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1 Introduction

Let (H, [·, ·]) be a Krein space and let A be a bounded or unbounded linear op-
erator in H which is selfadjoint with respect to the Krein space inner product
[·, ·]. The spectral properties of selfadjoint operators in Krein spaces differ es-
sentially from the spectral properties of selfadjoint operators in Hilbert spaces,
e.g., the spectrum σ(A) of A is in general not real and even σ(A) = C may
happen. If, besides selfadjointness, further assumptions on A are imposed the
situation becomes more interesting from a spectral theoretic point of view.

Let, e.g., A be a [·, ·]-nonnegative selfadjoint operator in H with a nonempty
resolvent set. Then σ(A) ⊂ R holds and the spectral points of A in (0,∞) and
(−∞, 0) are of positive type and negative type, respectively, i.e., each point in
σ(A)∩ (0,∞) (σ(A)∩ (−∞, 0)) belongs to the approximate point spectrum of
A and for every normed approximative eigensequence (xn) the accumulation
points of the sequence ([xn, xn]) are positive (resp. negative), cf. Definition 3.1.
These spectral points were introduced and studied by P. Lancaster, H. Langer,
A. Markus and V. Matsaev in [26,28] for arbitrary bounded selfadjoint oper-
ators.

Not surprisingly, spectral points of positive and negative type are in general
not stable under finite rank and compact perturbations. But, if the nonnega-
tive selfadjoint operator A from above is perturbed by a finite rank operator
F such that the resulting operator B = A + F is selfadjoint, then the hermi-
tian form [B·, ·] is only nonnegative on the complement of a finite dimensional
subspace. In contrast to nonnegative selfadjoint operators the spectral points
in (0,∞) ((−∞, 0)) are not all of positive type (resp. negative type) with re-
spect to B. However, if (xn) is an approximative eigensequence corresponding
to λ ∈ σ(B) ∩ (0,∞) (λ ∈ σ(B) ∩ (−∞, 0)) and all xn belong to a suitable
linear manifold of finite codimension, then the accumulation points of the se-
quence ([xn, xn]) are again positive (resp. negative). These spectral points are
called of type π+ and type π−, respectively, and were introduced for arbitrary
selfadjoint operators in Krein spaces in [4].

The concept of spectral points of positive/negative type and type π+/π− can
be regarded as a localization of the spectral properties of (selfadjoint) op-
erators in Hilbert and Pontryagin spaces, respectively. In particular, these
types of spectral points appear in the analysis of definitizable and locally
definitizable selfadjoint operators. Vice versa the notion of spectral points of
positive/negative type offers a convenient way to define and describe locally
definitizable operators, cf. [24,28].

Spectral points of positive/negative type and type π+/π− for selfadjoint opera-
tors and their behaviour under different types of selfadjoint perturbations play
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an important role in many situations, see, e.g., [17,18,21,22,29]. However, since
the definitions and basic properties of these spectral points do not essentially
depend on selfadjointness it seems artificial and inconvenient to restrict spec-
tral theoretic investigations and perturbation problems to the selfadjoint case;
we mention only [2,3,6,7,14,31] for problems involving normal or dissipative
operators in Krein spaces.

It is the aim of this paper to introduce and study spectral points of posi-
tive/negative type and type π+/π− for closed linear operators in Krein spaces
and to develop a comprehensive perturbation theory. For us it is natural to
regard bounded and unbounded linear operators via their graphs as linear
subspaces and therefore we find it easier and convenient to present our obser-
vations for the slightly more general case of linear relations.

The paper is organized as follows. After some preparations in Section 2 we
introduce spectral points of positive/negative type and type π+/π− for closed
linear operators and relations in Krein spaces in Section 3. We generalize
various earlier results from [4,28] on spectral sets consisting of these points.

The main objective of this paper is the investigation of stability properties
of spectral points of positive and negative type, and type π+ and type π−
in the non-selfadjoint case under various kinds of perturbations in Section 4.
Many of the perturbations results proved there are also new for the special
case of bounded or unbounded selfadjoint operators in Krein spaces. Let us
sketch the main results. In Theorem 4.1 it is shown that spectral points of
type π+ and type π− of closed linear operators and relations are stable under
compact perturbations. As a corollary we obtain a variant of [8, Theorem 2.4],
[28, Theorem 5.1] and [4, Theorem 29], see also Theorem 5.4. Section 4.2 is
devoted to perturbations which are small in the gap metric. We verify first
that spectral points of positive and negative type are stable under sufficiently
small perturbations and extend this result to spectral points of type π+ and
type π−. The behaviour of spectral points of positive and negative type of
fundamentally reducible closed linear operators and relations under perturba-
tions small in gap is studied in Theorem 4.10. This can be viewed as a natural
generalization of a result for bounded selfadjoint operators in [28, Theorem
4.1].

Finally, in Section 5 we consider the special case of selfadjoint operators and
relations in Krein spaces. In Theorem 5.1 it is shown that a real spectral
point of type π+ (type π−) of a selfadjoint relation A, which is not an interior
point of σ(A), has a deleted neighbourhood consisting only of spectral points
of positive type (resp. negative type) or of regular points of A. This implies
also local definitizability of A in a neighbourhood of a point of type π+ or
type π−, cf. Definition 5.2 and Theorem 5.3. As a consequence A possesses a
local spectral function on subsets of R consisting of spectral points of type π+
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or type π− and regular points.

2 Preliminaries

Throughout this paper (H, [·, ·]) denotes a Krein space. In the following all
topological notions are understood with respect to some Hilbert space norm
‖ . ‖ on H such that the indefinite inner product [., .] is ‖ . ‖-continuous. Any
two such norms are equivalent, see, e.g., [27, Proposition 1.2].

We study closed linear relations inH, that is, linear subspaces of the Cartesian
product H × H. We emphasize that a subspace is always assumed to be a
closed linear manifold. A closed linear relation A will usually be viewed as
a multivalued mapping and the elements x̂ ∈ A will be written as column
vectors, x̂ =

(
x
x′

)
. Linear operators are always identified with linear relations

via their graphs. The linear space of bounded linear operators defined on H
is denoted by L(H). For the usual definitions of the linear operations with
relations, the inverse etc., we refer to [1,12], and to the monographs [11] and
[19]. We denote the sum of linear manifolds and subspaces by +̂, if this sum is
direct we shall mention it explicitely. Sometimes it is convenient for us to make
use of the so-called transformer of a linear relation (see [13,32]): If M =

(
α β
γ δ

)

is a 2× 2-matrix and A is a closed linear relation in H we define MA by

MA :=








αx + βy

γx + δy


 :




x

y


 ∈ A





. (2.1)

Clearly, MA is a closed linear relation in H. We assign to every regular matrix
M =

(
α β
γ δ

)
the fractional linear mapping ΦM of C onto itself defined by

ΦM(λ) :=
δ λ + γ

β λ + α
, ΦM

(
−α

β

)
:= ∞, ΦM(∞) :=

δ

β
. (2.2)

Observe that ΦM1M2 = ΦM1 ◦ΦM2 holds for regular 2×2-matrices M1 and M2.

