 2.1
shows the system model of streaming applications from a coder perspec-
tive [38]. At the encoder side, a media signal is first compressed by a
source coder to reduce redundancy and irrelevance. Often, this step is
loss-less to achieve high coding efficiency. Then, a channel encoder is
used to prepare the compressed media stream for delivery of a commu-
nication channel. When information about the channel is available, such
as available bandwidth and error patterns, source and channel coding is
adapted to ensure optimal delivery. Note that this general model does
not assume special system architectures or special software layers where
channel coding is performed. The channel coder may be a transport pro-
tocol above a general-purpose packet-network stack or a special-purpose
link-layer in an embedded device (e.g. a GSM phone). Channel encoding
may involve packetisation, error protection, modulation and transport
level flow control.

At the decoder side, the reverse operations are performed to recon-
struct the output signal. A channel decoder extracts data from the
channel, conceals errors and forwards the stream to the source decoder.
Feedback from both, the channel decoder and the source decoder may be
sent to the encoder side to adapt the encoding process to the observed

Encoder (Sender) Side Decoder (Receiver) Side
1 Signal Entropy Channel *) Channel), Channel Entropy Signal { -
Input ’ Encoder Encoder ; Encoder Decoder Decoder Decoder [Ourp'ut
Signal ' Signal
Source Encoder Source Decoder
r
1 | Profile
ncoder |:
Rate & Error Control I Feedback

Fig. 2.1 : Video coding system model. Encoder and decoder contain separate blocks
for signal and channel coding that may be coordinated. When feedback is
available, the encoding process can even be adapted to channel and decoder
state.

2.1 Distributed Multimedia Applications

23

channel characteristics and the decoder state. The communication chan-
nel models an arbitrary digital delivery facility, such as for example a
DVD media, a circuit-switched or a packet-switched network.

Without information about channel conditions and decoder state sig-
nal encoding must rely on predictions. Even with feedback, the feedback
contains observations about the past channel behaviour only. For fast
fading wireless channels predictions usually become wrong. Depending
on the applications scenario and available information about the channel
different error protection techniques can be employed (see section 2.3).

Data Paths and Transmission Delays Channel encoders or transport
protocols perform complex tasks to ensure timely delivery and protect
streams from uncontrolled channel errors. Decoders require in-time data
and low error rates to reconstruct a reasonable signal quality [39]. Figure
2.2 displays typical modules and information flows in media streaming
transport protocols, and shows locations (as shaded boxes) where delay
is added to stream forwarding.

At the sender side, a streaming protocol may classify and partition
data units by importance to enable unequal error protection. When
necessary, the protocol also fragments data units to meet the maximum
transmission unit size (MTU) of the network path. When forward error
correction (FEC) techniques are used (see also section 2.3.3), they may
add a packetisation delay [40]. Rate control, congestion control and
packet scheduling schemes (see section 2.3.4) add an additional delay
because they smooth traffic in order to avoid congestion-related loss.
Next, the network may introduce a variable transmission delay which

Sender-side Transport Protocol Receiver-side Transport Protocol

Error Control [Error Control
i |uEp/rEC | [FEC
i | Encoder () Forward-Channel)——j- | Decoder
> | packet | [
i | Cache | ? d ARQ

d] N
i i | Channel Rate |/ {
ARQ ‘ .!‘ﬁ{mlmawr <——(])_Back-Channel

Control

i Playout Buffer [gync]
>[I0 —

T T T T 1
Error-Control Delay Scheduling Delay Network Delay Error-Control Delay Buffering/Re-synchronisation Delay

=
5
E
@
@
@
©
5]
-4

3]
&
2
2
5
o
g
I
8
£

Fragmentation & Partitioning

Fig. 2.2 : Data-paths and delays in streaming transport protocols. The shaded boxes
indicate potential sources of delay.

24

2 Background on Multimedia Streaming Systems

depends on back-off delays after collisions in multi-access networks, link-
layer retransmission schemes and queuing delays in packet routers [23].
At the receiver, FEC reconstruction, de-interleaving and reassembly of
fragmented data units must wait until all fragments of a particular FEC
block or data unit are received, while a playout buffer additionally delays
a stream to compensate for network jitter, retransmission times and
reordering. Some transport protocols and scheduling schemes operate on
data units in a sliding transmission window [1]. Such protocols require
an additional initial pre-roll delay to fill the transmission window.

Application Topologies Streaming applications may use a variety of
communication topologies to exchange media streams between distributed
processing stages. The selection of a particular application topology and
its implementation on top of a particular network topology impose con-
straints on scalability and receiver feedback.

Besides simple point-to-point and multicast topologies there are many
options to distribute streams in a continuous, reliable and scalable way
to one or many receivers either with or without feedback [41]. Hier-
archies of dedicated relay nodes can increase scalability and fault tol-
erance of large-scale content-delivery networks by balancing load [30].
Application-level multicast trees established in overlay networks [31,32]
may also achieve high scalability and fault tolerance while load is equally
distributed across multiple participants and network links. Multi-homed
devices and multi-path streaming are known to increase communication
quality and reliability for end-nodes connected to wireless networks [42],
while soft-handover and roaming in mobile scenarios can be achieved by
streaming proxies [43].

2.2 Streaming Protocol Standards

Several protocol standards for transporting data streams and stream-
related control traffic over packet networks are defined by different stan-
dardisation bodies. This section gives a brief overview of available pro-
tocols and their functionality.

2.2.1 MPEG Transport Specifications

Todays commercially successful audio and video coding standards, such
as for example MPEG-1/2/4 are defined by the Moving Picture Experts

2.2 Streaming Protocol Standards

25

Group (MPEG)*, a working group of the International Organisation for
Standardisation (ISO). The new MPEG-4/H.264 Advanced Video Cod-
ing (AVC) and Scalable Video Coding (SVC) standards are defined in
cooperation between MPEG and the International Telecommunication
Union (ITU). Besides bitstream syntax, bitstream semantics and the de-
coding process, a part of each coding standard is concerned with the
delivery of encoded streams over various transport technologies, such
as data storage (Digital Versatile Disc, DVD), digital television systems
(DVB), or packet networks. Because different encoding standards target
different application domains, the transport-related features may con-
siderably differ. MPEG-2, for example, was developed for broadcast-
quality television services, reliable high-performance networks (Asyn-
chronous Transfer Mode, ATM) and optical storage (DVD), whereas
H.264/MPEG-4 AVC specifically targets packet networks.

MPEG-2 defines two container formats, Transport Streams for delivery
over network channels and Program Streams for storage media such as
discs. MPEG-2 transport streams define schemes for multiplexing mul-
tiple elementary streams, but no error-control. The standard assumes
error protection and isochronous delivery from the underlying network.
For compatibility with ATM networks, transport stream packets are 188
byte long (4 times the payload size of ATM cells). Currently, MPEG-2
transport streams are used for digital television broadcast over cable,
satellite, and terrestrial paths and high-quality video conferencing sys-
tems.

The flexibility of MPEG-4 [44] required a new transport framework,
the Delivery Multimedia Integration Framework (DMIF) [45]. The pur-
pose of DMIF is to hide transport details from encoders and leverage
interoperability between different implementations. Because MPEG-4
defines a rich set of different media types, such as audio, video, objects,
shapes, etc., which can be dynamically composed into sequence, DMIF
provides functions to multiplex and synchronise streams of different type
and methods to create and release channels dynamically. Internally,
DMIF uses stream and transport multiplexer stages, defines a generic
channel establishment procedures as well as a generic Quality-of-Service
descriptor to specify quality constraints for different transport layers.
Besides transport streams and DMIF, implementations and standards
for mapping MPEG-2 and MPEG-4 streams to the Internet streaming
protocol RTP do exist [46-48] (see also the next section).

4http://www.chiariglione.org/mpeg/

http://www.chiariglione.org/mpeg/

26

2 Background on Multimedia Streaming Systems

The H.264/MPEG-4 AVC standard was specifically designed for low-
complexity delivery over packet networks [27,49]. H.264 defines a Video
Coding Layer (VCL) for signal compression issues and a Network Adap-
tation Layer (NAL) for encapsulating encoded data into network packets,
MPEG-2 transport stream packets or file formats. The NAL ensures that
when a packet containing a NAL unit is lost, the VCL regains synchro-
nisation to the bitstream at the next successfully received NAL unit.
This effectively avoids an extra synchronisation layer and special resyn-
chronisation markers in the bitstream, but requires transport layers to
mask bit-errors as packet loss. The low complexity of H.264 NAL is also
expressed in the reuse of the one-byte NAL unit header as the payload
header for the H.264 RTP payload format [50]. The H.264 scalability
extension H.264/SVC [51,52] enhances the NAL unit concept by extra
header fields to enable low-complexity in-network scaling.

2.2.2 Multimedia Protocols for the Internet

Many protocols for multimedia streaming applications have been pub-
lished in the literature. While protocols from the research community
usually focus on specific features only, standard protocols aim to provide
complete and interoperable solutions. In this section we briefly discuss
the main multimedia transport and signalling protocols for the Internet,
published by the Internet Engineering Task Force (IETF). IETF Proto-
col standards as well as the MPEG /ITU encoding standards are adopted
by other standardisation bodies which specify particular application en-
vironments, such as the Internet Streaming Media Alliance (ISMA)5.

Transport Protocols The real-time transport protocol (RTP) [5] is an
extensible protocol framework for end-to-end delivery of real-time data
streams. RTP consists of two closely-related parts, the real-time trans-
port protocol (RTP), to carry data that has real-time properties and the
RTP control protocol (RTCP) to allow scalable receiver feedback and
monitoring of data delivery. RTCP is only intended to carry a limited
amount of feedback and control information. The majority of control
data should be exchanged via other signalling protocols, described later.

A key goal of RTP is to provide a very thin transport layer without
overly restricting the application designer. RTP supports payload type
identification, sequence numbering, timestamping and even multicasting

Shttp://www.isma.tv/

http://www.isma.tv/

2.2 Streaming Protocol Standards

27

features if provided by the underlying network, but it lacks reliability
and quality-of-service guarantees. RTP itself does not ensure timely
delivery, does not prevent out-of-order delivery and does not guaran-
tee delivery at all. Although RTP is independent from the underlying
transport, it is usually layered on top of UDP [53]. Applications can
and must arrange for compensation of delays and loss themselves. RTP
does, however, define payload format specifications which describe how
a particular format, such as encoded audio or video, is mapped to RTP
packets to increase robustness. Mappings follow the principles of applica-
tion level framing (ALF) [54] while RTP profiles allow for the inclusion
of additional header fields and semantics. Thus RTP facilitates joint
source-channel coding for Internet channels [55]. RTP is implemented as
a set, of functions or as a library which is directly merged into application
processing, rather than being a separate transport protocol layer. The
restricted features of RTP are repeatedly criticised [56]. RTP provides no
real-time support as its name suggests, lacks congestion-control, heavily
restricts control traffic and uses many UDP ports, at least at gateways.
Although the design decisions are sound from the perspective of scala-
bility and recent extensions are made to alleviate the problems, many
applications require richer communication support.

Promising solutions to RTP’s lack of congestion control are to use the
Datagram Congestion Control Protocol (DCCP) [8,57, 58] as transport
instead of UDP, or the direct combination of RTP with TCP-friendly
rate control (TFRC) [59-61]. In addition to the unreliable unicast ser-
vice of UDP, DCCP provides connection-oriented, congestion-controlled
transport. It allows to select TFRC and TCP congestion control styles,
supports path MTU discovery and integrates smoother with firewall
schemes.

While traditional Internet protocols support either full reliability or
no reliability, the Stream Control Transmission Protocol (SCTP) [62,63]
supports a partially reliable mode SCTP-PR [64], where applications can
choose reliability on a per-message basis. For example, SCTP-PR allows
to specify a deadline for the protocol to indicate when to give up sending
retransmissions. Besides this, SCTP is a connection-oriented, conges-
tion controlled protocol like TCP, supporting multi-homing, failover and
multiple streams per connection. Experiments on multimedia streaming
with SCTP-PR are documented in [65,66].

28

2 Background on Multimedia Streaming Systems

Signalling Protocols The IETF defines the Session Description Proto-
col (SDP) [7], the Session Initiation Protocol (SIP) [6,67] and the real-
time streaming protocol (RTSP) [68] as the principal means to estab-
lish and control streaming sessions over the Internet. SDP is a general-
purpose format for describing session parameters such as names, times,
media formats, transport protocols and address information for session
establishment, whereas negotiation of session content or media encod-
ing are outside the scope of the protocol. SDP can be embedded into
several transports, including SIP, the Session Announcement Protocol
(SAP) [69], RTSP, or electronic mail using the MIME extension. SIP
is intended to initiate and reconfigure multi-party streaming sessions,
such as Internet telephone calls and conferences as well as sessions with
gateways to Public Switched Telephone Networks (PSTN). SIP provides
means to locate nomadic users, negotiate compatible media types, and
authenticate and authorise users. RTSP can establish and control the
on-demand delivery of one or multiple media streams, while the actual
stream data is delivered by other protocols such as RTP. For example,
RTSP allows a streaming client as well as a streaming server to describe
streams (e.g. in SDP), request and pause stream delivery and invite other
participants.

Other signalling standards originating from the telecommunications
industry are H.323, defined by the Telecommunication Sector of the ITU
(ITU-T). Although H.323 is similar to SIP, it was available earlier. To-
day, H.323 is widely deployed in Voice over IP services and Internet
videoconferencing systems. Because it provides signalling interoperabil-
ity with digital telephone networks, it is most popular in this sector.

2.2.3 Streaming in Mobile and Wireless Networks

Standards for mobile packet networks are mostly defined by industry-
oriented standardisation bodies to increase the interoperability between
device manufacturers and network operators. The 3rd Generation Part-
nership Project (3GPP)S specifies streaming and interactive multimedia
services for mobile cellular telephone networks, while the Open Mobile
Alliance (OMA)7 claims responsible for mobile broadcasting over DVB-H
and 3GPP. In order to increase the interoperability with existing Internet
services, these standards mostly follow the IETF proposals, but usually
restrict their flexibility to decrease implementation complexity.

Shttp://wuw.3gpp.org/
"http://wuw.openmobilealliance.org/

http://www.3gpp.org/
http://www.openmobilealliance.org/

2.3 Network-adaptive Multimedia Streaming

29

Most of the protocols in wireless packet networks are concerned with
link-layer connectivity, efficient link-layer error control schemes and fair
resource sharing, rather than transport protocol issues. The intended
transport protocol for multimedia traffic in 3GPP networks is RTP over
IP. Hence, the transport-level challenges are similar to wireless local-area
networks.

2.3 Network-adaptive Multimedia Streaming

Delivering time-sensitive media streams over unreliable packet networks
is challenging since neither resource availability is guaranteed nor per-
formance characteristics in terms of delay or loss are predictable. Hence,
applications are required to adapt to changing network conditions. Re-
cent advances in network-adaptive media streaming indicate that quality
and error resilience can be significantly improved by robust bitstream
packetisation, adaptive encoding schemes and scalable encoding at the
encoder level. At the transport level adaptive error control, adaptive
rate control and buffer management have proved to be proper solutions.

In this section we first discuss general sources and effects of network
errors. After that we present mechanisms proposed for the signal coding
layer and for the transport layer to alleviate the problems of packet
networks.

2.3.1 Sources and Effects of Network Errors

Transmission over best-effort packet networks like the Internet exposes
media streams to several classes of errors, such as potential deadline
violations, loss, and reordering. Most of the error classes are related,
either because they share the same reason or because a technique to
overcome one error is likely to introduce another error. The following
three main classes exist:

Timing Errors Transport delay and periodic timing of multimedia streams

are influenced by several effects in packet networks. While propagation
delays of links are constant, the best-effort store-and-forward routing dis-
ciplines of packet networks and the back-off schemes of shared links can
introduce a variable end-to-end delay which depends on the actual net-
work load. Additionally, reordering and duplications are introduced by
multipath routing and timeout-based link-layer retransmission schemes.

30

2 Background on Multimedia Streaming Systems

When packets arrive too late, they often become useless because the
receiver must decode and render the contained signal (audio samples
or video frames) at a constant rate. Hence, deadline violations effec-
tively translate into loss errors. When data is unavailable for decoding,
a decoder can try to conceal the missing information [70] from previous
stream data, but often the signal is severely distorted. Predictive encod-
ing schemes, such as MPEG video codecs, can especially suffer from loss
because distortion in reference frames can propagate to future predicted
frames until the next intra-coded frame is received. Although it may be
possible to use late packets to repair reference frames [71], most decoder
assume in-order delivery of bitstreams.

Timing errors are typically addressed by introducing an extra buffer-
ing delay at the receiver to wait for late and reordered packets. Buffering
is, however, strictly limited in conversational and interactive applications
because they require very low delays. On-demand and broadcasting ap-
plications can, in contrast, benefit from large jitter compensation buffers
due to their relaxed delay requirements although buffer space may be-
come a limiting factor.

Bit-Errors and Packet Loss Different types of loss errors occur in dif-
ferent network environments. While congestion is the dominant source
of loss in fixed local and wide-area networks, bit-errors are dominant in
wireless channels. Congestion occurs when a router at a bottleneck-link
observes high network load so that incoming traffic does no longer fit
into the router queues and packets must be dropped. For end-nodes this
drop happens uncontrolled because neither the time nor the amount of
dropped packets can be estimated in advance. In contrast to traditional
drop-tail policies, more Internet routers become equipped with sophis-
ticated drop policies such as random early detection (RED) [72]. Such
policies provide earlier indications to end-to-end transport protocols so
that they can throttle their output rate to avoid congestion.

The link-layers of packet networks usually translate bit-errors into
packet loss because it is unknown if bit-errors destroyed parts of an
upper-layer protocol header or the application payload. Although multi-
media applications are tolerant to some bit-errors, protocol implementa-
tions are not. When corrupted packets are passed to upper-later proto-
cols it is likely that wrong routing and multiplexing decisions are made
if packet header information was corrupted by the bit-error.

There are two prominent approaches for error control at the transport

2.3 Network-adaptive Multimedia Streaming

31

level [40], retransmissions and forward error correction (see section 2.3.3
for more details). Although both can compensate for isolated and burst
loss, they have the potential to increase congestion because both increase
the bitrate of the stream. Moreover, retransmitted packets must arrive
before their deadline and the extra packets should not violate deadlines
of subsequent data.

Bandwidth Limitations Although bandwidth limitations also result in
loss errors, we treat them separately because in contrast to network
packet loss, this loss may be controlled by transport protocols. Avail-
able bandwidth is generally unknown and time-varying in the Internet.
It depends on network load imposed by concurrent data streams and
unpredictable conditions of wireless links that switch between modu-
lation schemes when signal quality changes. Mobile users that roam
through different networks are even more affected because they may ap-
proach a heavily loaded base-station or a lower-capacity network after
handover. Limited bandwidth may be known to a transport protocol,
either through monitoring a local link-layer or by using a bandwidth es-
timation protocol. Instead of waiting until the network randomly drop
packets, the stream sender can selectively discard packets which are old
or less important for signal reconstruction in favour of more important
ones. While rate-control and congestion-control reduce the probability
of loss, they cannot guarantee loss-less delivery. Even with rate-control,
streams may experience loss in short-time periods of congestion which
are shorter than a round-trip-time, and especially when competing traffic
is not rate-controlled.

2.3.2 Error-Resilient Signal Encoding

Recent research on encoding standards has largely focused on efficiency
and error-resilience concepts, especially targeted at error-prone wireless
and packet-based delivery channels [3,21,73,74]. Error resilience tech-
niques at the signal encoding level divide into the three classes: (1)
forward, (2) interactive and (3) concealment techniques. They are ap-
plicable at different encoding stages and in different environments de-
pending on available resources and back channels. We omit concealment
techniques because they are less relevant for communication engineering.
A survey on concealment approaches can be found in [70].

32

2 Background on Multimedia Streaming Systems

Forward Techniques Forward techniques are employed by encoders in
order to proactively protect a bitstream against errors. They work by
adding a controlled amount of redundancy to the encoded bitstream
either at the entropy encoder or the signal encoder stage. Common
techniques in MPEG-4 [44] are for example:

Forward Error Correction (FEC) at the encoder level adds redundancy

(e.g. parity bits) to the bitstream after entropy coding in order to
detect and potentially correct bit errors. This is only necessary if
the transmission channel lacks bit-level error control.

Resynchronisation Markers are uniquely decodable binary codes inserted

in the bitstream. After losing synchronisation, a decoder may re-
sume correct decoding upon reaching such a point. This limits
error propagation by localising the effect of an error to the area
between two resynchronisation markers. If used too often, they
create overheads, but limit the damaged area more tightly. The
distance between markers may either be variable or fixed. If the
distance is related to the network packet size, delivery becomes
more robust against packet loss in the Internet.

Reversible VLC (RVLC) is an error resilient entropy coding method

which reduces the damaged area after a bit error by creating a
bitstream which is decodable in forward and backward direction.
The decoder stops at detected bit errors, forwards to the next
resynchronisation marker and decodes backwards from this marker.
RVLC algorithms must produce symmetric code words and it is re-
quired that invalid code words are detectable. If bit errors produce
valid code words, the error may be detectable during signal recon-
struction.

Data Partitioning rearranges encoded data of a single structural ele-

ment (e.g. a frame or a slice) into groups according to their sen-
sitivity to errors. Partitions are transmitted in importance or-
der and the last partition may be followed by a resynchronisation
marker. If a random bit error occurs and subsequent data is lost,
it is more likely that important data is still valid. Since impor-
tant data comprises a small fraction of a bitstream only, it can be
stronger protected using RVLC and FEC without a severe loss in
coding efficiency. In packet-switched channels each partition may
be placed in a separate packet to confine the impact of packet loss.

2.3 Network-adaptive Multimedia Streaming

33

Interleaving is used to overcome burst errors by separating neighbouring
information as far as possible. Interleaving may be used in signal
compression to spread pixels or macroblocks and in entropy coding
to spread encoded bits or symbols. Because burst errors affect
interleaved streams in non-continuous regions of a frame only, error
concealment schemes may become more effective.

Forced Redundancy intentionally keeps or adds redundancy during sig-
nal compression instead of removing all statistical and psychovisual
redundancy. This restricts spatial and temporal error propaga-
tion, but may significantly decrease compression performance. Ex-
amples are periodically encoded intra-mode macroblocks, repeated
header information and motion vectors and even redundant frames.

These techniques are not mutually exclusive. They may be combined
to construct complementary solutions. In general, their effectiveness
increases when decoder feedback is available. There is always a trade-off
between bandwidth consumption and error robustness.

Interactive Techniques If a back-channel with acceptable latency ex-
ists and the stream is encoded live, decoder and encoder can cooperate
to minimise the effects of transmission errors. This works either by
adapting the encoding process or by retransmitting corrupted data. In-
teractive error-resilience is typically reactive because the encoder adjusts
its operation when feedback arrives. Feedback can either be negative or
positive, explicitly informing the encoder of errors or acknowledge the
correct reception of stream data. Encoder-level interactive techniques
include:

Adaptive Reference Selection informs the encoder to avoid using spe-
cific frames as references because they are corrupted at the decoder.
This requires short round-trip times to become effective and extra
reference picture buffers at the encoder and the decoder to store
multiple reference candidates.

Adaptive Intra-Refresh includes intra-coded data on request to effec-
tively stop error propagation at the receiver. Alternatively it adapts
the amount of intra-refresh to quality reports sent by the receiver.

Error Tracking reconstructs the error propagation process of the de-
coder from feedback about lost data units. Hence, the encoder

34

2 Background on Multimedia Streaming Systems

must only update the distorted regions in new frames by intra-
coding. Although error tracking adds no additional delay and re-
quires no extra storage at the decoder, it increases encoder com-
plexity.

Scalable Video Coding To overcome limitations for multicast and multi-
rate delivery, scalable bitstreams and appropriate encoding concepts
have been developed recently [33,51,75-77]. Scalable coding techniques
split the compressed signal into separate embedded bitstreams, where
each bitstream contains a special fraction of the encoded signal only.
Scalable streams can be decoded at different bitrates with a graceful
degradation in quality. This comes at the cost of higher encoding com-
plexity and reduced compression efficiency. For video streams, scalability
is performed in spatial, temporal and signal-to-noise (SNR) dimensions.
Spatial scalability increases the resolution of a single picture or a picture
element. Temporal scalability increases the frame rate of a sequence by
using one or more layers of discardable bi-directionally coded frames (B-
frames). SNR scalability increases the signal fidelity of a frame without
increasing the spatio-temporal resolution. This is achieved by varying
the quantiser step size and the number of encoded coefficients.

Scalable streams benefit from increased robustness to bandwidth fluc-
tuations. They can be adapted to heterogeneous and varying receiver
and channel characteristics at low complexity. Streaming servers can
serve diverse receivers and even heterogeneous multicast groups from one
scalable pre-encoded bitstream while transport protocols can unequally
protect different layers according to their importance.

Several methods for generating scalable bitstreams do exist. Some
methods define a hierarchical order between quality levels, where most
important information is contained in a base layer and less important
data in one or more enhancement layers. The base layer is essential
to reproduce a minimum quality signal while enhancement layers extend
the signal quality if available. Other techniques distribute the data more
equally across layers, so that any combination of layers is usable for signal
reconstruction. Published concepts include:

Layered Coding [55] splits a bitstream into at least two separate parts:
a base layer and one or more enhancement layers. While the base
layer provides moderate quality, adding enhancement layers im-
proves quality. The decoder requires at least the base-layer to
reconstruct a signal at all.

2.3 Network-adaptive Multimedia Streaming

35

Multiple Description Coding (MDC) [77] distributes the information
uniformly across equally important layers to circumvent the prob-
lem of corrupted base layer data. A single description suffices to
reconstruct the signal in a basic quality and every additional de-
scription improves the quality. MDC achieves best results if de-
scriptions are delivered via independent channels with unrelated
error probability.

Fine Granularity Scalability (FGS) [76,78] operates at the entropy cod-
ing stage and applies bit-plane coding instead of VLC coding. FGS
uses base and enhancement layers, but unlike layered coding, a par-
tially received enhancement layer contributes to signal reconstruc-
tion. Hence, quality degrades gradually when error rate increases.

Sub-band and Wavelet Coding Although 3D sub-band coding tech-
niques and the more recent wavelet coding schemes [38,79] are consid-
ered to have poor coding efficiency compared to motion-compensation
schemes, they may exhibit better error-resilience characteristics because
no long-range dependencies between frames are introduced [80]. Due to
the limited use of these schemes in current video coding standards we
do not consider them in this work. We note, however, that the content-
aware interfaces and communication architectures developed in this the-
sis are in particular applicable to wavelet encoding schemes because dif-
ferent bit stream segments have unequal significance across temporal
sub-bands [79].

2.3.3 Adaptive Error Control

At the channel coding level, applications have several options to deal
with network errors, depending on the availability of time, buffer space
and back-channels. Applications can re-send missing data, either stored
in a sender-side buffer or re-generated on request. An application can
also add redundant packets to a stream or re-order packets to avoid
consecutive packet erasure during loss bursts. While there are good
surveys on this topic in [26] and [40], we will briefly summarise existing
error-control options in the following.

Robust Bitstream Packetisation One of the key concepts to achieve
reasonable error resilience in multimedia communications over packet
networks is the Application Level Framing (ALF) principle [54]. ALF

36

2 Background on Multimedia Streaming Systems

assumes that the application defines the unit of transport as Application
Data Unit (ADU) itself. Because a receiver can immediately process
successfully delivered ADUs, the application can effectively cope with
misordered or lost data. Hence ADUs become the minimum unit of error
recovery. When ADUs equal network packet, a loss can only destroy
complete ADUs, and all packets that are received are known to contain
data that can be processed independently of other packets.

RTP, for example, follows the ALF principle and defines packetisa-
tion rules [81] for mapping encoded bitstreams to packets that allow to
identify and decode a packet irrespective of whether it was received in
order or whether preceding packets have been lost. RTP suggests that
packet boundaries should match bitstream element boundaries and that
a codec’s minimum data unit should never cross packet boundaries. In
network-adaptive encoders such as H.264, this concept even influenced
the design of the coding layer.

Forward Error Correction (FEC) FEC schemes systematically add re-
dundancy to a packetised media stream to enable the detection and
correction of bit-errors and the reconstruction of lost packets at the re-
ceiver. Block-based FEC schemes apply a systematic block-code (e.g.
Reed-Solomon or Tornado codes [40, 82]) to a group of k consecutive
packets to obtain a block of n packets (n > k), whereas all n packets
contain modified payload. A receiver is able to reconstruct the k orig-
inal packets when it receives at least any k FEC packets of the group.
For a large k, block-based schemes can increase the overall end-to-end
delay because a sender must wait until £ original packets are available
while the receiver must wait until at least ¥ FEC packets are received.
Some FEC schemes can even become ineffective when loss bursts are
larger that (n — k) because then no data can be recovered at all. Be-
cause FEC only adds a low delay (for small values of k) and does not
require a back-channel it is attractive for conversational and multicas-
t/broadcast applications. Simple FEC techniques, however, introduce a
constant overhead that reduces throughput when the channel is relatively
error-free.

Unequal Error Protection (UEP) In order to increase the efficiency
of FEC-based schemes, several unequal protection schemes have been
proposed [83-86]. Unequal error protection assigns different amounts of
redundancy to bitstream sections of different importance in order to pro-

2.3 Network-adaptive Multimedia Streaming

37

vide different levels of error recovery. UEP schemes may, for example,
distinguish between different frame types [85], bit-planes and layers of
scalable streams [84] and multiple descriptions [86]. Finding the optimal
amount of redundancy is usually formulated as an optimisation problem
which considers the current channel conditions (loss rate, loss pattern
and available bandwidth), the importance of bitstream sections and the
dependency between bitstream sections. For reasonable performance,
UEP schemes require perfect knowledge about the channel conditions
or at least good estimations, which may be unavailable in fast fading
wireless channels. All schemes proposed so far consider a special en-
coding format or bitstream structure. A general model that addresses
the importance and dependency semantics across encoder families is still
missing.

Automatic Repeat Request (ARQ) ARQ schemes use retransmissions
to recover from lost or corrupted packets based on positive or negative
receiver feedback [87,88]. Although ARQ schemes are considered inap-
propriate for interactive applications because they add a considerable
delay (at least one round-trip time), they are a simple, efficient and
flexible solution for other streaming scenarios. Retransmission requires
sufficient buffer space at the sender to store stream data and at the
receiver to compensate for jitter introduced by the retransmit delay.

Re-sent data can either be the original version or completely new ver-
sion that supersedes the old. The sender may even choose to avoid
sending a retransmission when data is less important or a deadline has
passed. Because retransmissions are widely used at wireless link-layers,
content-awareness becomes especially important to ensure real-time de-
livery. Multiple selective or content-aware ARQ schemes have been stud-
ied in [89-92].

Hybrid Error-Control Schemes Hybrid schemes combine the benefits
of multiple error-control techniques to increase either their efficiency or
their robustness to certain loss patterns. Recall that the main prob-
lems of FEC were the fixed amount of redundancy and the sensitivity
to burst loss. Combined with ARQ, two general types of packet-level
hybrid FEC/ARQ exist [26]. The first uses FEC data in every trans-
mitted packet and retransmits a subset of the same packets when the
number of received packets is insufficient for reconstruction. The second
hybrid FEC/ARQ scheme adds no redundancy to the first transmission,

38

2 Background on Multimedia Streaming Systems

but sends redundant FEC packets in retransmissions instead of original
data. While the first scheme is attractive for single receivers and con-
versational applications, the latter has advantages for multicast groups
where some receivers observe shared loss while others observe individ-
ual loss in a group of packets. A single FEC packet is sufficient to let
all multicast receivers recover from an arbitrary lost packet per group.
Adaptive FEC/ARQ schemes [93-96] that consider channel state may
even further increase the effective throughput. Other hybrid schemes
combine FEC with packet interleaving [97,98] to overcome burst losses,
and adaptive FEC with selective drop [99] to optimally exploit available
bandwidth.

Packet Scheduling Although packet scheduling is complementary to
error-control schemes, the selection of a particular delivery schedule may
heavily influence the efficacy of error-control. Scheduling policies decide
whether, which and when to transmit or retransmit data packets over a
bandwidth-limited network connection.

A scheduler may choose to reorder packets to gain more time for
potential retransmission [1,100, 101], scramble or interleave packets to
improve resilience against burst loss [102,103] and drop packets after
their deadlines or when queuing capacity or CPU resources are ex-
hausted [104-106]. When retransmits are scheduled, it must be clear
that the retransmitted packet can still arrive at the receiver on time and
that the retransmit does not violate deadlines of subsequent, new and
more important packets. This leads to an optimisation problem, which is
often referred to as rate-distortion optimisation [1,107], because a packet
schedule is optimised to achieve a minimal expected signal distortion at
the receiver under a given rate constraint and an expected loss and delay
probability of the channel. A packet scheduler that consider time, rate
and signal distortion in order to selectively choose the best candidates
effectively combines optimal adaptive error-control with rate-control.

2.3.4 Adaptive Rate and Congestion Control

Adaptive rate-control is required to cope with the time-varying band-
width availability in best-effort packet networks. When the data rate
emitted by a sender exceeds the available bandwidth of a network path,
congestion and loss become likely. Hence, it is desirable to control the
rate of a data stream. Fairness and stability of the Internet relies on
rate-control performed at the end-hosts and hence, it becomes the task

2.3 Network-adaptive Multimedia Streaming

39

of the sender. Rate-control can be performed at the encoder level or at
the transport protocol level, depending on the application setting.

Encoder Rate-Control Encoders can either operate in constant or vari-
able bitrate mode. In the latter case, an encoder-internal rate-control
mechanism ensures either a fixed rate at any point in time (e.g. for every
frame) regardless of the source complexity, or an average but variable
rate. VBR streams may temporarily exceed the average rate when source
complexity is high or when intra-modes are selected.

Figure 2.3 shows a typical model of a video encoder. While the source
signal consists of equally sized frames at a constant frame-rate and bit-
rate, the encoder may generate a variable bitrate and even a variable
amount of data units per input frame. The bitrate can be controlled by
an encoder-internal rate-control mechanism. Live-encoders can directly
react to variable channel conditions, while offline-encoders must rely on
an approximation of the channel bandwidth.

Network Congestion-Control Transport protocols can either in addi-
tion or alternatively to the rate-control of an encoder shape the send-
ing rate by adaptively delaying data or by dropping data at buffer or
deadline limits. This is to ensure fair bandwidth sharing with other
flows in the network and to avoid congestion. The dominant congestion-
control method in the Internet is that of the Transmission Control Proto-
col (TCP) [108]. TCP uses an additive-increase/multiplicative-decrease
(AIMD) scheme which is not appropriate for media streams due to the
rapid decrease in sending rate when congestion is detected. Hence, sev-
eral approaches exist which try to be TCP-friendly on the one hand and

Constant | Encoder Variable |
Framerate | Bitrate |

i Controlled
trate

i ' Buffer v
ST TTTTTTH-——%) channel)

Coefficients

i >
Input Signal —¥ 3 Signal » Entropy
put =g | Encoder » Encoder
H Vectors

i i

Rate Control

Rate
Adaptation

Fig. 2.3 : Encoder rate control model [73].

40

2 Background on Multimedia Streaming Systems

media-friendly at the other [109,110,110-112]. Prominent examples are
equation-based schemes such as TFRC [59,113] that mimic TCP-like
behaviour, but provide a smooth sending rate.

Receiver-Driven Rate Control In receiver-based rate control, also known
as layered quality adaptation or receiver-driven layered multicast [55,
114], clients control their receiving rate by adaptively requesting the
server to add or drop layers from of a video stream or by adaptively
joining or leaving multicast groups where layers are broadcasted by the
server. Hence receivers can adjust stream delivery to their own capabil-
ities and to network congestion they infer from loss in the layers they
receive. Because layered quality adaptation is a coarse-grained adapta-
tion strategy (the number of layers is limited for efficiency reasons) and
because it requires a layered-encoded scalable bitstream it is not widely
used yet. Multicast rate-control is still an active research area.

2.3.5 Buffer Management and Synchronisation

Receiver buffers are used to compensate for delay jitter introduced by the
varying delay of best-effort networks, transport protocol scheduling and
retransmission schemes. In order to reconstruct the temporal relation-
ship between consecutive data units in a media stream, the output rate
of receiver buffers must be controlled. This task is performed by playout
schedulers (see [115] for a comprehensive survey) which either operate
at a fixed rate or adapt its rate to avoid buffer over- and underflows.
Synchronisation schemes can serve two purposes, intra-stream synchro-
nisation to reconstruct temporal relations between data units of a single
stream, and inter-stream synchronisation to coordinate the playout of
different streams or flows of a common stream [18,116].

Several buffer management schemes and playout schedulers have been
proposed for different environments and application constraints, such
as schemes that differentiate between talkspurts and silence in voice-
over-IP applications [117], schemes for wireless cellular networks [118],
and schemes that adaptively account for retransmissions while trying to
minimise the required end-to-end delay [119].

2.4 Conclusion

41

2.4 Conclusion

From the current state-of-the-art in packet-based multimedia stream-
ing we can draw the following conclusions. First, because the Internet
seems to be the network of choice for multimedia communications, ap-
plications must deal with unpredictable and variable bandwidth, delay,
and loss. Second, to achieve optimal quality in unstable network en-
vironments, streaming protocols increasingly rely on format-specific de-
tails of media streams. Moreover, optimal encoder performance requires
knowledge about the channel characteristics. Third, the number and
complexity of different streaming protocols is likely to overwhelm typi-
cal application developers. Programmers need simple abstractions and
application-centric semantics to cope with the complexity of multimedia
streaming. The current landscape of streaming protocols is too complex
for the typical programmer.

While protocol standards such as RTP were not designed to pro-
vide appropriate control mechanisms, the existing error- and rate-control
mechanisms and optimisation frameworks are often fixed to a single en-
coding format. Coordination between between media coders and trans-
port layers is performed in an ad-hoc fashion that bundles encoders and
protocols closely. This effectively circumvents reuse.

In response to these observations, we believe that a generic and content-
aware middleware layer is an appropriate solution. A middleware can
provide suitable programming abstractions and means to exchange nec-
essary information such as channel conditions from the transport layer
to the application and content-specific properties of data streams from
the application to transport protocols.

42

2 Background on Multimedia Streaming Systems

Chapter Three
Related Work

To steal ideas from one person is plagiarism;
to steal from many is research.

(Steven Wright)

The work presented in this thesis bridges the gap between approaches
from different research communities, the multimedia and systems com-
munity and the signal processing community. Hence, work related to
this thesis is found in the literature of both areas.

In this section we briefly discuss recent developments in stream-based
programming models and middleware platforms for distributed multi-
media systems. We also focus on recent developments of content-aware
media streaming protocols, importance estimation frameworks for media
streams and cross-layer design approaches for network protocol stacks.

3.1 Stream-based Programming Abstractions

Stream-based programming models and frameworks to support the rapid
development of stream processing graphs are popular in many informa-
tion processing areas, such as packet routing and filtering [120,121], data
mining [122,123], embedded systems design [124], and multimedia com-
munications [17,125-127].

Because all frameworks intend to decrease the complexity of creat-
ing and managing stream processing graphs, they share the concept of
composable modules, whereas composition is often expressed in a config-
uration language. Because components usually possess common stream
interfaces, they can be easily composed into complex processing chains.
Some connection semantics ensure data flow and call compatibility.

All component models for distributed multimedia systems provide
three kinds of abstractions: one for processing stages, another for con-
nections between processing stages and a third for transport units that

43

44

3 Related Work

flow through connections. Connections are often called bindings because
they effectively bind two stages. A binding usually hides protocols and
aspects of distribution from processing stages. Sometimes, an explicit
application-level end-point, either owned by a binding or by a process-
ing stage, is defined. Such end-points, often called ports, are used to
identify streams and to provide buffering and synchronisation. A single
port forwards a single media stream only.

While these frameworks are primarily concerned with graph composi-
tion and data flow management, they either lack remote interactions or
encapsulate them into special components, hiding the details of commu-
nication. This is in contrast to our middleware that exposes communi-
cation, control, and cross-layer coordination to applications.

Click [120] targets the domain of network packet processing inside op-
erating system kernels where it supports synchronous interactions based
on method calls. While elements can support push and pull interfaces,
Click ensures proper scheduling of activities and automatically checks
for errors that inhibit correct packet forwarding in a system configura-
tion. Multicasting is implemented by special components. The Click
architecture couples components closely by method calls and lacks re-
mote interaction because this is unnecessary in the intended application
domain.

Infopipes [17] extend the functional composition aspects by abstrac-
tions to explicitly control concurrency and by components that perform
remote interactions while completely hiding the complexity of network
protocols. Infopipes are a generic high level abstraction for concurrency
control in staged media streaming systems. Execution control is adap-
tively performed, based on dynamic observation and feedback. Infopipes
encapsulate network communication in special components.

Streamlt [125] is a framework that consists of a stream programming
language that allows a programmer to statically describe and connect
complex stream processing graphs and a runtime-environment where
adaptations of processing graphs are supported. Processing stages can
exchange streams as sequences of timed unicast and broadcast messages
through special inter-connection filters that may perform splitting and
joining.

Xtream [126] is a high-level framework that provides novel abstrac-
tions of communication channels for distributed processing of multiple,
not just continuous, media streams. Xtream channels establish loose
bindings between connected components, support synchronised delivery
and methods for automated selection of appropriate channel implementa-

3.2 Open Middleware Platforms and QoS-aware Middleware

45

tions based on desired semantics. Channels provide, however, no means
to perform monitoring or cross-layer coordination with protocols.
Although our middleware shares some abstractions with these frame-
works, we exclusively focus on content-aware delivery of data streams
across networks. While component-based frameworks strictly hide all
aspects of remote communication from their users to decrease applica-
tion complexity, we believe that network-adaptive applications and mid-
dleware that exposes dynamic characteristics of channels are the appro-
priate way to build multimedia systems for unreliable packet networks.

3.2 Open Middleware Platforms and
QoS-aware Middleware

The lack of QoS and multimedia support in object-based middleware
platforms inspired many research projects to explore ways for integrat-
ing these aspects into multimedia systems [128], multimedia component
frameworks [129] and open middleware architectures [10-12,37,130-133].
These platforms mainly focus on quality-of-service aspects, mobility and
adaptation issues. The main objectives are the hiding of complexity
imposed by distributed environments, QoS mechanisms and adaptation
procedures.

An early result of the research on open middleware was the defini-
tion of the Reference Model for Open Distributed Processing
(RM-ODP) [134] as ISO standard. RM-ODP provides a common and
abstract framework for distributed system platforms. It defines opera-
tional interfaces for RPC and RMI interaction styles, signalling inter-
faces for asynchronous event-based interaction styles, and typed stream
interfaces. The interaction model of stream interfaces is a flow which is
represented by a sequences of interactions. Unlike operational interfaces,
stream interfaces require explicit bindings. Bindings are encapsulated by
binding objects which allow for the control and inspection of the binding
and its QoS parameters.

A fundamental design decision of open middleware platforms is that
bindings can expose some details of their implementation. Reflection
concepts are used to infer the signatures of exported control interfaces
and adapt the middleware implementation to application requirements.
TOAST [10], for example, incorporates reflection concepts into bind-
ing objects to support adaptation on an architectural level. Reflection

46

3 Related Work

allows for inspection of objects, but also for fine-grained configuration
changes and even structural changes. Changes can range from altering
interfaces and the behaviour of objects or components to the complete re-
placement of components. Although reflection mechanisms are powerful
tools to investigate and monitor single objects, applications are required
to know the semantics of the inspected and altered object implemen-
tations. Hence, it remains a challenge to control and adapt advanced
streaming protocols, in particular the complex error-control and flow-
control mechanisms, by means of reflection alone.

Other middleware architectures specifically address quality-of-service
support in distributed computing that is not only targeted at multimedia
applications alone. The ACE ORB (TAO) [16], for example, explores
architectures and interfaces for hard-realtime and low-latency distributed
computing in general. TAQ’s architecture is mostly oriented on the
CORBA programming model and remote procedure calls. A multimedia
extension to enhance TAO [19] by media streaming following standard
recommendations does only deal with multimedia device control via RPC
rather than data transport via streaming protocols. Quality Objects
(QuO) [14,15] also aims at supporting QoS for RPC-style distributed
systems, but specifically develops techniques to adapt QoS for bindings
between remote objects at run-time.

There are similarities, but also important differences between this work
and ours. A multimedia streaming middleware can clearly benefit from
research results in real-time middleware support even if the basic interac-
tion patterns differ. There is, however, a fundamental difference between
RPCs and media streams that requires us to reconsider basic design de-
cisions for QoS and adaptation support. Media streams are not always
required to arrive at a sender without loss. Certain parts of a stream may
be lost in transit or dropped at the sender without considerably degrad-
ing application performance. RPCs, in contrast, require full reliability
which renders them much less appropriate for run-time optimisations.
Overall system efficiency may benefit from the additional freedom media
streams introduce. This comes, however, at the cost of extra optimisa-
tion models that need to select whether and when to transmit data units
in a stream.

3.3 Multimedia Middleware Platforms

47

3.3 Multimedia Middleware Platforms

While open middleware platforms support multiple personalities and
interaction semantics, the platforms discussed next are exclusively de-
signed for multimedia applications and multimedia data stream delivery.
The concepts of bindings and ports are often used by these platforms,
but most of them focus on special aspects only. DaCaPo++ [13], for
example, explores architecture support for flexible protocol composition
and security, Cinema [34] is concerned with intra-stream and inter-
stream synchronisation, MUM [43] concentrates on handover schemes
in mobile wireless networks. The difference to our work is, that these
middleware systems assume unstructured real-time media streams that
contain data units which are equally important. Hence, there is only
need to express packet deadlines rather than exploiting other content-
specific attributes during a streaming session. The mentioned systems
cannot support network-adaptive applications because they do not pro-
vide feedback about channel conditions.

DaCaPo—++ [13] is a multimedia middleware platform that allows
for the composition of streaming protocols from small building blocks in
order to support a variety of protocols and networking technologies. Da-
CaPo contains an efficient protocol execution engine, provides QoS-aware
resource management and security features. Protocols are organised as a
protocol stacks and applications access connection end-points of the top-
most protocol for data delivery. Applications may configure protocols
and build protocols stacks at session-setup time. Inspecting protocols at
run-time and monitoring transport channels is not supported. Although
the decomposition of protocols into small building blocks is promising
because it suggests that protocol functions are reusable, the actual com-
position of complex streaming protocols quickly becomes infeasible due
to their complex interactions.

The Network-integrated Multimedia Middleware NMM [20]
is an efficient and extensible platform for distributed media streaming
and control of multimedia applications. NMM uses explicit end-points
and bindings to connect stream processing stages, supports stream for-
mat negotiation and automated component instantiation. NMM defines
a combined transport and signalling protocol to deliver data units and
signalling messages. The control of remote components as well as remote
connection setup between two stream end-points is performed via remote
procedure calls. The interaction semantics and design of NMM are very
similar to our middleware approach, which shows that our communica-

48

3 Related Work

tion concepts seem to be a widely accepted solution among users. In
addition to the basic concepts of ports and bindings, our platform gives
programmers detailed control over binding semantics by decoupling as-
pects of error-control from interaction and topology management. In ad-
dition, our platform focuses on application-protocol coordination which
is not available in any of the above platforms.

Streaming server platforms such as NetMedia [135], Yima [136],
and the Darwin Streaming Server' provide solutions for the scal-
able delivery of pre-encoded data streams to multiple receivers. Besides
scalability, data placement on disks, and failover handling these systems
include protocol support for flow-control, congestion-control and par-
tially reliable delivery. NetMedia [135], for example, is a middleware for
on-demand scenarios and pre-encoded streams that runs on streaming
servers and streaming clients. NetMedia integrates network congestion
control with end-point buffer management and stream synchronisation.
Adaptation is performed in reaction to feedback mechanisms. While the
application scenario of these systems is on-demand delivery and a single
or a limited set of streaming protocols is available only, our platform is
capable of supporting arbitrary scenarios, delivery topologies, and pro-
tocols with a single abstract programming model.

Several other research middleware platforms target application-level
QoS management support as their primary objective. They are in-
tended to assist programmers and maintainers of large-scale distributed
multimedia installations to specify and control the QoS of components.
QCompiler [137], for example, is a high-level specification and transla-
tion framework that uses meta-data descriptions to express QoS require-
ments. A meta-data compiler generates translation modules that can se-
mantically negotiate QoS between components even if components have
diverse quality semantics. Spidernet [138] and Hourglass [139] aim at
the distributed composition of complex application functions based on
user preferences and resource availability. The basic difference between
these works and the work presented in this thesis are the level of ab-
straction and the time-scale at which decisions are made. While QoS
management focuses on application-wide service composition and oper-
ates at session scale, our work focuses on low-level protocol coordination
that considers single data packets or groups of packets.

Thttp://developer.apple.com/opensource/server/streaming/index.html

http://developer.apple.com/opensource/server/streaming/index.html

3.4 Closely related Multimedia Middleware

49

3.4 Closely related Multimedia Middleware

There are only a few directly related middleware approaches: Priority
Progress Streaming [104], Horde [140] and M-Pipe [141].

Priority Progress Streaming (PPS) [104] targets video-on-demand
streaming over the Internet. It combines a scalable video encoding for-
mat (SMPEG) with a priority mapping algorithm that is aware of SM-
PEG bitstream features. A content-aware scheduler uses the priority
information to drop unimportant data units when bandwidth availabil-
ity decreases. The importance of a data unit is calculated based on
(a) the type of the data unit (e.g. I, P, or B-frame), (b) the encod-
ing layer of the data unit (only spatial scalability is supported), and (c)
a user provided adaptation policy. The policy can either favour drop
in the temporal dimension which results in a lower frame-rate or the
spatial dimension which results in a lower resolution. Calculation is per-
formed over all data units in a scheduling window and usually resembles
the partial dependency order of units. The order is determined by a
drop-before relationship according to the dependencies generated by the
scalable video coder. The content-aware scheduler finally combines the
priority value with a deadline value to decide about dropping a particular
data unit at a given rate constraint.

This scheme very closely resembles the ideas behind rate-distortion
optimised packet scheduling (see section 3.5), except the fact that depen-
dencies between data units are used only. In this sense, PPS is similar to
our approach of calculating data unit importance based on dependency
relations. PPS differs, however, in the following points. First, PPS as-
sumes a fixed encoding format with a-priori known types and semantics.
Second, the structural information about dependency between data units
is only used during priority mapping. In contrast, the content-awareness
framework we propose in chapter 4 is independent of encoding formats
and allows to analyse dependencies in more ways than just to derive im-
portance. We explicitly extract dependency information and make the
dependency graph available to arbitrary algorithms.