Let A be a closed linear relation in H. The resolvent set ρ(A) of A is the set
of all λ ∈ C such that (A − λ)−1 ∈ L(H), the spectrum σ(A) of A is the
complement of ρ(A) in C. The extended spectrum σ̃(A) of A is defined by
σ̃(A) = σ(A) if A ∈ L(H) and σ̃(A) = σ(A) ∪ {∞} otherwise. The extended
resolvent set ρ̃(A) of A is defined by C \ σ̃(A). A point λ ∈ C is an eigenvalue
of A if ker(A− λ) 6= {0}; we write λ ∈ σp(A).

We say that λ ∈ C belongs to the approximate point spectrum of a closed
linear relation A, denoted by σap(A), if there exists a sequence

(
xn
x̃n

)
∈ A,
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n = 1, 2, . . . , such that

‖xn‖ = 1 and lim
n→∞ ‖x̃n − λxn‖ = 0.

The extended approximate point spectrum σ̃ap(A) of A is defined by

σ̃ap(A) :=





σap(A) ∪ {∞} if 0 ∈ σap(A
−1),

σap(A) if 0 6∈ σap(A
−1).

We set
r(A) := C\σap(A) and r̃(A) := C\σ̃ap(A).

A point µ ∈ r(A) is called of regular type of A.

A proof of the following useful lemma can be found in [13,24].

Lemma 2.1 Let A be a closed linear relation in H, let M be a regular 2× 2-
matrix, and define MA and ΦM as in (2.1) and (2.2), respectively. Then we
have

σ̃ap(MA) = ΦM(σ̃ap(A)), r̃(MA) = ΦM(r̃(A)), ρ̃(MA) = ΦM(ρ̃(A)).

Since A is closed it follows that for every µ ∈ r(A) the range of A − µ is
closed and ker(A−µ) = {0} holds, i.e., (A−µ)−1 is a bounded (in general not
everywhere defined) operator. Similarly, if ∞ ∈ r̃(A), then A is a bounded (in
general not everywhere defined) operator.

Lemma 2.2 Let A be a closed linear relation in H. Then the following holds.

(i) The boundary points of σ̃(A) in C belong to σ̃ap(A).
(ii) For every λ0 ∈ r̃(A) there exist an open neighbourhood Uλ0 in C of λ0

and kλ0 > 0 such that for all λ ∈ Uλ0 \ {∞} and all
(

x
x̃

)
∈ A

‖x̃− λx‖ ≥ kλ0‖x‖ (2.3)

holds. In particular, the sets r(A) and r̃(A) are open in C and C, respec-
tively.

Proof. (i) The statement is well-known for bounded and closed linear opera-
tors, see, e.g., [15, §IV 1.10]. The general case will be reduced to this as follows.
If λ0 is a boundary point of σ̃(A), then ρ(A) is non-empty. Choose µ ∈ ρ(A)

and M =
(
−µ 1
1 0

)
. Then by (2.1) we have MA = (A− µ)−1 and (2.2) becomes

ΦM(λ) = (λ − µ)−1 for λ ∈ C, ΦM(∞) = 0 and ΦM(µ) = ∞. According to
Lemma 2.1 we have

ΦM(ρ̃(A)) = ρ̃((A− µ)−1) and ΦM(σ̃ap(A)) = σ̃ap((A− µ)−1).
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Therefore ΦM(λ0) is a boundary point of σ̃((A − µ)−1) and, as (A − µ)−1

is a bounded operator, ΦM(λ0) ∈ σ̃ap((A − µ)−1). Hence Lemma 2.1 implies
λ0 ∈ σ̃ap(A).

(ii) For λ = λ0 ∈ r(A) it follows from the definition of the set r(A) that (2.3)
holds and from this it is easy to see that for all λ in an open neighbourhood
Uλ0 of λ0 (2.3) is still true. A similar argument applies for ∞ ∈ r̃(A). ¤

3 Spectral points of definite type and type π for closed linear re-
lations

We first recall the notion of spectral points of positive and negative type of
closed linear operators and relations in Krein spaces from [24]. For bounded
selfadjoint operators this definition can already be found in [28]. Equivalent
descriptions of the spectral points of positive and negative type in the selfad-
joint case were obtained in [24, Theorem 3.18]. In the following H is always
assumed to be a Krein space with an indefinite inner product denoted by [·, ·].

Definition 3.1 Let A be a closed linear relation in H. A point λ ∈ σap(A)
is said to be of positive type (negative type) with respect to A, if for every

sequence
(

xn
x̃n

)
∈ A, n = 1, 2 . . . , with ‖xn‖ = 1 and limn→∞ ‖x̃n − λxn‖ = 0

we have

lim inf
n→∞ [xn, xn] > 0 (resp. lim sup

n→∞
[xn, xn] < 0).

If ∞ ∈ σ̃ap(A), then ∞ is said to be of positive type (negative type) with

respect to A, if for every sequence
(

xn
x̃n

)
∈ A, n = 1, 2 . . . , with limn→∞ ‖xn‖ =

0 and ‖x̃n‖ = 1 we have

lim inf
n→∞ [x̃n, x̃n] > 0 (resp. lim sup

n→∞
[x̃n, x̃n] < 0).

The set of all points of σ̃(A) of positive type (negative type) with respect to A
will be denoted by σ++(A) (resp. σ−−(A)). A point from σ++(A) ∪ σ−−(A) is
said to be of definite type.

The spectral points of positive and negative type of a closed linear relation
A transform in the same way as the points in σ̃ap(A), r̃(A) and ρ̃(A), cf.
Lemma 2.1. More precisely, if M is a regular 2 × 2-matrix, MA and ΦM are
as in (2.1) and (2.2), respectively, then we have

σ++(MA) = ΦM(σ++(A)) and σ−−(MA) = ΦM(σ−−(A)), (3.1)
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cf. [24, Lemma 2.4].