M-Pipe [141] defines a framework for generic format-independent me-
dia adaptation of scalable media streams that is explicitly designed for
network layers or intermediate network nodes. M-Pipe uses cross-layer
coordination to signal properties of data units by explicitly labelling data
units with a layer-independent descriptor (LID) [142]. At connection
setup, a descriptor can be exchanged with lower layers to define oper-
ation points for later adaptation. The descriptor can contain a desired

50

3 Related Work

traffic class, packet drop preferences and error protection preferences.
This enables protocols to perform unequal error protection and expedited
forwarding of data units. The general idea of attaching labels to data
units is similar to the hinting concept in our content-awareness frame-
work. Our approach differs in the set of information that is contained in
labels. While M-Pipe defines attributes that express information for a
particular data unit only, we include information that can express rela-
tions between data units. Based on this information our framework can
detect if dependencies are satisfied and even if a required data unit is
missing (we introduce this concept as broken dependency later).
Horde [140] is a middleware architecture that supports flexible strip-
ing of flows over multiple network interfaces with cross-layer coordina-
tion. Horde applications can control striping and packet scheduling at
the transport layer by means of QoS objectives. QoS objectives express
the utility of data units for the application and a constraint on loss prob-
ability and latency. Horde supports separate objectives for data units of
different types, such as I, P and B-frames in video streams. To increase
usability, the objectives are expressed in a description language at design
time of an application. At runtime, a packet scheduler considers the cur-
rent channel state (loss ratio and delay) as well as the application-specific
utility of data units in its decision. Packets are only sent over a particular
channel when the channel meets the desired objectives. Because finding
optimal solutions based on such objectives becomes computationally im-
practical, the utility-based packet scheduler uses windows (transmission
slots) to lower the complexity. Again, the concept of using relations be-
tween data units is similar to our approach. However, Horde restricts
itself to MPEG-like stream structures of I, P, and B-frames, while our
content-awareness model is able to express arbitrary relations and even
groups of data units that belong to the same frame, layer or description.

3.5 Content-Awareness in Streaming Protocols

Different properties of media streams are used to perform content-aware
tasks in advanced transport protocols. Examples are the importance of
data units, the dependency pattern between data units and the signal
distortion generated when a data unit is lost. Importance metrics can
be used to select whether and when to transmit and repair data units
and which amount of error protection to add. Rather than streaming
the packetised media in a fixed sequence according to presentation time,

3.5 Content-Awareness in Streaming Protocols

51

a sender can choose a different transmission policy that favours impor-
tant data units while maintaining a transmission rate constraint. More
important data units can even be pre-transmitted far in advance of their
presentation time, while less important data units are transmitted later
or not at all. In the following we give a brief overview of recent ap-
proaches to increase robust delivery of media streams over best-effort
packet networks:

Content-aware protocols require a notion of data importance to effi-
ciently protect data units from transmission errors. Based on this infor-
mation, protocol mechanisms have been proposed that perform selective
drop [104, 105], packet interleaving [102,103], unequal error protection
and forward error correction [78,84,86], packet scheduling and selective
retransmissions [1, 89, 143] as well as priority mappings to Quality-of-
Service classes [144,145]. These protocol schemes have shown that the
overall signal quality at the receiver significantly improves when informa-
tion about expected channel errors and the contribution of a data unit
to the reconstructed signal’s quality is available at transmission time.

Some approaches in the literature deduce the importance of data units
directly from their types [145, 146] or the position of a frame in the
group of pictures [100,104]. While such static classification schemes are
state-less and easy to implement, they lack a loss history, cannot predict
the importance of lost data units and the conditional importance in
fragmented and multiple description streams. Our content-awareness
framework supports these features.

TIsovi¢ proposed QAFS [147], a Quality-aware Frame Selection Al-
gorithm, used for skipping frames during decoding of MPEG-2 streams
in order to achieve guaranteed decoder runtime on resource-constrained
systems. QAFS estimates the importance of frames according to multi-
ple properties, such as the frame type, the frame position in the GOP,
the frame spacing, size and buffering constraints. The lowest importance
is assigned to (small) B-frames because they are not used as references
in MPEG-2 and they contain less information. While QAFS is targeted
at MPEG-2, the assumptions of fixed GOP structures and known depen-
dency patterns do not longer hold for advanced encoding schemes such
as H.264, MDC, FGS and SVC.

The most prominent technique is the Rate-Distortion Optimisa-
tion model (RaDiO) [1], that formulates the packet selection problem
as a multi-parameter optimisation problem. Various R-D models have
been proposed in the literature [2,93,105,148-153]. They usually assume
knowledge about dependency relations in the stream and often also the

52

3 Related Work

error-concealment strategy used at the decoder. R-D models rely on
distortion metrics which are defined in the signal domain. Distortion of
a data unit expresses how much noise is removed from a reconstructed
signal when the unit itself is available for decoding. Although distortion
metrics are known to produce accurate importance estimations, obtain-
ing distortion values is expensive. That is because distortion is usually
calculated as the mean squared error (MSE) between an error-free and
an erroneous reconstruction of a signal. These calculations are expensive
because they require multiple decoding simulations with different loss
patterns for every single data unit. In real networks individual loss af-
fects network packets, but it depends on the packetisation scheme which
application-level data units are actually lost. Authors usually abstract
from packets by considering loss at the frame-level [89,105,143,148] or the
macroblock level [144]. Still, the computational complexity of RD models
is high. In order to limit the complexity several approximation models
have been proposed [148-150], which are known to yield acceptable re-
sults. Inter-frame dependency for RD-models is modelled as a directed
acyclic graph (DAG) [154, 155] or as partially ordered set [102, 104],
whereas both notations are convertible. Réder et. al. [155] show that
rate-distortion optimisation is NP-hard and extend the work of [1,150] by
branch-and-bound that are more efficient and that surprisingly generate
more precise packet schedules.

Although distortion models are known to yield accurate importance
estimations, some problems remain. First, each R-D model is specialised
for a single encoding format and a specific concealment scheme. In sev-
eral scenarios information about employed concealment at a receiver is
either unknown or differs between receivers (e.g. broadcasting and mul-
ticasting setups). Second, dependency structures of modern encoding
schemes are no longer fixed. Instead, an encoder is free to choose the
most suitable reference pictures and when feedback is available, the en-
coder may even adapt the reference picture selection to the observed loss
pattern. Third, the abstraction from packetisation rules is inappropriate
especially for streams at high spatial resolutions that tend to have data
unit sizes which are even larger than a datagram payload size allows.
Because these problems limit the utility of R-D models in such envi-
ronments, an extension is required. Our generic dependency framework
presented in chapter 4 can serve as such an extension because it considers
fragmentation and dependency relations of arbitrary encoding formats.
It can be easily integrated into R-D models because they model depen-
dency as a discrete operator without assuming implementation details.

Chapter Four

A Framework for Content-Aware
Media Streaming

Prediction is very difficult, especially
if it’s about the future.

(Niels Bohr)

In this chapter we develop and analyse a content-awareness framework
that enables system layers to access importance distribution and struc-
tural properties of data streams. Although the framework is principally
designed for continuous multimedia streams, it is not restricted to this
application class or a particular encoding format.

We start this chapter with discussing the utility of content-awareness
in system layers and present general observations about properties of
media streams that may be exploited for content-awareness. Based on
these observations we construct a dependency model that can validate
the structural integrity of streams and estimate the importance of data
units in streams. We propose a description language to express static
properties of dependency patterns and present a prototype implementa-
tion of a validation and estimation service that can be embedded into
applications and system layers.

Extensive simulations with real video streams encoded with different
dependency structures reveal that dependency-based importance com-
pares well to traditional distortion metrics. Performance results indicate
that the prototype of our model can estimate importance values of sev-
eral complex and up to thousands of simple streams concurrently in
real-time in a realistic packet-scheduler scenario.

53

54

4 A Framework for Content-Aware Media Streaming

4.1 Content-Aware System Layers

We are basically concerned with improving efficiency and robustness of
streaming in layered communication architectures. Our main idea is to
share certain information about content-specific properties of requests
and data units between applications and network protocol layers because
this would allow protocols to perform more educated error-control and
scheduling decisions. Surely, not every protocol layer would understand
application information or can care about it for scalability or layering
reasons. Hence, we are looking for a generic way of passing information
without changing layering assumptions of protocols.

Therefore, we choose to extend protocol stacks by facilities to pass
meta-data as hints to lower layers [156, 157]. Hints are a conceptual
extension to normal data passing calls which add a pre-defined set of
meta-data to every payload data unit. The meta-data is forwarded be-
tween protocol layers along with the payload when a call is processed.
Hints are optional, that is if a hint is used at some layer to perform
scheduling or error-control operations, the application may benefit from
extra robustness and efficiency. If a hint is not used, the application gets
the same service as if no hint was given at all. Any protocol layer is free
to access and copy hints. Unaware system layers can safely ignore and
even drop hints without breaking application assumptions. This seman-
tics is in accordance with the end-to-end argument [158], which states
that applications may make no assumption about whether, where and
how a function is actually implemented at lower system layers. Thus,
hints do not increase system complexity or jeopardise robustness and
security which makes them an efficient and safe alternative to dynamic
extension mechanisms [159, 160].

Although this thesis uses hinting to enhance network processing, hints
are not only applicable to protocol stacks. They may be used by any
system layer that directly or indirectly processes application data and
requests, such as filesystems and I/O devices. As an example consider
current filesystems. They treat data units in media streams equally. At
most they employ per-process or per-file heuristics to adapt caching and
prefetching behaviour. Content-awareness would enable a storage stack
to use per data unit hints to improve disk layout and adapt request
scheduling policies. A content-aware disk scheduler can, for example,
skip reading unimportant data units when a stream is fast forwarded or
replicate important data units for faster read access.

In the following we assume that data units in a media stream are un-

4.1 Content-Aware System Layers

55

equally important, because some contain essential and others optional
data. Unaware network protocols would treat all data units equally,
basing scheduling decisions on system wide fairness or throughput ob-
jectives. A content-aware protocol layer would in addition to these objec-
tives use the different importance values attached to data units to priori-
tise essential data and probably drop optional, less important data. Such
adaptive services are in particular useful when applications are partially
tolerant to the loss of some data such as video streaming applications.
Consequently, system-level schedulers gain more degrees of freedom for
their scheduling decisions and applications may experience increased ef-
ficiency, improved response times and improved error resilience.

A special class of adaptive and partially loss-tolerant applications are
digital multimedia streams, in particular because the importance in such
streams is unequally distributed. Importance in media streams is a dy-
namic and multidimensional property. It depends on the amount of sig-
nal information contained in data units rather than the number of bits.
Importance is also influenced by the dependency between data units, the
loss history experienced by a stream receiver and the deadlines of data
units. For example, units that contain essential information that is ref-
erenced by many other units are more important, while unreferenced or
late units are less important. A content-aware communication stack can
exploit these properties to perform one or more of the following tasks
more efficiently:

Adaptive Packet Scheduling: Content-awareness enables a scheduling
policy to access which impact a particular drop or scheduling deci-
sion has on subsequent data units and on the application-perceived
quality. Packet schedulers that select data units for transmission
and retransmission in priority order rather than encoding or display
order can increase the probability of successfully delivered impor-
tant data units in favour of unimportant units. Similar effects are
achieved by selective drop policies [104] which systematically dis-
card data units to handle missed deadlines, buffer overflows and
network congestion.

Selective Error Control: Content-awareness enables transport protocols
to become selective and more efficient when performing retransmis-
sions, packet interleaving, and forward error correction [3, 22,23,
83]. Error protection can systematically add more redundancy to
more important data units while content-aware packet interleaving

56

4 A Framework for Content-Aware Media Streaming

can reorder adjacent packets of high importance to reduce damage
imposed by burst-loss. Retransmissions can become selective, i.e. a
protocol can decide whether, when and how to retransmit a data
unit based on dependency, importance, and deadlines.

Priority Mapping: Quality-of-Service based networks already allow ap-
plications to specify an appropriate service class for their traffic
to enable expedited transport. Content-awareness can be used to
classify data units individually, rather than per connection. An ap-
plication can associate dependency information, importance values
and deadlines at the packet level while priority schedulers at lower
protocol layers are able to assign resources more efficiently and
adapt scheduling decisions to the actual packet content (e.g. [103]).

Content-Aware Scaling: Wireless networks, multicast environments and
mobile devices impose resource and connectivity restrictions on
streaming applications. Different receivers may have different dis-
play resolutions and are likely to observe variable network condi-
tions. Scalable encoding schemes already enable applications to
deliver a single bitstream to a diverse set of receivers, while the
actual adaptation of the stream is performed at active network el-
ements, such as wireless base-stations and proxy servers. Content-
awareness allows to design such in-network scaling services inde-
pendent of particular data formats (e.g. [104]).

We do not intend applications to attach arbitrary meta-information
as hints, because this would require additional coordination between
layers to negotiate the semantics of hints. Instead, we identified general
parameter sets for the domain of real-time media streaming. Before
we are going to discuss these parameter sets, we first define general
requirements a parameter must fulfil to be useful in hints.

4.2 Objectives and Challenges

A variety of information about data units in media streams can be used
for content-awareness. There are, for example, structural information
about data unit types and dependency relations, timing information
such as deadline, duration and synchronisation points, as well as error-
resilience information about important and unimportant bits in a data

4.2 Objectives and Challenges

57

unit. As a first step towards content-awareness, we develop a depen-
dency model which focuses on structural properties, in particular, the
dependency relations between data units. Our model will provide a
generic mechanism to track dependency between data units and infer
their dependency-based importance. Since time and error resilience is-
sues are orthogonal to dependency, we will integrate them later.

The main objectives of the dependency model are structural validation
and importance estimation at a very low computational costs. Our main
requirements are:

Format Independence: In order to serve as a universal foundation, the
dependency model must be able to track the complex dependency
patterns found in media streams regardless of the stream format
and the packetisation level (e.g. video objects, frames, slices, or
network packets).

Purpose Independence: The dependency model must be generally ap-
plicable at different system layers of stream senders, receivers and
proxies. The model must not make assumptions about available in-
formation which cannot be met by a particular layer. In addition,
the model should not make assumptions about the usage pattern,
in particular, about when and in which order data units become
visible and when and how often estimations are required because
this may differ between the various modules of streaming protocols
such as scheduling, error protection, fragmentation, and scaling.

Efficiency and Predictability: Since media streaming systems operate
close to the resource limits the additional costs for dependency
tracking and reasoning must be justified by the gains. Costs arise
from the amount of initialisation data which is exchanged prior to
a stream, the amount of extra meta-data attached to data units,
and the computational overhead of dependency tracking and im-
portance estimation. Since many media streaming applications are
delay sensitive, the dependency model must not introduce unpre-
dictable delays to protocol processing and stream forwarding.

Robustness: The framework must be robust against loss of meta-data
due to uncontrolled packet loss (isolated and burst loss), controlled
packet drops and packet reordering. The framework may give
weaker information due to incomplete knowledge, but must recover
quickly as more data becomes accessible.

58

4 A Framework for Content-Aware Media Streaming

Instead of inferring the importance of data units from their contri-
bution to signal reconstruction quality as done by traditional distortion
metrics, our model estimates importance based on dependency between
data units alone. This significantly decreases complexity, but may also
yield less accuracy compared to existing solutions. In the evaluation we
will show, which effects actually contribute to a decrease in accuracy.

Dependency tracking is challenging, since the network may lose and re-
order packets and future references may be invisible. One might wonder
why we even aim to model dependency when there is another obvious and
simple solution for expressing importance. Similar to selecting a traffic
class in a multi-QoS network, one might attach a static priority value to
each data unit and select a corresponding policy at the transport layer
for unequal error protection and packet scheduling. Simple types of this
feature are supported in H.264/AVC as ref_idc values and in JPEG2000
as discardable flags. While this approach seems simple and sufficient, it
ignores that importance in media streams is relative between data units
and varies with the context. Data unit importance dynamically depends
on deadline and size, the availability of other data units, and the history
of already transmitted or lost units. Data units become, for example,
useless if they miss their deadlines or if a unit containing referenced
data is lost. A static solution, where priority is deduced once from data
unit types yields results which are far more imprecise. In contrast to
static solutions, importance estimation requires a dynamic solution that
tracks at least dependency and transmission history and optionally even
content-based distortion values. This chapter presents such a solution
and shows that it is efficiently implementable.

4.3 Structural Properties of Media Streams

The aim of our content-awareness framework is to support the reason-
ing about dependency relations and importance distribution in media
streams. In order to sufficiently understand the problem domain and
available design options, we will first concentrate on general properties
of different streaming formats.

4.3.1 Quality and Distortion

A common technique to obtain the actual importance of data units in
media streams is to measured or estimate the expected distortion when a

4.3 Structural Properties of Media Streams

59

particular data unit is lost. The distortion defines the difference between
a reconstructed signal and an error-free reference signal. Often, the
mean squared error (MSE) metrics is used to quantify the distortion.
Because from the point-of-view of the transmitter the real distortion at
the receiver is unknown (it depends on the actual packet loss pattern in
the channel and the employed error concealment strategy at the receiver)
a transmitter can only approximate the distortion, while a receiver sees
only one of many possible reconstructed sequences, depending on which
packets are actually lost. Therefore, the actual distortion at the receiver
does not necessarily equal the expected distortion, but averaged over all
possible loss realisations, expectations become statistically reasonable.

Several methods for calculating the expected distortion do exist. They
either accurately compute the per-pixel distortion or use models to esti-
mate it [1,148,149,161]. Although distortion metrics are known to yield
perfect importance estimations, obtaining distortion values is expensive.
It requires multiple channel simulations and is limited to pre-encoded
content [162]. Hence, models are used to approximate the real distortion
values [107]. Distortion models often assume special encoding and con-
cealment schemes, fixed dependency structures, and a one-to-one map-
ping between encoded data units and transport units. This limits their
utility to special stream classes and network environments. Although
current distortion approximation models have low computational com-
plexity, several assumptions made by the models do not easily translate
to real system environments:

e Most distortion models assume a fixed concealment method, but
the actual method employed at the receiver is typically unknown
in real settings. In multicast and broadcast scenarios, the conceal-
ment method may even differ between individual receivers.

e In order to remain tractable, distortion models assume one-to-one
mappings from application-level data units to network packets. Re-
silient delivery of media streams over packet networks requires,
however, proper fragmentation of data units. Our experiments re-
vealed that even at very small resolutions (QCIF), encoded video
frames require fragmentation because they become larger than the
network MTU size. In this respect, distortion models abstract too
far from reality.

e Existing distortion models also abstract from actual dependency
relations, but they provide no general means to express and track

60

4 A Framework for Content-Aware Media Streaming

dependency patterns. Usually the existence of a mapping function
is used to determine predecessors of a data unit is assumed. Be-
cause advanced video coding schemes contain an increasing number
of features that generate irregular dependency patterns (e.g. adap-
tive reference picture selection, adaptive intra-refresh and weighted
prediction) a dependency tracking model is even required by tra-
ditional distortion models to implement this mapping.

These practical problems indicate, that although distortion is a perfect
measure for obtaining the importance of data units, a practical content-
awareness framework requires a low complexity alternative. A promising
approach is the tracking of dependency relations in media streams be-
cause dependency is the main reason for error propagation in predictive
coded sequences.

4.3.2 Dependency Relations

Multimedia streams are continuous and strictly ordered sequences of
logical data units [163]. While timing and order of these data units is
a property of the contained audio-visual information itself, dependency
between data units is introduced by encoding techniques. Although our
primary focus is on structures that were generated by predictive block-
based video encoders, we regard dependency as a general concept that
may equally apply to other encoding schemes, such as wavelet encoders.

Multimedia encoding standards define data units as instances of types,
based on a format-specific type hierarchy. H.264/AVC [27], for example,
defines seven types at the slice level (I, P, B, EI, EP, SI and SP-slices)
while MPEG-4 Visual defines three types of arbitrary shaped video ob-
jects (I, P, B-VOPs). Each video frame (or picture) may consist of
multiple slices or video objects, and multiple frames are again combined
into picture groups'. These recursive patterns are continuously repeated
within a sequence. Sometimes, dependency can only be expressed across
several abstraction layers as in H.264/AVC. Even if the unit of processing
and packaging is a slice in H.264/AVC, predictive encoding introduces
dependencies between a slice and preceding reference pictures. When
pictures are composed of multiple slices, each slice effectively depends
on all slices that contain data of referenced pictures.

IThe Group-of-Picture (GOP) concept was originally introduced by MPEG-1 as a
structural composition element. Later standards superseded it, but because of its
expressiveness it remained in use for illustration purposes.

4.3 Structural Properties of Media Streams

61

[\

/\\ |
X
N\

@ I-Frame @ ByFrame @ B,-Frame @ B,-Frame @ B;-Frame

(©)

Importance

Importance

e

N
T

N
T

thﬂ

L

0 5

(b)

flleJH

1
Frame Sequence Number

20

N & o ®

mmm

trreee

10
Frame Sequence Number

(d)

Fig. 4.1 : Examples for 4.1(a) a traditional I-P-B structure and 4.1(c) a pyramid
structure used for temporal scalability in H.264/SVC. Figures 4.1(b) and
4.1(d) display the dependency-based importance values per frame.

]] :
- [[i

1 3[4 = Sl — B - ==
| i i

/56 H | HEE =
@] o |
' !] |

I-Slices P-Slices B-Slices P-Slices
(OsPS NALU (D PPS NALU (D IDR NALU @ non-IDR NALU

(a)

1.«_3©4g
/{35 6§i

=~
i

o

I-Slices P-Slices

() SPS NALU

(©)

Fig. 4.2 :

B-Slices

P-Slices

@PPSNALU (@ IDRNALU @ non-IDR NALU

Importance

Importance

&

5

s o

—e unequal group semantic|
. —k equal group semantic |4

s

10

;*tgtl;;j

¢

Data Unit Sequence Number

(b)

N oA o ®

Ui,

—k wiloss
—@ wioloss [

10
Data Unit Sequence Number

(d)

1]

Examples of fragmented H.264 streams: In 4.2(a) H.264/AVC NAL units

contain equally important fragments (slices of one frame). In 4.2(c) mutual
refinements of a single frame are encapsulated into multiple NAL units.
When a unit is lost, the remaining group members become more important
(e.g. when units 5, 6, and 10-13 are lost, the importance of units 1-4, 7-9,
and 14 proportionally increase with the number of missing group members.
Figures 4.2(b) and 4.2(d) display the dependency-based importance values.

62

4 A Framework for Content-Aware Media Streaming

Efficient encoding techniques introduce increasingly complex depen-
dency relations between data units. Figure 4.1 displays two popular ex-
amples of such structures. In MPEG video (fig. 4.1(a)) predicted frames
can depend on intra-coded frames and other predicted frames, while
bi-directional predicted frames are never used as references. Hence, B-
frames can be lost or dropped without severe quality degradation, while
lost I/P-frames have much larger impact on reconstruction quality dis-
tortion. Figure 4.1(c) shows a multi-level dependency structure for tem-
poral scalability. Here, B-frames form a pyramid-like tree that generates
evenly spaced gaps when dropping one or more hierarchy layers during
scaling.

H.264/AVC (fig. 4.2(a)-4.2(d)) fragments stream data into slices, packs
slices into Network Adaptation Layer Units (NAL units) and defines
bi-directional, multi-picture, weighted dependency and long-term rela-
tions [164]. Here, groups of NAL units may have a similar type while
they contain information of different importance and dependency. More-
over, all the NAL units of a single frame may depend on all NAL units of
another frame. Partitions of different importance can be generated and
transported in NAL units of different types. The H.264 joint-scalable
video coding extension (SVC) goes even further and introduces refine-
ment layers in multiple dimensions (spatial, signal-noise ratio, and tem-
poral refinement layers).

An important observation about dependency in media streams is that
bitstream layouts avoid backward-dependency loops to keep decoder
complexity and memory management costs low. Even if future frames
(in display order) are used as references during encoding, a coder re-
orders the data units so that referenced frames are sent prior to de-
pending units. This concept is known as the stream’s transport order.
Hence, dependency relations always form a directed acyclic dependency
graph [153], which is an important mathematical property exploited later
in our dependency model because this allows us to easily follow depen-
dency relations between data units.

Dependency is a central property of media streams that directly affects
the importance of data units. The more units depend on a given data
unit the more important it becomes for the reconstruction of the original
signal. This is because if the referenced unit is lost, the resulting recon-
struction error propagates to all depending units. Figures 4.1(b), 4.1(d)
and 4.2(b), 4.2(d) display examples for importance value distributions.
The first data units in a GOP are the most important ones because all
subsequent units use them as references.

4.3 Structural Properties of Media Streams

63

So far, we intuitively used dependency to describe that the existence of
one data unit is essential for processing a related unit. This is sufficient
when data units contain complete frames, but fragmentation, data par-
titioning and multiple description coding (MDC) [165] require different
semantics. Consider the above mentioned H.264 example, where each
slice depends on all slices of a referenced picture. All slices are equally
important here, because every slice contributes to the frame’s quality.
MDC, in contrast, splits the encoded signal of each frame into groups of
independently decodable units, called descriptions. The relation between
those descriptions is a mutual refinement rather than a unidirectional ex-
istence requirement. In such schemes, every data unit of a description
group contributes a small amount to the increase in fidelity of the re-
constructed signal if present at decoding time. If absent, the remaining
descriptions become more valuable because at least a single description
is necessary to decode a signal at all. Figure 4.2 shows how importance
dynamically changes if losses occur in such streams. In order to express
dependency relations in fragmented streams we will later use the con-
cept of groups to combine fragments and group semantics to specify a
particular relationship inside a group.

Often, dependency is a fixed property of data unit types. Here it is
sufficient to infer the actual dependency between data units implicitly
from their type. In contrast, adaptive encoding schemes that generate
dependencies based on content-specific attributes require explicit depen-
dency relations per data unit. Type-based dependency is still a necessary
requirement, but alone it is no longer sufficient. Figure 4.3 displays two

Static Type-based Importance Distribution 100 Dependency-based Importance Distribution

i

Importance Value (ref_idc)
Importance Value
a
g

100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900
NALU Sequence Number NALU sequence number

(a) (b)

F

g. 4.3 : Static and dynamic importance distribution in a typical H.264/AVC bit-
stream at HD resolution and with robust slice partitioning. 4.3(a) shows
the static type-based priority (the H.264 ref_idc values) while figure 4.3(b)
displays the dependency-based importance of the same stream.

64

4 A Framework for Content-Aware Media Streaming

importance distributions for the same H.264/AVC stream, one based
on static ref_idc information in NAL unit headers (left) and another
that displays dependency-based importance between the same NAL units
(right). Note that ref_idc values are expressed in two bits only and that
a value of three denotes the highest importance. Dependency-based im-
portance is, in contrast, more fine-grained, but similar to H.264/AVC it
defines zero as the lowest value too. From this example it becomes ob-
vious that static values can hardly express the real importance of data
units. We could have alternatively chosen the NAL unit type to in-
fer static importance values, but the picture would remain the same,
because H.264/AVC defines only two different types to carry encoded
picture data (see also section 4.7.2).

Dependency relations can span considerably large sections of a stream
such as several GOPs or even the total sequence. Consider, for exam-
ple, stable background images or sequence and picture parameter sets
in H.264 [49]. While all frames in the complete sequence rely on their
information, they are either sent once at the start of the sequence or
they are repeated as in DVB. We call such dependency relations long-
term references. Because long-term references can be referenced by any
subsequent data unit, a decoder must store them until the sequence ends
or they are explicitly updated or removed. Because long-term references
increase storage requirements for decoders their number remains typi-
cally small. H.264 assumes a maximal number of long-term references
which is defined at stream start-up time. Implementations often limit
this number to 16 frames and a small number of parameter sets. In con-
trast, short-term references span only a limited distance within a stream,
such as a single GOP. We call the maximum of this dependency distance
the dependency radius. It will be defined later for every data unit type.

The dependency radius of types is usually limited to small sections of a
complete sequence. There is, for example, no dependency across distant
GOPs and only limited dependency between frames in adjacent GOPs in
MPEG-1/2/4 (the last B-frames of an open GOP in MPEG video depend
on the first I-frame of the following GOP). Even within a GOP there is
limited dependency between frames. Consider, for example, MPEG-2
B-frames which may depend on the last and the next P-frame, but not
all P-frames in a GOP. These restrictions will later become useful for
constraining relations in our model.

An important observation in real streaming systems is that the depen-
dency radius usually encompasses data units on distinct processing nodes
in a network. Especially when very low delays are required or buffers

4.3 Structural Properties of Media Streams

65

are limited, one data unit may already have been decoded and displayed
at a receiver node, while dependent units are still generated by a sender
node. Consequently, it is desirable to decouple actual stream processing
from reasoning about dependency. Therefore, we clearly distinguish be-
tween data units and meta-data about them. Meta-data can be stored
and processed separately without delaying data units. This enables us
to keep historical information about the stream without requiring the
actual payload to be available anymore.

4.3.3 Visibility and Predictability of Structure

In real systems the visibility of data units is limited, either because a
stream is generated live or data units are dropped, reordered or lost,
either intentionally or by random packet loss. A sender is only aware of
data units that have been already generated while a receiver can only
have information about successfully received units. Type and depen-
dency of lost and future units is unknown, we call it invisible. Figure
4.4 depicts the concept of visibility from the viewpoint of an arbitrary
stream processing stage such as a streaming server, proxy or client ap-
plication. We call the section of the stream between the earliest and the
latest visible data unit the horizon [166].

Ideally, the horizon is continuous, but in practise it contains gaps due
to drop, loss or reordering of data units. As time advances, new data
units become visible to the processing stage while old data units are
removed from the horizon due to resource restrictions.

When a data unit is lost, the missing information causes signal re-
construction errors, that may propagate to subsequently predicted data
units. In order to track error propagation effects in dependency chains
we introduce the concept of broken dependency. Broken dependency re-
flects the situation that at least one transitive predecessor of a data unit
in the dependency chain is missing, but it does not unveil the reason
why it is missing.

Invisibility creates uncertainty about the real properties of data units,
including their type and their actual dependencies. For this reason lost
data units and unknown future units may influence the accuracy of our
dependency model. We will later discuss relevant effects in section 4.9.
Hence, it is desirable to predict importance or dependency. While impos-
sible in general, prediction is feasible under certain constraints discussed
in detail in section 4.6.2. Here, we use three main classes of stream
formats that differ in their predictability properties [166]:

4 A Framework for Content-Aware Media Streaming

[visible data units

Processing Stage [invisible data units
(Observer)
Horizon
visible dependency
Future [ﬁ/' Past
T T T T Tee[[T [[T 14
\bruken P y /

. P y n
hidden dependency longer important

<« Time

Fig. 4.4 : Visibility of data units and dependency relations.

Strictly predictable streams contain only data units for which type and
dependency is predictable from sequence numbers, regardless of the
horizon. While such streams are restricted to a fixed structure,
they benefit from perfect importance estimation that is indepen-
dent of visibility. Even dependency and importance of lost data
units is perfectly reconstructable. Examples of strictly predictable
stream formats are Digital Video (DV) and certain MPEG pro-
files with fixed GOP structures (e.g. MPEG-2 for Digital Video
Broadcast - DVB, or MPEG-2 studio profiles that utilise I-frames
only).

Limitedly predictable streams possess dependency patterns that may
be variable, but known before data units become visible. This can
be accomplished by embedding dependency information into the
stream prior to the involved data units or by specifying predictable
properties for a subset of types (e.g. every 12th frame is intra-
coded). While options for limited predictability are manifold, we
consider it a subject to future work and concentrate on strictly and
unpredictable streams in this work.

Unpredictable streams have the less favourable property that static types
are no longer sufficient to express actual dependency. Instead, de-
pendency is defined as a dynamic property of data units. Most
of the advanced video coding features in H.264/AVC [27] generate
unpredictable dependencies. Examples are adaptive reference pic-
tures, adaptive intra-refresh and variable slice modes. Because of
their efficiency and superior error-resilience, unpredictable streams
are widely used in lossy packet networks.

4.4 Modelling Dependency Relations

67

As a consequence to this classification, it becomes apparent that ob-
ject types are not always sufficient to express actual dependency. Hence,
we need to model both, static type-based dependency and dynamic data-
unit-based dependency. In the remainder of this thesis we call it object-
based dependency to reflect the well-known relation between types as
templates and objects as specific instances of types. The type in unpre-
dictable streams merely defines the set of potential dependency relations.
Hence, type-based dependency is just the necessary and object-based de-
pendency the sufficient property there.

4.4 Modelling Dependency Relations

The purpose of dependency modelling is to capture data unit relations
as well as the unequal and dynamic importance distribution in media
streams in real application environments. To reach this goal, we first
define the abstract core foundation of our dependency model in math-
ematical terms in this section. Later, we enhance the core by practical
features and high-level operations to deal with special format properties
and real environments. For example, in the core model we assume that
senders and receivers have perfect knowledge about the past and future
of a stream. Later, we introduce tools that assist in predicting invisible
structure and dependencies.

4.4.1 Type-based and Object-based Dependency

In our core dependency model we define objects to abstract from data
units. Objects are instances of types and the function otype : O +— T ob-
tains the type ¢ of an object o, with O being the set of all objects defined
for a particular stream and T being the set of object types defined for
a particular stream format. To express dependencies between types and
objects we use graphs as mathematical framework. Type-based depen-
dency is typically known prior to stream creation, while object-based
dependency is unknown until a stream is actually created. Hence, we
define a static graph for type-based dependency, the type graph G, and
a dynamic graph for object-based dependency, the object graph Go.
The type graph is an attributed and directed graph Gr = (Vp, ET)
which may contain parallel edges, loops and cycles. As shown later, we
require these properties to express the type relations found in current
and future encoding formats. The vertices Vp represent the set of object

68

4 A Framework for Content-Aware Media Streaming

types t € T of the particular format and the edges Ex C {Vp x Vp},
represent static dependency relations between those types. Note that
due to parallel edges, the set E is actually a multiset. Relations in the
type graph are uni-directional. They exist between exactly two types.
Vertices may contain additional attributes to store extra information
used in operations on the type graph, while edges may contain attributes
to express relation constraints. Attributes are modelled as edge and
vertex labels.

The object graph Go = (Vo, Eo) is a directed attributed and acyclic
graph (DAG). The set of vertices Vo represents the objects 0o € O and
the set of edges Ep C Vi X Vo represents dependency relations between
those objects, such that (v,,v,) € F iff object o' must be decoded in
order to be able to decode object o (in other words: object o depends on
o' while object o' is a reference for 0). Each vertex can contain additional
attributes to express properties not directly related to dependencies. One
example is a state attribute that may reflect whether an object is visible
or invisible for some reason (e.g. already processed, lost or explicitly
dropped).

The type graph is generated once at design time of a bitstream format.
Hence every format and most likely every subset of a format is repre-
sented by a special type graph. In the design phase, the graph should
be validated to detect inconsistencies and to verify uniqueness of types
and type relations. At run-time, the type graph remains constant, but
it must be available to decorate the object graph. Especially in trans-
mission scenarios, the type graph must be reliably exchanged prior to
stream transmission. This may happen at the design-time of a system or
during session setup. Costs of exchanging the type graph are negligible
because its size is small compared to the typical size of a data unit in
video streams.

The object graph, in contrast, can be manipulated at run-time. This
may involve adding or deleting vertices and edges as well as modifying
their attributes. Depending on the application purpose, the object graph
may contain the complete set of objects of a stream or a limited subset
only. For transport protocols this may be the set of data units that are in
the transmission window, while streaming servers can hold large sections
of a stream for quick reaction to playout-state changes. The necessary
information to decorate the object graph at run-time is contained (a) in
the type graph and (b) in special self-containing meta-data structures,
called object labels (see section 4.7.3). Labels may be attached to data
units and transferred in transport protocols. When meta-data about

4.4 Modelling Dependency Relations 69

objects is unavailable, e.g. due to network loss, type information and
dependencies can be recovered from static type info as discussed later.

4.4.2 Dependency-Graph Operations

The core foundation of our dependency model defines a small set of op-
erations to work with type and object graphs. We will later use these
simple operations to define more complex functionality. Most of the
operations are only meaningful when performed at the object graph be-
cause the type graph is static and can be analysed at design time. The
basic operations roughly divide into four sets:

Vertex and Edge Generation: Creation and deletion of edges and ver-
tices is limited to the object graph. Hence, we only define the vertex
operations

create_vertex : Go — Go U{Vp new} and
delete_vertex : Go x Vo — Go \ {v,}

and the edge operations

create_edge : Go x Vo x Vo — Go U {(ve,v0)} and
delete_edge : Go x Vo x Vo — Go \ {(ve, o)}

Vertex deletion implicitly removes all edges originating in this vertex.
Removing a vertex that still has inbound edges is not defined.

Vertex Set Selection: Single or multiple vertices in the object graph
may be selected based on their attributes, such as for example, their type,
state or marks (see section 4.6 for an overview on vertex attributes). For
simplicity we model the selection problem with a special template object
or that is wildcard-matched against all vertices in Gp:

find_vertices : Go x Vo — P(Vo).

70

4 A Framework for Content-Aware Media Streaming

Note that selecting a subset of vertices differs from selecting a sub-
graph. The resulting set contains vertices only, while a subgraph may
contain vertices and edges.

Subgraph Selection: An important property of directed graphs for de-
pendency tracking is the ability to extract connected sub-graphs such
as transitive closures and inverse transitive closures for a given vertex.
Note that the transitive closure of a root vertex may also be a directed
rooted tree (either out-tree or in-tree), but this is no requirement here,
because dependency relations do not always form tree-like structures.
Closures may be used to perform reachability analysis which is required
to check for broken dependency. They are also useful for determining
the set of depending objects, which is required to calculate importance
metrics or to select drop victims. Our subgraph selection operations are
defined as:

tc:Go xVop—To C Go and
itc: Go x Vo — So C Go.

A transitive closure from an arbitrary vertex is extracted by recursively
tracing all vertices reachable via outbound edges. The inverse transitive
closure is extracted by inverting the edge directions first. Implementing
subgraph selection is straight-forward because no circles and loops are
allowed in the object graph.

Attribute Access: Graph attributes may be read or written, whereas
the type graph only supports read access. We therefore define set and
get operations for object graph vertices and edges as well as get opera-
tions for type graph vertices and edges. The attribute sets for type and
object graphs are defined in sections 4.5 and 4.6. Here, we specify them
as <name, value>-pairs where attribute names are defined by the sets
Attrpy, Attrrg, Attroy, Attrog for vertex and edge attributes (indices
V and E) of type-graphs resp. object-graphs (indices T and O). Valid
values for each attribute are defined in separate value sets Val ¢, . Op-
erations to read object graph attribute are:

get_attribute : Go x O x Attroy — Valawr,, and
get_attribute : Go x O x O x Attrog — Valattre s,

4.5 Type-Graph Attributes

71

operations for object graph attribute write access are:

set_attribute : Go x O x Attroy x Valatry, — 0 and
set_attribute : Go X O x O x Attrog X Val attre, — 0,

and operations for read-only type-graph attribute access are:

get_attribute : Gp x T x Attrpy — Valayr,y, and
get_attribute : Gp x T x T x Attrrg — Valattry -

4.5 Type-Graph Attributes

A type graph can model all static properties of bitstream formats and
their static dependency relations. This is already sufficient to fully
describe predictable streams with fixed bitstreams structures, such as
MPEG-2 streams used in DVB. Even dynamic bitstreams formats may
benefit from static information, because such formats also have several
predictable and limitedly predictable features.

The structure of a type graph, for example, already reveals a first
approximation of the importance of objects, because types with more
dependency relations are likely to produce objects of higher importance.
For example, the structures displayed in figure 4.1 have fixed depen-
dencies and the corresponding importance patterns could be generated
based on the static type graph.

The graph structure alone is, however, not always sufficient to cover
the flexibility of all bitstream formats. Therefore we define additional
vertex attributes to (a) express default values, (b) type patterns that
can be used for prediction, and (c) additional edge attributes to express
dependency constraints. Constraints effectively define the required con-
ditions that must hold true in order to consider a dependency relation
between objects valid. These attributes are later used in operations that
validate stream integrity and estimate the initial importance of object
even when objects itself are lost or dependency relations are hidden.

72

4 A Framework for Content-Aware Media Streaming

4.5.1 Dependency Rules

Based on our core dependency model we can already define types as
vertices and edges as potential dependency relations between types. In
practice, however, not every object of one type does necessarily depend
on every other object of a target type. Hence, we need some rules to
further confine the relations. To attach rules to edges we already defined
edge attributes in the type graph, but before we define expressions for
rules, we first take a closer look at bitstream properties.

Please recall that dependency in media streams exists between data
units of a specific type, is uni-directional and backward only and it has
a limited radius (with the exception of long-term references, we discuss
later). Multiple data units may be members of a group, such as the
fragments of a single frame or the frames in a group of pictures (GOP).
Group membership is always exclusive, that is, a data unit is member
of at most one group. In general, it is possible that a group has a
single member only. Often, bitstreams contain sections of interdependent
data units that are decodable without external references. We call such
sections epochs. In the theory of our core dependency model, an epoch
refers to a connected subgraph of the object graph. In practice, a new
epoch in video streams starts with an intra-coded frame or an IDR NAL
unit which has no dependency to previous sections.

In rare cases, epochs may contain members with strictly limited ex-
ternal dependencies. External dependencies are defined, for example,
for open-GOPs in MPEG video, where the last B-frame depends on the
I-frame of a subsequent GOP. Note, that in this case the transport order
of the bitstream also requires GOP interleaving to avoid forward depen-
dency. Cross-epoch dependencies unfortunately violate our assumption
that epochs are disconnected subgraphs. Hence, we define special edge
attributes for type graphs and object graphs to mark these edges. Af-
fected graph operations need to consider the marking.

In certain bitstreams there may exist groups with internal relations
between members. Internal dependencies originate, for example, from
fragmentation, partitioning, layering, FGS or multiple description cod-
ing. Common to groups with internal semantics is that all members
share the same type and dependency relations to other groups, but the
semantics of relations inside the group depends on the type of the group.
The semantics may even differ between encoding formats and new se-
mantics are likely to emerge. Therefore we define an extensible set of
group semantics in section 4.5.3.

4.5 Type-Graph Attributes

73

When a dependency relation between two types exists, this indicates
that there should also be a dependency between the objects, but some-
times this dependency is meant to be optional. For example, headers
or parameter sets may be optionally repeated in a stream. When the
optional header is missing in the actual bitstream, a following object of
a depending type is not necessarily invalid. In contrast, some types are
regarded essential for the integrity of bitstreams, such as intra-coded
reference frames. Essential dependencies are also useful for modelling
strictly predictable formats, because all object dependencies must sat-
isfy the type constraints in this case.

In order to statically express the properties we identified so far, the
following required and optional constraints may be combined into de-
pendency rules. The rules assume a unique order over all data objects in
a stream, which will later be defined by sequence numbers. Each depen-
dency edge in the type graph must be refined by exactly one rule and
every rule may contain each of the following options at most once:

Dependency Type: The dependency type defines whether dependencies
are optional (weak) or essential (strong). In parallel type-graph
edges, strong and weak dependencies may be mixed, but if the de-
pendency rules are identical in the remaining attributes, the strong
relation overrides the weak. The dependency type is a required
property for rules.

Distance Constraint: The distance constraint dist € N defines the size
of the dependency radius between origin and destination types of
the type-graph edge. The distance is relative to the occurrence
of object types in the later object graph rather than an absolute
value. A distance value of 2 between a type t; and a type to, for
example, covers a stream section between an occurrence of type t;
in a stream and the last two occurrences of objects of type t5. The
term last refers to the backward-directed nature of dependencies.
The distance is a required property for rules.

Set Operator: In combination with the distance constraint the set op-
erator restricts the set of candidate objects a given object may
depend on. The operator may either be last_of which selects a
single object at the specified distance (e.g. with a distance of 2 it
selects the last P-frame prior to another P-frame frame) or all_of
which likewise selects all objects of the target type within the dis-

4 A Framework for Content-Aware Media Streaming

tance (e.g. it selects the last two P-frames). The set operator is a
required property for rules.

Epoch Selection: The epoch selector epoch € {0, 1, 2} specifies whether
there are any dependencies between the affected types across epochs.
It constricts the radius of cross-epoch dependencies relative to the
epoch of a later object to the same epoch (epoch = 0, no cross-
epoch dependencies), the subsequent epoch (epoch = 1, useful for
open GOPs) or all previous epochs (epoch = 2, useful for param-
eter sets). The epoch selector is optional and defaults to 0.

Epoch Interleaving: The optional epoch_interleaving € Ny param-
eter expresses the distance of epoch interleaving between the af-
fected types. When specified, it declares that an origin type object
is shifted behind epoch_interleaving occurrences of a target type
object in the stream although the shifted object is part of the pre-
ceding epoch. The default value is 0, which disables interleaving.

Layer Selection: For layered streams, layer selector layer € {0, 1} con-
straints the dependency relation to objects within the same layer
(layer = 0) or to objects in some lower layer (layer = 1). Layer
selection should be used when the same object types may appear
in more than one layer as is the case for EI, EP and B-slices in
H.263++ and H.264/SVC layered encoding. Layer selection is op-
tional.

Figure 4.5 shows an example type graph for the MPEG open-GOP
bitstream layout displayed in figure 4.1(a). In this example, I-frames de-
pend on the last sequence header regardless how many epochs it is away.
P-frames either depend on a preceding I-frame or a preceding P-frame
in the same epoch, whichever is closer. A B-frame depends on at least
two other frames, a preceding I-frame in the current or the subsequent
epoch, or one or two preceding P-frames, if they are within the B-frame’s
epoch. The B-frame which depends on a subsequent epoch’s I-frame is
also shifted behind the occurrence of the I-frame in stream transport
order. This effectively expresses the observable epoch interleaving.

In grouped streams the distance-specific operations consider all mem-
bers of a group as single objects. When frames are fragmented into
multiple objects, for example, the fragments are likely to have the same
type. Then, object-graph operations need to consider multiple group
members as single objects in order to avoid wrong application of depen-
dency rules.

4.5 Type-Graph Attributes

75

. Set: LAST_OF
min_deps RelType: WEAK
OType avg_im Dist: 1
g-mp Epoch: 2

Set: LAST_OF
™ RelType: WEAK

Dist 1
Epoch: 0

Set: LAST_OF
Set: LAST_OF . RelType: WEAK
RelType: WEAK |--——"" ~"™ Dist: 1
Dist: 1 Epoch: 0
Epoch: o
Set: LAST_OF [

ALL_OF

RelType: WEAK
Dist: 1
Epoch: 1
Interleave: 1

RelType: WEAK
Dist: 2
Epoch: 0

Fig. 4.5 : Type-graph for MPEG-like streams with I-P-B pattern.

4.5.2 Type Attributes

The type graph is meant to assist dependency tracking, validation and
estimation operations with static properties that are known at design
time of a bitstream format. Our core dependency model already allows
us to attach arbitrary attributes to vertices and edges in the type graph.
Here, we discuss some attributes we discovered while analysing different
bitstream formats. One set of attributes helps us later when decorat-
ing the object graph and a second set provides support for predicting
structure and importance if possible for this stream format.

Limits. When generating and validating the object graph later, we need
information about the number of expected and required dependency rela-
tions for every object type. Although the actual number of dependencies
may differ between objects and across formats, there is always a maximal
and a minimal limit for practical reasons. In fixed-dependency formats
upper and lower limits are equal. Dynamic formats, in contrast, often
require a minimal number of dependency relations to satisfy decoding
dependencies at all, while an upper bound of possible relations is de-
fined per format or per stream. Fixed-type examples are B-frames in
MPEG streams that require exactly two surrounding reference frames
to be decodable. Dynamic formats like H.264/AVC allow multiple and
weighted reference pictures. They usually define an upper limit to re-
strict decoder buffers and a lower limit (often a single reference picture)
to exploit inter-frame correlation at all.

76

4 A Framework for Content-Aware Media Streaming

To express such limits, we define the type attribute min_deps € Ny
to express a minimal number of required dependencies and the attribute
max_deps € Ny to express a maximal number of desired dependencies.
min_deps is optional and it defaults to the number of strong relations
defined for this type or 1 if only weak relations exist. An object of this
type is considered valid (its necessary dependencies are satisfied) if at
least min_deps relations to other valid objects exist and all strong de-
pendencies are satisfied. Otherwise the object has a broken dependency.
max_deps merely defines a stop criterion that is used when inserting new
edges into the object graph without the availability of explicit references.
It is also optional and it defaults to the value set for min_deps.

Prediction. Hidden dependency relations and loss decreases the impor-
tance prediction accuracy of our model. In section 4.6.2 we will introduce
operations that can predict certain properties of streams. Here we de-
fine an initial set of type attributes that enable the implementation of
simple prediction algorithms. These attributes are optional. They are
only meaningful for predictable object types. Future extensions of the
dependency model may define additional attributes or support more so-
phisticated algorithms.

For importance prediction we define the type attribute avg_imp € N.
A format designer can use it to specify a minimal importance value that
is used for all objects of this type as long as the dependency-based im-
portance is not higher. Different objects of this type may have a real
importance that is actually lower or higher than this value. Therefore
a format designer should choose a reasonable average that balances be-
tween the negative effects of overestimation and underestimation.

For prediction purposes we define three type attributes that describe
the recurring structural patterns of a type: period € N, offset € Ny,
and burst € N. Period specifies how frequent the pattern for this type
repeats. The offset specifies at which sequence number the first period
starts and the burst attribute defines how many successive data units
of the specified type are expected per period. Different types may have
different periods. They are not required to share a common period, such
as the GOP length. In addition to the pattern we also define the type
attribute starts_epoch € {true, false} to mark the object type that
starts new epochs. At most a single type in the whole type definition of
a stream format may be selected. If there is no exclusive type candidate,
the attribute should be omitted.

4.6 Object-Graph Attributes and Operations

7

4.5.3 Group Semantics

We define the optional type attribute group_semantic € {none, equal,
unequal, refinement} to express the semantics of object groups. This
selection reflects the distinct types of group semantics we identified so
far: (1) equal containment groups, (2) unequal containment groups, and
(3) refinement groups. The default value for the group semantics is none.

In equal containment groups, members share the same importance,
while the group is only valid if all members are available. This is similar
to fragmented data packets and useful to model data units that are
fragmented due to network restrictions. Unequal containment groups
contain members with different importance values, relative to their group
importance. We require group members to be ordered by decreasing
importance. Such a group is valid if all members with importance offset
larger than the value of the optional type attribute min_imp € Ny are
available. This semantics is applicable for data partitioning and unequal
error protection, where a single application-level data unit is split into
unequally important fragments. Finally, the members of a refinement
group become more important when less members are available. At
least a single object is required to make a refinement group valid.

4.6 Object-Graph Attributes and Operations

The dynamic properties of objects that go beyond the static information
of the type graph are expressed by attributes attached to vertices in
the object graph. There are four different sets of vertex attributes to
describe the identity, type, and structural relations of data objects as
well as additional parameters. The set of attributes is open for later
extensions which may be required by new algorithms that operate on
the object graph. The current algorithms work on the following meta-
data:

Sequence Number: The sequence number expresses the identity of a
data object. They must be natural numbers that are greater than
0 and they should increase monotonically with every data object in
the stream. Sequence number must be unique for every instance of
a stream. Uniqueness requires that every data object has a single
sequence number only and every sequence number is only used for
a single object.

4 A Framework for Content-Aware Media Streaming

Type: The type attribute specifies the type of a data unit. This attribute
must contain one of the values specified in the type graph. The type
attribute is necessary for unpredictable streams, where the type
cannot be inferred from the sequence number. In such streams,
it serves as the only connection between the object graph and the

type graph.

Epoch: Epochs express to which independent stream section the object
belongs. For a stream instance they should be unique monotoni-
cally increasing natural numbers. Within each connected subgraph
of the object graph this attribute must be equal. It is used to detect
boundaries of subgraphs more easily when cross-epoch dependency
is allowed by a stream format. Epochs may also be used for garbage
collection of expired information.

Group Information: While sequence numbers already define identity,
group membership and position inside a group is expressed with
two group attributes group_seq and group_size. group_seq spec-
ifies the position of the data object in the group which starts at 1.
group_size specifies the overall number of group members which
is at least 1. For all members the group size is equal. Group mem-
bers are also required to occupy a contiguous sequence number
space. We use this redundant scheme to enable robust identifica-
tion of groups even if members are reordered and lost. Without
groups, both attributes must be set to 1.

Layer Information: Layered encoding defines additional dimensions of
dependencies that may be orthogonal to the normal dependency
relations. Layering usually forms refinement hierarchies between
multiple data objects. To express this extra dimension, we specify
two attributes which are defined as natural numbers. The en-
coding_layer attribute defines the layer number the object be-
longs to and the referenced_layer attribute defines the hierar-
chically closest layer that is used as a reference. Both attributes
may be used in addition to dependency relations, while the exact
semantics of the values may be redefined in special algorithms. For
H.264/SVC streams, for example, the values can be re-interpreted
as hierarchical operation points for downscaling and even as multi-
dimensional or multi-purpose values (e.g. to express multiple scal-
ing dimensions simultaneously).

4.6 Object-Graph Attributes and Operations

79

State: The state attribute is an application-specific extension that may
reflect whether a stream object is available, was already processed,
lost or explicitly dropped. When selecting vertex sets or sub-
graphs or when validating for broken dependencies object-graph
operations use this information. The state values have a fixed and
pre-determined semantics for all operations. The state must be
explicitly set by an application.

Long-Term Reference Flag: Some coding standards like H.264/AVC de-
fine long-term reference data objects. Long-term objects are likely
to have inbound cross-epoch dependencies and they are not subject
to epoch-based garbage collection. To reflect this special properties
and to provide an anchor for later implementation optimisations,
we define the long_term flag as attribute.

Marked Flag: Applications can set and remove the mark flag in or-
der to explicitly include or exclude marked objects from object
graph operations. This may be used by an application to effi-
ciently simulate "what if** conditions without changing state or ob-
ject graph structure. The marked flag may also be set or removed
by advanced dependency-graph operations to store a simple state
across multiple chained operations. In contrast to the state at-
tribute, marks have no common pre-determined semantics between
all dependency-graph operations.

Importance Offset: The importance offset attribute imp_offset is an
optional integer attribute that specifies an object-specific impor-
tance value. Offset values are used to increase robustness in general
and expressiveness in intra-group relations. For extra-ordinary im-
portant data objects such as long-term references and parameter
sets the offset can reflect the real importance even if dependency
chains are broken due to loss. For grouped streams, the offset is
interpreted depending on the group semantics. It may decrease,
limit, or increase the estimated importance of a data object in
addition to the dependency-related importance. For equal groups
the offset defines a maximal limit for the importance value, for
unequal groups it defines an additional importance to be added or
subtracted from the group importance, and for refinement groups
it specifies a basic importance value that increases when group
members are lost.

80

4 A Framework for Content-Aware Media Streaming

Practically, the uniqueness property of sequence numbers requires that
one instance of the object graph must only be used for a single stream
in a single session. The algorithms presented in this chapter strictly as-
sume these properties. We will later use sequence numbers for ordering,
(backward-)referencing, and loss detection in the stream sequence.

When reusing sequence numbers from other subsystems, care is re-
quired. While encoders, streaming servers and transport protocols al-
ready use some kind of sequence numbering scheme, these sequence
numbers may not fulfil the requirements stated above. Problems usually
arise when numbers from a different abstraction level or time-frame are
used. Assume, for example, a streaming server that uses the dependency
model to select data units for playout to clients. The server may send a
particular data object multiple times during a session when playout di-
rection and order are altered by a user. While the sequence numbers the
server uses for a stream remain constant, a lower layer streaming proto-
col (that may also use an instance of our dependency model for selective
error control) will assign new sequence numbers to every transported
object. Hence, both sequence schemes are incompatible.

4.6.1 Object Graph Decoration

While the type graph is statically generated at design time, the object
graph is generated at run-time, either once when a session is established
or in regular intervals as new or retransmitted data objects become vis-
ible. We call the process of object-graph generation graph decoration.
It uses the dependency relations contained in the type graph as well
as meta-data about data objects such as their type and explicit refer-
ences. The type graph is necessary to provide implicit dependencies
for predictable types and to verify the explicit dependencies against the
dependency constraints.

The decoration operation decorate(Go, Gr,0) adds the vertex v, and
eventually new adjacent edges to the object graph G using the opera-
tions defined in section 4.4.2. Vertex attributes are set according to the
meta-information provided for object 0. An edge (v,,v,) is added if one
of the two following conditions is true:

1. o satisfies a dependency relation, defined in the type graph Gt for
otype(o) when the object label’s reference list is empty (implicit
decoration),

4.6 Object-Graph Attributes and Operations

81

New Object Already visible Objects Horizon
[B]—>[P[B[B[P]TI Limit
#15 #14 #13 #12 #11 #10 g

Type Graph

Object Graph

WEAK @

] i]

] |]
| LAST OF (1) }.. | LAST OF (1) |
| EPOCH (0) | . | EPOCH (0) | @ @

| WEAK e T 1 @ @ @
| LAST OF (1) | | ALLOF (2) |
| EPOCH (0) | | EPOCH (0) |

Fig. 4.6 : Implicit decoration, based on type information only: A new object of type
B and with sequence number 15 is inserted into the object graph. The
actual edges to existing vertices are drawn based on the type-graph relation
between type B and P. This is because vertex 14 and vertex 11 are the
closest vertices to 15 and the B -> P relation matches. The max deps
value for type B is 2 (not shown in the type-graph) and decoration stops
after inserting two edges.

2. o' is contained in the object’s reference list and a dependency re-
lation between otype(o) and otype(o’) in Gr is satisfied (explicit
decoration).

If a stream contains groups, no edges between group members are
required in the object graph since the group is already described by the
seq, group_size and group_seq attributes. References across groups
always point to the first member objects which serves as proxy into its
group.

For efficiency reasons, an implementation may choose to mark the
newly decorated object to have a broken dependency if a lost object, an
explicitly dropped object or any transitive reference of such an object
is selected as reference, or a required group member is missing. Broken
dependencies may also be detected by transitively inspecting the object
graph and checking for group members later. Figure 4.6 shows the im-
plicit decoration of data unit 15, a B-frame. For this type a maximum
of 2 references is required. Both are satisfied by the same dependency
relation between B- and P-type and hence, edges to preceding objects of
type P are inserted into the object graph.

A problem arises when data units are invisible and types are unpre-

82

4 A Framework for Content-Aware Media Streaming

dictable because the information from the type graph is no longer suffi-
cient and implicit decoration fails. Figure 4.7(a) displays such a situation
where the loss of unit 14 causes implicit decoration to wrongly choose
data unit 10 as reference instead of detecting a broken dependency.

This problem can either be resolved by type prediction or by explicit
decoration as shown in figure 4.7(b). While prediction is limited to cer-
tain stream formats, explicit dependency lists work for all stream classes.
Especially behind loss-gaps the decoration algorithm must ensure that
subsequent valid objects are decorated correctly, so that no invalid rela-
tions are inserted into the graph. This property can only be ensured if
explicit references are available. Thus, explicit reference lists are essen-
tial for robustness. Note that the loss of explicit reference lists can only
lead to an incomplete object graph, but never an incorrect one.

When storage requirements of the graph are important for an appli-
cation, a garbage collection algorithm should be used to prune old data.
Garbage collection must consider short-term and long-term objects sep-
arately. When new data objects from new epochs become visible, old
short-term references may become unimportant, while long-term refer-
ences remain essential until explicitly removed.

4.6.2 Structure and Importance Prediction

Resilience to loss and reordering of data units requires the prediction
of importance and dependency. This section presents algorithms to re-
cover essential meta-data attributes, such as type, epoch, and potential
dependency relations of invisible data objects from sequence numbers
and type attributes. Fortunately, current encoding standards define bit-
stream profiles that allow such predictions, and real applications use
these schemes to avoid implementation complexity.

Because the design space for predictability is large, we select some
important prediction examples only. The proposed techniques assume a
well formed periodic structure, which is only found in strictly predictable
and limitedly predictable media streams. They are not generally appli-
cable to adaptive and unpredictable stream formats. We consider this
future work.

Predicting Importance from Types It is sometimes unknown how many
data objects will later depend on an object when it becomes initially
visible and hence, how important this object finally becomes. If this
information was not provided in the label attribute imp_offset or if the

4.6 Object-Graph Attributes and Operations 83

New Object Visible, Lost and Reordered Objects/ Horizon
Limit
B | —[>[8B [>[P [
#15 #14 #13 #12 #11 #10 —
Type Graph .
Object Graph
Tweak Tweak
| LAST OF (1) .. | LAST OF (1) |
| EPOCH (0) | | EPOCH (0) |
T g
! LAST OF (1) ! a e‘
{EPOCH (1) F- v
P ,
| LAST_OF (1)) 1 ALLOF(2) |
! EPOCH (0) | EPOCH (0) !

(a) Loss limits the applicability of implicit decoration.

New Object Visible, Lost and Reordered Objects/ Horizon
B | —[>Z[8B [>X]P]I / Limit
15 #14 #13 #12 #11 #10 /

#
reflist = { #11, #14 }

Type Graph
P P Object Graph

WEAK broken @

i i
i |
| LAST OF (1) | dependency
i |
i 1

EPOCH (0) @ @
| WEAK e \‘x‘ \ @ @ @
| LAST_OF (1) |) | ALL OF (2) |

EPOCH (0) | EPOCH (0)

| WEAK 1
| LAST_OF (1) |+
! EPOCH N

(b) Explicit decoration increases the resilience against loss.

Fig. 4.7 : Limits of implicit decoration and benefits of explicit decoration: When
loss leads to unavailable type information, implicit decoration may choose
the wrong target objects which leads to improper graph structures and
undetected broken dependencies. Explict decoration ensures at least a valid
structure of the graph, althought the graph may be incomplete.

data unit is lost and one likes to infer the severity of the loss, the type
attribute avg_imp can be used as a good approximation. When we only
know the sequence number, as is the case for lost and reordered objects
we need to predict the type first.

84

4 A Framework for Content-Aware Media Streaming

Predicting Object Types from Sequence Numbers Efficient type pre-
diction (without explicitly describing the stream layout) is only possible
if a stream features periodically recurring patterns. Alternatively to pre-
diction we could exchange traces of the future stream pattern in advance,
but this requires extra resources and is infeasible in most cases. Instead,
we use a small set of attributes to describe patterns in general. These
attributes are only useful for strictly predictable streams because they
are fixed for a whole sequence.

The following pseudo code shows a simple prediction algorithm that
makes use of the prediction attributes defined in section 4.5.2. For rea-
sons of clarity and brevity we ignore variable sized fragment groups and
groups in general.

Algorithm 1 Type prediction algorithm for fixed stream structures.
Input: seq

Output: type

: theType <« invalid

: for all typest € T do

if ((seq - offset(t)) mod period(t) < burst(t) &&
(avg_imp(theType) < avg imp(t))) then

4 theType < t
5 end if

6: end for

7: return theType

W N =

This algorithm checks the specified sequence number against all de-
fined type patterns. If multiple types match, the most important one is
selected. Hence, a lost data unit may be regarded more important, but
never regarded less important as it really is. This helps to avoid mis-
treatment in content-aware protocols and creates equally important loss
gaps in the worst case. The algorithm can also predict the group mem-
bership of lost objects. This becomes valuable if all group members are
lost and neither size nor the start of a group are derivable (group_size
and group_seq are lost too). As with all predictions, this requires a
regular structure with fixed group sizes over the total sequence.

Most of today’s encoding standards define profiles with fixed bitstream
patterns (e.g. MPEG-2 or H.264/AVC over Digital Video Broadcast
channels). For these classes of applications it is always possible to dis-
close the types of invisible and lost data units. Limitedly predictable

4.6 Object-Graph Attributes and Operations

85

streams must, however, use at least periodic updates during the lifetime
of a session to inform about upcoming pattern changes.

For example, assume the structure of MPEG streams with open-GOP
pattern: (1) GOP(12,2) with a distance of 12 frames between two I-
frames and two successive B-frames between I/P-frames, and (2) GOP(16,
15) with temporal scalability, having a distance of 16 frames between two
I-frames and 15 successive B-frames in four temporal layers, but lacks P-
frames. The definition of the prediction values for the open GOP pattern
(12,2) is:

First GOP Remaining GOPs
Type Period ‘ Offset ‘ Burst || Period ‘ Offset ‘ Burst
I-Frame 12 0 1 13 10 1
P-Frame 3 1 1 3 13 1
B-Frame 3 2 2 3 11 2

Figure 4.8 depicts how the prediction algorithm matches lost data
units with their correct types. Note that the algorithm always assumes
a fixed and repeatable pattern per type.

Predicting Epochs from Sequences and Types Epoch values are re-
quired for correct implicit object-graph decoration and the removing of
old data units. To infer the epoch values of lost data objects we use a
simple scheme that relies on the already predicted type property. From
the type graph we know the type attribute starts_epoch that marks
the type which starts a new epoch. However, the actual epoch must still
be calculated from the sequence number. The epoch size can be inferred
from the period value that was specified for the epoch start type. The
actual epoch value is the modulo of the sequence to the epoch size.

When a stream format interleaves adjacent epochs, such as in the
MPEG open-GOP structure, epoch calculation must also account for the
interleaving between types. Therefore we already defined the relation
attribute interleaving for all relations that point to the epoch start
type. This interleaving specifies how many object of the origin type
follow an object of the epoch start type (in sequence number order), but
come from the previous epoch. Based on this information, the epoch
prediction algorithm works as follows:

86

4 A Framework for Content-Aware Media Streaming

Sequence#
Period Offset Burst 1 2 3 4 5 6 7 8 9 10 11 12 13 14

I-Pattern 12 0 1
P-Pattern 311
B-Pattern 3 2 2

Predicted Types

visible & Lost Data Units | 1] NI [[[

(a) GOP(12,2)

Sequence#
Period Offset Burst 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I-Pattern 16 1 1
By -Pattern 16
B, -Pattern 16

2
3
B, -Pattern 16 5
B -Pattern 16 9

A~ N

1
1
T
I

|

1

i

H I

I

: t : T
Y A/

Predicted Types I:]

visible & Lost Dara unics | [7] [N | |

(b) GOP(16,15)

Fig. 4.8 : Type prediction example: when the structure of a stream is well formed, it
becomes possible to predict the type of lost data units; the example shows
the first group-of-pictures of two popular structures, found in MPEG-2 and
MPEG-4 video streams.

Predicting Object Types from known References Incoming references
from other objects reflect the importance of the referenced data unit,
even if the unit itself is missing. It is obvious to use in-bound references
for type prediction as well, since the number and the type of referencing
objects yields some hints on the type of the invisible object. They can
be compared to the average importance, the minimal and the maximal
dependency count attributes in the type graph to find an estimate of
the type in question. This method requires at least some other data
objects and their explicit references to be present. It is inappropriate
for prediction in large gaps generated by burst loss, but it is a superior
method for unpredictable streams.

Once the type of a lost data object can be recovered with an accept-
able probability, dependency relations in the type graph can be used to

4.6 Object-Graph Attributes and Operations

Algorithm 2 Epoch prediction algorithm that accounts for epoch in-
terleaving.

Input: seq, epoch_size, interleaving

Output: epoch
1: theEpoch < (seq + epoch_size) + 1
2: if (0 < (seq mod epoch_size) < interleaving) then
3. theEpoch <« theEpoch - 1
4: end if
5: return theEpoch

implicitly decorate the object graph. More sophisticated prediction al-
gorithms are possible. However, we regard the presented mechanisms as
sufficient and defer extensions to future work.

We can conclude that for strictly and limitedly predictable streams,
type information and eventually all dependency relations may be re-
covered. This is, however, impossible for unpredictable streams. They
require explicit reference lists to recover at lease some metadata of refer-
enced objects. Because reference lists are also subject to loss, our model
become less accurate at higher loss rates. With short epochs in the
stream our model can still recover quickly.

4.6.3 Dependency Validation

The purpose of dependency validation is to ensure that all necessary
(object-based) and sufficient (type-based) dependency relations for a
given object and its transitive predecessors are satisfied so that the object
may be successfully decoded. Figure 4.9 shows a schematic example.
Dependency validation is implemented by the function wvalid: O —
{true, false}, using the object graph and the type graph. The object
graph is prepared for validation during decoration and hence the valid
operation is able to efficiently check the following four conditions: A
data object o € O is valid if all of the following conditions are satisfied:

(a) it is neither dropped nor lost itself,
(b) it has no broken dependency,
(c) all its strong dependency relations are satisfied, and

)
)
)
)

(d) its minimum dependency min_deps is satisfied.

88

4 A Framework for Content-Aware Media Streaming

Importance Estimation Dependency Validation

sum importances)/" check all transitive anchesters(," “,
of transitively o for broken dependency /' ’,'
depending objects i

Fig. 4.9 : Importance estimation vs. dependency validation processes: While estima-
tions uses the transitive closure of a target object to calculate the number
of depending objects, validation must ensure that no object in the inverse
transitive closure experienced a broken dependency.

When one of the group semantics equal or unequal is defined for the
type of the data object o, additional properties must hold:

(e) if the object is member of an equal containment group it is valid
iff all members of its group are valid too, or

(f) if the object is member of an unequal containment group it is valid
if and only if all group members with smaller group sequence num-
ber than object o are available and all group members with im-
portance offset value imp_offset larger or equal than the required
minimal group importance, specified in type property min_imp, are
available. (Note: both ranges overlap, but they may be equal if
object o is exactly the last required group member.)

Especially rule (f) is complicated to check under loss because imp_offset
is unknown for lost objects. Therefore we require the object attribute
imp_offset to decrease monotonically with increasing group sequence
number when the unequal group semantics is applied.

Objects of types with group semantics none and refinement are not af-
fected by additional rules since they are either not members of any group
or they do not depend on the existence of their group members. When
using the model for strictly predictable streams, dependency validation
is even possible in the case of lost or corrupted objects. This is not be-
cause the dependency relations of the lost objects can be reconstructed,
which is unimportant anyway. It becomes possible because the object

4.6 Object-Graph Attributes and Operations

89

type is predictable and decoration as well as validation of subsequent ob-
jects can rely on this information. When streams are unpredictable, the
type of lost objects is not recoverable and type-based dependency alone
becomes insufficient. Then, explicit object reference lists are required to
compensate for the lack of information.

4.6.4 Importance Estimation

The importance of an object depends on the information encoded within
the object itself as well as on the importance and number of objects
which depend on this information directly or transitively. The depen-
dency model only captures the transitive dependency-related importance
and leaves other properties to additional models, such as object-specific
rate-distortion or timeout values. Note that in general the dependency-
based importance is a relative value between visible data objects. This is
because the model cannot know the actual importance and dependencies
of invisible objects and it cannot predict lost offset values. Importance
values between different media streams are also not comparable.

Due to the differences between simple and group-based importance
estimation, we propose different mechanisms, all based on the core op-
erations defined in section 4.4.2. We start with defining the operation
for simple importance estimation. As with validation, the importance
function imppegroup : O +— N uses information from both graphs to esti-
mate the actual importance value. If no group semantics is defined for
the type of object o, the importance of object o is the maximum of its
type importance and its meta-importance, additionally increased by the
correction value stored in the object’s label:

IMPnogroup(0) := max { type_imp (otype(o)), met&imp(o)}
+ imp_offset (o).

(4.1)

The meta-importance reflects the maximal depth of any path in the
transitive closure of object 0 in Gp. The recursive definition ensures that
meta-importance values are monotonically increasing with the length of
dependency chains between objects.

meta_imp(o0) := /ertn(aé(: {meta_imp(o’)} + 1 (4.2)
o c(Go,o

4 A Framework for Content-Aware Media Streaming

The type importance for type ¢ is defined to be the maximum of (a) the
type-specific avg_imp value, (b) the number of vertices in the transitive
closure of ¢t in Gr increased by 1 or (c) the maximum of avg_imp over
all vertices in the transitive closure increased by 1:

type_imp(t) := max{ avg_imp(t),
|te(Gr,t) | +1, (4.3)

. ergz(%(%t) {avgimp(t;)} + 1 }

When a group semantics is defined for an object type, the calculation
is performed differently. First, a basic group importance value is deter-
mined using the function group_imp. It is based on the dependency of
the group head object with group sequence 1 (one). Group heads repre-
sent the group regardless whether they are lost or available themselves.
When all visible group members are lost, neither a correct group mem-
bership is deducible nor a correct estimation of loss severity is possible.
When the group size is constant and predictable (see section 4.6.2) the
type prediction algorithm can compensate for the missing information.
Unpredictable streams, however, suffer from wrong estimations because
only lost group heads collect references and other lost members remain
at their initial importance value of one (1).

Group importance is similar to object meta-importance, except that
the importance offset is handled differently to capture the relative in-
crease when group members define importance offset values themselves.
The group importance is defined to be the maximum of the group im-
portance values of all objects in the transitive closure (tc) of the group
head o7 in G increased by the maximum of the importance offset values
for all group members (we neglect the definition of the function group
— P(O) for brevity.):

group_imp(o0) := max { group,imp(o')} +
01 € gro(upgo) 1\
group-seq(o1)=1A
o €tc(Go,01) (44)

max { imp_offset(0,,) } + 1.

om € group(o)

The recursion in the function group_imp and the inclusion of group
importance offset values is necessary to ensure that no object in any

4.6 Object-Graph Attributes and Operations

91

depending group can become more important than its parent objects,
even if it specifies a large importance offset. While in general the absolute
importance values are larger in group-based streams when compared to
streams without groups, the relative importance between objects of a
type remains stable. Depending on the group semantics, the importance
estimation for group members (including the group heads) is performed
as follows.

Equal containment groups define the importance of a member as the
maximum of the member’s type importance and the common group im-
portance value:

IMpequalgroup (0) 1= max { type_imp (otype(o)) , group,imp(o)}
+ imp_offset(o).

(4.5)

The equality constraint forbids the use of an additional member-specific
importance offset because it is already included in the group importance.
The loss of any member may lower the absolute group importance due to
the potential lack of a new maximum offset, but it does not influence the
relative inter-group relationships. Lost members itself loose their private
offset values however. Hence, all members of equal groups should have
the same offset to increase the loss resilience of importance estimation.

Unequal containment groups define the importance of members rela-
tive to the group importance in the range:

group_imp(0) — max { imp,offset(om)}, groupimp(o)] .
om € gTOHP(O)

(4.6)

For every object o the group importance is decreased by the difference

between the maximal importance offset defined by any group member
and the private importance offset of object o:

irnpunequalgroup(0) = group,imp(o) - o engl;?gflp(o) {imp*Oﬂlset(Om)}

+ imp_offset(0).
(4.7)

92

4 A Framework for Content-Aware Media Streaming

The loss of a group member does not influence the importance values
of other members because the potentially lost maximum is neutralised by
the relative difference in the equation. The importance of a lost member
is, however, only deducible from its position in the group. As already
required for correct validation, the offset values for unequal groups should
therefore be monotonically decreasing with increasing group sequences
when loss resilience is of primary interest.

Refinement groups define the importance of members relative to the
number of unavailable group members. Hence, the fewer objects of a
refinement group are available the higher the importance values of re-
maining members and gaps become. Refinement groups are somewhat
special because importance is allowed to become larger than the im-
portance of referenced objects. Hence the importance maximum is not
bound by the properties defined for the function group_imp. Instead,
the importance of an object o in a refinement group is the object meta-
importance of the group head o1, increased by the number of missing
group members and additionally increased by the private offset value of
object o:

IMPrefinementgroup (0) = max { type_imp (otype(o)), met&imp(ol)}

01 € group(o) A

group_seq(o1) =1

+ group_size(o) — | group(o) | + imp_offset (o).
(4.8)

When offset values throughout the stream are carefully designed, the
relative importance between incomplete refinement groups and refer-
enced groups (or single objects) can be balanced appropriately. Refine-
ment-based importance cannot raise above referenced object importance
when the referenced objects possess an average type importance larger
than the largest group size of any refinement group or a similar impor-
tance offset is set on members basis. Because any loss to a refinement
group member makes its offset value and the actual group size unavail-
able, it is a good choice to leave the default of 0 (zero) for importance
offset when loss robustness is desired. Additionally, the missing group
size of lost objects can be obtained from available group members.

Discussion Unlike validation which uses backward dependency, impor-
tance estimation relies on forward dependency. Figure 4.9 shows the

4.7 Dependency Model Implementation

93

concept of the importance estimation process. Estimation is performed
for any member of the object graph individually. Type prediction and
explicit dependencies of objects ensure that even lost objects can be refer-
enced. When loss is irreparable, broken dependency chains may severely
influence the correctness of estimation as we will see in section 4.8.3. As
a short example, consider the loss of P-frame 14 in figure 4.9. While
the lost frame remains (transitively) referenced by subsequent P-frames,
the I-frame 10 is disconnected due to the lack of a reference from 14.
In consequence, the importance of frame 10 is wrongly estimated even
though explicit dependency lists are in use. Type prediction and implicit
decoration can compensate for this kind of problem, but unfortunately
they are unavailable when the stream format is generally unpredictable.
This is the price of unpredictability.

Exact importance values for every object can only be calculated for
strictly predictable streams. In unpredictable streams exact importance
is only available when all transitively depending objects are visible within
the horizon. It is impossible to provide exact importance values if some
depending objects are still invisible or lost. In section 4.8.2 we discuss
this limitation in more detail. Consequently, an initially estimation of
object importance is based on the object type. It is re-examined when
more dependencies become visible or loss is repaired.

4.7 Dependency Model Implementation

Every stream format uses its private syntax elements and dependency
relations between them. A generic dependency model implementation is
therefore required to provide a suitable abstraction for programmers to
map a specific encoding to types and objects.

In order to package and describe bitstreams, we provide programmers
with the abstraction of labelled data units. Fragmentation and labelling
are left to the application programmers, but we provide them with tools
to ease these tasks. For format designers who need to specify types
and type-relations we define a special Dependency Description Language
(DDL) and the corresponding DDL-Compiler. The DDL Compiler ver-
ifies the language description and translate it into a compressed repre-
sentation of the type graph.

94

4 A Framework for Content-Aware Media Streaming

The format designer is required to select a packetisation scheme where
the desired dependency relations are visible. Common packetisation
schemes operate, for example, at the frame-, slice- or network-packet
level. A single format can even be described at different abstraction lev-
els for different applications. An application developer should select an
appropriate scheme and partition the bitstream accordingly.

We implemented the run-time version of our dependency framework
as a self-contained Dependency Validation Service (DVS) that can be
integrated into applications and system layers. The DVS only caches
information about data units without requiring data units to be present.
It therefore introduces no conceptual delay to stream processing. The
DVS may be used in servers, proxies and client applications, for live and
on-demand streaming, and in typical packet networks where data units
are reordered and lost. Applications can control the amount of storage
used by the DVS by selecting a garbage collection strategy to fit the
model’s horizon to their window of interest. Garbage collection removes
information about old and processed data units.

In the following sections we first present the dependency description
language, provide some examples on how to use this language for real-
world video formats and finally describe the API and implementation of
the dependency validation service.

4.7.1 Dependency Description Language

In order to specify types, type-based dependency relations and depen-
dency constraints we developed a dependency description language (DDL).
The DDL compiler verifies the validity and consistency of the description
and transforms it into a compact string representation which required
to initialise the DVS at run-time. The compact representation can be
integrated statically into applications, embedded into media signalling
protocols and file headers, or transported by other means.

The language provides constructs to express structure and properties
of the type graph, such as vertices (the types), edges (the dependency
relations), as well as vertex and edge attributes. In order to support
strictly predictable and unpredictable formats, some of the attributes
are optional. The full syntax description and the extended Backus-Naur
form of DDL is in appendix A.

A DDL description contains two sections. First, all types are declared
and their parameters are defined. Next, the desired relations, includ-
ing necessary constraints, are defined, whereas dependency definition is

4.7 Dependency Model Implementation

95

1 # DDL Exzample for an I-P-B-like Dependency Pattern

2 | #

3 | types = {

4 seq_head(avg_imp = 255, min_deps = 0);

5 i_frame(avg_imp = 12, min_deps = 1, max_deps = 1);

6 p_frame(avg_imp = 2, min_deps = 1, max_deps = 1);

7 b_frame(avg_imp = 1, min_deps = 2, max_deps = 2);

8 |}

9

10 | dependency (i_frame) = {

11 last_of (seq_head) weak;

12 |}

13

14 dependency (p_frame) = {

15 last_of (i_frame) weak;

16 last_of (p_frame) weak;

17 |}

18

19 dependency (b_frame) = {

20 last_of (i_frame, 1, 0) weak; # I-frame in the same epoch
21 last_of (i_frame, 1, 1) weak; # I-frame in the subsequent epoch
22 all_of (p_frame, 2, 0) weak; # P-frame(s) in the same epoch
23 |}

Listing 4.1: Dependency description for a MPEG-like video stream.

performed for each origin type separately. Listing 4.1 shows an exam-
ple on how to express the typical I-P-B-P frame dependency pattern of
predictively coded MPEG video streams as depicted in figure 4.5. For il-
lustration purposes, this example displays a simplified structure between
the most well known bitstream elements only. Realistic streams contain
more types and relations, but are not necessarily more complex as we
will show in section 4.7.2 when describing the H.264/AVC video format.

This hypothetical stream format contains four types. The sequence
head carries the sequence start code and parameter sets to configure the
decoder. It is the first unit in a sequence and also the most important
unit. Hence it does not depend on other units and it has a large average
importance. All other types depend on the sequence head because it’s
presence is essential for decoding the sequence at all. We neglect relations
from every other type for brevity and because the i_frame type already
establishes transitivity. The i_frame type only depends on the sequence
head and is self containing otherwise. Assuming a GOP size of 12, the
average importance is set to the largest possible dependency chain length,
which occurs when no B-frames are used. A P-frame depends on either
a directly preceding I-frame or P-frame, whichever comes first. This is
reflected by two weak last_of dependencies, both with a default distance

96

4 A Framework for Content-Aware Media Streaming

of one. Because a P-frame always requires a single reference the type-
specific attributes min_deps and max_deps are set to one. The B-frame
dependency is more complex because there are several alternatives. B-
frames either depend on two P-frames or on one I-frame and one P-frame,
whereas the I-frame may belong to the current or the subsequent GOP.
In order to express the possible variations neither of the dependencies can
be strong. Validity requires, however, at least two references (expressed
by min_deps = 2) and it makes no sense to have more than two references
(hence max_deps = 2).

Language Constructs The types keyword declares a list of types for
a particular format and hence the set of vertices if the type graph. In
addition, it allows the format designer to specify a set of required and
optional attributes, which are attached to the graph as vertex labels.
Although attributes are already discussed in sections 4.5.2 and 4.6.2, we
briefly recap their meaning in the context of the DDL:

avg imp (required) defines an average estimate on the type’s impor-
tance. This estimate is used for importance prediction when a data
unit is lost, when dependency relations are yet invisible, or when
a combination of both applies. Valid values are positive integer
numbers except zero.

min_deps (required) defines the minimal number of outgoing references
a data unit of the respective type must have in order to become
valid. (An outgoing reference is a dependency relation that has
a particular data unit as origin.) Valid values for min_deps are
positive integer numbers including zero.

max_deps (optional) defines the maximal number of references a data
unit of the respective type is required to have. This value deter-
mines when to stop decorating the object-graph. If not provided or
set to the default value zero, all matching units in the horizon will
be referenced. Valid values are positive integer numbers including
zero; the default is zero.

min_imp (optional) defines the importance limit above which unequal
containment groups are considered valid when some group mem-
bers are still missing. In particular, the limit requires that all group
members with an importance offset larger than min_imp are avail-
able. This attribute is only used for unequal containment groups.

4.7 Dependency Model Implementation

97

Valid values are positive integer numbers including zero, while a
value of zero means that all group members must be available; the
default is zero.

prediction_period, prediction_offset, and prediction_burst (optional) de-
fine the recurring pattern of data units of a particular type. The
attributes are only used for type prediction and setting them makes
only sense for predictable streams. Valid values are integers includ-
ing zero. Offset is defined relative to the period, starting at zero.
Burst determines the number of consecutive occurrences of a type.
The size of both values is limited by the period length, which can
be the GOP size. A period of zero or a burst length of zero disables
prediction for the respective type. It is neither necessary to define
the same period for all types of a stream, nor is it necessary to de-
fine these parameters for every type, although it is recommended.

group_semantic (optional) defines how the importance for data units of
the respective type is calculated (see section 4.6.4). Valid values
are none, equal, unequal, and refinement, the default is none.

starts_epoch (optional) defines whether the respective type starts a new
epoch. This attribute is required for correct epoch prediction, but
it is an exclusive property that must be assigned to at most one
type. Format designers should only used this feature when a par-
ticular type does always start a new epoch and if no other type
starts an epoch throughout the stream. Valid values are true and
false; the default is false.

The dependency keyword declares a block of potential dependency
relations that originate in a particular type and have other types or
the same type as target. The semantics of the dependency styles for
set selection (last_of, all_of) and relation kind (weak, strong) are those
defined in section 4.5.1. In DDL we use the set selector as principal
entity that starts a relation, the kind as a mandatory modifier that closes
a relation, and the remaining attributes as optional parameters. Each
declaration ends with a semicolon. This form makes a relation naturally
readable and unambiguous.

The origin type for a relation is specified as a parameter to the depen-
dency keyword, while the particular target type is specified as the first
parameter to the set selector. In order to use a type as origin or target

98

4 A Framework for Content-Aware Media Streaming

it must have been defined. Dependency constraints are optional param-
eters to a set selector. They are determined by their position in the
argument list. In the order of occurrence the have the following mean-
ing and defaults (in brackets): distance (1), epoch distance (0), layer
distance (0), epoch interleaving (0). When defaults are sufficient, these
parameters can be omitted. When, however, a parameter at the end of
the list should be specified, all preceding parameters must be specified
too. A relation ends with its kind, either essential (strong) or optional
(weak).

DDL Compiler The purpose of the DDL compiler is to validate and
compress the type-graph, initially specified in the dependency descrip-
tion language. Therefore the compiler checks the syntax of the descrip-
tion, validates the semantics of the type-graph and transforms the tex-
tual representation into a target representation which is later required to
initialise an instance of the dependency validation service. Currently, we
use a compact bracket-based ASCII-string representation as output for-
mat. The benefits of this format are its platform independence, human
readability and size. It can be statically embedded into application code,
stored in file headers and transferred via media signalling protocols.

The DDL compiler ensures that there are no cycles, no conflicting
relations, and no invalid or contradicting parameters in the graph. The
graph contains plausible parameters if:

e only a single type defines the starts_epoch attribute

e Viypest : max_deps(t) >= min_deps(t)

e Vitypest : prediction_offset+prediction_burst <= prediction_period.
Two edges are in conflict if

e both have the same origin and the same destination, and

e both have the same distance, epoch distance, and layer distance,
and

e both have the same kind (strong or weak).

The cycle check ensures that no type and thus no data unit in the
object graph has a direct or indirect self reference. While the type graph
may contain loops and cycles they are required to be distinct in at least
one of the layer distance or epoch distance constraints.

4.7 Dependency Model Implementation

99

4.7.2 H.264/AVC Video Stream Example

The following examples shows how the DDL can be used to express
dependency relations in H.264/AVC [27,49], a predictive and block-based
video stream format. We motivate the design considerations we made
to map the characteristics of H.264/AVC onto a DDL specification. The
example starts with a brief discussion of relevant concepts and features
of H.264/AVC. The terms picture and frame are used interchangeably
herein.

The central unit of operation in H.264/AVC is a slice, a consecutive
number of macroblocks in a picture. H.264/AVC defines two slice parti-
tioning modes, one mode where each picture is fragmented into a fixed
number of slices (there can also be as less as a single slice per picture) and
another mode where the size of slices is controlled to not exceed a spec-
ified threshold, which is usually set to the network MTU size. While
the first mode generates variable sized slices according to the predic-
tion and macroblock encoding modes used, the second mode generates
a variable number of variable sized slices. Each slice contains the ID
of the picture it belongs to. The slice-type determines which prediction
modes are used for the contained macroblocks. As in traditional MPEG
streams, there are I-slices for self-containing intra-coded data, P-slices
and B-slices for predicted data, but also the new types Sl-slices and
SP-slices for switching between resolutions. Dependency is expressed in
reference lists contained in each slice header. Predicted slices always de-
pend on one or more reference pictures. The distance from a reference
picture can be limited for a particular sequence (e.g. to 16 pictures),
but it may also be longer when a reference picture is marked as long-
term reference. H.264/AVC supports several (reference picture-)memory
management commands (MMCO) used to designate reference pictures to
long-term references and back. In order to combine information about
encoder profile, colour formats, picture numbering, coding modes and
other features which apply to multiple sequences or multiple pictures of
a sequence H.264/AVC introduces sequence and picture parameter sets.
Parameter sets are essential for decoding a sequence and hence, they are
the most important units in a stream.

In order to respect the properties of different distribution channels,
H.264 introduces a Network Adaptation Layer (NAL) which defines sev-
eral transport unit types (see table 4.1). Each slice is transported in a
single NAL unit, whereas a one-byte NAL unit header determines the
unit type and whether the contained data is used as reference. This

100

4 A Framework for Content-Aware Media Streaming

[Type [Content l
0 Unspecified
1 Coded slice of a non-IDR picture
2 Coded slice data partition A
3 Coded slice data partition B
4 Coded slice data partition C
5 Coded slice of an IDR picture
6 Supplemental enhancement information (SEI)
7 Sequence parameter set
8 Picture parameter set
9 Access unit delimiter
10 End of sequence
11 End of stream
12 Filler data
13 Sequence parameter set extension
14 Prefix NAL unit in scalable extension
15 Subset sequence parameter set
16..18 Reserved
19 Coded slice of an auxiliary coded picture without partitioning
20 Coded slice of in scalable extension
21..23 Reserved
24..31 Unspecified

Tab. 4.1 : NAL unit types in H.264/AVC and H.264/SVC.

wrapping of slices, however, hides some information about slices such
as their real type and dependency. When data partitioning is used, the
data bits of a single non-IDR slice are distributed over three NAL units,
a partition A that contains all header bits, a partition B that contains
intra-coded data and a partition C that contains predicted data.

In order to fully capture the elements in H.264/AVC transport streams
in our dependency model, it is necessary to model DDL-types at the
NAL unit level, because only here all relevant concepts (parameter sets,
partitions, etc.) are visible. Unfortunately, NAL unit types do not
reflect the actual slice types. As a further disadvantage, the flexible
slice modes make H.264/AVC streams generally unpredictable. When,
however, the number of slices per frame is fixed and the dependency
pattern is fixed too (e.g. I-P-B-P), a H.264/AVC sequence becomes
predictable. This comes at the cost of reduced coding efficiency and
reduced error resilience.

Since our model requires its own unique sequence numbering scheme
we do not rely on H.264/AVC picture order counts. We do also ignore
memory management commands of H.264/AVC because they add a con-
siderable amount of complexity and they are not error resilient. Rather
than fixing these issues we provide a simpler scheme to directly mark

4.7 Dependency Model Implementation

101

long-term reference units in unit labels. Once marked, a unit remains a
long-term reference until the marking is removed.

Listing 4.2 displays the most relevant parts of the H.264/AVC de-
pendency description (a detailed version is in appendix A, figure A.2).
Because the parameter sets SPS and PPS are the most essential data
units they have a very large average importance. The PPS essentially
depends on a previous SPS even if the last SPS is several epochs away.
Hence, the dependency relation is strong and value 2 was chosen as the
epoch distance. All NAL units that contain frame data strongly de-
pend on both parameter sets, regardless of the epoch in which the last
parameter set was transmitted.

IDR and non-IDR NAL unit types that carry frame data are the most
frequent types in simple profile sequences. Both have at least two strong
references to the latest SPS and PPS. Non-IDR units can have consider-
able more references, but they can also contain intra-coded data without
dependency. Hence we set their minimal dependency to two even if they
may have more dependency relations besides the strong dependency from
parameter sets, but other dependency relations are optional (weak). In
addition we define an equal group semantics because slice partitioning
may generate multiple NAL units per frame. Although we assume equal
groups with equally important fragments here, an unequal importance
distribution is still implementable via offset values in labels.

In data partitioning mode, non-IDR, data is transported in data par-
tition NAL units. These units form an unequal containment group per
frame. The unequal importance of partition types is reflected in the av-
erage values and the selected group semantics. Because this is only an
initial estimate, the offset values of data partition units must be set too.

The remaining NAL unit types carry extra data that has no refer-
ences and that is not referenced. Hence the minimal dependency is
zero and no dependency declaration is specified. Note that the aver-
age importance values for all types reflect the relative initial importance
only. When more data units become visible, actual dependency relations
quickly overrule these small values. The unpredictable nature of general
H.264 streams requires that most dependency information is contained
in data unit labels. The presented type system merely serves as integrity
check and as a source for initial importance values.

102

4 A Framework for Content-Aware Media Streaming

1

2 |types = {

3 # Parameter Sets

4 NALU_7_SPS(avg_imp = 255, min_deps
5 NALU_8_PPS(avg_imp = 253, min_deps
6

7 # Frame-data Containers

8 NALU_5_IDR(avg_imp = 6, min_deps =
9 NALU_1_NON_IDR(avg_imp = 5,

10

11 # Data Partitioning

12 NALU_2_DPA(avg_imp = 5, min_deps
13 NALU_3_DPB(avg_imp = 4, min_deps
14 NALU_4_DPC(avg_imp = 3, min_deps
15

16 # Extra Data Containers

17 NALU_6_SEI(avg_imp = 1, min_deps =
18 NALU_9_AUD (avg_imp = 2, min_deps =
19 NALU_10_EOSQ(avg_imP = 2, min_deps
20 NALU_11_EOS(avg_imp = 2, min_deps
21 NALU_12_FILL(avg_imp = 2, min_deps
22 |}

23

24 | dependency (NALU_8_PPS) = {

25 last_of (NALU_7_SPS, 1, 2) strong;
26 |}

27

28 | dependency (NALU_5_IDR) = {

29 last_of (NALU_7_SPS, 1, 2) strong;
30 last_of (NALU_8_PPS, 1, 2) strong;
31 |}

32

33 dependency (NALU_1_NON_IDR) = {

34 last_of (NALU_7_SPS, 1, 2) strong;
35 last_of (NALU_8_PPS, 1, 2) strong;
36 last_of (NALU_5_IDR) weak;

37 last_of (NALU_1_NON_IDR) weak;

38 |}

39

40 | dependency (NALU_2_DPA) = {

41 last_of (NALU_7_SPS, 1, 2) strong;
42 last_of (NALU_8_PPS, 1, 2) strong;
43 last_of (NALU_5_IDR) weak;

44 last_of (NALU_2_DPA) weak;

45 |}

46

47 | dependency (NALU_3_DPB) = {

48 last_of (NALU_7_SPS, 1, 2) strong;
49 last_of (NALU_8_PPS, 1, 2) strong;
50 last_of (NALU_5_IDR) weak;

51 last_of (NALU_2_DPA) weak;

52 |}

53

54 | dependency (NALU_4_DPC) = {

55 last_of (NALU_7_SPS, 1, 2) strong;
56 last_of (NALU_8_PPS, 1, 2) strong;
57 last_of (NALU_5_IDR) weak;

58 last_of (NALU_2_DPA) weak;

50 |}

min_deps = 2,

= 0);
= 1);

2, group_semantic

2, group_semantic
3, group_semantic
3, group_semantic

0);
0);
= 0);
0);
= 0);

group_semantic =

DDL Description for General H.264/AVC Sequences (partial)

equal);
equal);

unequal) ;
unequal);
unequal);

Listing 4.2: H.264/AVC dependency description (some types are stripped for brevity,
see listing A.2 in appendix A for the full description).

4.7 Dependency Model Implementation

103

4.7.3 Dependency Validation Service

The Dependency Validation Service (DVS) implements an instance of the
dependency model and offers interfaces for manipulation, validation and
estimation. It enables applications and streaming protocol services such
as scheduling, error protection and content scaling to access dependency
and importance values while these services can remain unaware of the
actual data unit content otherwise.

The DVS only requires labels as input data, it does not assume to
see the payload of data units. Hence it may run detached from the
actual data path. When a stream flows, the DVS should be notified
about new data units, detected sequence gaps, and data units that have
been processed, dropped or successfully retransmitted. The DVS keeps
track of data unit states and updates the corresponding graph nodes.
Streaming servers that have full knowledge about a stream can load
sections and even the total stream description into the DVS, depending
on the available memory resources.

The interface of the DVS is organised into four sections: decoration,
validation, marking and estimation (see listing 4.3), which correspond to
the dependency model functions decorate, valid and imp.

In general, the DVS performs the following tasks:

e find transitive dependants of a given data unit (the data unit’s
transitive closure in the object graph),

e find units, transitively referenced by a given data unit (the data
unit’s inverse transitive closure in the object graph),

e determine if a unit is invalidated by a previous loss or drop,
e estimate the importance of visible and lost data units, and

e estimate the conditional importance of data units given a con-
straint.

Data unit sequence numbers are used as a common index to data units
and internal graph-based representations. For decoration, the DVS re-
quires that sequence numbers are presented in monotonically increasing
order. Gaps are considered as loss and according vertexes are inserted
into the internal graph. All other methods that operate on sequence
numbers require that numbers are in the range of the current horizon.
An error is raised when an index is out of bounds.

104

4 A Framework for Content-Aware Media Streaming

=
O © XN TR WN -

// Dependency Validation Service -- API

//

enum {AVAIL, LOST, DROPPED, PROCESSED} State_t;
enum {KeepValid, MaxHorizon, MaxEpoch} GCMode_t;
enum {NoPred, ImpPred, TypePred} PredictionMode_t;
enum {ImplicitDeco, ExplicitDecol} DecoMode_t;

struct Rating_t {
int seq, imp, type_id;
bool valid, marked, long_term;
State_t state;

};

struct Label_t; // see table 4.2

// Initialisation

DVS(string typeDesc, int maxSize, int maxLongTerm,
GCMode_t gcMode, PredictionMode_t predMode,
DecoMode_t decoMode);

// Graph Decoration

void insertObject (Label_t label);

void insertLostObject (int seq);

void updateObject (Label_t label);

void updateObjectState(int seq, State_t newState, bool mark);

// Structure Validation

bool isValid(int seq);

State_t getState(int seq);
RatingVector_t getDependants (int seq);
RatingVector_t getAncestors(int seq);

// Data Unit Marking
void setMark(int seq);
void clearMark(int seq);
bool isMarked(int seq);

// Importance Estimation
int getImportance (int seq);
int getConditionalImportance(int seq, bool cond);
Rating_t getRating(int seq);
RatingVector_t getMostImportant(State_t state, int howMany,
bool invertState);
RatingVector_t getAllByImportance(State_t state, bool invertState);

Listing 4.3: Dependency Validation Service API.

Initialisation A DVS instance is initialised using the dependency de-
scription as generated by the DDL compiler, the maximal horizon size
and the maximal number of long-term references for horizon size control
and to estimate the memory requirements, and several operation-mode
selections. Negotiation and transport of dependency descriptions and
the identification of correct values for maxSize and maxLongTerm are be-

4.7 Dependency Model Implementation

105

Purpose Attribute Description
Strictly predictable seq unique sequence number (€ T')
streams
Limitedly predictable type data unit type
streams epoch dependency epoch (€ N)
enclayer encoding layer (optional) (€ Np)
reflayer referenced layer (optional) (€ Np)
Unpredictable short_term_reflist seq. of short-term references
streams long_term_reflist seq. of long-term references
is_long_term_ref flag to mark as long-term reference
Group-based group_seq in-group position (€ N)
streams group_size number of data units in this group (€ N)
imp_offset additional importance offset (€ Np)

Tab. 4.2 : Dependency-Related attributes in data unit labels.

yond the scope of the service. Maximum values can be obtained from
analysing a particular stream or from the encoder setup. The operation
modes control how decoration and prediction are performed. They allow
the customisation of the DVS for strictly predictable streams and un-
predictable streams. The decoration mode determines if the dependency
graph is to be decorated using implicit type-based knowledge only or if
decoration should rely on explicit reference lists in labels. The prediction
mode controls if the importance is predicted from types (ImpPred), if im-
portance and types are predicted from sequence numbers when possible
(TypePred), or if prediction is disabled.

Data Unit Labels The properties of each data unit are specified by
a common set of meta-data we call label (see table 4.2). A label must
contain all information required to decorate the object graph and set
the desired vertex attributes. The information in labels must follow the
requirements of vertex attributes defined in section 4.6.

Labels may be attached to data units during transport and processing
or may be transported and stored detached. The DVS only assumes
that they are properly generated and inserted before operations on the
represented sequence numbers are allowed. In addition to the already
defined object attributes, a label may contain explicit reference lists. We
define two reference lists, one for short-term reference units within the
dependency radius of the data unit (usually the current epoch) and one
for more distant long-term reference units. If present, a list contains the

106

4 A Framework for Content-Aware Media Streaming

sequence numbers of explicitly referenced data units. If absent, type-
based relations from the type graph are used for decoration instead.
When a data unit is part of a group, the reference lists should contain
the sequence numbers of group heads only. All information in labels
can be easily derived from encoders and bitstream parsers. For efficient
access by streaming servers it should be stored in hint tracks.

Labels also define the non-static properties of a group membership for
each data unit. Recall, that the group semantics is already defined in
type attributes. For each data unit, group_seq specifies the position of
the data unit within the group (starting with one (1)), and group_size
specifies the number of group members (at least one (1)). Group mem-
bers are required to have contiguous sequence numbers. This enables
robust identification of the first element in each group using its sequence
number and the group sequence number, even if the head of a group is
missing due to reordering or loss. When the group feature is unused,
group_seq and group_size must be set to one (1).

Data Unit Lifecycle When new data units become visible or gaps in se-
quence numbers are detected, insertObject () or insertLostObject ()
should be called to notify the DVS. Both methods decorate the object
graph appropriately. If a reordered or retransmitted data unit arrives
later, the method updateObject () should be used. It takes special care
of properly updating the object graph. When a data unit is processed or
dropped updateObjectState() tells the dependency model about this
event. Note that there is no special remove operation, because the DVS
manages the horizon based on a garbage collection strategy.