The following statement is a straightforward generalization of [4, Lemma 2],
see also [28, §1]. The proof is a simple modification of the proof of [4, Lemma 2]
and is left to the reader.

Lemma 3.2 Let A be a closed linear relation in H and let F ⊂ C be a compact
set with F ⊂ σ++(A) ∪ r̃(A) (F ⊂ σ−−(A) ∪ r̃(A)). Then there exists an open
neighbourhood U in C of F such that the following holds.

(i) There exist numbers ε > 0, δ > 0 such that

λ ∈ U\{∞},



x

x̃


 ∈ A, ‖x‖ = 1, and ‖x̃− λx‖ ≤ ε

implies
[x, x] ≥ δ (resp. [x, x] ≤ −δ).

(ii) U ⊂ σ++(A) ∪ r̃(A) (resp. U ⊂ σ−−(A) ∪ r̃(A))

Let A be a closed linear relation in H and let S ⊂ A be a linear manifold. If,
for a finite dimensional subspace F , we have A = S+̂F , where +̂ denotes the
sum of linear manifolds, then we will write

codimAS < ∞.

In the next definition we generalize the notion of spectral points of positive
and negative type.

Definition 3.3 Let A be a closed linear relation in H. A point λ0 ∈ σap(A)
is said to be of type π+ (type π−) with respect to A, if there exists a linear

relation S ⊂ A with codimAS < ∞ such that for every sequence
(

xn
x̃n

)
∈ S,

n = 1, 2 . . . , with ‖xn‖ = 1 and limn→∞ ‖x̃n − λ0xn‖ = 0 we have

lim inf
n→∞ [xn, xn] > 0 (resp. lim sup

n→∞
[xn, xn] < 0). (3.2)

If ∞ ∈ σ̃ap(A), then ∞ is said to be of type π+ (type π−) with respect to A,
if there exists a linear relation S ⊂ A with codimAS < ∞ such that for every
sequence

(
xn
x̃n

)
∈ S, n = 1, 2 . . . , with limn→∞ ‖xn‖ = 0 and ‖x̃n‖ = 1 we have

lim inf
n→∞ [x̃n, x̃n] > 0 (resp. lim sup

n→∞
[x̃n, x̃n] < 0). (3.3)

The set of all points in σ̃(A) of type π+ (type π−) with respect to A will be
denoted by σπ+(A) (resp. σπ−(A)). A point from σπ+(A)∪σπ−(A) is said to be
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of type π.

We remark that for selfadjoint operators the spectral points of type π+ and
type π− were introduced in a slightly different way in [4]. However, in the
selfadjoint case is not difficult to check that the definition in [4] coincides with
the definition above. Note also that in Definition 3.3 it is not assumed that
the linear relation S is closed. As it is more convenient in some situations to
work with a closed linear relation S we formulate the following proposition.

Proposition 3.4 Let A be a closed linear relation in H and suppose that
λ0 ∈ σ̃ap(A) belongs to σπ+(A) (σπ−(A)). Then there exists a closed linear

relation S ⊂ A with codimAS < ∞ such that every sequence
(

xn
x̃n

)
∈ S,

n = 1, 2 . . . , satisfies (3.2) if λ0 6= ∞ and (3.3) if λ0 = ∞, respectively.

Proof. Let S be as in Definition 3.3. Then the closure S of S is a closed
linear relation with finite codimension in A. For every sequence

(
xn
x̃n

)
∈ S,

n = 1, 2 . . . , there exists a sequence
(

yn

ỹn

)
∈ S, n = 1, 2 . . . , with

lim
n→∞(xn − yn) = lim

n→∞(x̃n − ỹn) = 0.

Now it is easily seen that every sequence
(

xn
x̃n

)
∈ S, n = 1, 2 . . . , with ‖xn‖ = 1

and limn→∞ ‖x̃n − λ0xn‖ = 0 has the property

lim inf
n→∞ [xn, xn] = lim inf

n→∞ [yn, yn] > 0 (resp. lim sup
n→∞

[xn, xn] < 0)

or, if λ0 = ∞, then every sequence with ‖x̃n‖ = 1 and limn→∞ ‖xn‖ = 0 has
the property

lim inf
n→∞ [x̃n, x̃n] = lim inf

n→∞ [ỹn, ỹn] > 0 (resp. lim sup
n→∞

[x̃n, x̃n] < 0).

¤

Definition 3.3 and Proposition 3.4 imply the following corollary.

Corollary 3.5 Let A be a closed linear relation in H. A point λ0 ∈ σ̃ap(A)
belongs to σπ+(A) (σπ−(A)) if and only if there exists a closed linear relation
S ⊂ A with codimAS < ∞ such that

λ0 ∈ σ++(S) ∪ r̃(S) (resp. λ0 ∈ σ−−(S) ∪ r̃(S)).

Remark 3.6 Definition 3.3 can be viewed as a localization of the spectral
properties of closed linear relations in Pontryagin spaces. Indeed, if H is a
Pontryagin space with finite rank of negativity and if H = H+[+̂]H−, direct
sum, is a fundamental decomposition of H, dimH− < ∞, and A is a closed
linear relation in H, then with S := A ∩ (H+)2 it follows σ̃ap(A) = σπ+(A).
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Next we verify that spectral points of type π+ and type π− transform in the
same way as spectral points of positive and negative type in (3.1).

Lemma 3.7 Let A be a closed linear relation in H, let M be a regular 2× 2-
matrix, and define MA and ΦM as in (2.1) and (2.2), respectively. Then we
have

σπ+(MA) = ΦM(σπ+(A)) and σπ−(MA) = ΦM(σπ−(A)).

Proof. We verify σπ+(MA) = ΦM(σπ+(A)). The proof of the equality
σπ−(MA) = ΦM(σπ−(A)) is completely analogous. Let us first check the in-
clusion

ΦM(σπ+(A)) ⊂ σπ+(MA). (3.4)

For this, let λ0 ∈ σπ+(A). Then, by Corollary 3.5, there exists a closed linear
relation S ⊂ A with codimAS < ∞ such that λ0 ∈ σ++(S)∪ r̃(S). Let F ⊂ A
be a finite dimensional subspace of A with A = S+̂F , direct sum. This gives

MA = MS +̂ MF, direct sum,

and dim MF = dim F . By Lemma 2.1 and (3.1) the point ΦM(λ0) belongs to
σ++(MS) ∪ r̃(MS), hence, by Corollary 3.5, ΦM(λ0) ∈ σπ+(MA). Thus we
have (3.4) and therefore also ΦM−1(σπ+(MA)) ⊂ σπ+(A). This implies

σπ+(MA) = (ΦM ◦ ΦM−1)(σπ+(MA)) ⊂ ΦM(σπ+(A)),

so that σπ+(MA) = ΦM(σπ+(A)) holds. ¤

The next result parallels Lemma 3.2.