Horizon Control (Garbage Collection) Horizon control ensures that
information about old and unused data units is finally removed from
the DVS. The DVS provides three modes to satisfy different require-
ments. The KeepValid-Mode only removes graph nodes when they are
no longer transitively referenced by any node of a still available data unit.
The availability can be controlled by the state attribute. In this case, the
maxSize parameter is unused. This strategy provides the strongest guar-
antees about availability, but it defers state and memory management to
the application. In contrary the MaxHorizon-Mode enforces a hard limit
on the horizon’s maximal size and thus the storage requirement. Graph
nodes are removed in strict FIFO order when the maximal horizon size
is reached, regardless of state and dependencies. The maxSize parame-

4.7 Dependency Model Implementation

107

ter controls the maximal permitted number of data units in the horizon.
Finally, the MaxzFEpoch-Mode limits the horizon size to at most maxSize
epochs and removes all graph-nodes outside this boundary regardless of
their state and dependencies. Because the epoch size may be dynamic
for a stream, storage requirements are unpredictable but limited.

Long-term references are handled specially because they remain valid
over long time-frames. They are subject to an own garbage collection cy-
cle that uses a LRU (least-recently used) replacement strategy. The num-
ber of permitted long-term data units is specified by the maxLongTerm
initialisation parameter.

Data Unit Marking The DVS provides methods to set, remove and
check for marks as a general tool to attach a simple application-specific
state to data units. In combination with marks, the DVS offers the
concept of conditional importance through a second estimation method.
When calculating importance estimations, conditional importance only
considers data units that have been marked (cond = true) or not marked
(cond = false). This is useful to make simulations without altering the
state of data units and without changing the horizon.

As an example, consider deadline control. Intentionally, neither the
dependency model nor the DVS know time or the deadlines of data units.
Streaming protocols, however, consider time and importance together.
Moreover, protocols may wish to relate passed deadlines to a decrease
in importance. Assume, for example, a protocol wants to transfer data
units when they are already behind their deadline, but some depending
units can still reach their deadline. Then late units are still important for
decoding until the last depending unit passed its deadline. The marking
feature can be used to mark all data units that already passed the dead-
line. As long as dependency relations to unmarked data units exists,
the conditional importance is greater than zero, but it decreases with
increasing number of marks.

Validation and Dependency Reasoning For the purpose of validat-
ing and reasoning about the actual dependency pattern between visible
data units the DVS provides methods to check for broken dependency
(isValid()), obtain a list of depending data units (getDependants())
and a list of referenced units (getAncestors()), ask for an importance-
ordered list of the n most important units (getMostImportant) and an

importance-ordered list of units in a specific state (getA11ByImportance).

108

4 A Framework for Content-Aware Media Streaming

The methods return rating structures which contain the dynamic state of
each data unit as seen by the dependency model. Content-aware schedul-
ing algorithms, error-control protocols and scaling schemes can directly
use this information to perform more educated decisions.

4.7.4 Embedding the DVS into System Layers

Figure 4.10 shows how the content-awareness framework can be embed-
ded into a transport protocol layer. The necessary changes to make a
system layer content-aware are minimal because the DVS hides most
dependency tracking issues transparently. Required changes are an ex-
tension to system interfaces to pass a label in combination with each data
unit and to exchange the static type description once at session setup.
Internally, a content-aware system layer forwards the labels to the DVS,
while content-unaware system layers either pass labels as opaque data or
simply discard them. When scheduling, error- and flow-control schemes
require information about data unit validity and importance, they are
obtained from the DVS.

An application performs processing and fragmentation of streams into
data units as usual. In addition, the application must also provide the
static type description and generate the data unit labels. The type de-
scription for a particular format is specified once at the design-time of
the format by a format designer. It can be easily exchanged as de-
scription file. A critical part is, however, the extraction of dependency
relations because the content-awareness framework provides no format-
specific support. We expect network-adaptive media encoders and media
file formats to provide proper interfaces in the future. In our prototype

{Application Layer (Design Time) i {Transport Layer (Run-Time) updateObject

i [updateObjectState
i | Stream Format DDL Dependency Validation Service getImportance

‘| Description [>| Compiler ; isvalid

[Appiication Layer Y 0\0 ﬁb Network & Receiver
{ (Run-Time) Channel Type Graph ObjectGraph |+ ______ Network _Ffefback
: Setup ' Estimator

E - : Tinsertobject

ragmentation isend Error Packet

> Labelin -===o-[TTTTTTTTTTF---* control | ~|scheduler {7 ™
9 H Stream Buffer :

Stream

Fig. 4.10 : Cross-Layer design using the content-awareness framework.

4.8 Limitations of the Dependency Model

109

system we extract information from H.264 elementary streams with our
own bitstream parser.

For transporting labels across networks, most of the information al-
ready fits into protocols such as RTP and its extension headers while the
static format description can be exchanged with media signalling pro-
tocols. Only the dependency information requires special extension or
payload headers.

4.8 Limitations of the Dependency Model

This section explores several problems in practical systems that may lead
to imprecise estimations of the importance of data units. We will discuss
the source of the problems and give solutions on how to circumvent them
or lower their negative impact.

4.8.1 Estimation Accuracy

As motivated in section 4.3.1, dependency-based importance is less ac-
curate than traditional distortion metrics such as the pixel-based MSE
distortion. This is because we only extract some properties of a bitstream
for dependency evaluation. Distortion metrics, in contrast, consider the
reconstructed image quality and its deterioration due to loss. In ad-
dition, our dependency model treats fragmented data units as equally
important because all fragments contribute to the same frame. The ac-
tual distortion, however, depends on content-specific factors, such as the
amount of lost motion and detail information.

Hence we expect a quantitative mismatch between dependency-based
importance and distortion metrics. This is already visible in the value
ranges. While MSE distortion, for example, uses real numbers to express
luminance differences of reconstructed pixels, the dependency model uses
integers to count the maximal depth of dependency chains.

Figure 4.11 illustrates the differences for the Foreman sequence (see
also section 4.9), which has a considerable amount of local and global
motion. The sequence was encoded with x264, an open-source H.264
encoder, at a bitrate of 1000 kbit/s with a GOP-size of 48 and GOP-
pattern I-P-B-P. The upper figure shows the calculated distortion of the
luminance component (Y) for each frame in the reconstructed sequence
after a particular frame was removed to simulate isolated loss. This is
a common practise to calculate distortion values [162]. The lower fig-

110

4 A Framework for Content-Aware Media Streaming

x 10" MSE Distortion for Foreman CIF (GoP=48)
6 T T T
s R
17}
=
ohh””hl”h.ulm h|“|““|\mmmm‘“\l‘\IHMHIIHmu ‘ \h.IMH H”I\ HH“\ I !
0 50 100 150 200 250 300
Dependency-based Importance for Foreman CIF (GoP=48)
30 T T T
g 20 |
£
o
ol e s
H“Um HH“M HH\I\. HH\I\. ‘““M. “mh. h\h
00 50 100 150 200 250 300

Fig. 4.11 : Comparison between MSE distortion and importance distributions in the
Foreman sequence, encoded with X.264 (one NAL unit per frame).

Normalised MSE Distortion

Normalised MSE Distortion

Fig. 4.12 : Scatter and Quantile-Quantile Plots between
tance distributions in Foreman; points close to the read line indicate a
linear relationship between between both data sets; Spearman rank-order
correlation coefficient is 0.861, Pearson product-moment correlation coef-

Frame Number

Scatter Plot of MSE Distributions in different Importance Classes
Foreman, CIF, GOP-48, Fixed I-P-B-P
T

25

o
o) 000909 54880 o)
6080889%0 g 589 89@%
oo Ssegccgihgeecggioge
058888928388 8 3
o 0.5-9.0
o
o
Il Il Il Il
5 10 15 20
Normalised Importance
QQ-Plot between Importance and MSE Distributions
Foreman, CIF, GOP-48, Fixed |-P-B-P
: \
T + 1
s i
e F st
+ +-*-*'/".',_'r"j"""+Jr |

+

L L
10 15
Normalised Importance

ficient = 0.797, outlier ratio = 5.7 %.

20

25

MSE distortion and impor-

4.8 Limitations of the Dependency Model

111

ure shows the corresponding importance distribution, obtained from the
dependency relations using our model. Both figures clearly show that
the importance of B-frames is negligible. Quantitative and also a small
amount of qualitative differences, mostly between frames 150 and 250,
are visible. The scatter- and quantile-quantile-plots in figure 4.12 reveal
more details about the actual fit between both models. The dependency
model perfectly estimates importance values in the centre of both dis-
tributions. Very small and very large distortion values are less precisely
approximated. The correlation between distortion and importance be-
comes non-linear at the distribution tails. The general tendency of the
Scatter-Plot in combination with the high rank-order correlation coeffi-
cient suggests that dependency-based importance can in fact reproduce
the qualitative importance relation between data units. The remaining
inaccuracy cannot be eliminated by dependency modelling. It will re-
main as an artefact of the less precise input information a dependency
model uses. In section 4.9 we will more closely examine factors that
contribute to inaccuracy and hence to poor importance estimation for a
broad number of video sequences.

4.8.2 Horizon Size and Visibility

The dependency model does not assume total knowledge about the im-
portance distribution or the dependency pattern of a particular stream.
It only requires information in the type graph and in data unit labels.
As mentioned in section 4.3.3 the visibility of data units in a stream
is often restricted by application constraints and storage limits. Hence,
dynamic information may be invisible and this can considerably limit
the importance estimation accuracy.

Figure 4.13(a) depicts how limited visibility affects the actual impor-
tance distribution in video sequences over time. The figure take a closer
look at the evolution of importance (plotted as colour) for a fixed set
of data units (plotted over the x-axis). As time elapses (normalised per
data unit and plotted over the y-axis bottom to top) more data units
become visible and hence the importance of already visible data units in-
creases until it approaches a final value. The width of the colour stripes
depicts the size of each video frame in data units (here H.264 NAL units).
Both sequences have a regular structure of 7 unequally sized data units
per frame.

The time until an importance value becomes stable heavily depends
on the number of subsequent dependencies, e.g. the NAL units of the

112

4 A Framework for Content-Aware Media Streaming

Importance Distribution in H.264 Stream with Loss

Importance Distribution in H.264 HD Broadcast Quality Video Streams

n
=]
3

Steady-State Time for GoP 1

NAL Unit Arrival Time (equally spaced)
&
NAL Unit Arrival Time (squally spaced)

H.264 Main Profile
Framesize: 1266x720

Slice Mode A: fixed size (7/frame)
GoP Size: 24 frames

B-Frames: 1
GoP Patter: IPB

Lost Data Units break Dependency Chain

50 100 150 200 50 100 150 200
NAL Unit Sequence Number NAL Unit Sequence Number

(a) (b)

Fig. 4.13 : Importance distribution maps for H.264 video streams without (left) and
with the effects of loss (right).

I-frame are much longer unstable than late P-frame units. B-frame units
(visible as blue stripes) are not affected at all. Importance values of a
sequence only saturate when all dependencies are visible, that is, when all
data units from a GOP are visible. In the example, two group of pictures
are displayed. In the first GOP all data units are already visible, while
in the second GOP only the leading I-frame is visible yet. For data units
in the first GOP all transitive dependency relations are already present
and hence their importance values are saturated. We call such data units
to have reached steady-state.

Definition 4.8.1 (Steady-state Importance:) steady-state is reached
if all transitive dependency relations for a data unit are visible.

Steady-state allows to calculate the final importance of a data unit.
The single I-frame in the second GOP, however, currently lacks all its
dependency relation; it has not yet reached steady state. A naive impor-
tance estimation algorithm that accounts for visible dependency only,
would consider the single I-frame less important than most of the P-
frames in the first GOP. This is clearly a violation of the guarantee the
dependency model aims to give. We call this effect Importance Inversion:

Definition 4.8.2 (Importance Inversion:) When for any two non-
lost data units u; and uj, where at least one unit has not yet reached

4.8 Limitations of the Dependency Model

113

steady state, the order of their importance values differs from steady-
state order, the importance of u; and u; is inverted.

Importance inversion may seriously affect the usefulness of scheduling
decisions based on dependency-related importance. Therefore inversions
must be avoided either by the model itself, or by a conscious use of
the model and by careful consideration of the values it emits. As we
will discuss shortly, this is possible for predictable streams and carefully
designed type-graphs, but hard for unpredictable streams. Because in-
versions are impossible in steady state it is always a safe advice to rely
on estimated values for steady-state data units only. Waiting for steady-
state is, however, problematic in low delay applications. The steady-state
problem is generally decidable when data units are processed in sequence
order, because steady-state for a data unit is reached when the first data
unit of any subsequent epoch becomes visible. This is because we de-
fined that epochs limit dependency relations. The steady-state problem
is even decidable for corrupted streams where some data units are miss-
ing because either a subsequent data unit with an epoch value larger
than a previous value will be eventually received or the stream ends.
Even if reordering occurs, steady-state is decidable when the acceptable
out-of-order radius is considered too.

As figure 4.13(a) indicates, for more important data units it takes a
considerable amount of time to approach steady-state. The first I-frame
remains unsteady until all other 167 data units of the first GOP are
visible, while B-frames and the last P-frame immediately enter steady-
state at their initial importance. Even if a stream is unpredictable, it
has the important property that data units approach steady-state in
transmission order.

Another form of invisibility can affect the importance estimation even
more severly. As a second example, figure 4.13(b) shows the effects of
loss on the evolution of dependency values. When loss leads to broken
dependency chains, the dependency model can no longer calculate all
dependency values correctly. In this example, the importance of I-frame
units who’s vertexes are disconnected from subsequent units remains low,
while following P-frames still have transitive dependencies. Obviously,
the actual importance values display a wrong situation. The result of
this obervations is that the estimation accuracy of our model suffers from
such forms of invisibility because our algorithms operate on visible data
units and visible dependency relations only.

The dependency model already offers ways to recover unavailable in-

114

4 A Framework for Content-Aware Media Streaming

formation. We first focus on simple solutions for regular and limitedly
predictable streams that assume no gaps in the sequence, while section
4.8.3 discusses some advanced solutions.

Prediction assumes fixed regular stream structures and dependency pat-
tern. This assumption may appear restrictive, but predictable
streams do not suffer from limited visibility because their actual de-
pendency pattern is inferred from the type graph. For predictable
streams it is even irrelevant whether they arrive in-order, because
the only information required for prediction is the sequence number
(see section 4.6.2).

Average importance values can be specified for every type in the type
graph. The importance estimation algorithms use these values as
a lower bound for data units of the particular type. Average im-
portance requires a type system that actually reflects importance
and dependency. The H.264 simple profile, as a counter-example,
supports only two transport unit types for frame content, IDR
NAL units and non-IDR NAL units. Given the fact that non-IDR
units can contain arbitrary slice types with arbitrary dependency
relations, assigning average values at this abstraction level is im-
possible. If, however, characteristic values for some or all types
in a stream format can be identified, the initial estimate can ap-
proximate the steady-state values with reasonable precision. This
is always possible for strictly predictable streams and it may be
possible for limitedly predictable streams too.

Importance offset values can be attached to data units to reflect an in-
crease or decrease of importance in addition to the type averages
and dependency-based values. On a per-data unit basis the im-
portance estimation can be fine-tuned by the application, but it
is also possible to assign very large or very low importance val-
ues without risking a higher probability of importance inversion.
Note, however, that offset values are always added to the calcu-
lated importance for every data unit. They can easily overrule
dependency-based values. In addition, when every unit gets an
offset value relative to the unit’s steady-state importance, the rel-
ative importance order of all units remains unchanged. Hence, it
is advisable to use offsets selectively for prominent data units only.

Horizon size control is a technique that requires cooperation from the
users of the dependency model. The main idea is to adaptively

4.8 Limitations of the Dependency Model

115

resize the horizon of the model to hold multiple dependency epochs
at once and to rely on estimated values only when the data units
have reached steady-state. This is when the first data unit of a
subsequent epoch (e.g. group-of-pictures) becomes visible. This
technique introduces a pre-roll delay of one epoch and it requires a
sufficient amount of storage for data units. It does therefore only
work for delay-insensitive streaming applications such as broadcast
and on-demand services. Horizon control does not assume that
the maximal epoch size (in data units) is known in advance, but
implementations will become more efficient when this value is fixed,
at least at run-time.

4.8.3 Loss-Resilience

While a stream sender usually has complete knowledge about a stream
at least up to the visibility horizon, receivers (and proxies) are affected
by loss and reordering of data units. The only reliable information at
the receiving side are the static type description and labels of correctly
received data units. For lost units, only sequence numbers are known,
but types and explicit dependencies are missing.

When linking data units are lost such as depicted in figure 4.14, the
missing dependency information can result in fragmented dependency
chains and in the worst case in importance inversion. The example shows
the effects of a single loss to a simple MPEG-like dependency structure.
In this case an important unit in the middle of the dependency chain is
lost. The chain is fragmented into two disconnected partitions whereas
the first P-frame in the second partition remains reachable by subse-
quent units, but the more important frames in the first partition become
unreachable. Consequently, the transitive importance from the second
partition cannot propagate to the first partition, resulting in inverted
importance values.

Since inversion can lead to incorrect scheduling decisions or sub-optimal
error protection and thus degraded performance, it should be avoided.
Average importance and offset values can only provide limited help and,
moreover, they apply to available or predictable data units only and they
do not work for group-based streams. In order to become more resilient
to isolated and bursty loss we suggest additional solutions:

Protocol support and especially importance-based packet scheduling can
help to avoid the loss problem. When a streaming protocol trans-

116

4 A Framework for Content-Aware Media Streaming

Real Lost Data Unit

Importance Correctly Estimated
/Impor!ance

Inverted

Importance I N 6 !_\ﬂ!_\ >

Data Units

Broken Dependency Chain

Fig. 4.14 : Effects of packet loss on dependency chains: The loss of a data unit in

the middle of a dependency chain partitions the chain and can lead to
importance inversion.

mits and repairs data units in importance order, then more impor-
tant units are sent and repaired with larger probability than less
important ones. The dependency model’s object graph at the re-
ceiver side is less severely corrupted because destruction is likely to
occur at the end-vertexes of dependency chains only. Hence, the
chains become shorter, but inversion is prevented with a higher
probability than it would be achievable with best-effort protocols.

Redundancy is a well known loss resilience tool for communication over

erroneous channels. For group-based streams the dependency model
already contains a simple form of redundancy in the data unit la-
bels because type, group membership and dependency is repeated
in every unit. Hence, it is sufficient to receive at least a single
unit per group to reconstruct the dependency information for the
total group. When further redundancy is required, the labels can
be easily detached from data units and separately protected or
transported. This is, however, beyond the scope of this thesis.

4.9 Experimental Evaluation

In order to evaluate the performance and accuracy of our dependency
model we implemented a prototype in C++ and observed its behaviour
with a large set of different H.264 video sequences under various simu-
lated loss and visibility scenarios. For statistically sound and comparable

4.9 Experimental Evaluation

117

observations we use standard video sequences, but due to their short du-
ration and small resolution we also investigate longer video sequences
with larger resolutions.

The sequences were encoded at variable bitrates (VBR), with several
dependency patterns, epoch sizes and error-resilience features. Although
some of the patterns are predictable, we do not examine the performance
of the proposed prediction modes because they yield perfect estimation
results anyway. We rather concentrate on worst case scenarios to anal-
yse general limitations of dependency tracking systems. Furthermore,
we do not consider constant bitrate (CBR) sequences because we do not
expect them to raise further insight on dependency structures beyond
VBR sequences. Although dependency relations in CBR settings can
be adaptive and unpredictable, the number and patterns of data units
is fixed. Hence, the estimation accuracy of our model under loss and
limited visibility would degrade more sharply when compared to VBR
sequences. Due to the lack of appropriate encoding software we could
also not investigate layered and scalable streams. We assume that due
to the complex dependency structures of scalable streams the estima-
tions of our model would become more accurate, but we consider these
experiments future work.

The first set of experiments focuses on comparing the accuracy of our
importance estimation to MSE-based distortion metrics. We are inter-
ested in structural properties of bitstreams that influence our estimation
accuracy such as, for example, the dependency pattern, the GOP size,
and H.264 error resilience features. By linear regression analysis we show
that our model performs well for a number of bitstreams, but we also
reveal some deficiencies that originate in our simple assumptions about
error propagation. A second set of experiments explores the conceptual
limits of our dependency model, namely the effects of limited horizon
size as well as the impact of loss on importance inversions. Finally, we
provide performance figures for the Dependency Validation Service to
show that dependency-based importance estimation is feasible at low
complexity and in real-time settings.

4.9.1 Properties of Selected Video Sequences

Before reporting on results, we first introduce and justify the selection of
video sequences used in our experiments. We also discuss the different
encoder configurations, used to generate the H.264 bitstreams, and their
impact on our dependency model.

118

4 A Framework for Content-Aware Media Streaming

Selected Sequences We used two sets of video sequences for the ex-
periments. The first set contains standard sequences common in the
video-coding and packet-video transport communities (table 4.3). These
sequences can, for example, be obtained from the Video Traces Research
Group from Arizona State University?. We call this set standard. Due to
the short duration and limited resolution (QCIF and CIF) of the stan-
dard sequences we decided to use a second set with longer durations and
larger resolutions up to HDTV (table 4.4). The second set was obtained
from the BBC Motion Gallery®, hence we call it BBC.

When available, we examined a sequence in multiple resolutions to
detect effects that solely depend on the number of pixels or macroblocks
per frame, while avoiding the considerable impact of content-specific fea-
tures, such as low or high details, low or high local motion, and low or
high global motion. Although content diversity is the most unpredictable
and the least controllable property of a video sequence, it is a good indi-
cator to bias the impact of controllable effects. Hence, when presenting
results, we always show multiple sequences for comparison.

Both sequence sets have the following properties: In general, the stan-
dard set contains low resolution sequences without scene-cuts only, while
the BBC set contains only high resolution sequences with scene cuts ev-
ery 2 to 5 seconds. Most of the BBC sequences feature a considerable
amount of motion and the HD sequences also a high amount of detail.
Some sequences are noisy with respect to fluctuating pixel differences be-
tween consecutive frames. Noise means that encoding the source video is
either less efficient or the quality of details suffers. Scene cuts and a high
amount of motion (either local or global) also influence coding efficiency
because more bits are required to encode the residual error after motion
compensation. With respect to error propagation and the importance
distribution, we expect our model to closely match the real distortion

%http://trace.eas.asu.edu/
Shttp://www.bbcmotiongallery.com/Customer/Showreels.aspx

Resolution in Frames Length Content
Name H pixel [MB ‘ & Rate ‘ in sec H Characteristics
Akiyo (Q)CIF | 11x9 / 22x18 300@25 12 very few motion
Coastguard (Q)CIF | 11x9 / 22x18 300@25 12 slow global motion
Foreman (Q)CIF | 11x9 / 22x18 300@25 12 local/global motion
Highway (Q)CIF | 11x9 / 22x18 | 2000@25 80 slow global motion

Tab. 4.3 : The set of standard video sequences used in our experiments.

http://trace.eas.asu.edu/
http://www.bbcmotiongallery.com/Customer/Showreels.aspx

4.9 Experimental Evaluation

119

Resolution in Frames Length Content

Name pixel [MB & Rate in sec Characteristics

CBS News 720x576 45x36 5185@25 207.40 scene cuts, very noisy

NHK 720x576 45x36 6295@25 251.80 cross-fadings and cuts,
mostly slow global mo-
tion

Rip Curl 720x576 45x36 4621Q@25 184.84 fast global motion, many
scene cuts

Science 720x576 45x36 2577Q@25 103.08 scene cuts, much and fast
global and local motion

HD World 1266x720 80x45 2525@25 101.00 scene cuts, much global
motion, noisy source

Wild Africa 1266x720 80x45 6744@25 269.76 scene cuts, slow mixed
global and local motion,
noisy source

Tab. 4.4 : The set of BBC video sequences used in our experiments.

because most of the frames are predicted and rely on other frames along
the dependency chains. For high-motion sequences many macroblocks
may be intra-coded rather than predicted even if the frame-type suggests
prediction. This intra-updates may quickly attenuate error propagation
and hence, dependency relations along a chain become weaker. Because
our model currently ignores this fact for complexity reasons, it may per-
form worse if intra-updates are frequent.

Encoder Settings For generating H.264 bitstreams we used the H.264
reference encoder (JM12.2%) and the open-source x264 library®. In con-
trast to JM12.2, x264 provides no error resilience tools and it is only
capable of producing a single slice per frame. Whenever error resilience
was of no principal interest, we used x264 as encoder. JM12.2 was used
to generate all error resilient streams, using forced intra-refresh for one
line of macroblocks per frame. We also restricted the size of slices to
the typical network-layer MTU of 1452 byte (Ethernet frame size mi-
nus [IP+UDP+RTP headers). In the following we refer to the fixed slice
mode as used by x264 as slice mode A, and to the network-adaptive slice
mode as slice mode B. All streams were encoded with one IDR-picture
per GOP to hard-limit error propagation. For all experiments we used
variable bitrate streams to achieve the best possible quality at a given
target bitrate and to generate variability in bitstream structures.

4http://iphome.hhi.de/suehring/tml/download/
Shttp://www.videolan.org/developers/x264.html

http://iphome.hhi.de/suehring/tml/download/
http://www.videolan.org/developers/x264.html

120

4 A Framework for Content-Aware Media Streaming

For the dependency structure we used fixed (I-P-B-P and fixed pyra-
mid) as well as adaptive (I-P-P-P and adaptive pyramid) patterns. In
pyramid patterns, some B-frames are used as references to form a dyadic
tree structure of multiple levels. Because B-frames at each level are
equally spaced, this format allows for smooth temporal scaling by re-
moving all frames from one or more levels. In adaptive mode the encoder
selects reference frames based on the content. We limited the number of
references per frame to 8 and the radius for reference picture selection to
16. Streams with a fixed dependency structure are strictly predictable,
however, the more error resilient network-adaptive slice mode B makes
those streams unpredictable because it generates a variable number of
NAL units per frame. For the standard video sequence set we selected

two different dependency structures (adaptive I-P-P-P and fixed
I-P-B-P),

with and without error resilience (both slice modes),

at GOP-sizes 12, 24, and 48 frames, and

10 target bit-rates between 100 kbit/s and 1000 kbit/s.
The BBC set of video sequences we encoded

e in four different dependency patterns (fixed I-P-B-P, fixed pyramid,
adaptive I-P-P-P, and adaptive pyramid)

e with and without error resilience (for pyramid streams only without
error resilience)

e at a common GOP-size of 24 frames and

e at 600 kbit/s bitrate for 720x576 resolution sequences and 3000
kbit/s for 1266x720 resolution sequences.

This gives a total number of sequences of 2 x 2 x 3 x 10 x 8 = 960 for
the standard set and a total number of sequences of 4 x 2 x 6 = 48 for
the BBC set. We consider these numbers sufficient for a sound statistical
analysis.

4.9 Experimental Evaluation

i in selected
(CIF, GOP-24, 1000 kbit/s)

NAL Unit Size Di:

NAL Unit Size Distribution in selected BBC Sequences
T

CDF

0.7f

0.4F

03k A : l

0.21

0.1

T
HD World e
NHK | FET 7 RN
09 RipCurl

081

Fig. 4.15 : Distributions of NAL Unit size in sequences

100 1,000 10,000
NAL Unit Size in byte

(a)

NAL Unit Size Distribution in selected Standard Sequences
(CIF, GOP-24, 1000 kbit/s)

1,000 10,000
NAL Unit Size in byte

(b)

with slice mode A.

Distribution of NAL Units per Frame in selected Standard Sequences

(CIF, GOP-24, 1000 kbit/s)

Foreman (total NAL Unif
Highway (total NAL Ut

680)
1828)|

500 1000 1500
NAL Unit Size in Byte

(a)

NAL Unit Size Distribution in selected BBC Sequences

10
NAL Units per Frame

(b)

Distribution of NAL Units per Frame in selected BBC Sequences

0.9

HD World (total NAL Units = 25676)
NHK (total NAL Units = 23142)]
Rip Curl (total NAL Units 34505)

500 1000
NAL Unit Size in Byte
(c)

Fig. 4.16 : Distributions of NAL Unit size for sequences in slice mode B.

10
NAL Units per Frame

(d)

122

4 A Framework for Content-Aware Media Streaming

Adaptive I-P-P-P Dependency

Name GOP-12 GOP-24 GOP-48
Akiyo! 5.61/26/4.99 5.61/ 31/ 3.70 5.61/21/1.88
Coastguard® 5.56/19/3.21 5.58/ 20/ 2.74 5.55/20/2.08
Foreman® 5.57/26/4.00 5.56/ 29/ 3.47 5.56/29/2.50
Highway! 5.90/15/2.53 5.91/ 18/ 2.62 5.90/18/2.06
CBSNews? - 3.72/129/ 6.28 -
NHK? - 3.68/105/ 4.80 -
RipCurl? - 7.47/ 54/ 4.84 -
Science? - 5.11/111/ 6.95 -
HDWorld? - 10.16/ 84/12.17 -

WildAfrica®

10.10/177/15.23 -

Tab. 4.5 : Number of NAL Units per video frame as (mean/max/std), encoded at
1000kbit/s)t, 600kbit/s)?, and 3000kbit/s)3 target bitrate. The resolu-
tion is CIF for standard sequences and resolution given in table 4.4 for
BBC sequences.

Stream Properties To further understand the properties of the en-
coded sequences we closely examined the bitstreams. We are mainly
interested in the number and the distributions of data units (H.264 NAL
units) per frame and per GOP because group semantics and horizon
control in our model are sensitive to these properties.

Figure 4.15 displays the distributions of NAL unit sizes for selected
x264-encoded sequences from both sequence sets. Although, from a de-
pendency perspective, the actual size of a data unit is irrelevant for im-
portance estimation we provide the graphs for informational purposes.
Please recall, that x264 supports a single slice per frame only (slice
mode A). Hence, NAL units can become large, compared to the per-
mitted network-level MTU (around 1500 bytes in the Internet [167]) or
the maximum packet size of UDP (65,527 bytes [53]). We did, however,
not consider fragmentation of large data units. Figure 4.16 shows the
NAL unit size distributions for JM12.2 (slice mode B) to the left and the
distribution of NAL units per frame to the right. The graphs show that
a considerable amount of frames (more than 90 percent) is encoded in
two or more NAL units and that 5 percent (standard set) to 30 percent
(BBC set) of all frames contain more than 10 NAL units. It becomes
also apparent that an increase in resolution translates into an increased
variance of data units per frame. For comparison we also provide the
exact figures of mean, max and standard deviation in table 4.5.

4.9 Experimental Evaluation

123

Fixed I-P-B-P Dependency

Name GOP-12 GOP-24 GOP-48
Akiyo! 4.12/24/5.11 4.12/ 29/4.28 4.07/20/2.92
Coastguard® 4.08/17/3.91 4.02/ 19/3.68 4.01/19/3.29
Foreman® 4.12/25/4.35 4.14/ 27/3.88 4.10/28/3.19
Highway! 4.07/15/3.20 4.06/ 18/2.99 4.05/18/2.46
CBSNews? - 2.63/103/3.80 -
NHK? - 2.62/ 59/3.57 -
RipCurl? - 2.59/ 31/2.17 -
Science? - 2.66/ 65/3.98 -
HDWorld? - 6.57/ 80/8.11 -
WildAfrica® - 6.82/125/9.77 -

Tab. 4.6 : Number of NAL Units per video frame (continued).

Pattern Name GOP-12 GOP-24 GOP-48
Akiyo® 67.76/74/8.71 130.23/ 147/ 23.06 241.86/294/75.35
Coastguard! 67.16/75/8.60 129.54/ 147/ 22.85 239.29/287/73.44
Foreman® 67.32/75/8.66 129.23/ 145/ 21.89 239.86/286/73.69
Highway* 70.73/75/4.32 140.81/ 148/ 12.64 281.24/295/20.31

Adaptive

I-P-P-P CBSNews? - 44.68/ 381/ 42.96 -
NHK? - 44.08/ 245/ 20.38 -
RipCurl? - 89.62/ 193/ 23.18 -
Science? - 61.31/ 431/ 49.05 -
HDWorld?® - 121.69/ 698/ 79.44 -
WildAfrica® - 121.24/1367/129.35 -
Akiyo® 49.64/86/11.88 95.38/ 103/ 12.68 175.00/199/52.68
Coastguard' 49.08/51/ 0.84 93.15/ 102/ 12.70 172.57/196/50.49
Foreman® 49.60/54/ 1.91 95.85/ 102/ 9.79 176.43/198/46.79

Fixed Highway! 48.78/52/ 1.80 96.83/ 101/ 6.74 193.19/199/10.08

1xXe

I-P-B-P CBSNews? - 126.45/ 596/ 62.54 -
NHK? - 125.21/ 515/ 46.71 -
RipCurl? - 123.56/ 513/ 46.64 -
Science? - 126.94/ 595/ 82.24 -
HDWorld? - 312.86/ 818/101.02 -
WildAfrica® - 326.44/1780/176.83 -

Tab. 4.7 : Number of NAL Units per epoch as (mean/max/std), encoded at
1000kbit/s)!, 600kbit/s)?, and 3000kbit/s)? target bitrate. The reso-

Iution is CIF for standard sequences and resolution given in table 4.4 for

BBC sequences.

124

4 A Framework for Content-Aware Media Streaming

Distribution of NAL Units per Epoch in selected BBC Sequences
(Adaptive IPPP)
1 ——

Distribution of NAL Units per Epoch in selected
(Adaptive IPPP, CIF, GOP-24, 1000 kbit/s)

Foreman
0.9~ ~ ~Highway

—— HD World
- - -NHK
-~ -~ Rip Curl

1000

80 100 120 140 160 10 100
NAL Units per Epoch NAL Units per Epoch

(a) (b)

Fig. 4.17 : Distributions of epoch sizes for error-resilient sequences (slice mode B).

The variable number of NAL units per frame in slice mode B directly
translates into a variable number of NAL units per epoch as depicted
in figure 4.17 and table 4.7. Please note that the x-scale for BBC set
distributions in figure 4.17(b) is logarithmic. We later use the mean and
the maximum values of the distributions to show how different horizon
sizes below the mean and above the maximum influence the prediction
accuracy of our model.

Although the standard sequences contain too few epochs for a sound
statistical analysis (for 24 frames per GOP there are only 13 epochs in
Foreman and 84 epochs in Highway), the figures in table 4.7 indicate
similarity between mean and maximum values for all sequences across
multiple GOP-sizes.

4.9.2 Accuracy of Dependency-based Importance

To figure out how close our estimated dependency-based importance
matches traditional distortion metrics we performed a statistical anal-
ysis over different streams and dependency structures. Because several
factors can influence the accuracy of the predicted importance values we
systematically examine the effects of different dependency patterns, the
effects of error-resilience tools, and the effects of different GOP-sizes,
resolutions and encoding bitrates.

We compare our performance (a) to the popular Mean Squared Error
(MSE) distortion metrics which is based on a per-frame pixel differences

4.9 Experimental Evaluation

125

between a distorted sequence and a reference sequence and (b) to the
Structural Similarity (SSIM) metrics [168] that takes human perception
of visible distortion into account.

Methodology For calculating the actual MSE and SSIM distortion val-
ues for each NAL unit in a sequence we used the analysis-by-synthesis
method proposed by Masala and deMartin [162]. According to this
method we systematically removed one NAL unit and calculated MSE
and SSIM metrics between the decoded sequence and a sequence that
was not subject to loss. Note, that this method differs from encoder
benchmarks where the original sequence (not the encoded one) is used
as reference. This is because we are interested in the distortion that is
introduced by network packet loss rather than the distortion introduced
by lossy encoding.

For decoding the corrupted sequence we enabled the frame-copy and
motion-copy error concealment modes provided by both x264 and JM12.2
decoders. The x264 sequences were actually decoded using MPlayer® be-
cause x264 provides no own decoder. When a frame was not concealed
and output by the respective decoder, we copy-concealed its loss using
the previous frame during distortion calculation. Due to the complexity
of distortion computation and the length of our sequences we compared
only the affected epochs up to the next intra-coded frame that restricts
error propagation. While the MSE value was averaged over all affected
frames, we use only the smallest SSIM value of any affected frame. Be-
cause SSIM values range from 0 (worst) to 1 (best) the smallest value
characterises the frame with the largest distortion introduced by the
simulated loss. Note that this may be the frame that misses a NAL
unit or another frame that depends on the corrupted frame. The distor-
tion calculations took a considerable amount of time on current high-end
processors (Intel Xeon 3.2 GHz), emphasising the practical limits of tra-
ditional distortion metrics when time or resources are scarce such as in
live streaming scenarios and on mobile devices.

The dependency-based importance values were calculated by our DVS
prototype implementation. For initialisation we used the H.264 depen-
dency description in listing A.2 and the maximum epoch sizes in table
4.7. The horizon size was configured to cover at least two complete
epochs of maximal size to allow each data unit to reach steady-state.
Because our model requires the actual dependency between data units,

Shttp://www.mplayerhq.hu

http://www.mplayerhq.hu

126

4 A Framework for Content-Aware Media Streaming

but provides no means to extract these properties from a bitstream, we
also developed a tool to obtain the desired properties from H.264 se-
quences and store them in trace files.

Performance Metrics To identify a connection between importance
and distortion metrics we used the following correlation analysis tools:

Spearman Rank-Order Correlation Coefficient (SROCC) is an analyt-
ical tool that reveals if an increase in dependency-based importance
is justified by an increase in distortion and thus if predictions made
by the dependency model are relevant at all. Although rank-order
is just a qualitative statement rather than a quantitative one, it
would be already sufficient for priority-based packet scheduling and
adaptive error control because decisions in such schemes are based
on ordering relations between data units.

Pearson Product-Moment Correlation Coefficient (CC) is an analyt-
ical tool that reveals in addition to the qualitative statement of
rank-order if an increase in distortion is proportional to an increase
in importance. If so, the dependency model can also predict the
absolute importance of each data unit over the complete sequence.
This might be an important property when absolute quality levels
are of interest, such as in performance-critical applications that
must preserve a pre-determined quality and fail otherwise.

Scatter-Plots are a graphical tool that reveals relationships or asso-
ciation between importance and distortion values. We plot the
dependency-based importance at the horizontal axis and distor-
tion as the response variable on the vertical axis. Note that the
scatter plots we use always contain normalised data. Comparing
their absolute values is therefore meaningless.

Quantile-Quantile-Plots (Q-Q plots) are a graphical tool that provides
more insight into the nature of the distributions of importance and
distortion values. QQ-Plots show if and where both distributions
are similar and where they are not. For comparison we plot the
importance value distribution on the horizontal axis and the dis-
tortion value distribution on the vertical axis. The reference line
in a QQ-plot reveals if the dependency model underestimates or
overestimates real distortion values. As with the scatter plots,
comparing absolute values is meaningless.

4.9 Experimental Evaluation

127

For sound statistical analysis we removed extreme outliers and illegal
values that resulted from decoder crashes and normalised the data sets
using the Box-Cox transformation [169].

Influence of the Dependency Pattern We start our comparison with
observations of different dependency patterns because this is the most
prominent property of media streams and because it suggests there is an
obvious relationship to dependency-based importance.

To isolate all other effects we use only streams in slice mode A, encoded
with the same GOP-size (24) and at a single bitrate (1000 kbit /s for stan-
dard sequences, and 600 resp. 3000 kbit/s for BBC sequences). We vary
two parameters only, namely the dependency pattern and the resolu-
tion. We selected two fixed patterns (Fixed I-P-B-P and Fixed Pyramid)
where the dependency was pre-determined by the encoder configuration
and two adaptive patterns (Adaptive I-P-P-P and Adaptive Pyramid)
where the encoder selected reference pictures based on content-specific
properties and bitrate constraints.

As expected, the correlation results in table 4.8 and table 4.9 indicate a
strong relationship between importance and MSE distortion, especially
for fixed dependency patterns. Both, the rank-order and the Pearson
correlation coefficients show an equal tendency. The quantitative rela-
tionship expressed by the Pearson correlation coefficient is less evident
when the MSE distortion data set is not normalised. The rank-order
correlation is not affected by these effects.

In general, dependency-based importance values are natural numbers
that reflect the length of dependency chains, while distortion metrics are
real numbers in a much finer resolution. Moreover, exact pixel-level dis-
tortion depends on more effects than dependency and error propagation
alone. Hence, it is plausible that importance cannot completely explain
distortion effects, but we conclude that our dependency model predicts
at least the order of importance values sufficiently accurate.

We also find from tables 4.8 and 4.9 that correlation is strong for MSE-
based distortion metrics, but worse for the SSIM metrics although SSIM
explains the perceived distortion more accurate than the simple MSE.
While for small resolutions there is a clear relation, for large resolution
the fit ceases to exist. We suspect our method of applying SSIM to video
sequences is wrong because we did not adjust it to the image resolution
as suggested. In fact, the SSIM method we used was originally developed
for still images. It does not consider motion and sequences of multiple

128

4 A Framework for Content-Aware Media Streaming

MSE SSIM
Pattern Stream SROCC cc OR SROCC cc OR
Akiyo (QCIF) 0.821 0735 0.092 -0.570 -0.566 0.092
Coastguard (QCIF) 0.875 0.829 0.092 -0.709 -0.644 0.092
Foreman (QCIF) 0.795 0.740 0.098 -0.410 -0.397 0.098
Fixed Highway (QCIF) 0.820 0.765 0.101 -0.632 -0.574 0.101
I-pP-B-P Akiyo (CIF) 0.822 0.736 0.092 -0.582 -0.556 0.092
Coastguard (CIF) 0.891 0.846 0.092 -0.719 -0.650 0.092
Foreman (CIF) 0.844 0.783 0.092 -0.422 -0.400 0.092
Highway (CIF) 0.838 0.774 0.101 -0.523 -0.469 0.101
Akiyo (QCIF) 0.540 0.572 0.089 -0.049 -0.113 0.089
Coastguard (QCIF) 0.843 0.817 0.089 -0.200 -0.174 0.089
Foreman (QCIF) 0.633 0.622 0.089 -0.187 -0.175 0.089
Adaptive Highway (QCIF) 0.708 0.662 0.107 -0.266 -0.270 0.107
I-P-P-P Akiyo (CIF) 0.598 0.617 0.089 -0.104 -0.119 0.089
Coastguard (CIF) 0.891 0.848 0.089 -0.056 -0.056 0.089
Foreman (CIF) 0.718 0.705 0.089 -0.143 -0.152 0.089
Highway (CIF) 0.724 0.681 0.101 -0.092 -0.089 0.101

Tab. 4.8 : Performance comparison between dependency-based importance and other
estimation models for standard sequences. The sequences are encoded with
x264 at GOP-size 24, 1000 kbit/s and in slice mode A. SROCC: Spearman
Rank Order Correlation Coefficient; CC: Pearson Product-Moment Cor-
relation Coefficient; OR: Outlier Ratio; Note that because SSIM ranges
from 1 for the best quality to O for the worst quality, the correlation coef-
ficients are expected to be negative when there is a linear relationship to
importance.

pictures. Hence, in our simulations we only used the worst quality image
as candidate to compute SSIM metrics and used this value as a distortion
measure. While there exists a video extension to SSIM [170] we sacrificed
its implementation in favour of a broader analysis using the less complex
MSE metrics. A thorough comparison to a suitable SSIM metric remains
an open issue.

Our dependency model seems to perform better for fixed dependency
patterns than for adaptively selected reference (4.18(a)), especially for
patterns with more B-frames (the pyramid structures, figure 4.19(b)). A
reasonable explanation for less accurate estimations of adaptive depen-
dency patterns is that although the dependency model exactly tracks
existing references the actual prediction mechanisms used in H.264 per-
form a weighted reference selection. The dependency model does not
account for weighted references, although it would be possible to attach
weights to vertices and edges in the dependency graph.

4.9 Experimental Evaluation 129

MSE SSIM
Pattern Name SROCC CccC OR SROCC CccC OR
CBS News 0.651 0.603 0.083 -0.364 -0.390 0.083
NHK 0.580 0.542 0.082 -0.282 -0.297 0.082
Fixed Rip Curl 0.735 0.648 0.103 -0.300 -0.303 0.103
I-P-B-P Science 0.527 0.479 0.116 -0.298 -0.312 0.116
HD World 0.634 0.563 0.141 -0.284 0.028 0.141
Wild Africa 0.594 0.548 0.104 -0.103 0.001 0.104
CBS News 0.575 0.581 0.108 -0.434 -0.463 0.108
NHK 0.532 0.545 0.087 -0.226 -0.002 0.087
Fixed Rip Curl 0.595 0.584 0.092 -0.426 -0.419 0.092
Pyramid Science 0.508 0.511 0.110 -0.407 -0.445 0.110
HD World 0.614 0.609 0.082 -0.445 -0.453 0.082
Wild Africa 0.583 0.575 0.096 -0.340 -0.350 0.096
CBS News 0.668 0.606 0.083 -0.390 -0.401 0.083
NHK 0.551 0.495 0.080 -0.265 -0.269 0.080
Adaptive Rip Curl 0.713 0.604 0.099 -0.286 -0.285 0.099
I-P-P-P Science 0.576 0.514 0.115 -0.379 -0.370 0.115
HD World 0.591 0.511 0.150 -0.264 -0.251 0.150
Wild Africa 0.547 0.467 0.098 -0.205 -0.185 0.098
CBS News 0.747 0.669 0.129 -0.523 -0.491 0.129
NHK 0.660 0.581 0.166 -0.272 0.005 0.166
Adaptive Rip Curl 0.689 0.594 0.105 0.000 0.000 0.105
Pyramid Science 0.652 0.564 0.113 -0.484 -0.421 0.113
HD World 0.656 0.568 0.084 -0.346 -0.298 0.084
Wild Africa 0.606 0.532 0.092 -0.276 -0.235 0.092

Tab. 4.9 : Performance Comparison between Importance Estimation Models with dif-
ferent Dependency Patterns for BBC Sequences. SROCC: Spearman Rank
Order Correlation Coefficient; CC: Pearson Product-Moment Correlation
Coefficient; OR: Outlier Ratio

The differences between adaptive and fixed patterns seem stronger for
low-resolution standard sequences (see figure 4.18) while they decrease
for higher resolution BBC sequences (displayed in figure 4.19). This ef-
fect is, however, not justified by a change in resolution. Figures 4.18(a)
and 4.18(b) reveal that there are no significant differences between QCIF
and CIF resolution at least for standard sequences. This leads us to
the conclusion that the observed effects of lower correlation depend on
content-specific properties such as motion and detail. Especially for the
BBC set with high motion and many scene cuts our importance estima-
tions become worse.

The results disprove our initial expectation that low motion sequences

are better estimated because more references and less intra-coding of dif-
ferences between consecutive frames is used. In fact the Akiyo sequence

130

4 A Framework for Content-Aware Media Streaming

Correlation Coefficient

Fig.

Correlation Coefficient

Fig.

<4
@

0.6

0.4

0.2

Importance vs. MSE Distortion Correlation
for Standard Sequences (QCIF, GOP-24, 1000 kbit/s)

Importance vs. MSE Distortion Correlation
for Standard Sequences (CIF, GOP-24, 1000 kbit/s)

==
[Adaptive I-P:
[—_JFixed I-P-B-P.

-P (CC)
(co)

Akiyo Coastguard Foreman

(a)

Highway

Correlation Coefficient

[_IFixed I-P-B-P (CC)

Akiyo Coastguard Foreman

(b)

Highway

4.18 : Correlation between dependency-based importance and MSE distortion
for different dependency patterns and resolutions of standard sequences.
GOP-size and bitrate are constant.

Importance vs. MSE Distortion Correlation Importance vs. MSE Distortion Correlation
for BBC Sequences for BBC Sequences
' ' ' I Adapti ' ' B Adaptive |-P—P—P (SROCC)
1r [Fixed I-P- Y
[—JFixed I-P-B-P (CO) [—_JFixed I-P-B-P (CC)
0.8F -
8
2
=
5
06f 8
5
£
0.4F 2
5
o
0.2
0 CBS News NHK Rip Curl Science HD World Wild Africa 0 CBS News NHK Rip Curl Science HD World Wild Africa
(a) (b)
4.19 : Correlation between dependency-based importance and MSE distortion for

different dependency patterns of BBC sequences. GOP-size and bitrate

are constant.

in figure 4.18 reveals that our model performs worse for adaptive coded
low motion sequences. We explain this unexpected effect with the er-
ror concealment method employed at the decoder. Because of the few
differences between frames, frame-copy error concealment performs out-
standingly well here. We intentionally avoided modelling of concealment
schemes because the actual method employed at the decoder may be
unknown to the sender and application-level concealment should remain
out of scope of a transport-level dependency-tracking framework anyway.

4.9

Experimental Evaluation

131

Scatter Plot of MSE Distributions in different Importance Classes
Coastguard, CIF, Fixed I-P-B-P

QQ-Plot between Importance and MSE Distributions

Coastguard, CIF, Fixed I-P-B-P

5 5 -
45 45 -
5 4 4 -
2 o i 4
S35 Q.0 5188 = ;
i geegsse ¢ A
225 g 25 F E :
22 . P
g 2 o! 2 P
215 15 -
21 1
05 05

o
o

)

5 10 15

Scatter Plot of MSE Distributions in different Importance Classes
Coastguard, CIF, Adaptive I-P-P-P

QQ-Plot between Importance and MSE Distributions
Coastguard, CIF, Adaptive I-P-P-P

5 10 15

16 5 50 16 1
14 14
s
£ 12 12
k7] .+
8 10 10 R,
w Lttt
23 8 ettt *
H £+
$ 6 6 - $$:
£ *
. .
S
2 2
[e] +
0 i i i i 0 i i i
0 5 10 15 20 25 5 10 15 20 25
Normalised Importance Normalised Importance
(a)
Scatter Plot of MSE Distributions in different Importance Classes QQ-Plot between Importance and MSE Distributions
Wild Africa, Fixed I-P-B-P Wild Africa, Fixed I-P-B-P
25 25
£+
520 HEgs12 S ¥
g : T
2 b -t —+
o1 15 - T
w ~
2]
= [}
g 10 : 10
K}
E
2 5 5
0 0 -
0 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Scatter Plot of MSE Distributions in different Importance Classes QQ-Plot between Importance and MSE Distributions
Wild Africa, Adaptive I-P-P-P Wild Africa, Adaptive I-P-P-P
25 25
520 20 - '+++*+
g o F T
: e
215 15 Y *
w FTT
w .
=
§ 10 10
k]
€
25 5
o 0
o 5 10 15 20 25 0 5 10 15 20 25

Normalised Importance

(b)

Normalised Importance

Fig. 4.20 : Detailed Scatter- and Q-Q-Plots for Coastguard (CIF, GOP-24, 1000
kbit/s) and Wild Africa (1266x720, GOP-24, 3000 kbit/s), both encoded
in slice mode A without error-resilience.

132

4 A Framework for Content-Aware Media Streaming

Apparently, the higher resolution is no sufficient explanation for de-
creased correlation, because the BBC sequences approach correlation
values also found at QCIF resolutions. Hence we conclude that the dif-
ferent qualities of fit stem from content-specific attributes such as scene
cuts, motion, detail and noise. To gain further insights we plot the
normalised MSE distortion values as a response to the importance into
a scatter plot and a Q-Q-Plot. If the assumed correlation exists, the
points would arrange along a straight line or a curve. Figure 4.20(a) dis-
plays the diagrams for a sequence with a very good fit and figure 4.20(b)
shows the plots for a worse fit. The scatter plots show a considerable
overlap of distortion values between distinct importance classes. There
is, however, a general tendency of higher distortion values towards the
upper importance classes. For fixed dependency structures the variance
of distortion values is smaller than it is for adaptive structures. For the
Wild Africa sequence the variance is considerably larger than for the
Coastguard sequence.

The shape of the curves also reveal a non-linear relationship between
importance and distortion. Especially for very small and for very large
values both metrics show different distribution characteristics, as the
tails in the Q-Q-Plots indicate. The Q-Q-Plots further show that there
are much more small values in the importance distribution than the MSE
distribution contains. For example, the dependency model assigns the
value 2 to data units who cover a large range of distortion values (30-
50% of all values for I-P-B patterns). From the general structure of the
dependency graph we know that the value 2 is only assigned to the least
important units, such as B-frames and the last P-frames in an epoch.
From a scheduling perspective, assigning such small values is reasonable
because the affected units are not used as references. When, however,
a scheduler must choose one out of many least important data units to
send or repair, the dependency model provides no further advice.

We conclude, that importance estimation achieves a close match to
MSE distortion in the centre of the distributions but at the tails, in
particular the lower tail, importance values do not fit. Hence, we suggest
that an future improvements should concentrate on the distribution tails
to increase the fit.

Influence of Encoding-Layer Error-Resilience Tools The accuracy of
dependency-based importance metrics may decrease when encoder-side
error resilience tools are used because they influence the propagation of

4.9 Experimental Evaluation

133

Importance vs. MSE Distortion in Standard Sequences with and without Error-resilience (Adaptive I-P-P-P, GOP-24, 1000 kbit/s)
1 T T T T
I x264 (SROCC)

[JM12.2 (SROCC)
0811 —Jxe4 (cC) a
C——1um12.2(CC)

v Il |]

Akiyo (QCIF) Aklyo(C\F) CDastguard(OClFJ Coastguard (CIF) FDreman(OC\F) Foreman (CIF) nghway(QCIF) H\ghway(C\F)

()

Correlation Coefficient

Importance vs. MSE Distortion in BBC Sequences with and without Error-resilience (Adaptive |-P-P-P)
1 T T T T T

I 264 (SROCC)
08 [Jm12.2 (SROCC)
. 264 (CC)
C——JJum122(CC)

A0 W o b k- Hﬁ

CBS News NHK Rip Curl Science HD World Wild Africa

(b)

Correlation Coefficient

Fig. 4.21 : Correlation between dependency-based importance and MSE distortion for
different slice modes, with (JM12.2) and without (x264) error resilience.
Dependency pattern, resolution, GOP-size and bitrate are constant.

errors along dependency chains. Therefore we investigate the predic-
tion quality of our model for error resilient sequences. We selected the
network-adaptive slice mode B and forced intra-refresh of one line of
macroblocks per frame. We also considered H.264 data partitioning, but
decoder failures prevented us from calculating distortion values for all
NAL units. Hence, we dropped the set of data partitioned streams from
this evaluation.

Figures 4.21(a) and 4.21(b) reveal that the effects of error resilience
have a large impact on the fit between importance and distortion met-
rics. We use the bars from figures 4.18 and 4.19 as reference. At high
resolutions and for complex streams with a lot of motion and details, in
particular in HDTV streams, the importance metric does not fit MSE
distortion anymore. The distortion seems to become random, depending
on the content and the size of the slice that is transported in a NAL
unit. The same effect is visible for increased bitrates in figure 4.22. Al-
though the ratio of intra-updates remains constant the number of bits
per frame increases, generating in more NAL units that cover smaller
spatial regions. This leads us to the conclusion that the number of en-
coded macroblocks per slice is the crucial factor for the fit.

134

4 A Framework for Content-Aware Media Streaming

Importance vs. MSE Distortion over multiple Bitrates Importance vs. MSE Distortion over multiple Bitrates
(CIF, GOP-24, Adaptive I-P-P-P) (CIF, GOP-24, Adaptive |-P-P-P)
1 1
—e— Foreman JM12.2]
0.9r [. 0.9F - & ~Foreman x264 ||
B i o —5— Highway JM12.2
0.8F 0.8F - v —Highway x264 ||
0.7k 07} 85580 W TSP me oy
- ~o-
0.6F T,

LA A B i

JAC

Correlation Coefficient
o
o
Correlation Coefficient

0.4f
— S —
0.3} e
0.2 2 Akiyo IM12.2
- & - Akiyo x264
0.1 —a— Coastguard JM12.2 011
- & - Coaslguard x264
200 300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000
Bitrate in kbit/s Bitrate in kbit/s
(a) (b)

Fig. 4.22 : Correlation between dependency-based importance and MSE distortion
for different bitrates. Dependency pattern, resolution and GOP-size are
constant.

This is plausible because only small regions of a frame are lost when
a NAL unit is missing. The distortion after decoding and error conceal-
ment heavily depends on the lost content and on future references to
pixels at the lost macroblock positions. Hence, prediction, motion com-
pensation and concealment may or may not perform well at the decoder,
resulting in content-specific (random) MSE values. The assumptions of
the dependency model that dependency exists between frames only and
that fragments (NAL units) always contribute to a total frame does not
capture this fine-grained relationship at the macroblock level. The as-
sumption is, for example, expressed in the equal group semantics we
defined in the H.264 dependency description in listing A.2.

The scatter plot in figure 4.23 supports our conclusion. The variance of
distortion values per importance class remains high over the total range
although there is a tendency of low distortion values towards low im-
portance classes and a tendency of the largest distortion values towards
upper importance classes. While the centre of both distributions shows a
linear relationship in the Q-Q plot, the heavy tails reveal that our depen-
dency model over-estimates small distortion values and under-estimates
large values. This effect is in particular visible for streams with large
group sizes (numbers of NAL units per frame) because the dependency
model assigns equal importance values to all group members.

The effects of intra-updates seem to have less impact here because an
increase in resolution decreases the intra-refresh rate (it is fixed to one

4.9 Experimental Evaluation

Scatter Plot of MSE Distributions in different Importance Classes QQ-Plot between Importance and MSE Distributions
Coastguard, CIF, Error-resilient, Adaptive |-P-P-P Coastguard, CIF, Error-resilient, Adaptive I-P-P-P

15

Normalised MSE Distortion

B
A
10 10 o ot
et -t
5 5 %
o 0
0 5 10 15 20 25 0 5 10 15 20 25
Scatter Plot of MSE Distributions in different Importance Classes QQ-Plot between Importance and MSE Distributions
Wild Africa, Error-resilient, Adaptive I-P-P-P Wild Africa, Error-resilient, Adaptive I-P-P-P

25
20 : : % —

u***””

<
=]
5
2 -
a3 15 Tt
& T
= -t -+
3 10f - :
2
©
E
2 5
o ; ; ; ; ol ; ; ; ;
0 5 10 15 20 2% 0 5 10 15 20 25
Normalised Importance Normalised Importance

Fig. 4.23 : Scatter- and Q-Q-Plots for error-resilient versions of Coastguard (GOP-
24, 1000 kbit/s) and Wild Africa (GOP-24, 3000 kbit/s). The mean/max
group size of Coastguard is 5.58/20 and 10.10/177 for Wild Africa.

line of macroblocks in JM12.2). Although the number of macroblocks
considerably increases at higher resolutions (see tables 4.3 and 4.4) the
correlation steadily decreases.

A possible extension to improve the fit of our importance metrics
would be to attach correct importance offset values to data units and to
choose the unequal group semantics (see also section 4.8.2). This, how-
ever, requires knowledge about the expected distortion per data unit
which contradicts the goals of the dependency model.

Influence of the GOP Size Our final observations regard the impact
of different GOP sizes on the accuracy of importance estimations. We
expect larger GOP sizes to create longer dependency chains and hence
more detailed importance values. At least for streams in slice mode A
the fit of our importance metrics should increase with the GOP size,
while for error resilient streams we expect the effects of small NAL units
to be stronger. We compare streams encoded with fixed and adaptive
dependency pattern in slice mode A and slice mode B. All streams have
equal bitrates (e.g. 1000 kbit/s for standard sequences) and a fixed
resolution (e.g. CIF for standard sequences).

136 4 A Framework for Content-Aware Media Streaming

Importance vs. MSE Distortion over different GOP Sizes Importance vs. MSE Distortion over different GOP Sizes
for Fixed I-P-B-P (CIF, 1000 kbit/s) for Adaptive I-P-P-P (CIF, 1000 kbit/s)

I GOP-12 (SROCC)
1k 4 1k [GOP-24 (SROCC)
[GOP-48 (SROCC)
GOP-12 (CC)
. = GOP-24 (CC)
~ 0.8] 1 ~ 08 m [_1GOP-48 (CC)
1= £
8 a 8
o S
2 2
806 1 8os6
P c
S S
k<t 5
g 0.4 1 g 0.4
© I GOP-12 (SROCC) ©
[GOP-24 (SROCC)
0.2 GOP-48 (SROCC) 0.2
GOP-12 (CC)
GOP-24 (CC)
GOP-48 (CC)
0 T e 0

Akiyo Coastguard Foreman Highway Akiyo Coastguard Foreman Highway

(a) (b)

Importance vs. MSE Distortion over different GOP Sizes Importance vs. MSE Distortion over different GOP Sizes
for Error-resilient Fixed 1-P-B-P (CIF, 1000 kbit/s) for Error-resilient Adaptive I-P-P-P (CIF, 1000 kbit/s)
I GOP-12 (SROCC) I GOP-12 (SROCC)
1+ [GOP-24 (SROCC) 1+ [GOP-24 (SROCC)|
1 GOP-48 (SROCC) [] GOP-48 (SROCC)
GOP-12 (CC) [CJGoP-12 (CcC)
GOP-24 (CC) [C_1GOP-24 (CC)
= 0.8 [JGOP-48 (CC) ~ 0.8[F [C1GOoP-48 (CC)
g g
g)
g g
§ o6t 4 gosf
< c
2 2
k<t =
Loar 1 Loar
3 3
o o
0.2r 1 0.2r
0 " 0 - "
Akiyo Coastguard Foreman Highway Akiyo Coastguard Foreman Highway

(c) (d)

Fig. 4.24 : Correlation between dependency-based importance and MSE distortion
for different GOP-sizes. a,b) non- error-resilient slice mode A; c,d) error-
resilient slice mode B; resolution and bitrate are constant.

As expected, the correlation slightly increases for fixed dependency
patterns in slice mode A (figure 4.24(a)), but it slightly decreases for
adaptive patterns (figure 4.24(b)). The effects are, however, negligible.
Interestingly, in error-resilient encoded streams with fixed dependency
patterns (figure 4.24(c)) the influence of content-specific attributes seems
to be stronger. Two streams, Foreman and Highway, show an inconsis-
tent and unexpected behaviour we explain later.

In contrast, the weaker relationship between importance and distor-
tion is more pronounced in error-resilient streams with adaptive reference
selection (figure 4.24(d)). While the effects of multiple NAL units per

4.9 Experimental Evaluation

137

Scatter Plot of MSE Distributions in different Importance Classes QQ-Plot between Importance and MSE Distributions
Foreman, CIF, GOP-48, Fixed |-P-B-P Foreman, CIF, GOP-48, Fixed I-P-B-P

R -

< .
8
H o
2 5] =
8 g +r
g | T
2 10 R i
-

B ot
3 8 5 |
] (o]
g 6
2 4

2

o +

0 5 10 15 20 25 0 5 10 15 20 25
Scatter Plot of MSE Distributions in different Importance Classes QQ-Plot between Importance and MSE Distributions
Foreman, CIF, GOP-48, Adaptive |I-P-P-P Foreman, CIF, GOP-48, Adaptive I-P-P-P
20 20
© 0

o
1® o

Normalised MSE Distortion

0 10 20 30 40 50 0 10 20 30 40 50
Normalised Importance Normalised Importance

Fig. 4.25 : Detailed Scatter-Plot and Q-Q-Plots of the error-resilient versions of Fore-
man (CIF, GOP-48, 1000 kbit/s), with fixed dependency and B-frames
(upper figures) and with adaptive dependency and without B-frames
(lower figures).

frame remain constant, the effects of forced intra-refresh become visible.
Over all GOP sizes the mean NAL unit number per frame is approxi-
mately stable as table 4.5 displays, but the larger GOP size allows the
encoder to place more updates. At CIF resolution, every 18 frames one
line of macroblocks is intra-refreshed. This gives at least one complete
frame update for GOP size 24 and at least two complete frame updates
for GOP size 48, resulting in much lower error propagation probability.

While intra-updates affect streams regardless of their dependency struc-

ture, structures that use B-frames are better predicted by our model than
adaptive structures without B-frames. The reason is that intra-updates
which are performed for a B-frame do not further limit error propagation
because B-frames are not used as references. In our fixed dependency
examples, B-frames represent half of all frames. Hence, half of the distor-
tion value variability caused by intra-updates is attributable to B-frames
alone. Since our model classifies them as least important the dependen-
cy/importance correlation for remaining frames increases. This effect
is displayed in figure 4.25. While apart from their dependency pattern
both sequences are equal, the variability over the range of importance

138

4 A Framework for Content-Aware Media Streaming

classes differs considerably. This is because in the upper sequence all
NAL units of each second frame are assigned to the lowest importance
class (the stack of values to the left). For the lower sequence, these NAL
units are spread across the total range of importance classes according
to the frame position in each GOP.

The dependency model can only deduce intra-updates from data unit
labels, but unfortunately they are not visible in slice headers. Even if
a total slice is intra-updated, the slice type and its reference lists may
not reflect this because the slice type in H.264 is not chosen according
to the contained macroblocks. Instead, the allowed prediction modes
per macroblocks are chosen according to the slice type. Although intra-
update was enabled we found no difference when analysing NAL unit and
slice headers of the encoded bitstreams. Hence, our H.264 parser did not
translate intra-updates into empty reference lists in data unit labels.
Therefore, the dependency model misses the intra-updates completely.

4.9.3 Effects of Limited Horizon Size

We already showed that the visibility of reference relations between data
units can influence the importance estimation and can even lead do im-
portance inversions. This is in particular critical for transport protocols
and scheduling mechanisms that operate on a limited number of data
units in a transmission window. Every wrong scheduling decision, based
on false importance estimation decreases the overall quality of a trans-
port mechanism. Hence, it is desirable to know whether and how it is
possible to avoid negative effects.

Methodology In order to observe the magnitude of inversion effects
we ran simulations with multiple horizon size limits and multiple unpre-
dictable streams with regular and irregular dependency patterns. For
sound statistics we only used sequences from the BBC set because they
contain considerably more data units than the standard sequences.

For our simulations we used two DVS instances, one for reference pur-
poses and the other for simulating a limited horizon. Both instances
were initialised with the H.264 type description in listing A.2. The hori-
zon of the reference DVS was configured to hold two maximal epoch
sizes of data units more than the simulation DVS. The garbage collec-
tion strategy was set to MaxHorizon for both DVS instances. In order to
construct a worst case scenario we disabled prediction and did not use
importance offset values. The horizon size of the simulation DVS was

4.9 Experimental Evaluation

139

varied between 25 percent and 400 percent of the mean epoch size of the
measured stream (see table 4.7).

New data units were inserted into the reference DVS first and after
a pre-roll delay of one maximum epoch size they were inserted into the
simulation DVS too. This method ensured that for all data units in the
simulation DVS the corresponding units in the reference DVS reached
steady-state. In every simulation step, we first inserted one new data
unit into both DVS instances (not the same unit due to the pre-roll
delay) which led to the deletion of one old data unit by our garbage
collector. Then, we obtained the importance values for all units in the
simulation DVS and for the corresponding units in the reference DVS
and stored them in two lists. We then ordered both lists by importance
(and by sequence number when the importance was equal) and checked
the resulting order for inversions. A unit w; in the simulated list was
considered inverted if any unit that succeeds u; in the reference list
preceded u; in the simulated list. A scheduling algorithm that relied on
a inverted order would perform a wrong decision.

Note that this scheme does not rely on absolute importance values,
which are not comparable due to the different horizon sizes. Note also
that we only counted inversions when a unit was degraded, not when a
unit was more important than it should be. This strategy was chosen to
attribute inversion to discriminated units only.

Metrics For each unit we counted all steps in which the unit’s impor-
tance was inverted and divided this count by the horizon size to obtain an
inwversion ratio. The ratio tells which amount of time the importance of
a unit was inverted compared to the time the unit was considered at all.
Because inversions can only happen until a unit has reached steady-state
the ratio describes a continuous fraction of time starting when the unit
becomes first visible. The inversion ratio is 1 for units that were inverted
during the whole interval and 0 for units that were never inverted.

Expectations We expect that importance inversions are more frequent
for important data units because they much longer lack some of their
transitive references than less important units (see also section 4.8.2).
This happens more often to all leading data units in an epoch when
data units from earlier epochs are still visible (e.g. the I-frame and the
early P-frames). This is because all units from a previous epoch already
reached steady-state while units in the current epoch have not.

140 4 A Framework for Content-Aware Media Streaming

Importance Inversions due to limited Horizon Size Importance Inversions due to limited Horizon Size
for BBC Sequences in Fixed and Adaptive Formats for BBC Sequences in Pyramid Formats
o o
—=— NHK, Fixed Pyramid
—— Rip Curl, Fixed Pyramid
—=— HD World, Fixed Pyramid
L L - v ~NHK, Adaptive Pyramid
0.2 0.2 L ~ 4 ~Rip Curl, Adaptive Pyramid
- — = — HD World, Adaptive Pyramid|
o o
é g
pRELS pRELS
8 5
g g
T oaf e 01F
§ §
8 8
H H
——NHK, Adapiive I-P-P-P
—— Rip Curl, Adaptive I-P-P-P L
00511 1D World, Adaptive 1-P—P-i 005
~ ~ NHK, Fixed |-P-B-P
~ + - Rip Curl, Fixed I-P-B—P
— = - HD World, Fixed I-P-B-P
0 100 200 300 400 0 100 200 300 400
Horizon Size in Percent of the Mean Epoch Size Horizon Size in Percent of the Mean Epoch Size
(a) (b)
Importance Inversions due to limited Horizon Size Importance Inversions due to limited Horizon Size
for BBC Sequences in Error-resilient Formats for Highway CIF, Error-resilient, Adaptive I-P-P-P @ 1000 kbit's
——Gop-12]
03F 03r
o 025F o 025)
3 5
& &
5 o2f 5 o2f
H g
£ o151 = 0151
< <
§ g
H = H
LAY —=—NHK, Adaplive I-P-P—P 01r
0.05r 0.05r
~ = = Rip Curl, Fixed |-P-B-P
~ = ~ HD World, Fixed 1-P-B-P
0 400 0 400

100 200 300 100 200 300
Horizon Size in Percent of the Mean Epoch Size Horizon Size in Percent of the Mean Epoch Size

(c) (d)

Fig. 4.26 : Impact of horizon size on importance inversions. The ratio qualifies the
time a data unit was inversed compared to the time it was visible.

The maximum inversion ratio for any data unit is 0.5 because regard-
less of the horizon size an inversion can only occur across epochs. When
the horizon size is less than the mean epoch size, most units leave the
horizon before their importance reached steady-state. When, however,
the horizon is larger than a single epoch, all units from at least one
epoch are in steady-state. In any case, a data unit can be inverted at
most until it reached the middle of the horizon. Either more important
units from a previous epoch have left the horizon then or the unit has
reached steady-state meanwhile.

Results Figure 4.26 shows how the horizon size influences inversions in
streams with different dependency patterns and GOP sizes. We selected
representative sequences and averaged the inversion ratio over all data
units in a stream.

4.9 Experimental Evaluation

141

In general, the behaviour of inversions is as expected. When the hori-
zon is too small to hold all data units from one epoch there are some in-
versions, but most data units leave the horizon before they are in steady-
state. With an increase in horizon size the inversion ratio increases as
expected because the more important data units are inverted longer. Af-
ter a top between 100 and 150 percent of the mean epoch size the ratio
drops again because the fraction of time where units are not inverted be-
comes larger now. At 200 percent, for example, even the most important
I-frames are inverted only half of the time they are visible. When the
non-inverted time becomes sufficiently large at very large horizon sizes,
the ratio asymptotically approaches zero (not shown). The curves also
reveal that regardless of the horizon size some data units experience at
least a small period of inversion. The GOP-size seems to have no impact
(see figure 4.26(d)).

In slice mode A, inversions for dependency patterns with B-frames are
lower than for comparable patterns without them. B-frames are not used
as references (in pyramid formats this applies only to the lowest layer
of B-frames) and hence they are never inverted. The large number of
unreferenced B-frames in our experimental patterns (0.5 for fixed I-P-B-
P formats and 0.475 for pyramid formats) lessens the overall inversion
ratio.

The different shapes of the curves between slice mode A (fig. 4.26(a)
and 4.26(b)) and B (4.26(c)) at very small horizon sizes (less than one
mean epoch size) stem from the fact that slice mode B uses variable sized
groups and group members are considered equally important. While for
slice mode A more units see inversions half of their time in the horizon,
the probability for units in slice mode B to share the horizon with more
important units is lower because more units are removed by garbage
collection when groups are larger than the mean group size. This fact
is also supported by figure 4.27 which shows the mean inversion ratio
for data units in a particular importance class. At low and medium
horizon sizes, sequences with multiple data units per frame experience
less frequent inversions for low-priority data units.

At very small horizon sizes only the most important units are affected
by inversions, while low important units experience no inversions. At
horizon sizes larger than one mean epoch size, the inversion ratio lin-
early depends on the steady-state importance of a data unit. This is
reasonable because more important units need to wait longer before all
transitive references become visible. Different GOP-sizes do not signifi-
cantly change this situation.

142

4 A Framework for Content-Aware Media Streaming

Mean Importance Inversions per Importance Class Mean i per Class
for Wild Africa, Slice Mode A (mean epoch size = 24.78) for Wild Africa, Slice Mode B (mean epoch size = 121.24)
0. 0.5
—=— Horizon Size 50% —=— Horizon Size 50% 5
0.45H — # —Horizon Size 100% 0.45|| - # - Horizon Size 100% &

~ = ~Horizon Size 150%
0.4 L= Horizon Size 400%

~ = - Horizon Size 150% i
0.4 L. —=—Horizon Size 400% /

Mean Inversion Ratio
S
N

Mean Inversion Ratio
o)

o o I

S o &

o
o
&

o

25 10 15
Data Unit Importance

(a) (b)

10 15
Data Unit Importance

Mean Importance Inversions per Importance Class Mean Importal ions per Class
for Highway, CIF, GOP-24, Slice Mode B (mean epoch size = 140.81) for Highway, CIF, GOP-48, Slice Mode B (mean epoch size = 281.24)
0.5 0.5
—— Horizon Size 50% = —v— Horizon Size 50%
0.45 - « —Horizon Size 100% * 0.45H % - :ur\mn gze 123% 3
- = ~Horizon Size 150% ’ ~ @ ~ Horizon Size :° Tz
0.4] ——Horizon Size 400% LT) f 0.4 Horizon Size 400% ¥ -
© 0.35¢ - E LA 2035
c ‘ - T 03
S S
2 (4
9 g 0.25
£ £
s c 02
g g
2 8
= =015
0.1
0.05
0 i
5 20 25 5 20 25

10 15
Data Unit Importance

(c) (d)

10 15
Data Unit Importance

Fig. 4.27 : Inversion Ratios per Importance class in different slice modes (a, b) for
different GOP-Sizes (c,d). Sequences are encoded with adaptive I-P-P-P
pattern at 1000 kbit/s.

At the first glance, short horizons seem attractive because early dele-
tion of units lowers the probability of inversions. Unfortunately, the most
important data units are of particular interest to a scheduling scheme
and these are the units that suffer most from invisibility, regardless of
the horizon size. In order to hide inversions from scheduling mechanisms
we recommend to use trusted importance values only. This means that a
scheduler should wait at least until a data unit reached the middle of the
horizon because then, the probability that the unit has reached steady-
state is maximal. The minimum horizon size should be two times the
size of the transmission or scheduling window of a streaming protocol.

4.9 Experimental Evaluation

143

4.9.4 Effects of Packet Loss

Unfortunately the horizon size is not the only source of importance in-
versions. Loss can also affect the visibility of dependency relations and
lead to broken dependency chains. While we already provided general
solutions to deal with loss in section 4.8.3, in this section we investigate
the impact of different loss patterns on estimation accuracy. In partic-
ular, we are interested to examine how the steady-state importance of
data units is affected by isolated and burst loss of data units.

Methodology The simulation setup differs from the horizon tests be-
cause now the steady state importance matters, rather than the history
of inversions. Hence we set the horizon size to two times the maximal
epoch size of a sequence to capture at least two consecutive epochs (see
table 4.7). We choose this value in order to hide the effects of limited
horizon size as shown in the previous experiment.

The loss pattern is modelled by a 2-state Gilbert Model [171] with a
variable good-to-bad transition probability P, a bad-to-good transition
probability @, and a loss probability ppeq = 0.9 when in bad state. @ is
chosen to generate loss bursts of average length 2, 5, and 10, and different
values of P are used to simulate variable loss rates up to 20 percent.

We check every data unit for inversion when the data unit is in the
middle of the horizon. At this point a data unit has reached steady-
state because even for the largest epoch, all dependent units are visible.
As for the horizon tests, a reference DVS is used to obtain steady-state
importance of an uncorrupted stream as benchmark. For a sound statis-
tical analysis we selected only sequences from the BBC set. We ran 20
iterations per experiment and calculated confidence intervals based on
the Student-t distribution.

Metrics As performance metric we use the steady-state inversion rate
of a total sequence, that is the number of data units that were inverted
when they reached the middle of the horizon divided by the total num-
ber of data units in a particular sequence. In contrast to the per-unit
inversion ratio, the steady-state inversion rate is a cumulative measure
that has a meaning for the complete sequence only.

Expectations Generally, we expect a decrease in estimation accuracy
with increased loss rate because more dependency relations are lost when

144

4 A Framework for Content-Aware Media Streaming

§ |mP0nen?e Inversior]s due to Loss 5 Importance Inversions due to Loss
for different Group Sizes, Adaptive I-P-P-P, Slice Mode B for different Group Sizes, Fixed I-P—B—P, Slice Mode B
8
—&— NHK, burst-size =2 04== NHK, burst-size =2
— & — NHK, burst-size =5 B A -A- NHK: burst-size =5

o
3

~4- NHK, burst-size =10
—a— HDWorld, burst-size =2
— 8 — HDWorld, burst-size =5
—0- HDWorld, burst-size =10

0.35[~A- NHK, burst-size =10

—s— HDWorld, burst-size =2 =

~ 8 — HDWorld, burst-size =5 & -% =B
A

03/] -o- HDWorld, burst-size =10

0.25¢
0.4F 02f

0.151

Rate of Steady-State Inversions
Rate of Steady-State Inversions

01r

0.051 2%

0.05 0.1 0.15 0.2 0.05 0.15 0.2

5 0.1
Loss Rate Loss Rate

(a) (b)

Fig. 4.28 : Steady-state inversions over multiple loss rates for BBC sequences with
different distributions of NAL units per frame.

more data units are lost. Distinct stream formats have, however, a differ-
ent loss resilience based on dependency pattern and redundancy, namely
the number of data units per group. We expect sequences with long
GOPs and with small groups to be more vulnerable to loss, especially
large loss bursts.

Results Figure 4.28 shows that whether or not the dependency pattern
uses B-frames, a sequence with many small groups experiences more
steady-state importance inversions than a sequence with larger groups
(see also figure 4.16(d) for the group size distributions). Around 50
percent of all frames in NHK contain two or less NAL units and only 7
percent of all frames are larger than 10 NAL units, while only 18 percent
of frames in HD World are small (<2 NALU) and more than 25 percent
are larger than 10 NALU. At a mean burst length above 5 units for
adaptive I-P-P-P and 2 units for fixed I-P-B-P NHK looses so many
consecutive untis that the overall inversion ratio actually drops again.

Another interesting fact is that the number of inversions rises slower
than the loss rate increases, at least for streams that contain B-frames,
while it is linear for streams without B-frames. The cause of this effect
is that the loss probability equally affects NAL units regardless of their
content. Although B-frames are often small, they contribute a significant
number of data units, but their loss does not break dependency chains.
Hence, at higher loss ratios more B-frame data units are lost while the
number of inversions is less severely affected by their loss.

4.9 Experimental Evaluation 145

Importance Inversions due to Loss Importance Inversions due to Loss
for Highway CIF @ 1000 kbit/s, Adaptive I-P-P-P, Slice Mode A for Highway CIF @ 1000 kbit/s, Adaptive I-P-P-P, Slice Mode B
. 0.5
—4— GOP-12, burst-size =2 —4&— GOP-12, burst-size =2
0.45}] - & - GOP-12, burst-size =5 0.45} -~ & - GOP-12, burst-size =5
~A- GOP-12, burst-size =10 ~A- GOP-12, burst-size =10
@ (4] —5—GOP-48, burst-size =2 o (.4} —5—GOP-48, burst-size =2
5 - 8 - GOP-48, burst-size =5 S || - = - GoP-48, burst-size =5 JE--g
<} o GOP- oo S o » oo -
2 (35| 2 GOP-48, burst-size =10 2 (35| 2 GOP-48, burst-size =10 3 ¥
2 2 -
£ £
o 03 o 03f
5 s
® 0251 ? o251
= ES
B B
3 o2 § o2
7] 7]
S 0151 S 0151
) o
T T
o 01 @ 01f
0.051 0.051
0 . . . 0 —
0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
Loss Rate Loss Rate
(a) (b)
Importance Inversions due to Loss Importance Inversions due to Loss
for Highway CIF @ 1000 kbit/s, Fixed I-P-B-P, Slice Mode A for Highway CIF @ 1000 kbit/s, Fixed I-P-B-P, Slice Mode B
0.3 0.3
—-— GOP-12, burst-size =2 —-— GOP-12, burst-size =2 %
- & - GOP-12, burst-size =5 - & - GOP-12, burst-size =5 -
—4- GOP-12, burst-size =10| —4- GOP-12, burst-size =10| g
0.251| —s— GOP-48, burst-size =2 1 0.251| —s— GOP-48, burst-size =2 ,% - ey
- & - GOP-48, burst-size =5 - & — GOP-48, burst-size =5 . i
—o- GOP-48, burst-size =10 —o- GOP-48, burst-size =10 %, - ,% % e

o
o
e
\
\
e

Rate of Steady-State Inversions
Rate of Steady-State Inversions

0151 1
01 1
0.051 ;|
0
0.05 01 0.15 0.2 0.05 0.1 0.15 0.2
Loss Rate Loss Rate

(c) (d)

Fig. 4.29 : Steady-state inversions for different GOP sizes in selected dependency pat-
terns. The longer dependency chains are, the more vulnerable a sequence
becomes.

Figure 4.29 finally reveals the relation between the length of depen-
dency chains and the number of inversions caused by loss. As expected,
long dependency chains make sequences more fragile throughout all de-
pendency patterns. Because loss bursts in slice mode A destroy multiple
consecutive frames at once, the number of inversions actually decreases
with increasing burst size.

146

4 A Framework for Content-Aware Media Streaming

4.9.5 Performance Benchmarks

When using the Dependency Validation Service in a real-world protocol
or packet scheduler, the run-time performance becomes a critical issue.
In this section we report on performance results we obtained from ex-
tensive measurements of a prototype implementation.

Our prototype is implemented in C++ and based on the Boost Graph
Library”. The implementation uses adjacency lists as the central data
structures to abstract graphs. In addition, STL maps are used to store
type- and data unit descriptors. Maps and graphs are linked via type
id’s and sequence numbers to allow for quick and direct data lookup and
dependency traversal while descriptors are used to cache importance
values once computed. For efficient group handling the DVS does not
create redundant edges for every group member. Instead the group head
is the principal element for dependency control of groups.

The measurements were performed on a 64bit Intel Core2Duo pro-
cessor with 2.16 GHz, 4MB 2"?-level cache and 1 GB of main memory,
running Darwin/MacOS X 10.4.9. The source code was compiled with
GCC (version 4.0.1 for Darwin) and all optimisations were turned on.
Besides the DVS performance benchmark the system ran typical work-
station services, but was unloaded otherwise.

Methodology To create a reasonable measurement scenario we use the
same H.264 dependency description as in all other tests and we config-
ured the DVS as suggested in section 4.9.3. The horizon size was selected
to be two times the maximal epoch size of each particular stream. For
garbage collection we selected the MaxHorizon strategy, predictions and
explicit decoration modes were enabled. As in other tests, the DVS
was populated with data units during a pre-roll delay of one maximum
epoch size first. We then inserted new data units step-wise, obtained the
steady-state importance rating for one data unit and global object-graph
metrics in every step until all data units have been processed.

During each step we measured the run-time for graph-decoration and
importance estimation for a single data unit using the CPU-internal per-
formance timestamp counter. Because this method may be influenced by
CPU-scheduling and interrupt handling, we averaged the run-time over
all data units in a particular stream, repeated all measurements 20 times
and used the Student-t distribution to calculate confidence intervals.

"http://www.boost.org/libs/graph

http://www.boost.org/libs/graph

4.9 Experimental Evaluation

147

Performance Benchmarks for a single Data Unit at different Group Sizes in BBC Sequences
with Slice Mode A

[Mean Deco-Time, Fixed I-P-B-P

T T
B \iean Deco-Time, Adaptive I-P-P-H

F{untime [ms]

{ I [_ Mean Est-Time, Adaptive I-P-P-P
1 Mean Est-Time, Fixed I-P-B-P
2 4

CBS News Rip Curl Scnence HD World Wild Africa
(a)
Performance Benchmarks for a single Data Unit at different Group Sizes in BBC Sequences
x10° with Slice Mode B

6 T T T T

5 [I Mean Deco-Time, Fixed I-P-B-P
[_ Mean Est-Time, Adaptive I-P-P-P

B \lean Deco-Time, Adaptive |-P~P-|
4L 1 Mean Est-Time, Fixed I-P-B-P

Runtime [ms]

i/ h IIH Il IIHH IIHH IIHH

CBS News Rip Curl Science Wild Africa

(b)

Fig. 4.30 : Decoration and estimation performance for a single data unit at multiple
dependency patterns and slice modes.

Metrics As performance metrics we use micro-benchmarks of the raw
decoration and estimation run-times for a single data unit, averaged
over all data units in the respective sequences. To represent the graph
complexity we use the mean vertex degree, which is the average number
of incoming and outgoing edges per vertex in the object graph. The
average length of dependency chains is given informally only. We did
not measure it because it can be analytically derived from the GOP-size
and the dependency pattern. Finally, we give an analytical estimate of
the combined run-time costs of dependency-based importance estimation
based on a hypothetical packet scheduling mechanism.

Expectations Our implementation is optimised for estimation because
we expect real users to require multiple estimations per data unit. We
further expect estimation methods to scale with increased group sizes
due to employed caching mechanisms. Long dependency chains, how-
ever, may have a negative impact on estimation runtime because our
implementation needs to evaluate transitive references.

148

4 A Framework for Content-Aware Media Streaming

Performance Benchmarks at different GOP-Sizes Performance Benchmarks at different GOP-Sizes
x10° for Adaptive I-P-P-P, Slice Mode A X107 for Adaptive I-P-P-P, Slice Mode B
I Mean Deco-Time GOP-12] I Mean Deco-Time GOP-12|
[Mean Deco-Time GOP-24 [Mean Deco-Time GOP-24|
81| 2 Mean Deco-Time GOP-48| h 81 2 Mean Deco-Time GOP-48 [7
[C—JMean Est-Time GOP-12 [C—]Mean Est-Time GOP-12
[C—IMean Est-Time GOP-24 [—IMean Est-Time GOP-24
C——Mean Est-Time GOP-48] Mean Est-Time GOP-48
6 b 6 -
7 7
E E
) @
£ £
54 1 54 il
& [
| H | | JIH II|_’ IIH |
i uil | | [
Akiyo Coastguard Foreman Highway Akiyo Coastguard Foreman Highway
(a) (b)
Performance Benchmarks at different GOP-Sizes Performance Benchmarks at different GOP-Sizes
x10° for Fixed I-P-B-P, Slice Mode A x10° for Fixed I-P-B-P, Slice Mode B
I Mean Deco-Time GOP-12| I Mean Deco-Time GOP-12|
(B Mean Deco-Time GOP-24| B Mean Deco-Time GOP-24]
I Mean Deco-Time GOP-48| [Mean Deco-Time GOP-48|
5 [C—IMean Est-Time GOP-12 5r [C—IMean Est-Time GOP-12
(] Mean Est-Time GOP-24 [——Mean Est-Time GOP-24
[—IMean Est-Time GOP-48 [—IMean Est-Time GOP-48
4 b 4t -
7 7
E E
£s | o -
g g
& &
2 4 2r o
| H H H H | | H H HH |
LHNE]] ull Al |]] il il
Akiyo Coastguard Foreman Highway Akiyo Coastguard Foreman Highway

(c) (d)

Fig. 4.31 : Decoration and estimation performance at different GOP-sizes. While dec-
oration scales well with increased length of dependency chains, estimation
performance becomes a bottleneck.

Results The overall performance of dependency-based importance es-
timation is encouraging, given the fact that other estimation models
hardly perform at real-time. There is, however, one issue that require
further improvement.

Figure 4.30 compares the run-time costs of graph decoration and im-
portance estimation algorithms for different dependency patterns (fixed
with B-frames and adaptive without B-frames) and different slice modes.
While the selected dependency patterns seem to have no significant im-
pact on performance, the graphs reveal that the group handling has. The
dependency patterns require the DVS to create one new vertex per data
unit, create several dependency relations as edges and verify them. In
groups, the dependency relations of the group head are shared between
all members, amortising the costs of creation. Checking relations and

4.9 Experimental Evaluation 149

Adaptive I-P-P-P Fixed I-P-B-P
Slice- Sequence Epoch Vertex DVS Epoch Vertex DVS
Mode Name Size Degree Run-time Size Degree Run-time
CBS News 24 1.92 0.72 24 1.96 0.75
NHK 24 1.97 0.82 24 1.71 0.70
A Rip Curl 24 1.92 0.92 24 1.71 0.77
Science 24 1.88 0.91 24 1.68 0.88
HD World 24 1.87 0.81 24 1.62 0.75
Wild Africa 24 1.89 0.79 24 1.64 0.76
CBS News 44.68 1.29 2.70 126.45 0.73 14.27
NHK 44.08 1.31 3.41 125.21 0.73 18.46
B Rip Curl 89.62 0.62 5.87 123.56 0.74 16.72
Science 61.31 0.90 4.40 126.94 0.73 15.71
HD World 121.69 0.50 13.08 312.68 0.29 45.08
Wild Africa 121.24 0.47 10.53 326.44 0.29 42.41

Tab. 4.10 : Performance analysis for streams with different group- and epoch-sizes
using a hypothetical packet scheduler. (run-time is given in milliseconds)

updating group members is, however, necessary for each member to re-
flect the correct group state. Both, decoration and estimation methods,
are more expensive for group members, even though dependency rela-
tions are shared. Hence, decorating a large group in slice mode B costs
considerably more than a single data unit in slice mode A. This clearly
dissatisfies one of our expectations and demands further optimisations.

We are further interested in how the DVS performs at different GOP-
sizes respectively dependency chain lengths. Figure 4.31 presents the
measured results. As expected, the costs of estimation increase mostly
linearly with the chain length in all formats. When the group-size in-
creases too (in all slice mode B sequences), efficiency further degrades
and estimation can even become more expensive than decoration.

In order to gain a more realistic view on the DVS performance we
put the micro-benchmark results in relation to a hypothetical packet
scheduling mechanism that operates on importance values obtained from
the DVS. We are interested in the total run-time per stream per second
which is required to maintain state and estimate importance values. The
hypothetical scheduler runs once every 40 ms over a transmission window
of two mean epoch sizes and selects an arbitrary amount of data units
for transmission. The total DVS run-time ¢ heavily depends on the
mean epoch size e and the number of scheduling rounds s per second.
We transmission opportunities every 40ms, s = 25. The run-time is
calculated as t = € X tgeco +2 X 8 X € X tosr. Results for BBC sequences

150

4 A Framework for Content-Aware Media Streaming

in different slice modes and formats are displayed in table 4.10. The
table also shows mean epoch size and mean vertex degree of the object
graphs. Note, that because group members share dependency edges,
the vertex degree can become less than 1 for streams with large groups.
The results indicate that even the most complex HD World (I-P-B-P)
stream with very a large epoch size requires less than 5 percent CPU
time. Streams with smaller groups and hence smaller epochs are more
efficiently handled. For example, we can estimate and schedule up to
370 instances of the CBS News stream in I-P-P-P pattern concurrently.
This translates into 4 streams at one percent CPU load.

4.10 Conclusion

This chapter presented a generic and efficient framework for dependency
modelling and importance estimation for packetised media streams. We
introduced tools to express, verify and access structural properties of
streams, and we demonstrated the efficacy of dependency-based impor-
tance estimation with real video sequences.

When adopting the dependency model, a developer should keep the
following general conclusions in mind:

e Restricted visibility, either induced by loss or limited horizon size,
degrades importance estimation quality.

e Inversion-free importance estimation in a limited window of data
units is not guaranteed for data units until they reached the middle
of the horizon.

e Strictly predictable streams do not suffer from inversions.

e Estimation in unpredictable streams relies on correct reference
lists.

The proposed framework has several limitations and some issues re-
main for future work. First, the framework captures the importance
distribution of single streams only. It provides no means to compare
importance values between different streams. This becomes problematic
when a scheduler operates on multiple streams with interdepending pri-
orities, such as a combination of multiple audio and video tracks from a
single application. Second, the model introduces a considerable amount

4.10 Conclusion

151

of state which makes it inappropriate for lower system layers. Transport
layers and proxy services are therefore the most suitable location.

The poor accuracy of our estimation model for error-resilient streams
requires further improvements. We regard the following extensions as
essential: (a) to model effects that emphasise or limit error propagation,
such as intra-updates and skipped macroblocks, (b) to model effects
of spatial coverage per data unit, and (c) to model effects of weighted
prediction. Finally, it would be interesting to investigate whether depen-
dency is useful to estimate importance in streams that were generated
by encoding schemes distinct from natural video coding. Examples are
wavelet coding mechanisms, texture coding, and audio encoding algo-
rithms. We have not investigated data-partitioned, layered and scalable
bitstream structures due to a lack of appropriate encoding or decoding
software. We expect our dependency model to yield additional benefits
here, because such streams contain more complex dependency structures
and considerably more importance classes than the examined bitstreams.

152 4 A Framework for Content-Aware Media Streaming

Chapter Five

Noja: A Content-Aware
Streaming Middleware Platform

Any problem in computer science
can be solved with another layer of
indirection. But that usually will
create another problem.

(David John Wheeler)

Network-adaptive streaming applications and content-aware transport
layers must closely cooperate to increase the quality and robustness of
multimedia delivery over best-effort packet networks. Cross-layer co-
operation introduces additional complexity for application programmers
and transport protocol designers and hence, we need well defined inter-
faces and semantics to keep complexity moderate.

In order to simplify the integration of network-adaptive streaming into
applications we propose the Noja middleware platform. Noja defines gen-
eral abstractions and universal communication semantics that hide the
complexity of signalling and transport protocols, but expose information
to coordinate the behaviour of transport protocols and applications for
robust and efficient stream delivery. The main contributions of this mid-
dleware are the definition of (1) universal communication abstractions
suitable for a broad range of streaming applications, (2) flexible com-
munication semantics for diverse of application requirements and net-
work topologies, and (3) concepts to coordinate stream delivery between
network-adaptive applications and content-aware transport protocols.

In this chapter we first discuss design principles that led our develop-
ment. Section 5.3 then presents Noja’s communication abstractions and
the design space of communication semantics for different applications.
In section 5.4 we introduce implementation concepts and in section 5.5
we present example applications to show the utility of our middleware.

153

154

5 Noja: A Content-Aware Streaming Middleware Platform

5.1 Design Principles

It is unlikely that a single encoding format or a single transport protocol
will fit all individual requirements of streaming applications across net-
working technologies and user devices. Hence, the challenge is to design
a simple, powerful and reusable communication middleware platform
which is also format independent. The middleware should provide a sin-
gle and coherent programming interface and it should allow programmers
to choose the most appropriate communication semantics, transparency
features and protocol stacks. The middleware should foster cooperation
between adaptive applications and content-aware protocols. It should en-
able protocols to exploit knowledge about structure and error-resilience
features of multimedia streams. It should, however, hide the complexity
of transport and signalling protocols.

In the following we discuss the general principles which led the design
of our middleware abstractions and architecture. We also discuss where
our design differs from other multimedia platforms.

5.1.1 Assumptions on Target Environments

Noja is a communication-oriented middleware which is designed as a
configurable, and isolated building block for the remote delivery of real-
time media streams. Our objective is to fit Noja into existing streaming
frameworks and component-based system architectures, but also to pro-
vide rich application-centric delivery services and communication seman-
tics. We do not limit the design to special encoding formats or streaming
protocols, but we omit any complex functionality that alters the seman-
tics of a stream, such as transcoding and multiplexing. We believe that
such application-level functions are ill-suited at communication layers.

We define streams as continuous, potentially indefinite, and periodic
sequences of self-containing application-level data units. Because the
lifetime of a stream is large and in some cases even unknown at creation
time of it’s first data units, we can later optimise our implementation for
efficient data forwarding rather than efficient session setup. Although the
session setup time may be unimportant for some applications, we note
that interactive applications and large-scale streaming systems require
very short setup times.

We consider several scenarios, where a middleware platform for pack-
etised media streaming will be useful: Applications may encode their
streams either live or deliver offline encoded streams. Error control may

5.1 Design Principles

155

be performed at the application-level, at the transport protocol level or
jointly at both levels, either sender-based, receiver-based or by a hy-
brid scheme. Streaming servers and clients may be separated by proxies
that perform controlled content scaling, load-balancing and selective er-
ror control. We further consider that applications may or may not be
sensitive to loss, may or may not require low or controlled delays, and
may or may not adapt to changing network conditions.

We assume that the network randomly loses packets and also randomly
delays packets that it delivers. The network may or may not support
single or multiple qualities of service (predictable throughput, delay and
loss). This means that variations in available bandwidth, delay and loss
performance are likely to influence stream delivery when QoS mecha-
nisms are unavailable. We further assume that the network may or may
not provide a back-channel for receiver feedback, that the involved hosts
may or may not have connectivity to multiple networks, and that hosts
may or may not have synchronised clocks.

Hence, the middleware suites a variety of real-world scenarios of gen-
eral interest, such as large-scale broadcast distribution of stored or live
encoded streams, on-demand delivery of pre-encoded streams, and inter-
active streams over wired and wireless networks, broadcasting and mul-
ticasting networks, dedicated networks with predictable QoS, or over the
best-effort Internet.

5.1.2 Interaction Model

The communication model of the Noja middleware (fig. 5.1) supports the
delivery of partially loss-tolerant multimedia streams and the exchange
of control and feedback signals. While data streams are delivered uni-
directional, application-level signals can be exchanged bi-directionally.
A stream sender emits a stream as a sequence of self-containing data
units with a certain periodicity, while one or more stream receivers will
receive these data units after a bounded delay with bounded jitter and
loss probability. The middleware guarantees that data units are either
delivered in sequence and on time or not at all. Interested applications
may also monitor channel properties and subscribe to events about qual-
ity degradation and violations of service contracts.

We define that senders and receivers are loosely coupled via explicit
bindings [10, 130], established between visible connection end-points,
called ports. Interactions are asynchronous and a sender does not assume
cooperation from receivers or direct reply to continue stream delivery,

156

5 Noja: A Content-Aware Streaming Middleware Platform

7] Application-
Network-Adaptive Network-Adaptive Specific
Stream Sender Stream Receiver

Stream Transfer A A Uni-directional Realtime Streaming and A A A 7 Specified by the
Monitoring Optional Bi-directional Signalling I(\:/Iommunication
o

Signals \ \ del

Stream Binding
<ConnectionType>
<InteractionType>
<FailureType>

out-Port H

A

\4

Content-Aware
Transport Layers

7 Implementation-
\ 4 Specific

Content-Aware
Transport Layers

Fig. 5.1 : Components and interactions in the Noja communication model.

because a back-channel may not be available and waiting for acknowl-
edgements can violate deadlines of subsequent data units. When a back-
channel is available, asynchronous feedback can be used at the transport
protocol level to enhance robustness and also at the application level to
exchange codec-control messages [172].

Data units as well as control information may get lost in transit or
arrive late. While the middleware tries to compensate for such failures,
the application must be prepared to either (a) wait for rebuffering, (b)
receive incomplete data or (c) receive a stream termination indication.
Via selectable semantics, a programmer can adjust the behaviour of in-
terfaces to the needs of a particular application. A programmer can, for
example, select quality constraints and define how operations behave in
the presence of failures and receiver feedback. Network-adaptive appli-
cations can, in addition, monitor stream delivery as well as transport
conditions.

Noja combines application-level framing [54] with cross-layer hints
[156,157] to enable content-awareness. When applications give proper
hints to transport layers, they can experience increased efficiency and
quality, while even without hints, applications benefit from Noja’s conve-
nient application-centric communication abstractions. A stream sender
can attach hints as labels to data units. Labels contain a carefully se-
lected set of stream properties, such as dependency, importance, timing
and error-resilience information. These properties are common to all
multimedia streams and independent of special encoding formats. For a
detailed discussion of label contents see section 5.3.5.

5.1 Design Principles

157

Protocols in the middleware provide performance guarantees concern-
ing delay, jitter and loss, but instead of simply controlling delay and loss
they can also take the perceived quality or distortion of the reconstructed
media signal at the receiver into account. Noja defines generic metadata
for data units to let applications share information with streaming proto-
cols. A protocol can use this information for selective packet scheduling
and selective error control. Protocols are free to implement special opti-
misation models to perform these tasks.

Selective error control only yields efficiency improvements when the
application tolerates limited loss of data units. Rigid applications that
cannot tolerate loss or deadline violations require more expensive quality-
managed channels based on resource reservations. The application pro-
grammer can request QoS delivery at session setup. The middleware then
transparently performs appropriate negotiation and reservation steps.

In contrast to Remote Procedure Calls (RPC) [173] our communica~
tion model focuses on the transfer of data rather than the transfer of
control. It can preserve the periodic nature of streams and ensure that
data arrives in-order and in time. When loss is acceptable and timing
is more important than perfect delivery, semi-reliable protocols are au-
tomatically selected and loss-events are signalled when requested. Like
failure and termination models in RPCs, streams terminate on channel
failure or node failure, but in contrast to the RPC model, streams can
also terminate if loss exceeds an acceptable limit or when the distortion
exceeds a pre-defined limit.

5.1.3 Transparency and Cross-Layer Issues

Transparency is a well known concept in communication middleware to
hide effects of distribution and heterogeneity as well as implementation
details of services. While transparency considerably decreases the com-
plexity of distributed computing, hiding all communication-related issues
from multimedia streaming applications is inappropriate.