Proposition 3.8 Let A be a closed linear relation in H and let F ⊂ C be a
compact set with F ⊂ σπ+(A) ∪ r̃(A) (F ⊂ σπ−(A) ∪ r̃(A)). Then there exists
an open neighbourhood U in C of F such that the following holds.

(i) There exists a closed linear relation S ⊂ A with codimAS < ∞ and
numbers ε > 0, δ > 0 such that

λ ∈ U\{∞},



x

x̃


 ∈ S, ‖x‖ = 1, and ‖x̃− λx‖ ≤ ε

imply
[x, x] ≥ δ (resp. [x, x] ≤ −δ).

(ii) U ⊂ σπ+(A) ∪ r̃(A) (resp. U ⊂ σπ−(A) ∪ r̃(A))

Proof. We prove the statements for F ⊂ σπ+(A)∪ r̃(A). If F ⊂ σπ−(A)∪ r̃(A)
the proof is completely analogous.
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Either λ0 ∈ F belongs to r̃(A), then there exist an open neighbourhood Uλ0

in C of λ0 and kλ0 > 0 such that for all λ ∈ Uλ0 \ {∞} and all
(

x
x̃

)
∈ A

‖x̃− λx‖ ≥ kλ0‖x‖

holds, cf. Lemma 2.2. Or λ0 ∈ F belongs to σπ+(A), then we choose a closed
linear relation Sλ0 ⊂ A with codimASλ0 < ∞ such that λ0 belongs to σ++(Sλ0)
or to r̃(Sλ0), see Corollary 3.5. In the latter case there exist an open neigh-
bourhood Uλ0 in C of λ0 and kλ0 > 0 such that for all λ ∈ Uλ0 \ {∞} and all(

x
x̃

)
∈ Sλ0

‖x̃− λx‖ ≥ kλ0‖x‖
holds. If λ0 belongs to σ++(Sλ0), then, by Theorem 3.2, there exist an open
neighbourhood Uλ0 of λ0 in C and numbers ελ0 , δλ0 > 0 such that

λ ∈ Uλ0\{∞},



x

x̃


 ∈ Sλ0 , ‖x‖ = 1, ‖x̃− λx‖ ≤ ελ0

implies

[x, x] ≥ δλ0 .

Therefore, for each λ ∈ F there exist an open neighbourhood Uλ in C of λ,
a closed linear relation Sλ ⊂ A with codimASλ < ∞ and numbers ελ, δλ > 0
such that λ′ ∈ Uλ\{∞},

(
x
x̃

)
∈ Sλ, ‖x‖ = 1 and ‖x̃− λ′x‖ ≤ ελ implies

[x, x] ≥ δλ.

Since F is a compact set, there exist finitely many points λ1, . . . , λk ∈ F such
that F ⊂ ⋃k

j=1 Uλj
. With

ε := min
j=1,...,k

ελj
, δ := min

j=1,...,k
δλj

and S :=
⋂

j=1,...,k

Sλj

statement (i) in Proposition 3.8 is valid. Assertion (ii) is a direct consequence
of (i) and the definition of spectral points of type π+. ¤

In the next theorem we find a useful criterion for spectral points not belonging
to σπ+(A) or σπ−(A). For selfadjoint operators Theorem 3.9 reduces to [4,
Theorem 13].

Theorem 3.9 Let A be a closed linear relation in H and let λ0 ∈ σ̃ap(A).

(i) If λ0 6= ∞, then λ0 6∈ σπ+(A) (λ0 6∈ σπ−(A)) if and only if there exists a

sequence
(

xn
x̃n

)
∈ A, n = 1, 2 . . . , with ‖xn‖ = 1, limn→∞ ‖x̃n−λ0xn‖ = 0
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such that (xn) converges weakly to zero and

lim inf
n→∞ [xn, xn] ≤ 0 (resp. lim sup

n→∞
[xn, xn] ≥ 0).

(ii) If λ0 = ∞, then λ0 6∈ σπ+(A) (λ0 6∈ σπ−(A)) if and only if there exists a

sequence
(

xn
x̃n

)
∈ A, n = 1, 2 . . . , with ‖x̃n‖ = 1, limn→∞ ‖xn‖ = 0 such

that (x̃n) converges weakly to zero and

lim inf
n→∞ [x̃n, x̃n] ≤ 0 (resp. lim sup

n→∞
[x̃n, x̃n] ≥ 0).

Proof. We prove the assertions only for λ0 ∈ σπ+(A). A similar reasoning
applies for λ0 ∈ σπ−(A).

We will prove assertion (i) first, therefore we assume λ0 6= ∞ and λ0 6∈ σπ+(A).
Then for any closed linear relation S ⊂ A with codimAS < ∞ there exists
a sequence

(
xn
x̃n

)
∈ S such that ‖xn‖ = 1, ‖x̃n − λ0xn‖ → 0 as n → ∞ and

lim infn→∞[xn, xn] ≤ 0. Let us choose




x1

x̃1


 ∈ A, ‖x1‖ = 1 with ‖x̃1 − λ0x1‖ ≤ 1 and [x1, x1] ≤ 1,

and denote by ⊥A the orthogonal complement in A with respect to the usual
Hilbert scalar product in H⊕H. Then there exists an element




x2

x̃2


 ∈








x1

x̃1








⊥A

such that ‖x2‖ = 1, ‖x̃2 − λ0x2‖ ≤ 1
2

and [x2, x2] ≤ 1
2
. Next we choose




x3

x̃3


 ∈








x1

x̃1


 ,




x2

x̃2








⊥A

, ‖x3‖ = 1, ‖x̃3 − λ0x3‖ ≤ 1
3

and [x3, x3] ≤ 1
3
.

Repeating this consideration we find a sequence
(

xn
x̃n

)
∈ A with ‖xn‖ = 1,

‖x̃n − λ0xn‖ → 0 as n →∞, lim infn→∞[xn, xn] ≤ 0 and




xn

x̃n


⊥A




xm

x̃m


 , n 6= m.