Adaptive streaming applications can increase the user-perceived ser-
vice quality when channel properties such as available bandwidth, delays
and loss patterns are visible [78,84, 86,94, 96,103, 105, 143]. Moreover,
streaming applications can also benefit if lower-layer error-control and
scheduling schemes, topology selection and adaptation policies are con-
trollable by the application. Hence, our middleware design carefully
balances transparency against visibility, monitoring and cross-layer co-
ordination. Noja still provides the following forms of transparency:

158 5 Noja: A Content-Aware Streaming Middleware Platform

Location Transparency: Ports as streaming end-points and the abstract
concept of bindings effectively hide details of distribution from an
application. Hence, the semantics and guarantees of operations on
ports do not differ when adjacent ports are located in the same pro-
cess, or in distinct processes on the same host, or on remote hosts
which are connected via a local or wide-area network. Network-
level names, necessary to establish signalling and transport proto-
col connections, are encapsulated into abstract port references in
a similar way to CORBA object references. While an application
needs to identify and exchange port references, their contents can
remain opaque.

Failure Transparency: Noja translates common failures of distributed
systems and unreliable networks into data unit loss and bind-
ing termination. Hence, permanent node and channel failures,
packet loss and deadline violations are hidden behind convenient
and application-centric failure classes. In addition, transient node
and channel failures and packet-loss bursts are either concealed by
buffering and error-control schemes or exposed as burst loss to an
application. Even if no data is received, the middleware can de-
tect outstanding data, because streaming applications expect data
units with a certain periodicity.

Technology Transparency: Details of streaming transport protocols and
signalling protocols are hidden behind Noja’s port and binding ab-
stractions. It remains totally transparent to an application how
bindings are established and how streams are actually delivered
to destination ports. A binding can, for example, choose a direct
RTP protocol connection, a TCP connection or other types of me-
dia transport protocols for network transfers. The binding can also
select multiple network paths or use overlay networks for coopera-
tive streaming. When the destination is a special media processor
connected to a local bus, such as a DSP or FPGA, the binding
may even use different protocol stacks, hardware drivers or special
data passing mechanisms.

When local systems and networks offer different service classes, the
middleware abstractions allow an application to request better QoS
at binding creation time. When, however, requested performance
guarantees are unavailable or when established guarantees are bro-
ken, the binding is terminated and the application is informed.

5.1 Design Principles

159

Topology and Replication Transparency: Applications can express their
interest to control the connection topology via binding seman-
tics, discussed later in section 5.3.2. Bindings hide the existence
of back channels from unaware applications. They can also hide
the use of unicast, multicast or broadcast protocols, and the exis-
tence of multiple transmission paths. A binding can, for example,
perform handover, connection replication or multipath streaming
while pretending a single unicast connection to the application.
Noja directly supports port- and network-level multicast. Ports do
not reveal how a multicast connection is actually implemented. A
binding can either use multiple unicast protocol instances, a single
network-level multicast protocol, a peer-to-peer overlay network,
or a mixture of these types to reach all destinations.

Instead of concealing all aspects of communication like in the RPC
model, network-adaptive applications need to control and monitor com-
munication channels. Our middleware offers the following concepts to
coordinate between applications and protocol layers:

Selective Reliability: While Noja offers a simple failure model (loss and
termination), it lets the application express termination conditions
and the sensitivity of stream data. This information is used to
adjust scheduling and error-control features of transport protocols
and to trigger stream termination.

Selective Visibility and Monitoring: Binding semantics provided by Noja
allow the programmer to control the visibility of connection topolo-
gies, receiver identities and receiver feedback. In addition to re-
ceiver feedback, an adaptive application may also directly monitor
the channel for available bandwidth, delay and loss rates.

Selective Traffic Policing: The port abstraction offers semantics for real-
time delivery and synchronisation which can reconstruct the intra-
stream periodicity at the receiver and also achieve synchronised
stream delivery across multiple streams and receivers. Applica-
tions can disable this feature to receive data immediately.

Selective Flow-Control: Ports let the application control the continuity
of a stream so that senders can pause delivering and receivers can
pause consuming a stream without interrupting the opposite peer.
This is useful to signal periods of silence in a media signal and to
retain protocol states when streams are stopped temporarily.

160

5 Noja: A Content-Aware Streaming Middleware Platform

Noja supports cross-layer coordination to increase the quality and ef-
ficiency of multimedia communications. While section 4.1 already em-
phasised the power of hints for cross-layer system designs, we briefly
introduce the set of data unit hints supported by Noja:

Data Importance: To reflect the unequal importance of data units for
signal reconstruction we permit applications to attach importance
and rate-distortion values. These values can guide transport pro-
tocols to adaptively choose appropriate traffic classes and selective
error protection.

Data Dependency: When importance and rate-distortion values are un-
available, dependency can be used to infer dependency-based im-
portance based on the estimation model proposed in chapter 4.
In addition, protocols can use dependency relations to check data
units for broken dependency after loss and selectively drop invalid
units to save resources.

Deadlines: Private deadlines for each data unit are required for traffic
policing and synchronisation at ports. Deadlines can also be used
at lower layers to adjust scheduling and error recovery procedures.
Protocols may perform retransmissions only until the deadline is
reached, while scheduling schemes may prefer fresh data over older
data units.

Error Resilience: Noja allows adaptive applications that can tolerate a
limited amount of loss to indicate which part of their data unit
payload is sensitive and which part is resilient to bit errors. A
transport protocol can use this information to employ data parti-
tioning and restrict error protection to sensitive partitions.

5.1.4 Deliberate Omissions

Noja is a pure communication-oriented middleware platform, equipped
with novel interfaces to leverage cross-layer coordination. We intention-
ally restrict the design to the minimal necessary set of functions, such as
methods to perform synchronised stream delivery, channel management,
and monitoring to keep the platform simple and generic. In contrast
to other multimedia middleware systems, Noja deliberately lacks the
following features:

5.1 Design Principles

161

Parsing, Transcoding and Multiplexing: are typical application-level
functions that require full understanding of the bitstream semantics.
Transcoding and multiplexing even alter the semantics of streams. We
feel that doing this in a generic communication layer is inappropriate
because it breaks layering assumptions and introduces a considerable
amount of complexity.

Prioritisation and Fairness between Streams: Even if Noja supports
multiple receivers per stream and multiple concurrent streams per ap-
plication we defer fairness and priorisation issues to streaming protocols
and low-level resource allocation. Applications that require end-to-end
QoS or prioritisation need to use QoS-aware scheduling and network QoS
services anyway. Adaptive protocols, in contrast, are more suitable in
uncontrolled networks because they perform fair rate- and congestion-
control at the end-points. However, Noja provides no coordination be-
tween transport protocol end-points. Instead, Noja allows to specify
resource demands at bind time and forwards these requirements to pro-
tocol implementations.

Caching and Prefetching: Scope and time-scale of stream caching and
prefetching are beyond the communication-centric focus of Noja. Noja
operates on sliding transmission windows, jitter compensation and syn-
chronisation buffers which cover small sections of a stream only. In
contrast, large-scale caching infrastructures replicate large stream sec-
tions up to the complete stream for load-balancing. Likewise, streaming
servers prefetch large sections of popular streams to hide I/O latencies.
Noja does not support these features, but caches and streaming servers
may utilise Noja as transport layer.

Data Transport and Signalling Protocols: The Noja middleware archi-
tecture is extensibe. It advocates no specific streaming or signalling pro-
tocols. Hence, Noja can be customised for interoperability with existing
protocol frameworks such as RTP/SIP/RTSP [5,6,67,68] and emerging
standards such as ISMA, 3GPP and DVB-H. The generic design allows
to reuse existing libraries as transport modules. On the other hand,
Noja can foster the prototyping of novel protocols and delivery services.
Regardless of the actual transport and signalling modules, applications
can continue to use the same abstractions and communication semantics
as proposed in section 5.3.

162

5 Noja: A Content-Aware Streaming Middleware Platform

Privacy and Security: Although an important issue, we do not consider
mechanisms for privacy and security in the current design. Some of the
required mechanisms can later be integrated via interceptors [174]. For
example, authentication and access control easily fit into the binding
setup procedure, while encryption and signature modules can be inte-
grated into the data paths at the port layer. Other mechanisms are
harder to integrate because they require extra abstractions, such as key
management, security policy configuration, and privacy control. We con-
sider these features future work and concentrate on communication and
coordination tasks first.

5.2 Novelty of the Noja Middleware Platform

Advanced streaming protocols require information about the channel
state and properties of the content. Coordination between different lay-
ers is currently performed in an ad-hoc manner by jointly designing and
implementing applications and protocols. The high complexity of this
software engineering principle leads to long development cycles, increased
design and programming errors, and the decreased reusability of designs
and components. Consequently, security of protocol stacks as well as the
innovation of novel applications suffers.

In contrast to these joint source-channel coding approaches, Noja
decouples the protocol implementation from application layers, but it
retains the exchange of necessary information between them. To our
knowledge, Noja defines the first generic software layer for coordination
and cooperation between adaptive application and content-aware trans-
port layers. Using the Noja architecture, protocols can be implemented
once and reused by different applications for different purposes and even
for different encoding formats. Noja is the first middleware design that
enables the reuse of advanced streaming protocols.

The assumptions of existing middleware platforms regarding encoding
formats and protocols are rather strict. Often, a single bitstream format
and a single protocol is supported only. The transport protocol is either
specific to the middleware or a simple version of RTP. It is well known,
that RTP alone cannnot provide high-quality, robust and fair delivery
of media streams because RTP lacks support for error- and congestion-
control. It is also well known that a single protocol cannot support the
diverse requirements of applications concearning reliability, security, mo-
bility and efficiency. Hence, it is a natural step to provide a platform

5.3 Middleware Abstractions and Operations

163

that allows multiple protocols to coexist. Noja is compatible to stan-
dard streaming protocols and it allows protocol extension and protocol
evolution.

Noja’s API eases the integration of stream delivery services into appli-
cations by supporting a small set of abstractions. Noja provides a single
service only: the robust and efficient delivery of streams. The interfaces
are easy to learn and they even remain stable across different stream-
ing scenarios like broadcasting, on-demand and interactive streaming. A
programmer can, for example, build an application on top of Noja once
and later decide to exchange the protocol stack inside the middleware to
fit a different network environment. Noja even allows to exchange the
protocols at run-time.

The objectives of the Noja middleware architecture are similar to
GOPI [130], NMM [20], Cinema [34], and DaCaPo++ [13]. Hence,
the design of Noja has been influenced by these systems. Noja ex-
tends this work, however, by coordination features required to reuse ad-
vanced streaming protocols in adaptive applications. Frameworks that
mostly concentrate on QoS aspects and the management of application-
layer components rather than streaming protocols, such as [129], QCom-
piler [137], Infopipes [17], TOAST [10], and the TAO A/V Streaming
Service [19] can benefit from Noja’s transport services. Due to its sup-
port for QoS and monitoring capabilities, Noja is ready to be integrated
into these environments.

5.3 Middleware Abstractions and Operations

In the following, we present the basic communication abstractions of
the Noja middleware and show, how applications can establish connec-
tions, configure streaming semantics, exchange streams and signals, and
perform monitoring.

5.3.1 Communication Abstractions

Abstractions provide a simple and consistent high-level interface for ap-
plication programmers, while they hide the complexity of low-level mes-
sage passing interfaces, error handling procedures, connection manage-
ment and signalling protocols. For a streaming middleware we regard
the following abstractions as sufficient:

164 5 Noja: A Content-Aware Streaming Middleware Platform

Stream Units are the basic entity of communication exchanged between
application modules. Stream units are typed and self-containing
application-level data units, carrying payload and a label. This ex-
tends the well-known Application Level Framing concept [54] by
a common set of metadata whose purpose is to enable content-
awareness at lower layers. Stream units are independently pro-
cessed at the transport level. They either arrive on time or not at
all.

While the payload can contain arbitrary application data such as
raw media access units (objects, frames, slices or audio samples) or
preprocessed media transport units (e.g. H.264 NAL units [164]),
the label has a fixed format. A label describes payload proper-
ties such as dependency, importance, timing and error-resilience
information. It is passed to protocol implementation which may
perform selective error control and stream scheduling.

Ports are typed communication end-points, used for data transport,
stream control and monitoring. The type of a port is determined
by its direction and the properties of the stream it forwards, such
as media format and traffic specification. The stream direction
is either IN or OUT, whereas an OUT-port is used to send a me-
dia stream towards one or more IN-ports of subsequent processing
stages. Ports always handle a single stream only.

Interoperable Port References (IPR) describe and uniquely identify a
port in a distributed environment similar to CORBA IORs. Be-
sides the port type, an IPR contains signalling and location infor-
mation as well as an optional set of advertised or desired transport
protocols. These parameters are required for format and protocol
negotiation during binding setup.

Bindings represent virtual communication channels between ports. Bind-
ing semantics are configurable at design-time, while actual perfor-
mance requirements are specified at setup-time. The type of a
binding determines the topology of stream delivery, the visibility
of communication errors and the visibility of receiver feedback.
Bindings can, for example, be local or remote, connection-oriented
or connection-less, unicast or multicast. A binding hides proto-
col details, but exposes channel characteristics to ports in order to
enable monitoring.

5.3 Middleware Abstractions and Operations

165

Synchronisation Groups coordinate the synchronised delivery of stream
units at multiple and otherwise unrelated receiver ports by adding
adaptive delays to stream delivery. Groups hide the details of clock
synchronisation and delivery adjustment from receivers. They can
support different synchronisation schemes [18,116] and group mem-
bership options.

An application can create and bind an arbitrary number of ports to
combine adjacent processing stages into complex processing chains. In
order to use this model in an application, a programmer must perform
the following actions:

o At design time, appropriate classes of binding semantics must be
selected to fix the interaction pattern between application stages.

o At port creation time, a port must be configured with stream prop-
erties such as format and traffic specifications to determine its type.

e At bind time, the desired performance and QoS requirements must
be specified.

e At runtime, the application must label stream units accordingly.

Once a stream flows, an application can control the stream delivery,
monitor channel conditions and optionally use receiver feedback to adapt
rate and encoding to varying network and receiver conditions.

5.3.2 Binding Semantics

Our communication model draws its flexibility from an extensible set
of binding types and protocol implementations. Bindings abstract from
physical communication channels, hiding type and internals of the actual
signalling and transport protocols used inside the middleware. Applica-
tions can only control and observe the behaviour of ports and their bind-
ings. In order to support the diverse requirements of different streaming
applications, bindings offer a set of semantics that define how ports be-
have in the case of communication failures and receiver feedback.

We identified three kinds of general semantics: connection semantics,
interaction semantics and failure semantics. The programmer chooses
the semantics at design-time, but the middleware defers the actual selec-
tion and configuration of appropriate transport protocol until run-time.

166

5 Noja: A Content-Aware Streaming Middleware Platform

Considering the semantics, the middleware may even reconfigure and re-
place protocols if necessary. This gives the middleware sufficient freedom
to adapt stream delivery without breaking application assumptions.

Connection Semantics Bindings generally support a single sender and
multiple receivers to fork streams efficiently. In order to properly han-
dle multiple receivers and their feedback signals, a connection seman-
tics defines which properties of the binding’s topology are visible to the
sender-side application. It either exposes or hides identities of receivers,
their feedback and details of the connection topology. Connection se-
mantics directly influence the scale of stream distribution, because they
define which amount of state is required at the sender side. We defined
semantics for unicast, named-, hidden- and anonymous multicast con-
nections, but we like to note that the set of semantics may be extended
for special purposes. Extensions, however, require new binding objects
and protocol implementations, as discussed later:

Unicast The unicast mode permits only a single receiver to be attached
to the binding. It directly forwards feedback and unveils the re-
ceiver’s identity to the sender. Based on the identity the sender
can deny binding to a black-listed receiver, specialise the stream
to the receiver and directly react to performance and error-control
feedback. Unicast is suitable for small-scale applications such as
personal communication systems with a point-to-point topology.

Named Multicast In named multicast mode a binding forwards a single
stream to multiple receivers. The identities of all receivers are
disclosed to the sender and individual feedback is delivered. This
semantics combines the control and feedback options of unicast
bindings with the ability to efficiently deliver a single data stream
to multiple destinations. Named multicast bindings forward all
feedback messages to the sender-side application. This semantics
suits small-scale personal distribution systems and small multi-
party conference applications.

Hidden Multicast The hidden multicast mode conceals receiver identi-
ties, but exposes aggregated feedback to the sender. This mode
retains the efficiency and scalability benefits of multicast topolo-
gies while preserving the sender’s ability to react to feedback. Re-
ceiver identities are either unknown to the sender-side middleware
instance when network-level multicast is used, or masqueraded for

5.3 Middleware Abstractions and Operations

167

application-level multicast. Hidden multicast suits mid-scale and
large-scale distribution of streams in multi-hop overlay topologies
and in networks with network-level multicast support.

Feedback may either arrive directly over asymmetric (unicast) back-
channels or via multiple aggregation proxies. Before it is delivered
to the sender application, the feedback is transparently aggregated
into a single value or list of values. Examples of aggregation func-
tions that work in multiple steps and over any number of receivers
are the maximal perceived delay and loss per receiver, the minimal
available bandwidth and lists of packet sequence numbers that are
lost for at least a single receiver. Encoders can use this information
to adjust prediction and error-resilience schemes, while transport
protocols can adapt scheduling and hybrid error-control schemes.

Anonymous Multicast In anonymous multicast mode, receiver identi-
ties are unknown to the sender and feedback is unavailable or dis-
carded. Hence, a sender can only rely on statistical models or
local observations to reason about loss and delay characteristics
of the channel. Without such information, the sender can only
assume worst-case conditions. As a benefit, anonymous multicast
is highly scalable to large receiver groups because no per-receiver
state is required at the sender. Efficient implementations using
connection-less broadcast channels are possible because no feed-
back is required. In this sense, anonymous multicast is similar
to Radio and TV broadcasting systems, such as DAB, DVB and
DMB and suitable to provide the same service over generic packet
networks.

These semantics do not restrict implementations to a special network
topology or protocol. A binding can, for example, internally use a back-
channel for error control while the application requested an anonymous
semantics. Hence, actual stream delivery remains completely transpar-
ent to the application. The middleware may even employ multi-path
streaming, multi-protocol or overlay multicast topologies or advanced
services such as network handover, load-balancing and connection repli-
cation [140].

168

5 Noja: A Content-Aware Streaming Middleware Platform

Interaction Semantics Stream senders and stream receivers interact
asynchronously, but the tightness of interactions depend on the class
of the streaming application. Interactive conference systems, for exam-
ple, need bi-directional low-delay interactions between a small number
of known peers, while on-demand streaming systems and broadcasting
applications have increasingly looser delay requirements, but also larger
audiences. The desired reaction-time and the scalability demands re-
strict the implementation options for buffering, error control and syn-
chronisation schemes in such scenarios. We define three main classes of
interaction semantics. For every binding, a programmer can select one
of these semantics:

Conversational The conversational class defines low delay as the main
objective and addresses interactive applications with small num-
bers of known receivers. Hence, buffering and error control are
tightly limited by delay, while quality degradation may be toler-
ated. Direct unicast or named multicast modes are preferred to
authenticate receivers. Rebuffering a stream is discouraged and
synchronisation usually omitted to avoid delay violations. Exces-
sive loss usually results in immediate binding termination.

On-demand The on-demand class defines quality as the primary objec-
tive. It is designed for applications which deliver stored or live-
encoded content with loose delay constraints to a mid-scale num-
ber of registered consumers. Quality and smooth delivery are more
important than a low delay. Hence, start-up delays and rebuffer-
ing are acceptable and error control may reactively repair packet
loss. Receiver registration and feedback require a non-anonymous
connection semantics. Unacceptable loss results in rebuffering and
eventually in binding termination.

Broadcast The broadcast class defines scale as its primary objective.
It supports large-scale anonymous distribution of stored or live-
encoded content over broadcast or overlay multicast channels to
very large receiver groups. Start-up delays and rebuffering are ac-
ceptable and anonymous connection-less operation without feed-
back is preferred since this avoids undesired state in senders and
network nodes. However, synchronisation between small receivers
groups remains possible. Excessive loss results in rebuffering or
termination of the receiver-side binding, while the sender side is
unaffected by loss and unaware of receiver states.

5.3 Middleware Abstractions and Operations

169

Failure Semantics Failure semantics reduce the complexity of failure
handling at the application level by restricting the visibility of complex
communication errors to simpler models. We translate the manifold
errors of distributed environments, such as link failures, node failures,
message drops, missed delivery deadlines and excessive message reorder-
ing into loss errors. This is reasonable, because multimedia applications
do not distinguish between these errors anyway.

At ports, stream units are either delivered entirely and in time or a
loss is indicated to the receiver. However, different bitstream formats
and applications are unequally sensible to loss. Hence, we define special
semantics which regard the severity of errors in terms of the application
and let applications express their desired degree of reliability as well as
the termination condition. The design space is similar to that of RPC
failure semantics, which ranges from unreliable maybe, through at-most-
once and at-least-once to strict exactly once semantics.

Full reliable The full reliable class permits no gaps in the stream se-
quence. It translates loss into rebuffering or stream termination,
thus trading predictable quality against provoked delay extensions
and termination. It is useful for unprotected streams to add error
resilience and for applications that require perfect delivery without
loss or corruption, such as in mission-critical applications. It can,
however, also be used when errors are unlikely or deterministic re-
source guarantees are already given by lower layers. This class is
easy to implement with reliable protocols such as TCP.

Semi-reliable The semi-reliable class controls the properties of gaps in
the stream sequence, such as their size and distribution, the im-
portance, age and dependencies of lost stream units as well as
conditions for rebuffering. Semi-reliability directly addresses the
features of error-resilient bitstreams and partially-reliable trans-
port mechanisms. Semi-reliability has many facets which share the
common goal of optimising the trade-off between delay bounds,
network efficiency and signal quality. Two useful examples are
a quality-optimised semantics, preferring reliability over short de-
lays, and a delay-optimised semantics with opposite objectives.
Semi-reliability essentially requires content-aware transport proto-
cols and loss-tolerant applications. The actual selection of optimal
error-control mechanisms, protection strength and bandwidth used
for redundancy is left to protocol implementations. Semi-reliable

170 5 Noja: A Content-Aware Streaming Middleware Platform

error control is most useful for unprotected streams to add a basic
amount of error resilience and for applications which can trade off
reliability against optimal resource consumption.

Unreliable The unreliable class permits arbitrary gaps in the stream se-
quence and does only terminate a stream after timeouts instead of
loss patterns, while the failure semantics is that of the underlying
transport protocol. This semantics is most useful when applica-
tions already perform their own error protection and require no
additional protection at the transport layer. While a transport
protocol inside the middleware will not add FEC and ARQ protec-
tion, it is free to use content-aware scheduling and selective drop.
The advantage of this semantics is its simple implementation (on
top of UDP for example). It is, however, restricted to adaptive
applications that perform their own error control.

Binding Termination A binding either terminates by explicit request,
when senders or receivers fail, or when an unacceptable communication
error occurs. In any case, senders and receivers must establish consensus
on termination to finally free acquired resources. Although interactions
are asynchronous and connection-oriented protocols are optional, it is
easy for receivers to detect sender or communication failures because
stream units are expected to arrive periodically. Hence, at least for
receivers the usual timeout mechanisms work.

Detecting a receiver or channel failure at the sender side may be
impossible, in particular, when no feedback is exchanged. Thus, for
correct termination of sender-side bindings, feedback is essential. The
conversational and on-demand interaction semantics as well as most of
the connection semantics already require feedback and back-channels.
Here it is possible to send keep-alive or explicit termination messages.
Broadcast interactions over anonymous multicast topologies, however,
lack feedback and a back-channel. Because applications that use one
of these modes do not assume any coordinated action between sender-
and receiver-side bindings anyway (except real-time stream delivery), the
lack of feedback for termination does not matter.

5.3.3 Port Configuration

Ports offer a variety of operation modes and configuration options to sup-
port diverse application requirements (see table 5.1 for an overview). An

5.3 Middleware Abstractions and Operations

171

Port Control Operations

createInPort () creates a receiver-side port, initial state is BUFFERING

createOutPort () creates a sender-side port, initial state is HOLDING

getIPR() returns a port reference

bind () establishes a binding of specified type to the destination
port

unbind () tears down a single or all bindings of a port

Data Passing and Intra-Stream Synchronisation Operations

send () passes stream units, may block for period enforcement

receive() delivers stream units, may block for period reconstruction

wait () waits until next operation will not block

waitForMultiplePorts() waits on multiple ports

Stream Control Operations

getState () returns current stream state

mute () silently discards stream data at the receiver (receiver
only)

silence() indicates a single period of silence (sender only)

hold() stops stream without disconnect (sender only)

resume () (re-)starts stream after mute or hold

purge () discards all data in transit (sender only)

flush() waits until all receivers drained their channel (sender
only)

Inter-Stream Synchronisation Operations

createSyncGroup () creates a new synchronisation group

joinSyncGroup() adds the port to the group in specified mode

leaveSyncGroup () removes the port from its group

Signalling Operations

registerSignal() registers a handler for the specified signal

unregisterSignal() unregisters the signal handler

raiseSignal() sends a signal of specified type

Monitoring and Feedback Operations

getTiming () returns execution-related timing information

getChannelStats () returns channel-related statistics

getChannelPred () returns short-term channel predictions

Tab. 5.1 : Port operations for stream communication and port control.

application can dynamically create an arbitrary number of IN- and OUT-
ports according to the number and types of handled streams. To suit
different execution models, ports can perform blocking and non-blocking
operations. Control and monitoring operations are non-blocking.
Content-aware streaming protocols and QoS mechanisms need addi-
tional information about properties of the forwarded stream. We require
applications to specify these properties at port creation time, before
bindings are established and connections are set up. Because senders
typically know the exact properties of a stream while receivers have at
least constraints on the acceptable formats, we define an assymetric port
configuration scheme. Programmers need to initialise OUT-ports with
traffic and format descriptions, and IN-ports with format constraints.
During binding, format description and constraints are matched and the

172

5 Noja: A Content-Aware Streaming Middleware Platform

type of the receiver-side port is completed. Contents and meaning of
descriptions is as follows (see also table 5.2):

Traffic Description The traffic description defines exact or average
properties of the stream’s traffic pattern, such as bandwidth and buffer
requirements. This is required for admission control and packet schedul-
ing mechanisms [175,176]. Rigid applications that require QoS-provisioned
services must specify their exact traffic pattern because this is used to
reserve resources along the delivery path. For network-adaptive appli-
cations the traffic description may be an initial estimate on the stream
properties only. Adaptive protocols can use this estimate to configure
transmission windows and scheduling parameters. Period and the aver-
age interarrival time between single data units or groups of data units
are mandatory. Although possible, we do not require middleware imple-
mentations to guess parameters or monitor streams to obtain them in
order to keep the middleware simple and efficient.

Format Description The format description defines format-specific prop-
erties of a stream which are fixed during the lifetime of an ouT-port. The
description is reliably exchanged at bind time and remains active for the
connected IN-ports as long as the binding exists. The description con-
tains a generic and globally unique encoding format ID, an arbitrary
number of format-specific attributes (as key/value pairs of strings) such
as video resolution or audio sampling rate, and the format-independent
dependency description as defined in section 4.7.1. These properties are
used to (a) check if both application-level sides agree on the format of
the exchanged stream, (b) inform the receiving side of the actual stream
format the sender emits, and (c) inform content-aware protocol layers of
type-based dependency patterns and importance distributions. Format-
specific properties are directly forwarded to the receiver side without
interpretation by the middleware. Hence it is especially attractive to
exchange codec parameter sets (see section 4.7.2) using this mechanism.

Format Constraints Constraints are defined for IN-ports only. They
specify which stream formats are expected by the receiver-side applica-
tion and which values for additional attributes are required. Attribute
constraints are key/value pairs containing regular expressions. For un-
defined attribute keys no constraint is assumed. A constraint does only
match a description when all specified attributes match.

5.3 Middleware Abstractions and Operations

173

Type Property Description
Blocking blocking calls may block until resources are
Mode available

non-blocking calls do never block, but may indi-

cate errors

Flow Control policed data unit spacing is enforced

Mode by explicit wait times to shape
application-level traffic

pass-through no enforcement, caller needs to ar-

range for proper spacing

Traffic period average interarrival time between
Description data units (e.g. video frames) in
ms
maximal burst length maximal number of data units per
period (e.g. NAL units per video
frame)
average bitrate application-level payload bitrate
averaged over one second in
bit/sec
peak bitrate maximal application-level payload
bitrate per period in bit/sec
maximum data unit size size of the largest data unit in bit

Format codec-id name or ID of the codec (URL or
Description FOURCC!)
dontFragment indicates that data units are al-

ready properly fragmented by a
network-adaptive application

DDL specification dependency specification gener-
ated by the DDL Compiler (see
section 4.7.1)

format-specific content-specific properties such as
frame size and encoding layers for
video, audio resolutions and sam-
pling rates, bitrates, stream length
and codec parameter sets

Format codec-id list list of accepted codecs

Constraints format-specific content specific constraints (e.g.
regex to match resolution, layers,
and bitrate)

Tab. 5.2 : Port properties.

5.3.4 Binding Ports

A binding between two ports can be initiated from either side using the
port interface, whereas the remote side can refuse or accept the binding.
The blocking version of bind waits until a connection is fully established
or the attempt timed out. A non-blocking bind returns immediately,
while the connection setup is performed in the background and option-

174

5 Noja: A Content-Aware Streaming Middleware Platform

ally, completion is signalled asynchronously. The required information
for binding are (1) the IPR of the remote port, (2) the binding semantics,
and (3) quality-of-service requirements for the connection. Ports define
no means to exchange an IPR, but IPR’s can be serialised and embed-
ded into signalling protocols (e.g. SDP, SIP), exchanged via naming and
location services or stored in simple files. The type of a binding is de-
termined by connection, interaction and failure semantics which specify
the expected behaviour of the respective ports. Binding semantics do
also restrict the number of potential transport protocols because pro-
tocol implementations usually assume specific network topologies (e.g.
available back-channels) and error-control options (e.g. loose delays for
retransmissions). Not every protocol is therefore appropriate to deliver
streams under every semantics.

In order to successfully establish a binding, both ports must agree on
the binding, meaning that:

(a) their flow directions are opposite,

(b) the format description of the OUT-port satisfies the format con-
straints of the IN-port,

(c) the requested binding semantics do not conflict with an already
established binding,

(d) a common transport protocol can be negotiated between both
sides,

(e) the QoS requirements can be satisfied, and

(f) the remote application accepts the binding.

Conflicts under requirement (c) arise when an IN-port is already con-
nected, an OUT-port is already member of an unicast binding or the
requested binding semantics differ from the semantics of an already es-
tablished binding. This effectively restricts the number of bindings for
a single port to one. A single binding can, however, support multiple
receivers.

An application can refuse a binding request to a port for several rea-
sons, such as system load, failed authentication of the peer or insufficient
privileges. More details are given in section 5.4.2.

5.3 Middleware Abstractions and Operations

175

Type Property Description
Interaction conversational low delay for interactive applica-
tions
Semantics on-demand medium delay, rebuffering and
high quality for on-demand appli-
cations
broadcast medium delay, rebuffering and

high quality for large-scale anony-
mous distribution

Connection unicast connection-oriented, single con-
nection, known receiver
Semantics named multicast connection-oriented, known re-
ceivers, multiple feedback
hidden multicast connection-oriented, unknown re-

ceivers, aggregated, masqueraded
or filtered feedback

anonymous multicast connection-less, unknown re-
ceivers, no feedback

Failure full-reliable trade perfect delivery against re-
buffering or termination
Semantics semi-reliable controlled loss for partially loss-
resilient formats
unreliable directly expose low-level failure
model
QoS throughput minimal required channel through-
put in bits/sec
Requirements delay maximal required end-to-end delay
between ports in ms
delay extension acceptable rebuffering time in ms
jitter acceptable interarrival jitter in ms
loss acceptable data unit loss rate

Tab. 5.3 : Binding properties.

The QoS requirement is used for two purposes, (1) to specify per-
formance requirements for admission control and configuration of QoS-
aware channels and (2) to specify performance bounds for binding termi-
nation (see section 5.4.2 for details). QoS parameters allow the applica-
tion to specify limits for bandwidth, end-to-end delay, jitter, rebuffering
times, and loss. A QoS-class can be assigned to each parameter to sep-
arately control the severity of QoS violations. The deterministic class
permits no violation and requires explicit resource reservations. Statis-
tical services average violations over a specified interval. They require
no reservations, but performance guarantees are weaker. Finally, the
best-effort class permits any violation of the respective parameter. It
only provides counts for interested applications. The QoS request and

176

5 Noja: A Content-Aware Streaming Middleware Platform

the port-specific traffic description are similar to the reserve and traffic
specifications (rspec and tspec) of RSVP [9].

Bindings either terminate by explicit request, when the performance
of a single quality parameter drops below an acceptable limit (according
to the QoS-class) or when an unrecoverable node or connection failure is
detected. After removing a binding, ports can be reused to establish new
bindings even while the application still generates data units. Sending
data via unbound ports results, however, in immediate loss.

5.3.5 Data Transfer and Stream Unit Labelling

Stream senders and stream receivers can exchange data streams in terms
of labelled stream units via their ports. The port interface permits to
send or receive exactly one stream unit per call. Stream units are deliv-
ered to receivers either entirely and on time or not at all. If a stream unit
is late or (partially) lost in transit, an error is signalled to the receiver
instead. Senders never receive direct loss indications from a send call
because this would require the call to block until feedback is received,
increasing the risk of deadline violations for subsequent data units.

Ports support blocking and non-blocking send and receive calls. A
blocking receive call returns only when a new data unit was successfully
received or a timeout occurred, while non-blocking receive immediately
returns, either with a new data unit or an error code indicating the cause.
Send calls are typically non-blocking to preserve the real-time processing
of streams even if protocol queues are full. Blocking send is useful when
ports are used for flow control (see sections 5.3.7 and 5.4.2 for details).

A flow-control mode determines whether subsequent send and receive
calls are additionally deferred until a new stream period begins. Using
the blocking mode in combination with policed flow-control, an appli-
cation can be triggered by the middleware to perform actions strictly
periodic. Even if sender-side queueing capacity is available or data units
are waiting at the receiver-side, policed send and receive calls return
only at periodic time intervals. Because streams are likely to contain
multiple data units per period, ports use the timing information in data
unit labels for blocking decisions. A programmer can also toggle the
flow-control semantics via the port interface.

Asynchronous interactions between senders and receivers are com-
mon in distributed processing chains. Hence, send operations are non-
blocking and non-policed per default, while receive operations default to
blocking and policed modes.

5.3 Middleware Abstractions and Operations

177

Purpose Attribute Description
Dependency seq unique sequence number (mandatory)
type data unit type (optional)
epoch dependency epoch (optional)
enclayer encoding layer (optional)
reflayer referenced layer (optional)
short_term_reflist seq. of short-term references (optional)
long_term_reflist seq. of long-term references (optional)
is_long_term_ref flag to mark as long-term reference (optional)
group_seq in-group position (optional)
group_size number of data units in this group (optional)
imp_boost additional importance boost (optional)
Timing timestamp media timestamp (mandatory)
duration presentation duration for this data unit (op-
tional)
Resilience coverage error protection coverage for non-resilient pay-
load (optional)
tolerance acceptable loss or bit-error rate for resilient
payload (optional)
distortion rate distortion value (optional)

Tab. 5.4 : Label attributes used for cross-layer sharing of meta-data.

Each stream unit has a unique location in the stream specified by
a sequence number and a delivery deadline expressed by an associated
timestamp. OUT-ports require the application to label subsequent stream
units with monotonically increasing sequence numbers and with increas-
ing delivery deadlines. While the sequence number defines the delivery
order of stream units, the deadline defines the potentially periodic deliv-
ery time of a single or multiple stream units. When multiple stream units
share the same deadline, a receiver can extract them from an IN-port in
subsequent calls without incurring extra wait times even in blocking
and policed operation modes. Policing allows to emit stream units from
IN-ports exactly at their respective deadlines. With policing, a stream
unit is never received too early, while deadline control guarantees that
stream units are never received too late. This avoids jitter and recon-
structs the exact stream periodicity, even if low-level packet scheduling
and error-control introduce jitter at the packet level. Note that because
jitter compensation requires buffering of stream units in IN-ports, the
requested end-to-end delay must be larger than the mean network delay
for compensation schemes to work effectively.

Besides mandatory sequence numbers and deadlines, labels contain op-
tional dependency and importance information (see table 5.4 and chapter

178 5 Noja: A Content-Aware Streaming Middleware Platform

4). Labels may also contain optional presentation duration and error re-
silience hints. The presentation duration can be used in protocols to
calculate expected deadlines of subsequent stream units, while the error
resilience information helps error-control protocols to assign additional
redundancy (bits for FEC and ARQ protocols) more efficiently. The
coverage attribute defines how many bits of the stream unit payload,
starting at the first bit, should be error-protected, while the tolerance
attribute defines how many bit errors are acceptable in the remaining,
unprotected payload area.

5.3.6 Application-Level Signalling

Besides stream data units, ports allow the application to exchange application-
defined signals. While stream data flows uni-directional, signals can
travel in both directions if supported by the binding semantics. A signal

can carry control information related to the stream, such as codec control
messages [172] for sender-side scaling and layer switching indications, or
receiver feedback on perceived stream quality and error recovery requests

(e.g. adaptive intra-refresh or reference picture selection [164]).

Signals are forwarded at the delivery guarantees of the binding. They
are delivered asynchronously to registered handlers. The sender of a sig-
nal can choose between in-order and urgent delivery methods. While
urgent signals are forwarded with high priority and delivered immedi-
ately, in-order signals are delivered in their local send-order (there is no
partial or global order of signals between participants of a binding or
across bindings). When in-order signals are sent by the stream sender,
they are also synchronised with the data stream, that is, the signal is
delivered to the stream receiver when the data unit preceding the signal
is extracted from the IN-port.

For efficiency and complexity reasons, the type of an application-level
signal is determined by a simple ID value, opaque to the middleware.
The payload is restricted to a single integer value. An application is free
to define reasonable ID’s and payload conventions.

5.3.7 Flow-Control

Applications can control the continuity of a stream’s flow (e.g. to ex-
press periods of silence) and share this information with the middleware.
Streaming protocols can exploit this information for filling or draining

5.3 Middleware Abstractions and Operations

179

Connected Connected

resume()

bind()

ilence()
hold() bufFilled*
£lush)
0 Disconnected
silence()
bufEmpty*
purge Flushing/
traifure) £lush() anbind() Muted
poreed [Failure]

bufEmpty* purge* resume()

bufFilled®
Buffering/ Running/
Muted Muted
‘ bufunderflow Tute ()
8]

Disconnected nute
N
resume () resume”

mute()
resume ()

hold()

(a) Sender-Side States (b) Receiver-Side States

Fig. 5.2 : State Charts for (a) ouT-ports and (b) IN-ports. (Italic names refer to
localt or remote* events, while typewriter names are local operations).

buffers, for adjusting timers and transmission windows, and for adapt-
ing synchronisation and error-control schemes. Explicit silence hints also
avoid that protocols misinterpret gaps as sender or channel failures.

Due to the uni-directional flow of a stream, the stream sender usually
has more control than the receiver. We allow the sender to indicate a
temporary stop and later restart of the stream via hold () and resume ()
operations. In addition, the sender may indicate temporary periods of
silence in the media signal via the silence() operation of its OUT-port.
While a sender does not generate any data during silence periods, the
receiver remains unaffected until low buffer marks are reached or the
channel is drained entirely. Senders can also request to empty a channel
immediately, either with the asynchronous purge() or with the syn-
chronous flush() operation. Flush waits until all receivers processed
waiting data units and signals completion to the sender. In contrast,
purge immediately discards all data from protocol and port buffers and
returns immediately. Flushing is useful for synchronising sender and re-
ceivers for soft stream switching, channel tear-down and soft handover
procedures, while purging is required for seeking and random access to
streams (e.g. in editing and interactive on-demand systems). Receivers
can temporarily pause the delivery of stream units with mute() and
restart reception with resume (). Data units at a muted receiver port
are discarded when their deadline has passed, but the sender is not in-
formed about muted receiver ports.

Ports maintain internal state machines to reflect the current flow-
control state (see figure 5.2). When a binding exists, the sender side

180

5 Noja: A Content-Aware Streaming Middleware Platform

distinguishes between a HOLDING state with empty port and protocol
buffers, a RESUMING state, where buffers are filling during a pre-roll
period, a RUNNING state with filled buffers and a FLUSHING state with
draining buffers. State changes are triggered by local operations with
two exceptions. When the binding semantics permits a back-channel
and receivers identities are known, a sender considers the buffer states
of all receivers in its state machine. Here the RUNNING state reflects
that all receivers are running while the HOLDING state reflects that all
receivers have drained their channels and ports.

A bound receiver port distinguishes between a BUFFERING state where
buffers are either empty or filling, a RUNNING state with filled buffers
and a FLUSHING state with draining buffers. For simplicity we merged
the respective MUTING states, where data units are not fetched by the
application, as attributes into all other states. State changes at the
receiver are triggered by corresponding state changes at the sender, by
local observations about buffer levels and by local operations.

Initially ouT-ports start in the HOLDING state, waiting for explicit
start-up, while IN-ports enter the BUFFERING state, awaiting data un-
til a sufficient amount was prebuffered. Hold/resume cycles can trigger
rebuffering at the receiver when the receive buffer became empty mean-
while. In conversational interaction semantics receiver-side ports leave
BUFFERING state as soon as the maximal end-to-end delay is reached and
never enter it again. In on-demand and broadcast interaction semantics
sender and receivers can interact to accelerate, slow down and even stop
a stream for synchronisation. Receiver-side ports leave the BUFFERING
state when a high-watermark is reached and may re-enter it at buffer
underflow.

5.3.8 Stream Synchronisation

Flow-control mechanisms in ports already arrange for jitter-free recon-
struction of the stream periodicity, which is also called intra-stream syn-
chronisation. To synchronise the delivery of multiple streams at a single
receiver (inter-stream synchronisation) and the delivery of streams at
multiple distributed receivers (inter-receiver synchronisation)additional
mechanisms are required.

The Noja middleware provides the generic abstraction of synchroni-
sation groups to support both forms. A synchronisation group defines
policies to control the membership of ports in a group. Membership is
exclusive (each port can be member of at most one synchronisation group

5.3 Middleware Abstractions and Operations

Property Attributes Description
Synchronisation policy determines synchronisation semantics
Specification master mode fixed or dynamic master election
adaptation rate fixed adaptation rate in ms/s (optional)
adaptation time maximal length of an adaptation phase in ms
(optional)
watermarks buffer levels relative to the playout time of the
first element in ouT-port buffers in ms
Synchronisation rigid fixed target delay, no adaptation
Policy adaptive low delay = dynamically adapt delay to group-wide con-

adaptive low loss

straints, sensitive to buffer underflows
dynamically adapt delay to group-wide con-
straints, sensitive to buffer overflows

Master Mode

fixed master

master election

port remains master during the lifetime of the
group

adaptive master selection based on critical
buffer levels

Membership master selected port remains master for this group
(exclusive)

Mode slave selected port remains slave for this group
active member port adapts its stream and can become master
passive member port only adapts its stream
loose member port only adapts its stream even if incompat-

ible with the group

‘Watermarks low target mark lower limit of optimal buffer level

high target mark
critical low mark

critical high mark
break mark

acceleration mark

upper limit of optimal buffer level

buffer underflow likely, requires group coordi-
nation

buffer overflow likely, requires group coordina-
tion

increase sender-side output delay to slow down
stream

decrease sender-side output delay to accelerate
stream

Tab. 5.5 : Synchronisation properties.

at any time), but during their lifetime ports can join and leave synchro-
nisation groups multiple times. The actual synchronisation protocol as
well as the flow adaptation mechanisms remain hidden from applications
behind the port interface.

When a port is member of an adaptive synchronisation group, the
port adaptively adjusts the forwarding of stream units according to a
mutually agreed constraint, either stretching or compressing the inter-
unit spacing. Consensus on delays and synchronisation constraints is
achieved by synchronisation protocols such as [18,116].

182

5 Noja: A Content-Aware Streaming Middleware Platform

Table 5.5 displays the configuration options for synchronisation groups.
A synchronisation policy controls when and how stream delays are adapted.
The master mode and the membership options determine how a syn-
chronisation master is selected. This can be done either statically or
via dynamic election protocols which regard buffer criticality [18]. The
buffer levels for triggering master switching and delay adaptation can be
adjusted by means of the watermark structure.

5.3.9 Monitoring and Performance Feedback

Ports allow network-adaptive applications to obtain statistical informa-
tion about their timing behaviour and the characteristics of the delivery
channel.

The monitoring interface of ports provides two distinct kinds of infor-
mation (see table 5.6). First, an application can observe its own execu-
tion timing which is measured by the port based on the call frequency to
send or receive operations and the spacing between calls. When appli-
cations use blocking and policed send and receive operations, this tim-
ing yields exact information about the application runtime between two
consecutive calls, the processing jitter, deadline misses and sleep times.
This information may be utilised for adapting computational complexity
of encoding algorithms.

Second, ports provide statistics on the observed channel characteris-
tics as well as short term trends. Information include current averages
for available bandwidth, loss rate, round-trip-time and one way delay
as well as the MTU size along the delivery path to a selected receiver.
Most of this information is only available if a back-channel exists and if
the binding supports named receivers. Although this information may
be obsolete and inaccurate for fast-fading wireless links, it is useful for
adapting encoder error-resilience and output bitrate for many applica-
tions.

5.4 Middleware Implementation

The main objectives of the Noja middleware are a decrease in overall sys-
tem complexity by proper communication abstractions that hide details
of signalling and media transport protocols as well as the definition of
interfaces for enabling cross-layer coordination. We implemented a pro-
totype version of Noja in C++ which runs on several POSIX platforms,

5.4 Middleware Implementation

183

Property Attributes

Description

Timing Information wait time

missed deadlines
call frequency

call jitter

absolute wait time until next period starts in
ms

number of missed deadlines

exponential moving average of observed call
frequency in calls/s

exponential moving average of observed call
jitter in ms

load execution time to period ratio
Channel Statistics Path-MTU maximum transmission unit for the total net-
work path
throughput throughput observed by the receiver
bandwidth estimated available bandwidth on the path
RTT round trip time observed between sender and
receiver
FTT forward trip time observed between sender and
receiver
PLR packet loss rate observed by the receiver
BER link-layer bit-error rate (first-hop only, may be
unavailable)
Channel Predictions bandwidth expected available bandwidth for the next pe-
riod
loss expected packet loss probability for the next
period
bit-error expected bit-error probability for the next pe-

channel failure

MTTF

riod

expected channel failure probability for the
next period

expected mean time to channel failure in ms

Tab. 5.6 : Monitoring information.

such as Linux, NetBSD and Darwin. Our prototype supports thread-
based and event-driven programming models and is mainly designed for
transport system tasks on top of non-realtime operation systems.

For our implementation we made extensive use of object-oriented prin-
ciples and design patterns [35,177]. Several parts of our architecture are
inspired by event-driven system architectures [36,178], zero-copy data
passing schemes [179] and other multimedia platforms [13,34,130,132].

5.4.1 Middleware Architecture Overview

The architecture of the Noja middleware follows a layered design, de-
picted in figure 5.3. Only components in the top-most layer are visi-
ble to application programmers while the other layers contain internal
concepts of the middleware implementation. Besides ports, which are

184

5 Noja: A Content-Aware Streaming Middleware Platform

StreamUnit Port StreamUnit
Layer
"‘ OUT - Port [®--------------- *SyncGroup """""""" IN - Port "

API

i Object Adaptor | ... ‘ Object Adaptor ‘
b I I | I ;
H Outbound Binding Binding Inbound Binding
: : <Type> Layer <Type>
Po Channel Channel
e Manager Manager
PE Ll Streaming Protocol Streaming L
N Protocol Engine(s) Layer Protocol Engine(s)
N I T T T T I
C . [siprrsp corea | [rTP [nsTP RTP_ | NsTP | [SIP/RTSP, CORBA
(2 TCP | [uop ['scre [pece uop [scre [peer | | TCcp
= P P
P A [[a]
: [m[w[m] :
: Factories Clocks & Timers Event Dispatcher Reactor Buffer Pools Thread Pools ;
Uni-directional Unreliable | A
Streaming Channel | i
1 1
Packet Network Bi-directional Unreliable
Signalling Channel

Fig. 5.3 : Overview of the Noja middleware architecture.

mainly used for communication, programmers can access Object Adap-
tors. Similar to CORBA object adaptors, the Noja Object Adaptor is
responsible for managing the resources associated with a single media
processing stage. This includes the IN- and OUT-ports of this stage, a
thread pool for execution handling, a buffer pool managing the storage
for stream units, as well as event and I/O dispatchers. Object adaptors
offer several policies for threading (single threaded, shared thread-pool,
private thread-pool), real-time execution (hard, soft, best-effort) and I/O
dispatching (shared reactor, private reactor).

Central to our design is the separation between a coordinating entity,
the Channel Manager (CM), and multiple distinct stream forwarding
entities, the Streaming Protocol Engine(s) (SPE). While the CM is
only involved in binding establishment and binding control, the SPEs
independently transport streams between remote binding objects.

Because a single streaming transport protocol is not sufficient to sup-
port the great variety of binding semantics and network environments,
Noja supports a pluggable SPE framework. SPEs can implement a sin-
gle or multiple sets of binding semantics, such as one or more reliability
classes and interaction semantics. When an application requests a new
binding, a binding factory determines the most appropriate SPE for the

5.4 Middleware Implementation

185

selected combination of semantics. A binding can also use multiple SPE
instances for multicasting or load-balancing and even replace SPEs at
runtime to implement handover or failover schemes.

SPEs are responsible for transport and error control issues, such as
fragmentation, encryption, packet scheduling, error protection, retrans-
missions, traffic shaping and network congestion control. Therefore a
SPE can queue up stream units and transparently delay their forward-
ing when appropriate. In contrast, jitter compensation and adaptive
playout control are performed at receiver-side ports. This is to avoid
coordination of multiple receiving SPEs. A receiver-side port and re-
spectively an in-bound binding too do only allow a single stream to be
received. Multiple SPEs at in-bound bindings become necessary when
failover or handover services are requested.

The concept of SPEs is not limited to special protocols such as RTP
over IP networks. Our current prototype uses a light-weight transport
protocol (the Noja Streaming Transport Protocol) to avoid unnecessary
complexity of RTP and to add additional features more easily. SPEs
based on other transport protocols (SCTP, DCCP) and special streaming
standards such 3GPP and ISMA can be integrated without changing
upper layer interfaces and semantics.

The Channel Manager is the central authority for binding establish-
ment, signalling, and network resource management. It provides inter-
faces for channel setup and maintenance, QoS reservations and resource
monitoring. It internally tracks existing connections, monitors network
interface availability and address changes and accepts connection re-
quests from remote nodes. When connectivity or resource availability
change, the channel manager informs interested objects such as stream
engines, bindings and application-level adaptation policies (through the
port abstraction). If, for example, a new network becomes available,
stream engines can use this network for multipath streaming or special
bindings can initiate a handover procedure.

We designed the Noja architecture for interoperability and extensibil-
ity because we believe that a single protocol implementation does not
fit the needs of all streaming applications. We do also not assume that
all nodes in a distributed system run the Noja middleware or that all
nodes belong to the same administrative domain. Hence, we designed
an open architecture that allows programmers to insert new protocols
without changing the semantics of the API. Noja can be enhanced in the
following areas:

186 5 Noja: A Content-Aware Streaming Middleware Platform

Bindings The implementations of binding objects can be extended for
special topologies or binding semantic combinations. This allows to
integrate specialised bindings later, e.g. for P2P delivery, multipath
streaming support, network and session handover.