Therefore the sequences
(

xn
x̃n

)
and (xn) converge weakly to zero.

11



For the converse, let
(

xn
x̃n

)
∈ A, n = 1, 2 . . . , be a sequence with ‖xn‖ = 1,

limn→∞ ‖x̃n − λ0xn‖ = 0 such that (xn) converges weakly to zero and

lim inf
n→∞ [xn, xn] ≤ 0. (3.5)

Let S ⊂ A be a closed linear relation with codimAS < ∞ and let F be some
finite dimensional subspace F ⊂ A such that A = S+̂F , direct sum. We write




xn

x̃n


 =




yn

ỹn


 +




zn

z̃n


 , where




yn

ỹn


 ∈ S and




zn

z̃n


 ∈ F.

As
(

xn
x̃n−λ0xn

)
∈ A− λ0 converges weakly to zero

(
zn

z̃n−λ0zn

)
∈ F − λ0 satisfies

lim
n→∞

∥∥∥∥∥∥∥




zn

z̃n − λ0zn




∥∥∥∥∥∥∥
= 0.

Hence limn→∞ ‖yn‖ = 1, limn→∞ ‖ỹn − λ0yn‖ = 0 and from (3.5) we obtain

lim inf
n→∞ [yn, yn] ≤ 0. (3.6)

We have shown that for every closed linear relation S ⊂ A there exists a
sequence

(
yn

ỹn

)
∈ S with limn→∞ ‖yn‖ = 1, limn→∞ ‖ỹn− λ0yn‖ = 0 and (3.6),

i.e., λ0 6∈ σπ+(A), cf. Definition 3.3 and Proposition 3.4.

Let λ0 = ∞ and assume ∞ ∈ σ̃ap(A). Then 0 ∈ σap(A
−1). We have, by

assertion (i), that 0 /∈ σπ+(A−1) if and only if there is a sequence
(

x̃n
xn

)
∈ A−1,

n = 1, 2 . . . , with ‖x̃n‖ = 1, limn→∞ ‖xn‖ = 0 such that (x̃n) converges weakly
to zero and

lim inf
n→∞ [x̃n, x̃n] ≤ 0.

As
(

xn
x̃n

)
∈ A, n = 1, 2 . . . , assertion (ii) is true. ¤

With the help of Theorem 3.9 we describe the spectral points belonging to
σπ+(A)\σ++(A) and σπ−(A)\σ−−(A) in the next theorem.

Theorem 3.10 Let A be a closed linear relation in H and let λ0 ∈ C. If
λ0 ∈ σπ+(A)\σ++(A) (λ0 ∈ σπ−(A)\σ−−(A)), then λ0 is an eigenvalue of
A with a corresponding nonpositive (resp. nonnegative) eigenvector. If ∞ ∈
σπ+(A)\σ++(A) (∞ ∈ σπ−(A)\σ−−(A)), then the multivalued part of A con-
tains a nonpositive (resp. nonnegative) vector.

Proof. Let λ0 ∈ σπ+(A)\σ++(A) and assume that λ0 6= ∞. Then there exists

a sequence
(

xn
x̃n

)
∈ A, ‖xn‖ = 1, ‖x̃n−λ0xn‖ → 0 and lim infn→∞[xn, xn] ≤ 0.
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Moreover, there exists a subsequence (xnk
) of (xn) which converges weakly to

some x0 and by Theorem 3.9 we have x0 6= 0. As A is assumed to be closed A
and A − λ0 are also closed in the weak topology, see, e.g. [34, §V.1 Theorem

10]. Therefore we have
(

x0
0

)
∈ A− λ0 and it remains to show

[x0, x0] ≤ 0. (3.7)

Let yk := xnk
−x0 and ỹk := x̃nk

−λ0x0, k = 1, 2, . . . . If (yk) contains a subse-
quence converging to zero, then [x0, x0] ≤ 0 follows from limn→∞[xn, xn] ≤ 0.

Assume therefore that lim infk→∞ ‖yk‖ > 0. As
(

yk
ỹk

)
∈ A,

‖ỹk − λ0yk‖ = ‖x̃nk
− λ0xnk

‖ → 0 as k →∞

and since the sequence (yk) converges weakly to zero, Theorem 3.9 implies
lim infk→∞[yk, yk] > 0. From

lim inf
k→∞

[yk, yk] = lim inf
k→∞

[xnk
, xnk

]− [x0, x0]

and lim infk→∞[xk, xk] ≤ 0 we obtain (3.7). A similar reasoning applies in the
case λ0 ∈ σπ−(A)\σ−−(A). The case λ0 = ∞ follows from Lemma 3.7 with

M =
(

0 1
1 0

)
in (2.1). ¤

For selfadjoint operators the next corollary reduces to [4, Lemma 10].

Corollary 3.11 Let A be a closed linear operator in H with ∞ ∈ σ̃ap(A).
Then ∞ ∈ σπ+(A) (∞ ∈ σπ−(A)) implies ∞ ∈ σ++(A) (resp. ∞ ∈ σ−−(A)).

Proof. Assume that ∞ ∈ σπ+(A) \ σ++(A). Then, with M =
(

0 1
1 0

)
in (2.1)

and Lemma 3.7 we have

0 ∈ σπ+(A−1) \ σ++(A−1).

Theorem 3.10 implies 0 ∈ σp(A
−1), a contradiction to the assumption that A

is an operator. ¤

4 Stability properties of spectral points of definite type and type π
under perturbations

In this section we consider the behaviour of spectral points of positive and
negative type, and type π+ and type π− of closed linear relations in Krein
spaces under different perturbations.
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4.1 Compact and finite rank perturbations

Let A and B be closed linear relations in the Krein space (H, [·, ·]) and let PA

and PB be the orthogonal projections in the Hilbert spaceH⊕H onto A and B,
respectively. We shall say that A is a compact (finite rank) perturbation of B if
the difference PA−PB ∈ L(H⊕H) is a compact (resp. finite rank) operator on
H⊕H. These notions are natural generalizations of the notions of compact and
finite rank perturbations of bounded operators or unbounded operators with
common points in their resolvent sets, cf. [5]. We remark, that the projections
PA and PB can be expressed as block operator matrices in terms of A and B
with the so-called Stone-de Snoo formula, see, e.g., [16,20,33].

Theorem 4.1 Let A and B be closed linear relations in H and suppose that
A is a compact perturbation of B. Then we have

σπ+(A)∪ r̃(A) = σπ+(B)∪ r̃(B) and σπ−(A)∪ r̃(A) = σπ−(B)∪ r̃(B). (4.1)

Proof. For the first assertion in (4.1) it is sufficient to verify the inclusion
σπ+(A) ∪ r̃(A) ⊂ σπ+(B) ∪ r̃(B). The proof of the second equality in (4.1) is
completely analogous and will therefore be omitted.

Let λ0 6= ∞ and let λ0 ∈ σπ+(A) ∪ r(A). Assume λ0 ∈ σap(B) \ σπ+(B). By

Theorem 3.9 there exists a sequence
(

xn
x̃n

)
in B with ‖xn‖ = 1, n = 1, 2 . . . ,

and limn→∞ ‖x̃n − λ0xn‖ = 0 such that (xn) converges weakly to zero and

lim inf
n→∞ [xn, xn] ≤ 0.

Therefore
(

xn
x̃n

)
converges in H × H weakly to zero and since PA − PB is

compact this implies

lim
n→∞

∥∥∥(PB − PA)
(

xn
x̃n

)∥∥∥ = 0.

We set
(

yn

ỹn

)
:= PA

(
xn
x̃n

)
, n = 1, 2 . . . . As PB

(
xn
x̃n

)
=

(
xn
x̃n

)
, n = 1, 2 . . . , we

have 


xn

x̃n


 =




yn

ỹn


 + (PB − PA)




xn

x̃n




and hence limn→∞ ‖xn−yn‖ = limn→∞ ‖x̃n−ỹn‖ = 0. Therefore, (yn) converges
weakly to zero,

lim
n→∞ ‖yn‖ = 1, lim

n→∞ ‖ỹn − λ0yn‖ = 0 and lim inf
n→∞ [yn, yn] ≤ 0.

Then λ0 /∈ r(A) follows and Theorem 3.9 gives λ0 /∈ σπ+(A), a contradiction.
Hence, λ0 belongs to σπ+(B) ∪ r(B).
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Let∞ ∈ σπ+(A)∪r̃(A). Then Lemma 2.1 and Lemma 3.7 imply 0 ∈ σπ+(A−1)∪
r̃(A−1). Denote by PA−1 and PB−1 the orthogonal projections in H ⊕H onto
A−1 and B−1, respectively. Observe that PA is connected with the orthogonal
projection PA−1 onto A−1 in the following manner: For h, h̃ ∈ H we have

PA




h

h̃


 =




x

x̃


 ∈ A if and only if PA−1




h̃

h


 =




x̃

x


 ∈ A−1.

The projections PB and PB−1 are connected in the same way. Therefore, since
the compact operator PA − PB maps bounded sequences onto sequences with
a convergent subsequence, the same is true for PA−1 − PB−1 , and hence also
this operator is compact. The reasoning above implies 0 ∈ σπ+(B−1)∪ r̃(B−1),
hence, by Lemma 2.1 and Lemma 3.7, ∞ ∈ σπ+(B) ∪ r̃(B). ¤

Remark 4.2 We mention that the sets σπ+(A) and σπ−(A) in Theorem 4.1
can not be replaced by σ++(A) and σ−−(A), so that, roughly speaking, spectral
points of type π are stable under compact perturbations (and, in particular,
finite rank perturbations) but spectral points of definite type are not, see also
[28, Theorem 5.1] and [9, Theorem 5.1].

If A and B are closed linear relations in H with ρ(A) ∩ ρ(B) 6= ∅, then
according to [5, Corollary 4.5] A is a compact perturbation of B if and only if
(A− λ)−1 − (B − λ)−1 is a compact operator for some, and hence for all, λ ∈
ρ(A) ∩ ρ(B). Together with Theorem 4.1 this implies the following corollary.

Corollary 4.3 Let A and B be closed linear relations in H with ρ(A)∩ρ(B) 6=
∅ and assume that

(A− λ)−1 − (B − λ)−1, λ ∈ ρ(A) ∩ ρ(B),

is compact. Then

σπ+(A) ∪ r̃(A) = σπ+(B) ∪ r̃(B) and σπ−(A) ∪ r̃(A) = σπ−(B) ∪ r̃(B).

In the following proposition we consider a special case of finite rank pertur-
bations. Recall that +̂ stands for the sum of linear manifolds and subspaces.

Proposition 4.4 Let A be a closed linear relation in H and let F be a finite
dimensional subspace of H×H. Then

σπ+(A) = σπ+(A+̂F ) ∩ σ̃ap(A), σπ−(A) = σπ−(A+̂F ) ∩ σ̃ap(A) (4.2)

and
r̃(A) ⊂ r̃(A+̂F ) ∪

(
σπ+(A+̂F ) ∩ σπ−(A+̂F )

)
. (4.3)
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Proof. As A is closed also the linear relation A+̂F is a closed. Denote by PA

and PA+̂F the orthogonal projections in H⊕H onto A and A+̂F , respectively.
The operator PA+̂F−PA is finite rank and hence, in particular, compact. Then
(4.2) follows from (4.1) and the fact that r̃(A+̂F ) ⊂ r̃(A).

In order to prove (4.3) let λ0 6= ∞ be a point in r(A) \ r(A+̂F ) and assume
λ0 /∈ σπ+(A+̂F ) ∩ σπ−(A+̂F ). Then λ0 /∈ σπ+(A+̂F ) or λ0 /∈ σπ−(A+̂F ).

According to Theorem 3.9 in both cases there exists a sequence
(

xn
x̃n

)
∈ A+̂F ,

n = 1, 2 . . . , with ‖xn‖ = 1, limn→∞ ‖x̃n−λ0xn‖ = 0 such that (xn) converges
weakly to zero. We choose a finite dimensional subspace F ′ ⊂ F such that
A ∩ F ′ = {0} and A+̂F coincides with A+̂F ′, i.e. the sum in A+̂F ′ is direct.
Denote the projections in H⊕H on A− λ0 and F ′− λ0 corresponding to the
decomposition

(A +̂ F )− λ0 = (A− λ0) +̂ (F ′ − λ0)

by P0 and P1, respectively. Then, by dim (F ′−λ0) < ∞, P1

(
xn

x̃n−λ0xn

)
converges

strongly to zero. If
(

x′n
x̃′n−λ0x′n

)
:= P0

(
xn

x̃n−λ0xn

)
, where

(
x′n
x̃′n

)
∈ A, n = 1, 2 . . . ,

then limn→∞ ‖x′n‖ = 1 and limn→∞ ‖x̃′n − λ0x
′
n‖ = 0 which implies λ0 /∈ r(A),

a contradiction.