Streaming Protocols Stream Protocol Engines are the main extension
mechanisms to adapt Noja to new network environments and to
add new protocol functions. Due to the large amount of avail-
able error-control methods, including robust bitstream packetisa-
tion [3], packet scheduling and selective ARQ [1,89,143], unequal
FEC [78,84,86,98,99,180] and hybrid FEC/ARQ schemes [93-96],
interleaving schemes [97,102, 103, 181], and different rate-control
methods [110,111,113,182,183] the options for adjusting protocols
to specific applications and network environments are manifold.
Multiple protocol engines can coexist even if they implement sim-
ilar semantics.

Signalling Protocols The channel manager can be extended by new
signalling protocols which can even run concurrently. This al-
lows for the inclusion of standard multimedia signalling protocols
(RTSP [68], SIP [6], SDP [7]) and other front-ends such as the
CORBA A/V streaming interface [19].

Synchronisation Protocols Noja allows to extend synchronisation pro-
tocols which are used inside the synchronisation group abstrac-
tion to coordinate stream playout at multiple ports. Several adap-
tive protocol schemes have been proposed for different environ-
ments [18,116,117,119,184]. Noja currently uses a modified version
of ASP [18], described in [185].

5.4.2 Application Programming Interface

In addition to the already presented operations and semantics of our
communication model (see section 5.3), we will focus on some of the
implementation-level details of the Noja API in more detail. Abstrac-
tions which are visible to an application programmer are ports, object
adaptors, synchronisation groups, and an efficient zero-copy buffer man-
agement system. We show how these abstractions work and how an
application can use the Noja middleware under different execution mod-
els, such as thread-based execution and event-based execution.

5.4 Middleware Implementation

187

Object Adaptor Object adaptors define an execution environment for
application modules. An object adaptor manages all resources of a sin-
gle processing stage of a distributed media processing chain, including
IN-ports and OUT-ports, buffers and threads. The interface of object
adaptors contains operations to control buffer pools, clocks, I/O poli-
cies, thread and real-time policies (see listing 5.1). These policies control
how resources are allocated to applications and lower-level protocol tasks
and how resources are configured (e.g. threads for real-time scheduling).
Applications can request resources such as threads, buffers, clocks and
timers through the object adaptor.

The threading policy controls whether the object adaptor maintains a
private thread pool, shares threads from a common pool or uses a single
thread for executing the application stage. The real-time policy defines
if threads are scheduled with hard real-time, soft real-time or best-effort
guarantees, and the I/O policy controls if a private or a shared reactor
instance is used to dispatch I/O events.

Processing stages that maintain multiple IN-ports may need to wait for
data to arrive on multiple ports before processing all inputs at once. This
is, for example, the case for multiplexors and synchroniser components.
Another example is the synchronous (re-)starting of multiple streams af-
ter ports left the (re-)buffering state. While ports already offer explicit
wait calls and blocking or policed send/receive calls, these methods are
limited to a single port. Waiting for multiple ports with a single thread
requires additional coordination, which is performed by the waitFor-
MultiplePorts operation of object adaptors. This operation waits for
some or all ports in a specified set to become active. Programmers may
use one of the default sets (all IN-ports, all OUT-ports, or all ports) or
specify their own set of ports. They may also specify the minimal re-
quired number of active ports (0 = all) and a timeout to control when
the wait operation should be aborted.

Binding When establishing a binding between ports, a programmer
must provide the IPR of the remote port, select an appropriate family
of binding semantics and specify the desired quality level. The IPR con-
tains type and identity of the remote port and information on how to
contact the remote channel manager to initiate a connection. When no
explicit protocol is specified, a binding factory determines the most ap-
propriate protocol which supports the desired combination of semantics
and quality levels.

188 5 Noja: A Content-Aware Streaming Middleware Platform

// Object Adaptor Configuration Options

enum { THREAD_SINGLE,
THREAD_SHARED_POOL,
THREAD_PRIVATE_POOL } ThreadPolicy_t;

enum { HARD_RT_POLICY,
SOFT_RT_POLICY,
BEST_EFFORT_POLICY } RTPolicy_t;

enum { SHARED_REACTOR,
PRIVATE_REACTOR } IOPolicy_t;

=
O © XN TR WN -

13 | typedef struct

15 ThreadPolicy_t thread_policy;
16 RTPolicy_t rt_policy;
17 I0Policy_t io_policy;

18 |} 0APolicy;

20 | // Object Adaptor creation
21 | ObjectAdaptor (0APolicy policy);

23 | // Port creation
24 InPort* createInPort(FormatConstraint constr);
25 OutPort* createOutPort(TrafficDesc tdesc, FormatDesc fdesc);

27 | // combined wait method, default sets are {IN/OUT/ALL}_PORTS
28 waitForMultiplePorts (PortSet in, PortSet out, int count,
29 time_t timeout);

31 | // Reactor access
32 | Reactor* getReactor ();

34 | // Clock access
35 | Clock* getClock();
36 | void setClock(Clock* specialClock);

38 // Buffer-Pool access
39 | void setBufferPool (Pool* specialPool);
40 | Pool* getBufferPool();

42 | // Distributed Event Service access
43 EventSvc* getEventService ();

Listing 5.1: Object Adaptor API (selected operations).

Deterministic QoS requirements are implemented by reserving resources,
while for statistical QoS requirements the channel is initially probed for
throughput, delay and loss. On success, bind returns the ID of the new
channel. This ID is required for channel monitoring and for disconnect-
ing a distinct receiver. The unbind operation finally closes the channel
and optionally waits until the receiver flushed all data.

5.4 Middleware Implementation 189

typedef enum {DETERMINISTIC,STATISTICAL,BEST_EFFORT} CoS_t;

1
2
3 | typedef struct {
4

int value; // required target wvalue
5 CoS_t class; // desired class of service
6 int percentage; // acceptable violation per interval
7 int interval; // averaging interval in ms
8 |} QoS_value_t;
9
10 | typedef struct {
11 QoS_value_t throughput; // wvalue in bits/second
12 QoS_value_t delay; // maz. end-to-end delay in ms
13 QoS_value_t delay_extension; // rebuffering in ms
14 QoS_value_t timeout; // timeout specifications in ms
15 QoS_value_t jitter; // mazimal jitter in ms
16 QoS_value_t 1loss; // mazimal packet loss

17 |} QoS_Request_t;

19 typedef enum {UNICAST, NAMED_MULTICAST, HIDDEN_MULTICAST,

20 ANON_MULTICAST} Connection_t;

21 typedef enum {CONVERSATIONAL, ONDEMAND, BROADCAST} Interaction_t;
22 typedef enum {RELIABLE, SEMI_RELIABLE, UNRELIABLE} Failure_t;

24 | typedef struct {

25 Connection_t connection_type;
26 Interaction_t interaction_type;
27 Failure_t failure_type;

28 |} Binding_t;

30 | BindingID_t bind (IN IPR_t dest, IN QoS_Request_t qos,

31 IN Binding_t family, IN Protocol_t protocol,
32 IN time_t timeout);

33 void unbind (IN BindingID_t bindingId, IN time_t timeout,

34 IN bool flush);

Listing 5.2: QoS performance specification and the bind() operation.

Applications can express their desired service quality, reliability and
termination condition a QoS specification at bind time (see listing 5.2).
The interpretation of the QoS values depends on the selected class of
service and the selected failure semantics. Consider, for example, a
conferencing application that uses a 300kbit variable bitrate live video
sequence, is tolerating loss of unimportant data units up to a limited
amount, but is sensible to delay. A small amount of late data units is
acceptable (they are considered lost), but rebuffering is undesired. Af-
ter 10 seconds of unannounced silence, the receiver suspects sender or
channel failure and requires the connection to terminate. The binding se-
mantics in this example would be NAMED_MULTICAST, CONVERSATIONAL,
SEMI_RELIABLE, while the QoS configuration would look as in table 5.7.

190

5 Noja: A Content-Aware Streaming Middleware Platform

Property Value Class % Interval Description

Throughput 3% 10° Statistical 5 1000 average required bandwidth
is 300kbit and 5 % decrease
in availability is acceptable

Delay 100 Deterministic 2 1000 2 % violations per second
are acceptable

Delay Ext. 0 Deterministic 0 0 no pre-buffering allowed

Timeout 10* Deterministic 0 0 terminate after 10 sec of si-
lence

Jitter 10 Deterministic 2 1000 accept 10 ms jitter and 2 %
violations per sec

Loss 3 Statistical 10 1000 tolerate 10 % loss below im-

portance level 3

Tab. 5.7 : Configuration example of QoS parameters for a video conferencing appli-
cation.

Binding establishment requires the cooperation of channel managers
on both sides. They check binding semantics and QoS request for con-
flicts and verify the type-compatibility of the involved ports. Binding
setup can optionally involve access control checks, protocol parameter
negotiations, resource reservations and channel probes. If required by the
connection semantics, the destination port is notified of the new bind-
ing. For binding semantics that lack connections, protocol parameter
negotiation and channel reservations need to be performed in advance.

Synchronisation Groups Synchronisation groups are Noja's abstrac-
tion to enable inter-stream and inter-receiver stream synchronisation.
They influence the timing and playout characteristics of IN-ports and
optionally the timing characteristics of ouT-ports. Internally, a syn-
chronisation group runs a distributed synchronisation protocol to reach
consensus on a common delay constraint and master selection. We cur-
rently use a modified version of the Adaptive Synchronisation Protocol
(ASP) [18] which was proposed in [185].

The synchronisation group functionality is decomposed into a single
controller per group and a single agent per member port. Agents ensure
that the fill-level of the stream buffer inside a port is between the speci-
fied watermarks. The identity of a group is determined by its controller.
The controller performs admission control for new group members and
calculates buffer target marks for all streams. Admission control ensures
that a common target playout-time exists between all group members
and that the watermarks of the new member agent satisfy policy con-
straints. In adaptive policies, the controller also elects the first mas-

5.4 Middleware Implementation

1 | // Controller Configuration

2 | typedef struct

3

4 uint32_t adapt_rate; // adaptation rate in ms/s

5 uint32_t adapt_time; // time per adaptation cycle in ms
6 SyncPolicy policy; // e.g. rigid, low_delay, low_loss
7 SyncMasterMode mode ; // e.g. fized, election

8 SyncWaterMarks watermarks; // global buffer levels to trigger
9 // adaptations in ms

10 |} SyncGroupSpec;

12 | // Agent Configuration
13 | typedef struct

15 uint32_t bitrate; // stream bitrate (see traffic desc)
16 uint32_t period; // stream period (see traffic desc)

17 uint32_t jitter // maz allowed jitter (see (oS req)

18 uint32_t skew; // maz allowed offset to group

19 uint32_t adapt_rate; // stream-specific adapt. rate in ms/s
20 SyncWaterMarks watermarks; // stream-specific buffer levels to

21 // trigger adaptations in ms

22 SyncMemberMode membermode; // master, slave, active, passive,

23 // loose

24 |} SyncGroupAgentSpec;

26 | // Controller Constructor
27 | SyncGroupController (SyncGroupSpec spec, string controllerAddr);

29 | // Agent Constructor (internal)
30 | SyncGroupAgent (SyncGroupAgentSpec spec, string controllerAddr,
31 Clock* clock, bool isRecvAgent);

33 | // Port Interface for Sync-Groups
34 | void joinSyncGroup (SyncGroupAgentSpec spec, string controllerAddr);
35 | void leaveSyncGroup();

Listing 5.3: Synchronisation interfaces.

ter agent and confirms master switching. During adaptation, an agent
controls the spacing between consecutive stream units and adaptively
compresses or stretches the playout delay of the port, while delay and
jitter constraints are preserved. In rigid policies, stream units are hard
dropped until the buffer level returnes to the target area. When drop-
ping does not conform to the failure semantics, the binding is terminated
and the port leaves the synchronisation group.

According to the ASP protocol, which uses dynamic master/slave
modes, agents exchange adaptation messages to coordinate stream de-
livery and master election messages to define the agent which actually
controls a stream. The master agent decides how and when to adapt

192

5 Noja: A Content-Aware Streaming Middleware Platform

[——{F—— [] Processing Stage
0] sync Group A
[] sync Group B
0 O

—» Stream(-section)

conflict allowed
——{F——=
@ D<D4E]
O 0—0

conflict allowed

Fig. 5.4 : Distributed synchronisation group conflicts. The squares represent process-
ing stages of a distributed streaming application, whereas the IN-ports of
each stage are members of a synchronisation group.

stream delivery and propagates its decision to all group members. When
a stream becomes critical, a slave agent can become master and trigger
group adaptation without losing synchronisation.

Listing 5.3 shows all synchronisation related operations. Sync con-
trollers are created without any relation to other Noja abstractions. The
controller may even run on a dedicated host. The controller configu-
ration determines the synchronisation policy which controls when and
how adaptations are performed, a master selection mode which controls
how the master agent is elected, and target watermarks to specify buffer
control parameters (see also table 5.5). The adaptation parameter deter-
mines how aggressive a stream may be adapted. An agent may override
watermarks, but the controller checks whether the new values conform to
the group policy. To join a synchronisation group the port only requires
an agent configuration and the serialised address (URI) of the group con-
troller. Using the configuration, an application programmer can define
a member mode to determine the role of a port in the synchronisation
group and a skew value which defines the maximal allowed synchronisa-
tion offset between the stream at the local port and the group. Bitrate,
period and jitter are optional, they default to the values already spec-
ified in the flow description and the QoS request. In order to allow
synchronisation to an external timeline (e.g. a MIDI reference clock), a
synchronisation agent can use a special clock. This clock can be set via
the object adaptor interface. It is then used for all time- and timeout-
related issues in ports, bindings and protocol engines attached to the
object adaptor.

5.4 Middleware Implementation

193

Stream Units
(Buffer Aggregates)

Logical Slices

Buffers (raw memory) | | | | | [l

Fig. 5.5 : Zero-copy buffers to store stream units.

Noja synchronisation groups are generally capable of synchronising
between arbitrary ports and arbitrary streams, not just IN-ports that
share a communication relation to a common OUT-port. A single stream
may even be synchronised multiple times (using multiple synchronisation
groups) at different ports along the stream’s path through the applica-
tion topology. There are, however, some restriction imposed by synchro-
nisation groups which apply to all application topologies with multiple
processing stages.

Problems arise when ports join a group on which they already de-
pend either directly or transitively. Dependency exists when (1) a single
group synchronises the same stream at multiple ports of the same pro-
cessing chain, and (2) when multiple groups interleave synchronisation
points over distinct processing chains in different order. Figure 5.4 shows
examples for conflicts and allowed synchronisation relations.

To avoid these problems, we use a mechanism to detect circular de-
pendencies when a port joins a group. Unfortunately such mechanisms
require information about the global application topology or at least
knowledge about topology neighbourhood. Note that Noja’s abstrac-
tions provide connectivity between adjacent stages only. A binding only
relates an OUT-port of an upstream stage to one or more IN-ports of one
or more downstream stages. The IN-ports and OUT-ports of a particular
stage are otherwise unrelated. In other words, ports and bindings are
the wrong abstraction to represent global application topology. The ob-
ject adaptor, however, already relates ports of a single processing stage.
Hence we integrated global topology awareness into object adaptors in
the form of a topology-aware distributed event service mechanism [186].
When a binding between ports is created or destroyed, the topology
information is updated.

194

5 Noja: A Content-Aware Streaming Middleware Platform

Buffer Management Stream units are stored inside zero-copy buffer
aggregates [179] to avoid copy overheads when caching and sharing them
in multiple protocol engines. Buffer aggregates are ordered sequences of
<pointer, offset, length>-pairs, called slices, where each slice refers to a
contiguous section of a buffer in the virtual address space of a process
(see figure 5.5).

Buffer aggregates support efficient operations for splitting, merging
and duplicating data units without touching or copying the payload.
Hence, stream unit fragmentation, defragmentation and multicasting are
just splicing and concatenation operations of aggregate structures rather
than buffer manipulations. Sharing data units between protocol engines
requires no additional memory besides private aggregate structures be-
cause the actual payload buffers are shared. This makes caching and
multipath forwarding of data units efficient and scalable.

Buffer aggregates are a software-based abstraction of raw memory
buffers. In contrast to memory pages which are supported by the proces-
sor hardware, memory access semantics for buffer aggregates differ from
conventional buffer access. This is because the payload contained in a
buffer aggregate may be non-contiguously scattered in memory. Instead
of obtaining a simple pointer to the complete buffer contents, buffer ag-
gregates require the application to explicitly walk the list of buffer slices.
For convenience we provide an iterator mechanisms similar to STL itera-
tors. When a processing stage, such as an audio or video coder is unaware
of the special buffer access semantics, aggregates can be serialised at the
cost of an explicity memory copy operation.

When buffers are shared between aggregates, the access permissions
are set to read-only to make the buffers immutable. Instead of enforcing
permissions by hardware-based memory protection (the OS-kernel is not
involved), an aggregate object simply refuses calls to obtain writeable
pointers.

Application stages and in-bound protocol engines are required to allo-
cate memory via a buffer pool which is managed by the object adaptor.
Object adaptors can share buffer pools with other adaptors to enable
zero-copy even across subsequent processing stages. Aggregates store a
reference to the origin pool from which buffers were allocated to correctly
return them on destruction, even when the aggregate was passed to a
protocol or application module which uses a different pool for allocation.

In order to exchange special-purpose buffer pools, the object adaptor
allows the application to replace the default pool. When ports local to
an address space are bound, the downstream buffer pool is forwarded

5.4 Middleware Implementation

195

Binding Setup Origin Binding Setup Destination

ind() validation_callback @ binding_callback

Origin Port Destination Port
@ \@ connect_to() validate_bind()@ \ 4 nnounceiblndlng(i
Binding Binding Binding Binding
Factory Object Object Factory
announce_proto() @
Protocol Protocol < — - - = Protocol Protocol
Factory Engine Resource Resbrvation, Engine Factory
annél Probing
optiona.
® ® m:(. ; ! init() (3) (@)
cersn peo Dy [8 commece orobe0) @)

ConnectRequest (7
Channel - O P Channel Port
ConnectConfirm (16,

Manager Registry

“®
1y
: lookup ()

Manager

ConnectConfirm

Fig. 5.6 : Binding establishment procedure.

upstream through the binding. Upstream application components thus
can transparently allocate buffers from a pool which is controlled by a
downstream component. This mechanism can increase efficiency when
special memory areas such as mapped regions from hardware drivers are
used. An example are rendering buffers mapped from on-board memory
of graphics processors. When in-bound protocol engines receive data
or upstream components generate data, it can be placed directly into
consumer buffers to avoid copy operations. Copying is only required
when the memory type of a buffer is incompatible to a protocol or driver,
for example when a stream unit is sent forwarded to two protocol engines
which use distinct memory mappings for output.

5.4.3 Binding Establishment

The abstraction of bindings is a convenient way for applications to handle
connections between local or remote stream processing stages. Although
applications are kept away from protocol details, the middleware must
internally provide methods to select and configure bindings and protocol
engines. This section discusses how Noja’s generic binding setup proce-
dure works. We show how a unicast binding is established, and discuss
how the procedure must be altered for binding types that support mul-
tiple receivers and for network topologies that lack a back-channel.

196

5 Noja: A Content-Aware Streaming Middleware Platform

For simplicity, we assume that all distributed processing stages are
connected to the same network, that all stages run an instance of the
Noja middleware, that all instances are equipped with a common stream-
ing protocol engine and that the proprietary Noja-specific signalling pro-
tocol is used. Bindings can be initiated by an application from either
side. Regardless of the later stream direction we will refer to the initiator
of a binding as the origin and to the other side as the destination in the
following.

Binding setup is atomic and hence the semantics of the binding op-
eration are strict. Either the binding is successfully established and the
stream can immediately flow or an error is reported to the caller and the
application state on both sides is as if the bind operation was not called.
When the bind operation returns successfully, the binding procedure en-
sures that the following conditions are met:

1. both sides of the applications are either informed of a new binding
after the procedure completed or nothing happened on abort (does
not apply to anonymous multicast)

2. the procedure either recovered from node failures and message loss
or aborted

3. the destination side accepted the binding, e.g. a reject may happen
at high system load or when the origin lacks permissions (does not
apply to anonymous multicast)

4. the ports on both sides have agreed on the stream format, have
completed the their types (note: the IN-port was unaware of the
actual stream properties before), and both ports are in their initial
states (the IN-port is in BUFFERING state and the OUT-port in
HOLDING state)

5. the binding objects on both sides have the same type and have
reached consensus on configuration parameters

6. the stream protocol engines on both sides have the same type, have
reached consensus on configuration parameters and are connected
(when the protocol is connection-oriented)

7. resources are reserved when deterministic service was requested or
the channel performance is probed for statistical services

5.4 Middleware Implementation

197

Figure 5.6 displays the relevant modules and interactions of Noja’s
internal architecture which are involved in binding setups. For a clear
separation of concerns, ports only interact with their local binding ob-
ject, while bindings use the Channel Manager to create and configure
protocol engines. Bindings can also exchange binding-related signalling
data (e.g. for hand-over procedures) via the Channel Manager. Factories
are responsible for creating the proper binding types and SPE types as
specified in the bind call. The Channel Manager uses signalling protocols
to communicate with remote instances and a port registry at the destina-
tion to find the referenced destination port. Although signalling protocol
frameworks exist, we defined a simple protocol for our prototype. Table
5.8 displays relevant message types for binding setup.

We divide the binding setup procedure into two phases, one where the
channel managers perform preparations and acquires resources, and a
second, were the new connection is announced to upper-layer abstrac-
tions and the user. This is similar to transaction protocols and necessary
to make the binding setup atomic from the perspective of an application.
The point of no return is the step where one of the channel managers
announces a protocol engine upwards.

We further define a generic two-step setup procedure for protocol en-
gines to capture any possible connection setup procedure for local or re-
mote and connection-oriented or connection-less IPC mechanisms. Dur-
ing the first step (initialisation) a protocol engine is required to perform
any necessary actions to initialise the communication channel, such as
creating and binding sockets, opening fifos or establishing memory map-
pings so that an opposite protocol engine is able to immediately connect
to the initialised engine. In the second step (connection) the protocol
engine is asked to finally connect to the peer.

Unicast Binding Setup Without loss of generality, for this example we
assume that no binding object exists in the beginning, that the origin
port is an IN-port and the destination port is an ouT-port, both prop-
erly configured as described in section 5.3.3 and that the origin protocol
engine will later connect to the destination protocol engine when both
are initialised. This scenario is typical for a streaming client that is lo-
cated behind a firewall or network address translation (NAT) gateway
and wants to connect to a public streaming server.

For unicast bindings the setup procedure works as follows. In reaction
to the bind call (1) and based on the requested binding semantics, the

198

5 Noja: A Content-Aware Streaming Middleware Platform

Message Type Property Description/Attributes
Connection request-id monotonically increasing identifier to man-
Request age requests and detect duplicates
epoch-id incarnation count to detect crashes
new_binding requests the dest to create a new binding
dont_connect requests the dest to creates a passive proto-
col engine which is later connected from the
origin side,
dont_announce flag to avoid the remote announcement of
the new binding
binding type origin binding type-id
protocol type protocol-id either selected by the user or the
channel manager
origin IPR IPR of the origin port, used to pass traffic
and format desc.
dest IPR IPR passed to the bind call (to identify the
remote port)
origin binding config binding-specific parameters (e.g. adaptation
thresholds)
origin protocol config protocol engine-specific parameters (e.g. IP
address, port, settings)
Connection status success | failure
Reply request-id id of the corresponding request
epoch-id epoch of the corresponding request
failure reason binding type not supported, protocol not
supported, configuration error, rejected by
application, etc
is_connected flag to indicate that connection setup was
already performed from the destination side
dest IPR full IPR of the destination port, used to pass
traffic and format description
dest binding config binding-specific parameters (e.g. adapta-
tion thresholds)
dest protocol config protocol engine-specific parameters (e.g. IP
address, port, settings)
Connection status success | failure
Confirm

Tab. 5.8 : Selected message types of the Noja signalling protocol.

origin port first creates a new binding object via the binding factory
(2) and forwards the binding request to the new object (3). Note that
the bind operation expects the IPR of the remote port, a QoS request
structure, the binding semantics and an optionally protocol identifier as
arguments. Although the binding object knows how to forward data to a
protocol engine later, it does not know how to set up a protocol engine.
Hence, the binding delegates this task, including all bind arguments
to the channel manager (4) and expects to retrieve a fully functional

5.4 Middleware Implementation

199

protocol engine in return. The channel manager uses the remote IPR to
determine if the destination port is located on the local machine or across
the network, selects a protocol engine type from the list of advertised
types in the IPR (or uses the protocol-id specified in the bind call) and
lets the protocol factory create the respective protocol engine (5). It then
initialises the protocol engine with information from the remote IPR and
the local QoS request (6). Next, the channel manger establishes a reliable
control connection to the peer manager whos address is contained in
the destination IPR and sends a connection setup request message (7),
including setup information from the origin-side binding and from the
protocol engine as well as the dont_connect flag because the connection
should be established from the origin due to firewall restrictions.

The remote channel manager tries to find the referenced port (8), vali-
dates type and permissions of the origin port (9) and optionally requires
the application to accept the binding (10). Then, the channel manager
tries to create the requested protocol engine type (11) and binding type
(12) using its local factories. Any failure results in a negative reply. In
case of success, the channel manager initialises the destination protocol
engine with traffic description, format description, QoS request data and
the origin setup information (13). Because directly connecting is disal-
lowed in this example the destination manager only replies to the origin
that the destination infrastructure is in place (14), whereupon the origin
protocol engine connects to the destination side (15). The reply contains
an updated destination IPR as well as destination-side binding and pro-
tocol configuration data, which may be used by the protocol engine in
step 15. For connection-less protocol such as UDP, connect is a no-op.
Note, that without the dont_connect flag, the destination channel man-
ager can decide if it connects its engine or not. This decision is signalled
to the origin with the is_connected flag in the reply message. After
successful connection setup, the origin-side protocol engine can perform
resource reservations (e.g. using RSVP [9]). This conforms to the reser-
vation direction of RSVP because in this example the origin side is the
downstream receiver of the stream.

At this point, both protocol engines are configured and ready to ex-
change data. Now, the origin channel manager enters the second bind-
ing setup phase to announce the infrastructure upwards. It first sends a
confirm message to the destination manager (16), which can optionally
start probing the new channel (17). Note that regardless of the setup
direction probing is always performed in downstream direction, in the ex-
ample from the destination to the origin protocol engine. Note also, that

200

5 Noja: A Content-Aware Streaming Middleware Platform

probing as well as stream data transfer cannot occur until the protocol
engines are connected. This is only ensured when the destination man-
ager received the confirmation message (16). After probing completed,
the destination manager announces the new engine to the binding object
(18) and the binding object to the port (19). The destination port then
calls an optional callback procedure to announce a new binding to the
application (20). Finally, the destination manager confirms completion
of the second setup phase with message (21). The origin manager then
returns the ready protocol engine to the binding object which in turn
signals completion to the origin port.

The additional message 21 is necessary for reaching consensus on setup
phase 2. Without message 21 the origin manager could not know if the
destination manager received message 16 and entered the second setup
phase. The point of no return in this example is step 18, where the new
protocol engine is announced to the binding. Note that because this is
after any reservation and channel probing phase, the binding setup re-
mains abortable until the requested performance guarantees are verified.

Multicast Binding Setup A multicast binding is free to use multiple
unicast protocol engines, a single multicast protocol engine and even a
mix of unicast and multicast protocol engines to deliver a single stream
to multiple receivers. Recall that multicast is only permitted for ouT-
ports, whereas an IN-port binding may use a single protocol engine only.
Exceptions are binding types that perform handover and failover proce-
dures because they may require multiple unicast protocol engines even
at the receiver side. We will discuss this case later.

The different topology options for multicast delivery require changes to
the previously presented binding setup procedure. In any case, the origin
and the destination manager must be aware of the multicast topology and
the protocol types because different interactions are required to initialise
the protocols. Note that for all but the first receiver the stream already
flows through the sender-side binding. Hence the setup procedure must
ensure that only fully operational protocol engines are announced.

For multiple unicast protocol engines, the setup procedure changes as
follows: When the origin of the binding setup is the stream sender, step
(2) in figure 5.6 becomes unnecessary if the binding already exists. The
remaining steps are equal to the single unicast case. When, in contrast,
the origin of the binding setup is the stream receiver, the destination
channel manager must obtain the binding object from the port during

5.4 Middleware Implementation

201

step (9) instead of creating a new binding object in step (12) if the bind-
ing already exists. In either case, the two-phase setup protocol ensures
that a protocol engine is only announced after proper connection setup
and reservations, and the stream sender receives announcements for any
connected stream receiver. This directly suits the named multicast con-
nection semantics, while for hidden and anonymous multicast, the port
must filter announcements.

When the stream sender uses a network-level multicast protocol en-
gine, no further interactions are required to add a new receiver to the
sender-side protocol engine (init and connect calls are not necessary), be-
cause multicast is connection-less and the topology is controlled inside
the network. The stream receiver must only create a multicast-aware
protocol engine and join the appropriate multicast group. Remote inter-
actions between channel managers are also unnecessary when a multi-
cast address is already contained in the published IPR of the sender-side
port. Such protocols are appropriate to implement the anonymous mul-
ticast semantics. In contrast, interactions between channel managers
are required when the binding semantics permits receiver feedback and
the receiver-side protocol engine must create a separate back-channel to
meet this requirement. Although less efficient, this topology is used in
some application scenarios [41].

Anonymous Multicast/Broadcast Binding Setup Broadcast bindings
establish a loose coupling between ports only. Neither the sender knows
about any receiver nor does a back-channel exist. In order to set up a
broadcast binding, port and channel manager must perform local actions
only, that is, creating a binding object, creating a broadcast protocol
engine and configuring the protocol engine to either send to a channel in
a broadcast network or receive data from a broadcast channel. Hence,
only steps (1) — (6) in figure 5.6 are required.

Handover Bindings In contrast to multicast bindings, a handover bind-
ing may use multiple protocol engines at both sides to switch between
multiple connections. It can either replicate data during handover or
perform a hard switch. For either case, multiple protocol engines must
be created and bound to the binding objects dynamically. Typically,
there is no call to bind() in this case. Instead, the binding object ini-
tiates the channel setup procedure itself. The setup procedure in figure
5.6 can even accomplish this task with two minor changes. The origin

202

5 Noja: A Content-Aware Streaming Middleware Platform

binding object calls setup_proto() (step 4) multiple times with differ-
ent configurations, but without creating a new binding object (12) or
announcing to the port (19). When called in the context of bind(),
only the first setup_proto() call should validate the setup (9) and cre-
ate a new remote binding object (12), while only the last call should
announce the destination binding object to the destination port (19).
Intermediate calls should create (5/11), set up (6/15, 13/17) and an-
nounce (18, return value of 4) protocol engines only. The setup protocol
offers the new_binding and dont_announce flags to enable or disable
binding object creation and announcements.

5.5 Application Examples

The performance of a communication-centric streaming middleware de-
pends in particular on the implementations of the employed protocol
mechanisms. On the one hand it is difficult to present comparative per-
formance and application-level quality measures without implementing
several streaming protocol engines and resource management strategies.
While related work on streaming protocols already demonstrated the
utility of content-awareness in general (see chapters 2 and 3), our mid-
dleware just allows to decouple the proposed mechanisms from specific
encoding formats.

On the other hand, a performance evaluation could not quantify the
improvements of our novel communication model and programming en-
vironment. Hence we decided to emphasise the utility of our platform in
several case-studies that show how the complexity of streaming applica-
tions decreases when using our programming abstractions. We also show,
how an application can use our middleware to coordinate application-
level error-control with a content-aware streaming protocol.

5.5.1 Case Studies for Coordinated Error Protection

Streaming over best-effort networks requires coordination of rate- and
error-protection mechanisms to adjust them to variations in channel per-
formance. While this task can be performed at the application level as
well as in end-to-end transport protocols, a protocol-based solution has
certain advantages. First it promotes the reuse of error-control mecha-
nisms for different encoding formats and application scenarios, and sec-
ond it applies even to unprotected bitstreams. In the following we present

5.5 Application Examples

203

four practical scenarios to show how streaming applications can exploit
our middleware platform for coordinated content-aware stream delivery.

Scenario 1: Pure Application-Level Solution The application/encoder
may or may not be responsive and protect the data stream itself with-
out requesting additional error protection from transport services. This
is the design philosophy of the recent H.264 video coding standard and
the RTP protocol framework, both designed for the best-effort services
of the Internet. Both standards share the common concept of Network
Adaptation Layer Units (NAL units) as the basic unit of transport. The
efficiency and robustness of such applications may benefit from content-
aware transport protocols even if this service is completely transpar-
ent. While the data streams are already properly fragmented in NAL
units for robust delivery, applications still need to attach labels to signal
their properties. Labels could be directly generated by an encoder or
an additional NAL unit/bitstream parser. They may also be stored in
hint-tracks for later reference by streaming servers.

Scenario 2: Pure Transport-Level Solution The application may or
may not be responsive, but instead of protecting the data stream itself
it leaves error control completely to the transport layer. Stream units
contain properly labeled application-level data units, such as raw or en-
coded video frames. The transport layer then performs fragmentation
and error protection based on the signalled data properties.

Scenario 3: Coordinated Error Protection The application is respon-
sive and coordinates its error protection with the transport layer. It
partially protects or simply prepares the bitstream for protection and
leaves the actual selection of algorithms and the amount of error protec-
tion to the transport layer, which in turn keeps the application informed
about the channel performance. This scheme is known as joint source-
channel coding and used in integrated system designs with well known
application requirements and infrastructure support, such as the voice
transport in mobile phone cellular networks.

Scenario 4: Coordination for Scalable Bitstreams The application
is not responsive, but generates bitstreams that are scalable and thus
already contain a basic level of error resilience. The transport layer dy-
namically adjusts its additional protection and packet scheduling to the

204

5 Noja: A Content-Aware Streaming Middleware Platform

Pre-Encoded Content

Consumer Devices

Post-Production
Production and Delivery

Live Content I
Special I/0-System Interconnects, High-Performance Networks Broadcast Networks
or IP over Ethernet (IP over ATM, Ethernet) (IPTV, DVB-H, DMB)

Fig. 5.7 : Live newscast application example: A typical broadcasting scenario with
multiple processing stages, heterogeneous systems and networks, and dif-
ferent quality requirements.

channel condition and the content properties, in particular, the data de-
pendencies and importance levels. These properties must be signalled by
the application. An example for this type of application is H.264/AVT
Scalable Video Coding (SVC) extension [75] and its associated RTP pay-
load format [187]. This format uses extra NAL unit types that contain
the appropriate information in special header fields. A transport proto-
col or a network proxy can use them for unequal error protection and
content scaling.

5.5.2 A Newscast Application Scenario

In this example we apply our communication model to the design of
a live newscast application. While live video and audio mixing are
complex application-level tasks performed by special-purpose applica-
tion modules we focus on the deliver of audio-visual streams between
the modules along a typical newscast production chain (fig. 5.8). We
assume content is either produced live or stored in storage area networks.
An audio/video mixer in the production back-end receives several live
audio and video streams from cameras, inserts and synchronises pre-
recorded streams and outputs the resulting program for transmission to
a post-production stage. This stage re-encodes the stream for delivery
over a broadcasting channel, e.g. IPTV via IP multicast, RTP over an
application-level multicast topology or a special-purpose DVB-H infras-
tructure to a large number of receivers.

This application uses two different types of network bindings (we ne-

5.5 Application Examples

205

glect the I/O bindings for brevity), one for connecting the production
back-end to the post-production stage and another for delivering streams
to customers. The back-end requires high-reliability, while the customer
front-end must be scalable to many receivers. Hence, the back-end uses
dedicated high-performance optical networks and in the front-end the de-
vices are connected via a broadcasting technology where a back-channel
is lacking. Although the application has relaxed delay requirements,
the customers should experience the least possible delay. On consumer
devices buffer space is the limiting factor.

The backend-binding, connecting the production stage with the post-
production transcoder uses a named multicast binding to let the appli-
cation see and control connections to transcoders. Because the binding
ensures receiver visibility, the sender can control that only permitted
transcoders can connect. Multiple transcoders are used for fail-over,
whereas each transcoder is connected to the single output binding of the
production stage via reliable streaming protocols. While the protocols
hide FEC and retransmission, the reliable failure semantics ensures that
a deadline violation results in binding termination and becomes visible to
the application. Redundant connections to other transcoders are not af-
fected. The conversational interaction semantics allows both sides of the
binding to exchange application-level signals besides the uni-directional
stream.

Listing 5.4 shows a source-code example, taken from the stream output
module of the production back end. It shows the configuration of port
and binding as well as the send-loop of this stage. We omit the definition
of the QoS parameters and error handling for clarity. In this example a
dedicated thread is used to run the main loop. After creating, configuring
and binding the OUT-port, the thread periodically fetches new data
units from the encoder stage (line 17) which already created a correct
label, waits until the next stream period starts (line 20) and sends the
data unit (line 23). Internally, the outbound binding object forwards
the data unit to multiple connected protocol engines for failover, while
the protocol engines may use the label information to perform unequal
error protection (although not necessary because a full-reliable failure
semantics was selected).

The broadcast binding in the front-end is split into two local parts, one
at the sender-side and one at each receiving device. The sender-side of
the broadcast binding is initialised once the transcoder application starts.
The anonymous binding semantics indicates that no feedback is desired,
the broadcast semantics tells the protocol engines that no interaction

206

5 Noja: A Content-Aware Streaming Middleware Platform

IN
t

storese [>-> Post:
ost-
News .
IN : ouT IN Production
camera D Pmdu-cnon O Transport
AV Mixer Encoding

Camera 0

Port

| I —|

I/0 Bindings Named Multicast, Conversational, Reliable Binding

from special Hardware e.g. RTP over high-performance LAN (ATM, GigE with Failover Support)
(a)

gg:; »G Display
Rosty Consumer
Production | | out . IN Device ouT Speakers
Transport Port Channel Port) Port
Encoding 2ececing
ouT
Port

Storage

L)
Anonymous, Broadcast, Semi-Reliable Binding 1/0 Bindings

e.g. IPTV (MPEG-2/4 Transport over IP Multicast), to special Hardware
RTP over Peer-to-Peer Overlay or DVB-H Broadcasting Infrastructure

(b)

Fig. 5.8 : Newscast example system model: Different binding types connect the dis-
tributed processing chain. While the production back-end requires reliable
services and unicast delivery, the delivery frontend is anonymous and must
scale to many receivers.

with peer engines is required and that error control must be performed
without feedback. The semi-reliable failure semantics requires the pro-
tocol to use unequal error protection. During binding establishment, a
local protocol engine is created (e.g. either RTP, DVH-H or an IPTV
protocol) and it is directed to open its side of the broadcasting channel.
After successful bind, the transcoding stage periodically outputs stream
data whether or not any receiver is listening. The local binding object
passes the data to the protocol and the protocol transmits the data over
the broadcast channel.

The receiver-side of the broadcast binding is initialised similar. How-
ever, the consumer device requires an IPR of the broadcast channel which
can be installed statically. The IPR contains exact information about the
channel and directs the receiver-side protocol engine to connect without
further interactions. The broadcast semantics directs the receiver port
to employ a startup delay and allows rebuffering when desired. The
anonymous interaction semantics directs the receiver port to ignore any

5.5 Application Examples 207

1 | // create and configure an out-port

2 | OutPort_t oport = createOutPort(stream_spec);
3 | // obtain destination IPR

4 IPR_t dest = lookupIPR("PostProductionIn");

5
6 | // configure binding type and performance requirements

7 |Binding_t binding_type (ANON_MULTICAST, BROADCAST, SEMI_RELIABLE);
8 | QoS_Request_t qos_request(..);

9

10 | // establish the binding
11 | oport.bind(dest, qos_request, binding_type, 0, 0);

13 | // send the stream periodically
14 | while(!encoder.end0fStream())

5 | {

16 // get the mnexzt labelled stream unit

17 StreamUnit_t sunit = encoder.getNextUnit ();
19 // wait until next stream period starts

20 oport.wait();

22 // and send it

23 oport.send(sunit);

24 |}

Listing 5.4: Typical use-case of the port API.

feeback the receiver tries to send, while the semi-reliable failure seman-
tics defines that loss is generally acceptable as long as it does not exceed
a threshold specified in the QoS request. As soon as data arrives over
the broadcast channel, it is stored at the receiver port. The port starts
emitting data when the jitter compensation buffer is filled as specified
in the watermark structure.

Two receivers may in addition choose to synchronise stream delivery at
their ports. This works even if the stream is already displayed at both
receivers. For adaptive synchronisation, they require a bi-directional
channel. One receiver must create a new synchronisation group and
inform the other receiver about the address of the group controller. Then,
the ports at both receivers can join the group which initially tries to find
a common playout constraint. When consensus is reached, both streams
are adapted until the buffer-level target area is reached.

208

5 Noja: A Content-Aware Streaming Middleware Platform

5.6

Conclusion

This chapter presented a novel high-level programming model for multi-
media streaming and the Noja middleware design that implements this
model. Model and middleware support the cross-layer coordination of

error-

control tasks between applications and protocol stacks. Noja’s

main features can be subsumed as follows:

Noja

Noja

Noja

is format independent: Neither programming model nor middle-
ware interfaces or protocol implementations assume specific media
encoding formats. The middleware can be used to deliver audio and
video streams regardless of the bitstream features. Thus, we can
support scalable streams, compressed or uncompressed btstreams,
loss-resilient and loss-tolerant streams.

is extensible: Our design is extensible in the following dimensions:
binding semantics, binding styles, streaming protocols, signalling
protocols, and synchronisation protocols. Although the proposed
binding semantics already cover a large part of the design space,
some applications may require additional interaction or topology
models. Advanced binding styles for Peer-to-Peer distribution,
multipath streaming or handover are briefly mentioned. These
and other bindings can be implemented without changing the ba-
sic programming model. The same arguments apply to streaming,
signalling and synchronisation protocols which are hidden from ap-
plication programmers by Noja’s abstractions.

is interoperable: Our design does not assume that Noja runs on
all nodes in a network. The Noja middleware can interoperate with
standard-compliant streaming client and streaming servers as long
as the streaming protocol engines follow the proposed standard
for data delivery (e.g. RTP) and the channel manger complies to
signalling standards (e.g. SIP, RTSP).

The proposed programming model and the middleware interfaces
integrate well with different application architecture styles. This
is because we provide blocking and non-blocking call semantics as
well as synchronous and event-driven execution styles. Buffer man-
agement, clock implementations, socket handling and I/O event
demultiplexing can also be adapted and integrated into different
frameworks.

5.6 Conclusion

209

Noja is adaptive: Programmers can adapt our platform to application
requirements at design-time by selecting appropriate binding se-
mantics and the interface call model. During session setup, the
application can influence the protocol selection process and de-
fine QoS requirements. A binding is free to replace protocols and
channels at run-time. Finally, the monitoring and event callback
features enable programmers to adapt an application at run-time.

The Noja middleware hides details of session management, streaming
protocol negotiation and implementation artefacts. During application
design, a programmer can select the desired error model, interaction
model and topology features. At runtime, the programmer can control
quality parameters and he can use channel and receiver feedback to adapt
a stream to varying network conditions.

However, application programmers need to pre-fragment bitstreams
into data units and provide the necessary meta-information about these
data units. The costs of obtaining this information can be low when hint
tracks are used, but the can also be higher, in particular, when media
encoders have no interfaces to export metadata.

These features enable Noja to be applicable in many application sce-
narios and in diverse application architectures and runtime environ-
ments. Using Noja, programmers can implement applications once and
port them to different network at with low implementation and con-
figuration efforts (changing a default protocol for a semantics requires
changes in the protocol factory configuration only). This feature does
also allow researchers and engineers to quickly transfer a complete ap-
plication to a network simulator for analysing and comparing streaming
protocols.

So far, Noja is still in the design stage. In order to prove the efficiency
and usefullness of the programming model the middleware as well as
several protocols and different applications must be implemented. This
is necessary to measure the run-time overheads of the implementation
and to provide evidence of the applicability of the proposed programming
abstractions and middleware interfaces.

210 5 Noja: A Content-Aware Streaming Middleware Platform

Chapter Six
Conclusion and Future Work

This "telephone’ has too many
shortcomings to be seriously considered
as a means of communication. The
device is inherently of no value to us.

(Western Union internal memo, 1876)

While there is a consensus in research and industry that future multime-
dia systems will be layered on top of best-effort IP networks, engineer-
ing proper communication mechanisms remains challenging. Variations
in delay, loss and available bandwidth will continue to afflict applica-
tions and transport protocols. Adaptive solutions for error-control and
rate-control such as adaptive unequal error protection, selective retrans-
missions, and hybrid schemes prove to be the optimal approaches in
such environments. Because they require intimate knowledge about the
semantics of a bitstream, current approaches are often tied to special
encoding formats. This effectively reduces their reusability and it also
increases the overall system complexity. In response to these observa-
tions, we believe that a generic and content-aware middleware layer is
an appropriate solution.

In this thesis, we identified meta-data that describes properties of
data units in media streams and we proposed a content-awareness frame-
work that enables system layers to access and track these properties in
a generic way. We also proposed the Noja programming model and
its implementation. Noja is built around basic communication abstrac-
tions, namely ports, bindings and stream units, as well as three sets
of communication semantics to control interaction options, the visibil-
ity of receivers and their feedback and the visibility of failures. Noja
can selectively hide the complexity of streaming and signalling protocols
from applications, but it does also enable applications to share content-
specific data properties with transport layers and obtain feedback about
the delivery channel.

211

212

6 Conclusion and Future Work

We showed that this small set of abstrations is powerful enough to
support a broad range of different streaming applications with diverse
quality and reliability requirements. The middleware allows the reuse of
advanced streaming protocols in different application scenarios and has
the potential to add error-resilience even to unprepared media streams.

6.1 Achievements

The two main contributions of this thesis are our Dependency Model
and the Noja Programming Model. In combination, both achieve the
following improvements:

Reduction in Complexity: The middleware interfaces completely hide
streaming and signalling protocol implementations. Programmers
only need to work with a small set of abstractions (Port, Binding,
IPR, Stream Unit and Synchronisation Group). These abstrac-
tions do already implement the necessary functionality to estab-
lish streaming sessions and to deliver multimedia bitstreams in a
robust, timely, and synchronised way, regardless of the bitstream
format. Programmers are only required to pre-fragment a stream
and attach meta-data to the exchanged data units. This effec-
tively reduces the application complexity because a programmer
must no longer deal with buffer management, jitter-control, and
error-control which is often lacking in todays streaming protocol
libraries.

Cross-Layer Control and Adaptation: Both, our dependency model and
our middlweare concepts aid adaptation and coordination of error-
control tasks across system layers. The middleware itself can be
adapted to application requirements at design-time by selecting
communication semantics and at run-time by specifying protocol
and QoS requests. Using the dependency model, an advanced pro-
tocol can directly adapt its scheduling and selective error-control to
the transported content. The Noja middleware provides interfaces
for the cross-layer exchange of meta-data and monitoring feedback.
This effectively enables the implementation application-level adap-
tation mechanisms. Note also that this cross-layer design does not
increase the overall system complexity because layers are still in-
dependent and cross-layer meta-data is exchanged as hints only.

6.2 Open Questions

213

Flexibility: Noja is format independent, extensible, and interoperable
by design. Neither programming model nor middleware interfaces
or protocol implementations assume specific media encoding for-
mats. The programming abstractions support diverse application
topologies and interaction patterns. Programmers can easily add
new binding semantics and binding styles, as well as new stream-
ing, signalling and synchronisation protocols. Our design does not
assume that every node in a network runs the Noja middleware.
Instead, Noja can interoperate with standard-compliant streaming
client and streaming servers by means of standard protocol imple-
mentations.

Due to its flexible interfaces Noja integrates well with different ar-
chitectural styles, buffer management systems, and I/O event de-
multiplexing systems. We also believe that the inclusion of privacy
and security architectures below the port interface can be done
without changing applications or large parts of the middleware.

6.2 Open Questions

The proposed dependency framework still has some limitations. It pro-
vides no means to compare importance values between different streams
and it suffers from unpredictability when meta-data is lost. It is espe-
cially interesting to investigate the limitedly-predictable class of streams
to find static or dynamic properties that may improve prediction. Static
properties can be included into the type description for a specific bistream
format (e.g. a sub-profile of a standard such as H.264). Dynamic prop-
erties can be signalled in-band or out-of-band when the stream flows and
the type-graph can be updated when updates are available. We did not
investigate the power and the costs of dynamic type-graph updates.

The accuracy of the estimation model for error-resilient streams should
be improved. The model may use additional information about encoder
error-control features, such as intra-updates, skipped macroblocks, flex-
ible macroblock ordering and weighted prediction.

We did also not analyse the importance estimation accuracy of the
dependency model for data-partitioned, layered and scalable bitstream
structures. We believe that the model has a lagre potential, in particular,
when used with scalable bitstreams. Extending the dependency model to
other encoding mechanisms (wavelet coding) and other domains (audio
and texture coding) remains an open issue.

214

6 Conclusion and Future Work

Although the Noja programming model is thoroughly described in this
thesis, the implementation of all middleware features is still incomplete.
In order to prove the efficiency and usefullness of the programming model
the middleware as well as several protocols and different applications
must be implemented. This is necessary to measure the run-time over-
heads of the implementation and to provide evidence of the applicability
of the proposed programming abstractions and middleware interfaces.

Another open question is, whether the extraction of content attributes
at the application level and the use of these attributes at a lower protocol
layers is more efficient or more robust at all. A fully functional cross-layer
system needs therefore be compared with solutions that solely operate
on the application level.

6.3 Future Research Directions

The presented contributions in this thesis followed a path to investigate
potential benefits of cross-layer coordination. We believe that cross-layer
designs can improve the efficiency and robustness of system architectures.
In this work, we focused on the multimedia streaming domain because we
expected room for optimisations due to the high resource demands, re-
altime requirements and the partial loss tolerance. While this thesis just
developed architecture support we still need existing (rate-distortion)
optimisation models to prove the actual benefits of cross-layering. It
would be interesting to see how a streaming protocol performs when it
just uses dependency information, instead of full distortion values.

It is still unclear whether and how cross-layer designs should be in-
tegrated into general purpose system architectures and, in particular,
general purpose Internet protocol stacks. In special-purpose protocol
stacks (e.g. 3GPP for mobile wireless networks) cross-layer designs are
already used successfully. However, the engineering of such protocol
stacks is done by small developer groups and the devices operate in a
controlled environment. The fast evolution of 3GPP standards usually
restricts the evolution and the lifetime of such protocols to a couple of
years.

This thesis designed a special flavour of cross-layer coordination, which
uses optional hints and monitoring-events to avoid breaking layer as-
sumptions. Future research should investigate whether this is a useful
design pattern or if alternative cross-layer designs are more efficient or
can provide better features. It is of particular interest whether cross-layer

6.3 Future Research Directions 215

ideas are applicable to areas besides communication, such as storage sys-
tems, virtual machines, memory allocation and CPU scheduling.