It remains to consider λ0 = ∞. Let ∞ ∈ r̃(A), that is 0 ∈ r(A−1). Then, by
the reasoning above, we have

0 ∈ r(A−1 +̂ F−1) ∪
(
σπ+(A−1 +̂ F−1) ∩ σπ−(A−1 +̂ F−1)

)
,

as F−1 is finite dimensional. Moreover, we have A−1+̂F−1 = (A+̂F )−1 and
(4.3) follows from Lemma 2.1 and Lemma 3.7. ¤

Proposition 3.8 and Proposition 4.4 imply the following corollary.

Corollary 4.5 Let A be a closed linear relation in H and let Let F ⊂ C be
a compact set. Then F ⊂ σπ+(A) ∪ r̃(A) (F ⊂ σπ−(A) ∪ r̃(A)) if and only if
there exists a closed linear relation S ⊂ A with codimAS < ∞ and

F ⊂ σ++(S) ∪ r̃(S) (resp. F ⊂ σ−−(S) ∪ r̃(S)).

4.2 Perturbations small in gap

We consider now the behaviour of spectral points of definite type and type π
under perturbations which are small with respect to the gap metric. The gap
between two subspaces L and M of some Hilbert space G is defined by

δ̂(L,M) := max
{

sup
u∈L,‖u‖=1

dist (u,M), sup
v∈M,‖v‖=1

dist (v,L)
}
,
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cf. [25]. Recall that a subspace is always assumed to be a closed linear manifold.
If PL and PM denote the orthogonal projections in G ⊕ G onto L and M,
respectively, then the gap between L and M is

δ̂(L,M) = ‖PL − PM‖.

In the next theorem we show, roughly speaking, that spectral points of positive
and negative type are stable under perturbations small in the gap metric.

Theorem 4.6 Let A be a closed linear relation in H and let F ⊂ C be a
compact set with F ⊂ σ++(A)∪ r̃(A) (F ⊂ σ−−(A)∪ r̃(A)). Then there exists a
constant γ ∈ (0, 1) such that for all closed linear relations B with δ̂(A,B) < γ
we have

F ⊂ σ++(B) ∪ r̃(B) (resp. F ⊂ σ−−(B) ∪ r̃(B)). (4.4)

Proof. Assume first that ∞ /∈ F and let F ⊂ σ++(A)∪ r(A). We choose ε and
δ as in Lemma 3.2. It is no restriction to assume ε < 1 and δ < 1. We set

M := 1 + ε + max
λ∈F

|λ| and γ :=
min{ε, δ}

6M2
.

Let B be a closed linear relation with δ̂(A, B) < γ. For λ ∈ F \ r(B) choose(
y
ỹ

)
∈ B with ‖y‖ = 1 and ‖ỹ − λy‖ < 5

6
ε. Then it follows

∥∥∥∥∥

(
y

ỹ

)∥∥∥∥∥ ≤ M and dist

((
y

ỹ

)
, A

)
< Mγ,

and there exists
(

x
x̃

)
∈ A with

‖x− y‖ ≤ Mγ and ‖x̃− ỹ‖ ≤ Mγ.

This implies 1−Mγ ≤ ‖x‖ ≤ 1 + Mγ and

∥∥∥∥∥
x̃

‖x‖ − λ
x

‖x‖

∥∥∥∥∥ ≤
‖ỹ − λy‖+ ‖x̃− ỹ‖+ ‖λy − λx‖

‖x‖ ≤

≤
5
6
ε + Mγ(1 + maxλ∈F |λ|)

1−Mγ
≤

≤
5
6
ε + Mγ(M − ε)

1−Mγ
≤ ε−Mγε

1−Mγ
= ε,

hence
[x, x] ≥ δ‖x‖2.

Moreover, we have

[y, y] = [x, x] + [y − x, x] + [x, y − x] + [y − x, y − x]
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and therefore

[y, y] ≥ δ‖x‖2 − 2Mγ‖x‖ −M2γ2 ≥
≥ δ(1−Mγ)2 − 2Mγ(1 + Mγ)−M2γ2 ≥ δ − 4Mγ − 3M2γ2 ≥ δ

4
.

This implies F ⊂ σ++(B) ∪ r(B).

If ∞ ∈ F ⊂ σ++(A) ∪ r(A) we choose two closed subsets F1 and F2 of C
with ∞ /∈ F1, ∞ ∈ F2, 0 /∈ F2 and F = F1 ∪ F2. It follows from above that
there exists a constant γ1 ∈ (0, 1) such that for all closed linear relations
B with δ̂(A,B) < γ1 we have F1 ∩ σap(B) ⊂ σ++(B). Moreover, the set
{λ−1 : λ ∈ F2 \ {∞}} ∪ {0} is a subset of σ++(A−1) ∪ r(A−1), cf. Lemma 3.7,
and by the first part of the proof there is a γ2 ∈ (0, 1) with

{
λ−1 : λ ∈ F2 \ {∞}

}
∪ {0} ⊂ σ++(B−1) ∪ r(B−1)

for all closed linear relations B with δ̂(A−1, B−1) < γ2. Another application of
Lemma 3.7 gives F2 ⊂ σ++(B)∪ r̃(B) and, as δ̂(A,B) = δ̂(A−1, B−1), we have
F ⊂ σ++(B)∪r̃(B) for all closed linear relations B with δ̂(A,B) < min{γ1, γ2}.
Thus, the first inclusion in (4.4) is proved.

The proof of the inclusion F ⊂ σ−−(B) ∪ r̃(B) is completely analogous and
will therefore be omitted. ¤

In order to prove a stability result for spectral points of type π+ and type π−
under perturbations small in the gap metric we prove the following statement
first.

Proposition 4.7 Let L and M be subspaces of some Hilbert space G with
δ̂(L,M) < 1 and let PL be the orthogonal projection in G ⊕G onto L. Let M1

be a subspace of M with codimMM1 < ∞. Then the subspace L1 = PLM1

of L satisfies codimL L1 = codimMM1 and

δ̂(L1,M1) ≤ δ̂(L,M).