We just analysed how hints should be structured for multimedia stream-
ing systems in order to express content-specific attributes. Although
the thesis did not define a special content-aware streaming protocol,
the proposed middleware design supports the main approaches from the
rate-distortion streaming literature and beyond. However, we did not
consider passing hints to lower protocol layers, such as the link-layer.

216 6 Conclusion and Future Work

Appendix A

Dependency Description
Language

1 DDL = TYPE_DECLARATION DEPENDENCY_DECLARATION;

2

3 TYPE_DECLARATION = ’types’ ’=’ >{> TYPE ’;’> { TYPE ’;’> } ’}’ ;
4

5 TYPE = TYPE_NAME ’(’ { TYPE_PARAM ’,’ } TYPE_PARAM ’)’ ;

6

7 TYPE_NAME = { LETTER | NUMBER | ’_’ } ;

8

9 | TYPE_PARAM = ((’avg_imp’ | min_deps’ | ’max_deps’ | ’min_imp’
10 ’prediction_burst’ | ’prediction_offset’ |

11 ’prediction_period’) ’=’ INTEGER) |

12 (’group_semantic’ ’=’ (’no’ |’equal’ | ’unequal’
13 refinement’) |

14 (’starts_epoch’ ’=’ (’true’ | ’false’))

15)

16

17 DEPENDENCY_DECLARATION = ’>dependency’ ’(’ TYPE_NAME ’)’> °>=>

18 >{> RELATION ’;> { RELATION ’;’ } ’}°

19
20 | RELATION = SELECTOR °’(’ RELATION_PARAMS ’)’ KIND ;

21 SELECTOR = ’last_of’ | ’all_of’ ;

22 | KIND = ’weak’ | ’strong’ ;

23

24 | RELATION_PARAMS = TYPE_NAME [’,’ DISTANCE

25 [>,” EPOCH_DISTANCE

26 [>,” LAYER_DISTANCE

27 [>, EPOCH_INTERLEAVING 1111 ;

28
29 | DISTANCE = INTEGER ;

30 | EPOCH_DISTANCE = INTEGER ;

31 | LAYER_DISTANCE = INTEGER ;

32 | EPOCH_INTERLEAVING = INTEGER ;
33
34 | LETTER = A’ ..°Z° | ’a’..’z’ ;
35 | NUMBER = ’0°’..°9’ ;

36 | INTEGER = NUMBER { NUMBER 1} ;

H

Listing A.1: EBNF of the Dependency Description Language.

217

TYPE

f) l '
distance f

epoch_dist f
layer_dist

Fig. A.1 : Syntax diagrams for a a single type specification and for a single dependency relation specification.

81¢

a8en38ue uonduosaq Aouspuadsq v

219

1 | # DDL Description for General H.264 Sequences

2 | #

3 #

4

5 | types = {

6 # Parameter Sets

7 NALU_7_SPS(avg_imp = 255, min_deps = 0);

8 NALU_15_SPS_SUB(avg_imp = 255, min_deps = 1);

9 NALU_13_SPS_EXT(avg_imp = 254, min_deps = 1);

10 NALU_8_PPS(avg_imp = 253, min_deps = 1);

11 NALU_14_PREFIX(avg_imp = 252, min_deps = 1);

12

13 # Frame-data Containers

14 NALU_5_IDR(avg_imp = 6, min_deps = 2, group_semantic = equal);
15 NALU_1_NON_IDR(avg_imp = 5, min_deps = 2, group_semantic = equal H
16 NALU_19_AUX(avg_imp = 3, min_deps = 2, group_semantic = equal);
17 NALU_20_SVC(avg_imp = 4, min_deps = 2, group_semantic = unequal)
18

19 # Data Partitioning

20 NALU_2_DPA(avg_imp = 5, min_deps = 2, group_semantic = unequal)
21 NALU_3_DPB(avg_imp = 4, min_deps = 3, group_semantic = unequal);
22 NALU_4_DPC (avg_imp = 3, min_deps = 3, group_semantic = unequal)
23

24 # Extra Data Containers

25 NALU_6_SEI(avg_imp = 1, min_deps 0);

26 NALU_9_AUD(avg_imp = 2, min_deps 0);

27 NALU_10_EO0SQ(avg_imp = 2, min_deps = 0);

28 NALU_11_EO0S(avg_imp = 2, min_deps = 0);

29 NALU_12_FILL(avg_imp = 2, min_deps = 0);

30 |}

31

32 | dependency (NALU_13_SPS_EXT) = {

33 last_of (NALU_7_SPS, 1, 2) strong;

34 |}

35

36 dependency (NALU_8_PPS) = {

37 last_of (NALU_7_SPS, 1, 2) strong;

38 last_of (NALU_13_SPS_EXT, 1, 2) weak;

39 last_of (NALU_15_SPS_SUB, 1, 2) weak;

40 |}

41

42 | dependency (NALU_5_IDR) = {

43 last_of (NALU_7_SPS, 1, 2) strong;

44 last_of (NALU_13_SPS_EXT, 1, 2) weak;

45 last_of (NALU_8_PPS, 1, 2) strong;

46 |}

47

48 | dependency (NALU_1_NON_IDR) = {

49 last_of (NALU_7_SPS, 1, 2) strong;

50 last_of (NALU_13_SPS_EXT, 1, 2) weak;

51 last_of (NALU_8_PPS, 1, 2) strong;

52 last_of (NALU_5_IDR) weak;

53 last_of (NALU_1_NON_IDR) weak;

54 |}

55

56 | # continued on page 220

Listing A.2: Full H.264 dependency description.

220 A Dependency Description Language

57 | # continued from page 219

59 | dependency (NALU_19_AUX) = {

60 last_of (NALU_7_SPS, 1, 2) strong;

61 last_of (NALU_13_SPS_EXT, 1, 2) weak;
62 last_of (NALU_8_PPS, 1, 2) strong;

63 last_of (NALU_5_IDR) weak;

64 last_of (NALU_1_NON_IDR) weak;

65 |}

67 | dependency (NALU_20_SVC) = {

68 last_of (NALU_7_SPS, 1, 2) strong;

69 last_of (NALU_13_SPS_EXT, 1, 2) weak;
70 last_of (NALU_15_SPS_SUB, 1, 2) weak;
71 last_of (NALU_8_PPS, 1, 2) strong;

72 last_of (NALU_14_PREFIX, 1, 2) weak;
73 |}

T4

75 | dependency (NALU_2_DPA) = {

76 last_of (NALU_7_SPS, 1, 2) strong;

7 last_of (NALU_13_SPS_EXT, 1, 2) weak;
78 last_of (NALU_8_PPS, 1, 2) strong;

79 last_of (NALU_5_IDR) weak;

80 last_of (NALU_2_DPA) weak;

81 |}

82

83 dependency (NALU_3_DPB) = {

84 last_of (NALU_7_SPS, 1, 2) strong;

85 last_of (NALU_13_SPS_EXT, 1, 2) weak;
86 last_of (NALU_8_PPS, 1, 2) strong;

87 last_of (NALU_5_IDR) weak;

88 last_of (NALU_2_DPA) weak;

89 |}

91 | dependency (NALU_4_DPC) = {

92 last_of (NALU_7_SPS, 1, 2) strong;

93 last_of (NALU_13_SPS_EXT, 1, 2) weak;
94 last_of (NALU_8_PPS, 1, 2) strong;

95 last_of (NALU_5_IDR) weak;

96 last_of (NALU_2_DPA) weak;

97 |}

Listing A.3: Full H.264 dependency description (continued).

Bibliography

[1]

2]

P. Chou and Z. Miao. Rate-distortion optimized streaming of pack-
etized media. IEEE Trans. on Multimedia, 8(2):390-404, 2006.

B. Girod, J. Chakareski, M. Kalman, Y. J. Liang, E. Setton, and
R. Zhang. Advances in network-adaptive video streaming. In Proc.
of the International Workshop on Digital Communications (IWDC
2002), pages 1-8, Sep 2002.

M. Etoh and T. Yoshimura. Advances in Wireless Video Delivery.
Proc. of the IEEE, 93(1):111-122, Jan 2005.

V. Srivastava and M. Motani. Cross-Layer Design: A Survey and
the Road Ahead. Communications Magazine, IEEFE, 43(12):112—
119, 2005.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A
Transport Protocol for Real-Time Applications. RFC 3550 (Stan-
dard), July 2003.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Pe-
terson, R. Sparks, M. Handley, and E. Schooler. SIP: Session Ini-
tiation Protocol. RFC 3261 (Proposed Standard), June 2002. Up-
dated by RFCs 3265, 3853, 4320, 4916.

M. Handley, V. Jacobson, and C. Perkins. SDP: Session Descrip-
tion Protocol. RFC 4566 (Proposed Standard), July 2006.

E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Con-
trol Protocol (DCCP). RFC 4340 (Proposed Standard), March
2006.

R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource
ReSerVation Protocol (RSVP) — Version 1 Functional Specifica-
tion. RFC 2205 (Proposed Standard), September 1997. Updated
by RFCs 2750, 3936, 4495.

221

222

Bibliography

[10]

[14]

[15]

Tom Fitzpatrick et al. Design and Application of TOAST: an
Adaptive Distributed Multimedia Middleware Platform. In 8th In-
ternational Workshop on Interactive Distributed Multimedia Sys-
tems, volume 2158 of LNCS, pages 111-123, Lancaster, UK, 2001.

Geoff Coulson. A Configurable Multimedia Middleware Platform.
IEEFE MultiMedia, 6(1):62-76, 1999.

Denise J. Ecklund, Vera Goebel, Thomas Plagemann, and Jr. Earl
F. Ecklund. Dynamic end-to-end QoS management middleware
for distributed multimedia systems. ACM Multimedia Systems,
8(5):431-442, 2002.

Burkhard Stiller, Christina Class, Marcel Waldvogel, Germano
Caronni, and Daniel Bauer. A Flexible Middleware for Multimedia
Communication: Design, Implementation, and Experience. IEEE
Journal on Selected Areas in Communications, 17(9):1580-1598,
Sep 1999.

David A. Karr, Craig Rodrigues, Joseph P. Loyall, Richard E.
Schantz, Yamuna Krishnamurthy, Irfan Pyarali, and Douglas C.
Schmidt. Application of the QuO Quality-of-Service Framework
to a Distributed Video Application. In International Symposium
on Distributed Objects and Applications, Rome, Italy, September
2001.

Rodrigo Vanegas, John A. Zinky, Joseph P. Loyall, David Karr,
Richard E. Schantz, and David E. Bakken. QuO’s Runtime Sup-
port for Quality of Service in Distributed Objects. In Proc. of the
IFIP International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware’98), 1998.

Fred Kuhns, Douglas C. Schmidt, and David L. Levine. The De-
sign and Performance of a Real-Time I/O Subsystem. In IEEE
Real Time Technology and Applications Symposium, pages 154—
163, 1999.

Andrew P. Black, Jie Huang, Rainer Koster, Jonathan Walpole,
and Calton Pu. Infopipes: an Abstraction for Multimedia Stream-
ing. ACM Multimedia Systems Journal, 8(5):406-419, 2002.

Kurt Rothermel and Tobias Helbig. An adaptive protocol for
synchronizing media streams. Multimedia Systems, 5(5):324-336,
1997.

Bibliography

223

[19]

[28]

Sumedh Mungee, Nagarajan Surendran, Douglas C. Schmidt, and
Yamuna Krishnamurth. The Design and Performance of a CORBA
Audio/Video Streaming Service. In 32. Hawaiian International
Conference on System Sciences, 1999.

Marco Lohse and Michael Repplinger and Philipp Slusallek. An
Open Middleware Architecture for Network-Integrated Multime-
dia. In Workshop on Interactive Distributed Multimedia Systems,
volume 2515 of LNCS, pages 327-338, 2002.

Qian Zhang, Wenwu Zhu, and Ya-Qin Zhang. FEnd-to-end QoS
for Video Delivery over Wireless Internet. Proc. of the IEEE,
93(1):123-134, 2005.

B. Girod, M. Kalman, Y. Liang, and R. Zhang. Advances in
channel-adaptive video streaming. In International Conference on
Image Processing (IWDC 2002), pages 1-9 — 1-12, 2002.

John Apostolopoulos, Wai-Tian Tan, and Susie Wee. Video
Streaming: Concepts, Algorithms, and Systems. Technical Report
HPL-2002-260, Hewlett-Packard Laboratories, Palo Alto, Califor-
nia, 2002.

Dapeng Wu, Y.T. Hou, Wenwu Zhu, Ya-Qin Zhang, and J. M.
Peha. Streaming Video over the Internet: Approaches and Direc-

tions. IEEE Trans. on Circuits and Systems for Video Technology,
11(3):282-300, 2001.

T. Plagemann, V. Goebel, P. Halvorsen, and O. Anshus. Oper-
ating System Support for Multimedia Systems. The Computer
Communications Journal, Elsevier, 23(3):267-289, 2000.

G. Carle and E. Biersack. Survey of Error Recovery Techniques
for IP-based Audio-Visual Multicast Applications. IEFE Network,
11(6):24-36, Dec 1997.

Thomas Wiegand, Gary J. Sullivan, Gisle Bjntegaard, and Ajay
Luthra. Overview of the H.264/AVC Video Coding Standard.
IEEE Trans. on Circuits and Systems for Video Technology,
13(7):560-576, 2003.

Ian E. G. Richardson. H.264 and MPEG-4 Video Compression —
Video Coding for Next-generation Multimedia. Wiley, 2004.

224

Bibliography

[29]

European Telecommunication Standards Institute (ETSI). ETS
300 401. Radio broadcasting systems; Digital Audio Broadcast-
ing (DAB) to mobile, portable and fixed receivers. Second Edi-
tion. Available from http://wuw.etsi.org/ as ETS 300 401, May
1997.

L. Kontothanassis, R. Sitaraman, J. Wein, D. Hong, R. Kleinberg,
B. Mancuso, D. Shaw, and D. Stodolsky. A Transport Layer for
Live Streaming in a Content Delivery Network. Proc. of the IEEE,
92(9):1408-1419, 2004.

Thorsten Strufe. Ein Peer-to-Peer-basierter Ansatz fir die Live-
Ubertragung multimedialer Daten. PhD thesis, TU Ilmenau, 2007.

M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh. SplitStream: High-bandwidth multicast in a coop-
erative environment. In SOSP’03, 2003.

Jens-Rainer Ohm. Advances in Scalable Video Coding. Proc. of
the IEEE, 93(1):42-56, 2005.

Kurt Rothermel, Ingo Barth, and Tobias Helbig. Cinema - An Ar-
chitecture for Distributed Multimedia Applications. In Int. Work-
shop Architecture and Protocols for High-Speed Networks, pages
253-271, 1993.

F. Buschmann, R. Meunier, H. Rohnert, P.Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture — A System of
Patterns. John Wiley and Sons Ltd, 1996.

Matt Welsh, David E. Culler, and Eric A. Brewer. SEDA: An
Architecture for Well-Conditioned, Scalable Internet Services. In
Symposium on Operating Systems Principles, pages 230-243, 2001.

H. O. Rafaelsen and F. Eliassen. Trading and Negotiating Stream
Bindings. In Middleware ’00: IFIP/ACM International Confer-
ence on Distributed systems platforms, pages 289-307, 2000.

Mohammed Ghanbari. Standard Codecs: Image Compression to
Advanced Video Voding. IEE Telecommunications Series. Institu-
tion of Electrical Engineers, London, 2003.

http://www.etsi.org/

Bibliography

225

[39]

[40]

[41]

[42]

[43]

[47]

[48]

J. Ribas-Corbera and P. A. Chou. A Generalized Hypothetical
Reference Decoder for H.264/AVC. IEEE Trans. on Circuits and
Systems for Video Technology, 13(7):674-687, 2003.

Hang Liu, Hairuo Ma, Magda El Zarki, and Sanjay Gupta. Error
Control Schemes for Networks: An Overview. Mobile Networks
and Applications, 2(2):167-182, 1997.

M. Westerlund and S. Wenger. RTP Topologies. RFC 5117 (In-
formational), January 2008.

Asfandyar Qureshi, Jennifer Carlisle, and John Guttag. Tavarua:
Video Streaming with WWAN Striping. In ACM Multimedia 2006,
Santa Barbara, CA, October 2006.

Paolo Bellavista, Antonio Corradi, and Luca Foschini. Application-
level Middleware to Proactively Manage Handoff in Wireless Inter-
net Multimedia. In 8th International Conference on Management
of Multimedia Networks and Services (MMNS’05), pages 156-167,
2005.

Fernardo Pereira and Touradj Ebrahimi. The MPEG-4 Book. Pren-
tice Hall, 2002.

J.-F. Huard, A. A. Lazar, Koon-Seng Lim, and G. S. Tselikis.
Realizing the MPEG-4 Multimedia Delivery Framework. [EEE
Network Magazine, 12(6):35-45, 1998.

D. Wu, Y. Hou, W. Zhu, H. Lee, T. Chiang, Y. Zhang, and
H. Chao. On End-to-End Architecture for Transporting MPEG-4
Video Over the Internet. IEEE Trans. on Circuits and Systems
for Video Technology, 10(6):923-941, Sep 2000.

D. Hoffman, G. Fernando, V. Goyal, and M. Civanlar. RTP Pay-
load Format for MPEG1/MPEG2 Video. RFC 2250 (Proposed
Standard), January 1998.

J. van der Meer, D. Mackie, V. Swaminathan, D. Singer, and
P. Gentric. RTP Payload Format for Transport of MPEG-4 El-
ementary Streams. RFC 3640 (Proposed Standard), November
2003.

226

Bibliography

[49]

[50]

[51]

Stephan Wenger. H.26L over IP: The IP-Network Adaptation
Layer. In Proc. of 11th International Packet Video Workshop
(PV2002), Apr 2006.

S. Wenger, M.M. Hannuksela, T. Stockhammer, M. Westerlund,
and D. Singer. RTP Payload Format for H.264 Video. RFC 3984
(Proposed Standard), February 2005.

Ye-Kui Wang, M.M. Hannuksela, S. Pateux, A. Eleftheriadis, and
S. Wenger. System and Transport Interface of SVC. IEEFE Trans.
on Circuits and Systems for Video Technology, 17(9):1149-1163,
2007.

S. Wenger, Wang Ye-Kui, and T. Schierl. Transport and Signaling
of SVC in IP Networks. IEEE Trans. on Circuits and Systems for
Video Technology, 17(9):1164-1173, 2007.

J. Postel. User Datagram Protocol. RFC 768 (Standard), August
1980.

David D. Clark and David L. Tennenhouse. Architectural Consid-
eration for a New Generation of Protocols. In Proc. of the 1990
Symposium on Communication Architectures and Protocols, pages
200208, Philadelphia, September 1990.

Steven Ray McCanne. Scalable Compression and Transmission of
Internet Multicast Video. PhD thesis, University of California at
Berkeley, 1996.

David Hutchison, Randa El-Marakby, and Laurent Mathy. A Cri-
tique of Modern Internet Protocols: The Issue of Support for Mul-
timedia. In ECMAST ’97: Proceedings of the Second FEuropean
Conference on Multimedia Applications, Services and Techniques,
pages 507-522, London, UK, 1997. Springer-Verlag.

Eddie Kohler, Mark Handley, and Sally Floyd. Designing DCCP:
Congestion Control Without Reliability. In Proc. of the ACM SIG-
COMM 2006, Sep 2006.

Colin Perkins. RTP and the Datagram Congestion Con-
trol Protocol (DCCP). Internet-Draft, Work in progress.
Available from http://www.ietf.org/internet-drafts/
draft-ietf-dccp-rtp-07.txt, Jun 2007. expires Dec 2007.

http://www.ietf.org/internet-drafts/draft-ietf-dccp-rtp-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-dccp-rtp-07.txt

Bibliography

227

[59]

[60]

[61]

[62]

[64]

[65]

[66]

[67]

M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP Friendly
Rate Control (TFRC): Protocol Specification. RFC 3448 (Pro-
posed Standard), January 2003.

S. Floyd and E. Kohler. TCP Friendly Rate Control (TFRC): The
Small-Packet (SP) Variant. RFC 4828 (Experimental), April 2007.

Ladan Gharai. RTP with TCP Friendly Rate Control. Internet-
Draft, Work in progress. Available from http://wuw.ietf.org/
internet-drafts/draft-ietf-avt-tfrc-profile-10.txt, Jun
2007. expires Jan 2008.

R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer,
T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream
Control Transmission Protocol. RFC 2960 (Proposed Standard),
October 2000. Obsoleted by RFC 4960, updated by RFC 3309.

R. Stewart, I. Arias-Rodriguez, K. Poon, A. Caro, and M. Tuexen.
Stream Control Transmission Protocol (SCTP) Specification Er-
rata and Issues. RFC 4460 (Informational), April 2006.

R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad.
Stream Control Transmission Protocol (SCTP) Partial Reliability
Extension. RFC 3758 (Proposed Standard), May 2004.

Chung-Ming Huang, Ching-Hsien Tsai, and Ming-Chi Tsai. Design
and Implementation of Video Streaming Hot-plug between Wired
and Wireless Networks Using SCTP. Ozford Computer Journal,
49(4):400-417, 2006.

M. Molteni and M. Villari. Using SCTP with Partial Reliability
for MPEG-4 Multimedia Streaming. In Proc. of the 2nd European
BSD Conference (BSDCon), 2002.

H. Schulzrinne and J. Rosenberg. The Session Initiation Proto-
col: Internet-Centric Signaling. IEEE Communications Magazine,
38(10):134-141, 2000.

H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming
Protocol (RTSP). RFC 2326 (Proposed Standard), April 1998.

M. Handley, C. Perkins, and E. Whelan. Session Announcement
Protocol. RFC 2974 (Experimental), October 2000.

http://www.ietf.org/internet-drafts/draft-ietf-avt-tfrc-profile-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-avt-tfrc-profile-10.txt

228

Bibliography

[70]

Benjamin W. Wah, Xiao Su, and Dong Lin. A Survey of Error-
Concealment Schemes for Real-Time Audio and Video Transmis-
sions over the Internet. In Proc. of the International Symposium on
Multimedia Software Engineering, pages 17-24, December 2000.

Injong Rhee and Srinath R. Joshi. Error Recovery for Interactive
Video Transmission over the Internet. IEEE Journal on Selected
Areas in Communications, 18(6):1033 — 1049, 2000.

B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Es-
trin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson,
K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang. Rec-
ommendations on Queue Management and Congestion Avoidance
in the Internet. RFC 2309 (Informational), April 1998.

Jens-Rainer Ohm. Multimedia Communication Technology: Repre-
sentation, Transmission and Identification of Multimedia Signals.
Signals and Communication Technology Engineering. Springer,
Berlin, 2004.

Mohammed Al-Mualla, C. Nishan Canagarajah, and David R.
Bull. Video Coding for Mobile Communications : Efficiency, Com-
plexity and Resilience. Elsevier Academic Press, 2002.

H. Schwarz, D. Marpe, and T. Wiegand. Overview of the Scalable
Extension of the H.264/AVC Video Coding Standard. IEEFEd-
Trans. on Circuits and Systems for Video Technology, 17(9):1103—
1120, 2007.

Weiping Li. Overview of Fine Granularity Scalability in MPEG-4
Video Standard. IEEE Trans. on Circuits and Systems for Video
Technology, 11(3):301 — 317, 2001.

Yao Wang and Amy R. Reibman. Multiple Description Coding for
Video Delivery. Proc. of the IEEE, 93(1):57 — 70, 2005.

M. van der Schaar and H. Radha. Unequal Packet Loss Resilience
for Fine-Granular-Scalability Video. IEEE Trans. on Multimedia,
3(4):381-393, 2001.

Chien-Peng Ho and Chun-Jen Tsai. Content-Adaptive Packetiza-
tion and Streaming of Wavelet Video over IP Networks. EURASIP
Journal on Image and Video Processing, 2007, 2007.

Bibliography

229

[80]

[81]

[82]

[83]

[84]

[85]

Sergio Daniel Servetto. Compression and Reliable Transmission of
Digital Image and Video Signals. PhD thesis, University of Illinois
at Urbana-Champaign, 1999.

M. Handley and C. Perkins. Guidelines for Writers of RTP Pay-
load Format Specifications. RFC 2736 (Best Current Practice),
December 1999.

Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi,
Daniel A. Spielman, and Volker Stemann. Practical Loss-Resilient
Codes. In Proc. of the 29th Symposium on Theory of Computing,
pages 150-159, 1997.

A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan. Pri-
ority Encoding Transmission. IEEE Trans. on Information Theory,
42(6):1737 — 1744, 1996.

Hua Cai, Bing Zeng, Guobin Shen, , and Shipeng Li. Error-
Resilient Unequal Protection of Fine Granularity Scalable Video
Bitstreams. In Proc. of ICC 2004, June 20-24 2004.

Amine Bouabdallah and Jéréme Lacan. Dependency-Aware Un-
equal Erasure Protection Codes. In Proc. of 15th International
Packet Video Workshop, PV2006, 2006.

J. Kim, R. Mersereau, and Y. Altunbasak. Distributed Video
Streaming using Multiple Description Coding and Unequal Error
Protection. IEEE Trans. on Image Processing, 14(7):849-861, Jul
2005.

Christos Papadopoulos and Guru M. Parulkar. Retransmission-
Based Error Control for Continuous Media Applications. Proceed-
ings of NOSSDAV’96, 1996.

Lin Ma and Wei Tsang Ooi. Retransmission in distributed media
streaming. In NOSSDAV ’05: Proceedings of the international
workshop on Network and Operating Systems Support for Digital
Audio and Video, pages 117-122, New York, NY, USA, 2005. ACM
Press.

Matthew G. Podolsky, Steven McCanne, and Martin Vetterli. Soft
ARQ for Layered Streaming Media. Journal on VLSI Signal Pro-
cessing Systems, 27(1-2):81-97, 2001.

230

Bibliography

[90]

[91]

[92]

[94]

Mei-Hsuan Lu, Peter Steenkiste, and Tsuhan Chen. Time-based
Adaptive Retry for Video Streaming in 802.11 WLANs. Wireless
Communications and Mobile Computing, Special Issue on Video
Commaunications for 4G Wireless Systems, 7(2):187-203, 2007.

C. Wang, R. Chang, J. Ho, and S. Hsu. Rate-Sensitive ARQ for
Real-Time Video Streaming. In Proc. of the Global Telecommuni-
cations Conference (GLOBECOM), 2003.

Rishi Sinha and Christos Papadopoulos. An Adaptive Multiple Re-
transmission Technique for Continuous Media Streams. In NOSS-
DAYV 04, pages 1621, Cork, Ireland, 2004.

H. Seferoglu, Y. Altunbasak, O. Gurbuz, and O. Ercetin. Rate Dis-
tortion Optimized Joint ARQ-FEC Scheme for Real-Time Wireless
Multimedia. In IEEE International Conference on Communica-
tions (ICC 2005), pages 1190-1194, May 2005.

F. Zhai, Y. Eisenberg, T. N. Pappas, R. Berry, and A. K. Kat-
saggelos. Rate-Distortion Optimized Hybrid Error Control for
Real-Time Packetized Video Transmission. In Proc. of the IEEE
International Conference on Communications (ICC), pages 1318
— 1322, 2004.

A. Majumdar, D.G. Sachs, I.V. Kozintsev, K. Ramchandran, and
M.M. Yeung. Multicast and unicast real-time video streaming over
wireless LANs. [EEE Trans. on Circuits and Systems for Video
Technology, 12(6):524-534, 2002.

C. Q. Yang, E. Hossain, and V. K. Bhargava. On Adaptive Hybrid
Error Control in Wireless Networks using Reed-Solomon Codes.
IEEFE Trans. on Wireless Communications, 4(3):835 — 840, 2005.

Abdelhamid Nafaa and Ahmed Mehaoua. Joint Loss Pattern Char-
acterization and Unequal Interleaved FEC Protection for Robust
H.264 Video Distribution over Wireless LAN. Computer Networks,
49(6):766-786, 2005.

A. Nafaa, T. Ahmed, and A. Mehaoua. Unequal and Interleaved
FEC Protocol for Robust MPEG-4 Multicasting over Wireless
LANs. In IEEE International Conference on Communications,
pages 1431 — 1435, 2004.

Bibliography

231

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Huahui Wu, Mark Claypool, and Robert Kinicki. Adjusting For-
ward Error Correction with Quality Scaling for Streaming MPEG.
In Proc. of NOSSDAV’05, June 2005.

S. H. Kang and A. Zakhor. Packet Scheduling Algorithm for Wire-
less Video Streaming. In Proc. of the International Packet Video
Workshop, 2002.

P. Pahalawatta, R. Berry, T. Pappas, and A. Katsaggelos. Content-
Aware Resource Allocation and Packet Scheduling for Video Trans-
mission over Wireless Networks. IEEE Journal on Selected Areas
in Communications, 25(4):749-759, 2007.

Srivatsan Varadarajan, Hung Q. Ngo, and Jaideep Srivastava. Er-
ror Spreading: A Perception-Driven Approach to Handling Error
in Continuous Media Streaming. IEFE/ACM Trans. on Network-
ing, 10(1):139-152, 2002.

Jeong-Yong Choi and Jitae Shin. A Novel Content-Aware Inter-
leaving for Wireless Video Transmission. Computer Communica-
tions, 29(13-14):2634-2645, 2006.

Charles Krasic and Jonathan Walpole. Quality-adaptive Media
Streaming by Priority Drop. In Proc. of the 158th NOSSDAV Work-
shop, pages 112-121, 2003.

Wei Tu, Jacob Chakareski, and Eckehard Steinbach. Rate-
Distortion Optimized Frame Dropping and Scheduling for Multi-
User Conversational and Streaming Video. In Proc. of 15th Inter-
national Packet Video Workshop (PV2006), pages 864-872, Apr
2006.

Damir Isovic and Gerhard Fohler. Quality Aware MPEG-2 Stream
Adaptation in Resource Constrained Systems. In Proc. of 16th Eu-
romicro Conference on Real-Time Systems (ECRTS 2004), pages
23-32, Catania, Italy, 30 June — 2 July 2004.

A K. Katsaggelos, Y. Eisenberg, F. Zhai, R. Berry, and T.N. Pap-
pas. Advances in Efficient Resource Allocation for Packet-Based
Real-Time Video Transmission. Proc. of the IEEE, 93(1):135 —
147, 2005.

232

Bibliography

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

J. Postel. Transmission Control Protocol. RFC 793 (Standard),
September 1981. Updated by RFC 3168.

Lefteris Mamatas, Tobias Harks, and Vassilis Tsaoussidis. Ap-
proaches to Congestion Control in Packet Networks. Journal of
Internet Engineering (JIE), 1(1), 2007.

Nguyen Dieu Thanh and Ostermann Joern. Streaming and Con-
gestion Control using Scalable Video Coding based on H.264/AVC.
Journal of Zhejiang University - Science A, 7(5):749-754, 2006.

C. Huang and L. Xu. SRC: Stable Rate Control for Streaming
Media. In Proc. of GLOBECOM, pages 4016-4021, 2003.

Shanwei Cen, Jonathan Walpole, and Calton Pu. Flow and Con-
gestion Control for Internet Media Streaming Applications. In
Proc. SPIE Multimedia Computing and Networking, pages 250—
264, 1998.

Sally Floyd, Mark Handley, Jitendra Padhye, and Jorg Widmer.
Equation-based Congestion Control for Unicast Applications. In
SIGCOMM 2000, pages 43—-56, Stockholm, Sweden, August 2000.

R. Rejaie, D. M. Handley, and D. Estrin. Layered Quality Adap-
tation for Internet Video Streaming. IFEE Journal on Selected
Areas in Communications, 18(12):2530-2543, 2000.

Nikolaos Laoutaris and loannis Stavrakakis. Intrastream Syn-
chronization for Continuous Media Streams: A Survey of Playout
Schedulers. IEEE Network Magazine, 16(3), May 2002.

Ernst Biersack and Werner Geyer. Synchronized Delivery and
Playout of Distributed Stored Multimedia Streams. Multimedia
Systems, 7(1):70-90, 1999.

Marco Roccetti, Vittorio Ghini, Giovanni Pau, Paola Salomoni,
and Maria Elena Bonfigli. Design and Experimental Evaluation of
an Adaptive Playout Delay Control Mechanism for Packetized Au-
dio for Use over the Internet. Multimedia Tools and Applications,
14(1):23-53, 2001.

Azzedine Boukerche, Sungbum Hong, and Tom Jacob. An Efficient
Synchronization Scheme of Multimedia Streams in Wireless and

Bibliography

233

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

Mobile Systems. IEEE Trans. on Parallel and Distributed Systems,
13(9):911-923, 2002.

M. Kalman, E. Steinbach, and B. Girod. Adaptive Media Playout
for Low Delay Video Streaming over Error-Prone Channels. IEEE
Trans. on Circuits and Systems for Video Technology, 14(6):841—
851, Jun 2004.

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The Click Modular Router. ACM Trans. on
Computer Systems, 18(3):263-297, 2000.

Herbert Bos, Willem de Bruijn, Mihai Cristea, Trung Nguyen, and
Georgios Portokalidis. FFPF: Fairly Fast Packet Filters. In Proc.
of OSDI’04, San Francisco, CA, December 2004.

Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack,
Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tat-
bul, and Stan Zdonik. Aurora: A new Model and Architecture for
Data Stream Management. The VLDB Journal, 12(2):120-139,
2003.

S. Chandrasekaran et al. TelegraphCQ: Continuous Dataflow Pro-
cessing for an Uncertain World. In Conference on Innovative Data
Systems Research, CIDR, 2003.

A.E. Ozcan, O. Layaida, and J.-B. Stefani. A component-based
approach for MPSoC SW design: experience with OS customiza-
tion for H.264 decoder. In 3rd Workshop on Embedded Systems for
Real-Time Multimedia, 2005.

William Thies, Michal Karczmarek, and Saman Amarasinghe.
Streamlt: A Language for Streaming Applications. In Interna-
tional Conference on Compiler Construction, Grenoble, France,
April 2002.

M. Duller, R. Tamosevicius, G. Alonso, and D. Kossmann.
XTream: Personal Data Streams. In Proc. of SIGMOD 2007,
2007.

Emmanuel Bouix, Philippe Roose, Marc Dalmau, and Franck
Luthon. A Component Model for Transmission and Processing

234

Bibliography

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

of Synchronized Multimedia Data Flows. In Proc. of the First In-
ternational Conference on Distributed Frameworks for Multimedia
Applications, pages 45-53, Washington, DC, USA, 2005.

Baochun Li and K. Nahrstedt. A Control-Based Middleware
Framework for Quality of Service Adaptations. IEEE Journal on
Selected Areas in Communications, 17(9):1632-1650, 1999.

Alexander Eichhorn and Winfried E. Kithnhauser. A Component-
based Architecture for Streaming Media. In Proc. of the
Net.Objectdays, pages 273-286, September 2001.

G. Coulson, S. Baichoo, and O. Moonian. A Retrospective on
the Design of the GOPI Middleware Platform. ACM Multimedia
Journal, 8(5):340-352, 2002.

Frank Siqueira and Vinny Cahill. Quartz: A QoS Architecture for
Open Systems. In International Conference on Distributed Com-
puting Systems, pages 197-204, 2000.

Thomas Plagemann et al. Flexible and Extensible QoS Manage-
ment for Adaptable Middleware. In Proc. of International Work-
shop on Protocols for Multimedia Systems (PROMS 2000), Cra-
cow, Poland, Oct 2000.

D. Donaldson et al. Dimma — A Multimedia ORB. In Proc. of the
ACM Middleware 98, pages 141-156, 1998.

International Standards Organization. Information Technology;
Open Distributed Processing, 1998.

Yuqing Song Aidong Zhang and Markus Mielke. NetMedia:
Streaming Multimedia Presentations in Distributed Environments.
IEEE Multimedia Magazin, 9(1):56-73, 2002.

Cyrus Shahabi, Roger Zimmermann, Kun Fu, Shu-Yuen, and Didi
Ya. Yima: A Second-Generation Continuous Media Server. IEFEFE
Computer, 35:56 — 64, Jun 2002.

Duangdao Wichadakul. @Q-Compiler: Meta-Data QoS-Aware Pro-
gramming and Compilation Framework. PhD thesis, Department
of Computer Science, University of Illinois at Urbana-Champaign,
2003.

Bibliography

235

[138]

[139)

[140]

[141]

[142]

[143]

[144]

[145]

[146]

Xiaohui Gu, Klara Nahrstedt, and Bin Yu. SpiderNet: An Inte-
grated Peer-to-Peer Service Composition Framework. In Proc. of
the 13th IEEFE International Symposium on High Performance Dis-
tributed Computing, pages 110-119, Washington, DC, USA, 2004.

Klara Nahrstedt, Bin Yu, Jin Liang, and Yi Cui. Hourglass Mul-
timedia Content and Service Composition Framework for Smart
Room Environments. Pervasive Mob. Comput., 1(1):43-75, 2005.

Asfandyar Qureshi and John Guttag. Horde: Separating Network
Striping Policy from Mechanism. In 3rd International Conference
on Mobile Systems, Applications, and Services (Mobisys 2005),
Seattle, WA, June 2005.

Franz Kalleitner, Mario Konegger, Attila Takés, and Akos Kovécs.
M-Pipe - A novel Media Delivery Framework. In Proc. of the
European Symposium on Mobile Media Delivery, 2006.

A. Takacs, A. Kovacs, F. Kalleitner, and H. Brand. Forward In-
formation - A General Approach for Scalable audiovisual Service
Delivery. In 2nd International Symposium on Wireless Communi-
cation Systems, pages 158— 162, 2005.

Chih-Ming Chen, Chia-Wen Lin, and Yung-Chang Chen. Packet
Scheduling for Video Streaming over Wireless with Content-Aware
Packet Retry Limit. In Workshop on Multimedia Signal Processing,
pages 409-414, 2006.

Jitae Shin, JongWon Kim, and C.-C. Jay Kuo. Quality of Service
Mapping Mechanism for Packet Video in Differentiated Services
Network. IEEE Trans. on Multimedia, 3(2):219-231, June 2001.

Vincent Lecuire, Francis Lepage, and Khalil Kammoun. Enhanc-
ing Quality of MPEG Video through Partially Reliable Transport
Service in Interactive Application. In MMNS ’01: Proceedings of
the 4th IFIP/IEEE International Conference on Management of
Multimedia Networks and Services, pages 96-109, London, UK,
2001.

Umar Choudhry and JongWon Kim. Performance Evaluation of
H.264 Mapping Strategies over IEEE 802.11e WLAN for Robust
Video Streaming. In Pacific-Rim Conf. on Multimedia, pages 818—
829, 2005.

236

Bibliography

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

Damir Isovi¢. Flexible Scheduling for Media Processing in Resource
Constrained Real-Time Systems. PhD thesis, Mélardalen Univer-
sity, 2004.

J. Chakareski, J. Apostolopoulos, S. Wee, W. Tan, and B. Girod.
Rate-Distortion Hint Tracks for Adaptive Video Streaming. IEEFE
Trans. on Circuits and Systems for Video Technology, 15(10):1257—
1269, Oct 2005.

Y. Liang, J. Apostolopoulos, and B. Girod. Analysis of packet loss
for compressed video: Does burst-length matter. In Proc. of IEEFE
Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP),
2003.

Y.J. Liang and B. Girod. Network-adaptive low-latency Video
Communication over Best-effort Networks. IFEFE Trans. on Cir-
cuits and Systems for Video Technology, 16(1):72-81, 2006.

M. Kalman and B. Girod. Techniques for Improved Rate-
Distortion Optimized Video Streaming. Stanford Journal of Re-
search, 2(1):45-54, Nov 2005.

Jacob Chakareski and Pascal Frossard. Rate-Distortion Optimized
Packet Scheduling over Bottleneck Links. In Proc. of the IEEE
ICME, Jul 2005.

M. Réder, J. Cardinal, and R. Hamzaoui. Efficient Rate-Distortion
Optimized Media Streaming for Tree-Reducible Packet Dependen-
cies. In Proc. of Multimedia Computing and Networking, 2006.

Gene Cheung and Wai-Tian Tan. Directed Acyclic Graph based
Source Modeling for Data Unit Selection of Streaming Media over
QoS Netwo rks. In Int. Conf. Multimedia & FExpo, 2002.

Martin Roder, Jean Cardinal, and Raouf Hamzaoui. Branch and
bound Algorithms for Rate-distortion optimized Media Streaming.
IEEE Trans. on Multimedia, 8(1):170-178, 2006.

Franz Kalleitner, Mario Konegger, Attila Takés, and Akos Kovécs.
A Cross-Layer Framework for Content based fine-grained Schedul-
ing of Audiovisual Streams over Wireless Network. In Proc. of the
IASTED CIIT, 2005.

Bibliography

237

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

L.-A. Larzon, U. Bodin, and O. Schelen. Hints and Notifications.
In IEEE Wireless Communications and Networking Conference,
pages 635641, 2002.

D. Clark J. Saltzer, D. Reed. End-to-end Arguments in System
Design. ACM Trans. on Computer Systems, 2(4):277-288, 1984.

Jiantao Kong and Karsten Schwan. KStreams: Kernel Support
for Efficient Data Streaming in Proxy Servers. In NOSSDAV ’05:
Proceedings of the international workshop on Network and oper-
ating systems support for digital audio and video, pages 159-164,
New York, NY, USA, 2005.

Dawson R. Engler, M. Frans Kaashoek, and James O’Toole. Ex-
okernel: An Operating System Architecture for Application-Level
Resource Management. In Symposium on Operating Systems Prin-
ciples, pages 251-266, 1995.

Y. Eisenberg, F. Zhai, T.N. Pappas, R. Berry, and A.K. Katsagge-
los. VAPOR: Variance-Aware per-pixel Optimal Resource Alloca-
tion. IEEE Trans. on Image Processing, 15(2):289-299, 2006.

Enrico Masala and Juan Carlos De Martin. Analysis-by-Synthesis
Distortion Computation for Rate-Distortion Optimized Multime-
dia Streaming. In ICMFE Multimedia and Ezpo, 2003.

Alexander Eichhorn and Winfried E. Kiihnhauser. Datenstréome in
multimedialen Systemen. In Proc. of Net.Objectdays — 8th Work-
shop on Multimedia Informations and Communication Systems,
pages 687—695, October 2002.

Gary Sullivan and Thomas Wiegand. Video Compression - From
Concepts to the H.264/AVC Standard. Proc. of the IEEE, Special
Issue on Advances in Video Coding and Delivery, 93(1):18-31, Jan
2005.

J. Chakareski, S. Han, and B. Girod. Layered Coding vs. Multiple
Descriptions for Video Streaming over Multiple Paths. In Proc. of
ACM Multimedia, pages 422—-431, 2003.

Martin Hoffmann and Winfried E. Kiithnhauser. Towards a
Structure-Aware Failure Semantics for Streaming Media Commu-

nication Models. Journal of Parallel and Distributed Computing,
65(9):1047-1056, September 2005.

238

Bibliography

[167]

[168]

[169]

[170]

171

[172]

[173]

[174]

[175]

[176]

[177]

Matthew Luckie, Kenjiro Cho, and Bill Owens. Inferring and De-
bugging Path MTU Discovery Failures. In Proc. of the Internet
Measurement Conference 2005 on Internet Measurement Confer-
ence, pages 17-17, Berkeley, CA, USA, 2005.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image
Quality Assessment: From Error Visibility to Structural Similarity.
IEEE Trans. on Image Processing, 13(4):600-612, 2004.

G. E. P. Box and D. R. Cox. An Analysis of Transformations.
Journal of the Royal Statistical Society, pages 211-243, discussion
244-252, May 1964.

Z. Wang, L. Lu, and A. Bovik. Video Quality Assessment based
on Structural Distortion Measurement. Signal Processing: Image

Communication, special issue on objective video quality metrics,
19(2):121-132, 2004.

E. N. Gilbert. Capacity of a burst-noise channel. Bell Systems
Technical Journal, 39:1253-1266, Sept 1960.

Stephan Wenger et al. Codec Control Messages in the RTP
Audio-Visual Profile with Feedback (AVPF). Internet-Draft,
Work in progress. Available from http://www.ietf.org/
internet-drafts/draft-ietf-avt-avpf-ccm-10.txt, May
2007. expires Apr 2008.

A. D. Birrell and B. J. Nelson. Implementing Remote Procedure
Calls. ACM Trans. on Computer Systems, 2(1):39-59, Feb 1984.

P. Narasimban et al. Using Interceptors to Enhance CORBA.
IEEE Computer, 32(7):62 — 68, 1999.

J. Wroclawski. The Use of RSVP with IETF Integrated Services.
RFC 2210 (Proposed Standard), September 1997.

S. Shenker, C. Partridge, and R. Guerin. Specification of Guaran-
teed Quality of Service. RFC 2212 (Proposed Standard), Septem-
ber 1997.

Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann. Pattern-oriented Software Architecture Vol 2: Pat-
terns for Concurrent and Networked Objects. John Wiley and Sons
Ltd, 2000.

http://www.ietf.org/internet-drafts/draft-ietf-avt-avpf-ccm-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-avt-avpf-ccm-10.txt

Bibliography

239

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

M. Welsh, S. Gribble, E. Brewer, and D. Culler. A design frame-
work for highly concurrent systems. Technical Report UCB/CSD-
00-1108, UC Berkeley CS, October 2000.

Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. 10-Lite:
A Unified I/O Buffering and Caching System. ACM Trans. on
Computer Systems, 18(1):37-66, Feb 2000.

T.-W. A. Lee, S.-H. G. Chan, Q. Zhang, W.-W. Zhu, and Y.-Q.
Zhang. Optimal Allocation of Packet-Level and Byte-level FEC in
Video Multicasting over Wired and Wireless Networks. In Proc.
of GLOBECOM, pages 1994-1998, 2001.

Y. Wang, W. Huang, and J. Korhonen. A Framework for Robust
and Scalable Audio Streaming. In Proc. of ACM Multimedia 2004,
New York, NY, USA, October 2004.

Nick Feamster, Deepak Bansal, and Hari Balakrishnan. On the
Interactions Between Layered Quality Adaptation and Congestion
Control for Streaming Video. In 11th International Packet Video
Workshop, Kyongju, Korea, April 2001.

Z. Fu, X. Meng, and S. Lu. A Transport Protocol for Supporting
Multimedia Streaming in Mobile Ad-hoc Networks. IEEE Journal
on Selected Areas in Communications, 21(10):1615-1626, 2004.

Cormac J. Sreenan, Jyh-Cheng Chen, Prathima Agrawal, and
B. Narendran. Delay Reduction Techniques for Playout Buffer-
ing. IEEE Trans. on Multimedia, 2(2):88-100, 2000.

Christian Brien. Synchronisation in einem stromorientierten Kom-
munikationsmodell. Diploma thesis, Technische Universitit Ilme-
nau, 2005.

Mario Holbe. Stromorientierte ereignisbasierte Kommunikation
unter Echtzeitbedingungen. Diploma thesis, Technische Univer-
sitdt Ilmenau, 2004.

Stephan Wenger, Ye kui Wang, and Miska M. Hannuksela. RTP
Payload Format for H.264/SVC Scalable Video Coding. Journal
of Zhejiang University - Science A, 7(5):657-667, 2006.

	1 Introduction
	1.1 Challenges in Multimedia Communications
	1.2 Content-Aware Media Streaming
	1.2.1 Design Philosophy
	1.2.2 Assumptions and Objectives

	1.3 Contributions of this Thesis
	1.4 Dissertation Outline

	2 Background on Multimedia Streaming Systems
	2.1 Distributed Multimedia Applications
	2.1.1 Application Classes
	2.1.2 Application Architectures and Topologies

	2.2 Streaming Protocol Standards
	2.2.1 MPEG Transport Specifications
	2.2.2 Multimedia Protocols for the Internet
	2.2.3 Streaming in Mobile and Wireless Networks

	2.3 Network-adaptive Multimedia Streaming
	2.3.1 Sources and Effects of Network Errors
	2.3.2 Error-Resilient Signal Encoding
	2.3.3 Adaptive Error Control
	2.3.4 Adaptive Rate and Congestion Control
	2.3.5 Buffer Management and Synchronisation

	2.4 Conclusion

	3 Related Work
	3.1 Stream-based Programming Abstractions
	3.2 Open Middleware Platforms and QoS-aware Middleware
	3.3 Multimedia Middleware Platforms
	3.4 Closely related Multimedia Middleware
	3.5 Content-Awareness in Streaming Protocols

	4 A Framework for Content-Aware Media Streaming
	4.1 Content-Aware System Layers
	4.2 Objectives and Challenges
	4.3 Structural Properties of Media Streams
	4.3.1 Quality and Distortion
	4.3.2 Dependency Relations
	4.3.3 Visibility and Predictability of Structure

	4.4 Modelling Dependency Relations
	4.4.1 Type-based and Object-based Dependency
	4.4.2 Dependency-Graph Operations

	4.5 Type-Graph Attributes
	4.5.1 Dependency Rules
	4.5.2 Type Attributes
	4.5.3 Group Semantics

	4.6 Object-Graph Attributes and Operations
	4.6.1 Object Graph Decoration
	4.6.2 Structure and Importance Prediction
	4.6.3 Dependency Validation
	4.6.4 Importance Estimation

	4.7 Dependency Model Implementation
	4.7.1 Dependency Description Language
	4.7.2 H.264/AVC Video Stream Example
	4.7.3 Dependency Validation Service
	4.7.4 Embedding the DVS into System Layers

	4.8 Limitations of the Dependency Model
	4.8.1 Estimation Accuracy
	4.8.2 Horizon Size and Visibility
	4.8.3 Loss-Resilience

	4.9 Experimental Evaluation
	4.9.1 Properties of Selected Video Sequences
	4.9.2 Accuracy of Dependency-based Importance
	4.9.3 Effects of Limited Horizon Size
	4.9.4 Effects of Packet Loss
	4.9.5 Performance Benchmarks

	4.10 Conclusion

	5 Noja: A Content-Aware Streaming Middleware Platform
	5.1 Design Principles
	5.1.1 Assumptions on Target Environments
	5.1.2 Interaction Model
	5.1.3 Transparency and Cross-Layer Issues
	5.1.4 Deliberate Omissions

	5.2 Novelty of the Noja Middleware Platform
	5.3 Middleware Abstractions and Operations
	5.3.1 Communication Abstractions
	5.3.2 Binding Semantics
	5.3.3 Port Configuration
	5.3.4 Binding Ports
	5.3.5 Data Transfer and Stream Unit Labelling
	5.3.6 Application-Level Signalling
	5.3.7 Flow-Control
	5.3.8 Stream Synchronisation
	5.3.9 Monitoring and Performance Feedback

	5.4 Middleware Implementation
	5.4.1 Middleware Architecture Overview
	5.4.2 Application Programming Interface
	5.4.3 Binding Establishment

	5.5 Application Examples
	5.5.1 Case Studies for Coordinated Error Protection
	5.5.2 A Newscast Application Scenario

	5.6 Conclusion

	6 Conclusion and Future Work
	6.1 Achievements
	6.2 Open Questions
	6.3 Future Research Directions

	A Dependency Description Language
	Bibliography