Proof. We denote by PM the orthogonal projection on M. For z ∈ M we
have

‖PLz‖ ≥ ‖z‖ − ‖(I − PL)z‖ ≥ (1− ‖PM − PL‖)‖z‖.
The gap between L and M is smaller than one, hence the restriction PL|M
of the projection PL to the subspace M, considered as a mapping from M
into L, is a bounded, injective operator with a closed range. Moreover, an
element of L orthogonal to the range of PL|M belongs to M⊥, therefore, by
M⊥ ∩ L = {0}, the operator PL : M→ L is an isomorphism.
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We define a linear bounded operator D : L → L⊥ by

D = (I − PL)(PL|M)−1.

For z ∈M we set x := PL|M z. Then we have

z = (I − PL)(PL|M)−1x + PL|M(PL|M)−1x = Dx + x

and, as PL|M is an isomorphism,

M =








x

Dx


 : x ∈ L





and M⊥ =







−D∗w

w


 : w ∈ L⊥





with respect to the decomposition G = L⊕L⊥. Moreover, see e.g. [30] or [33],

PM =




(I + D∗D)−1 D∗(I + DD∗)−1

D(I + D∗D)−1 DD∗(I + DD∗)−1


 .

Then, by D∗(I+DD∗)−1 = (I+D∗D)−1D∗ and D(I+D∗D)−1 = (I+DD∗)−1D
we obtain

(PM − PL)2 =




D∗D(I + D∗D)−1 0

0 DD∗(I + DD∗)−1


 .

Making use of the functional calculi of the bounded selfadjoint operators D∗D
and DD∗ in L and L⊥, respectively, we find that

δ̂(L,M) = ‖PL − PM‖ =
‖D‖√

1 + ‖D‖2
(4.5)

holds. Let
L1 = PLM1.

As PL|M is an isomorphism, codimL L1 = codimMM1 < ∞ follows. We
choose a finite dimensional subspace L′1 of L such that

G = L1 ⊕ L′1 ⊕ L⊥. (4.6)

We denote by D1, D1 : L1 → L⊥, the restriction of D to L1, D1 = D|L1.
Then, with respect to the decomposition (4.6), we have

M1 =








x

0

D1x




: x ∈ L1





and M⊥
1 =








−D∗
1w

u

w




: w ∈ L⊥, u ∈ L′1
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and the orthogonal projection PM1 on M1 satisfies

PM1 =




(I + D∗
1D1)

−1 0 D∗
1(I + D1D

∗
1)
−1

0 0 0

D1(I + D∗
1D1)

−1 0 D1D
∗
1(I + D1D

∗
1)
−1




.

Similar as in (4.5) we have

‖PL1 − PM1‖ =
‖D1‖√

1 + ‖D1‖2
.

Together with (4.5) and the fact that the function t 7→ t√
1+t2

, t ≥ 0, is in-
creasing, we conclude

δ̂(L1,M1) = ‖PL1 − PM1‖ =
‖D1‖√

1 + ‖D1‖2
≤ ‖D‖√

1 + ‖D‖2
= δ̂(L,M).

This completes the proof of Proposition 4.7. ¤

With the help of Proposition 4.7 we are now able to prove a variant of Theo-
rem 4.6 for spectral points of type π+ and type π−.

Theorem 4.8 Let A be a closed linear relation in H and let F ⊂ C be a
compact set with F ⊂ σπ+(A)∪ r̃(A) (F ⊂ σπ−(A)∪ r̃(A)). Then there exists a

constant γ ∈ (0, 1) such that for all closed linear relations B with δ̂(A,B) < γ
we have

F ⊂ σπ+(B) ∪ r̃(B) (resp. F ⊂ σπ−(B) ∪ r̃(B)). (4.7)

Proof. We verify only the first inclusion in (4.7). Let F ⊂ C be a compact set
with F ⊂ σπ+(A)∪r̃(A). In order to prove (4.7) we choose S as in Corollary 4.5.
According to Theorem 4.6 there exists a constant γ ∈ (0, 1) such that for all
closed linear relations S ′ with δ̂(S, S ′) < γ we have

F ⊂ σ++(S ′) ∪ r̃(S ′). (4.8)

Let B be a closed linear relation with δ̂(A,B) < γ and let PB be the orthogonal
projection in H ⊕ H onto B. It follows from Proposition 4.7 that the closed
linear relation S̃ := PBS ⊂ B satisfies

codimB S̃ = codimA S < ∞

and δ̂(S, S̃) ≤ δ̂(A,B) < γ, hence, by (4.8),

F ⊂ σ++(S̃) ∪ r̃(S̃).
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Then Corollary 4.5 implies F ⊂ σπ+(B) ∪ r̃(B). ¤

For a closed linear relation the intersection of the set of all spectral points of
positive type with the set of all spectral points of negative type is void. This
implies the following corollary.

Corollary 4.9 Let A be a closed linear relation and let F ⊂ C be a compact
set with F ⊂ r̃(A). Then there exists a constant γ ∈ (0, 1) such that for all
closed linear relations B with δ̂(A,B) < γ we have

F ⊂ r̃(B).

4.3 Perturbations of fundamentally reducible relations

In this subsection we prove a result on small perturbations in the gap metric
for fundamentally reducible closed linear relations in Krein spaces. Let

H = H+ [+̂]H−, direct sum, (4.9)

be a fundamental decomposition of the Krein space (H, [., .]), see e.g. [10]. A
relation A is said to be fundamentally reducible if A can be written as

A = A+ +̂ A−, direct sum, (4.10)

where A+ := A ∩ H2
+ and A− := A ∩ H2

− are closed linear relations in the
Hilbert spaces (H+, [., .]) and (H−,−[., .]). Recall that according to Lemma 2.2
for a point λ of regular type of A− the estimate

‖ỹ− − λy−‖ ≥ kλ,−‖y−‖ (4.11)

holds for some kλ,− > 0 and all
(

y−
ỹ−

)
∈ A−. Analogously, for a point λ of

regular type of A+ the estimate

‖ỹ+ − λy+‖ ≥ kλ,+‖y+‖ (4.12)

holds for some kλ,+ > 0 and all
(

y+

ỹ+

)
∈ A+.

The following theorem can be viewed as a generalization of [28, Theorem 4.2].

Theorem 4.10 Let A be a fundamentally reducible closed linear relation in
H as in (4.10) and let B be a closed linear relation in H. Then the following
holds.
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(i) If for some λ ∈ r(A−), kλ,− > 0 as in (4.11) and γ > 0

δ̂(A− λ,B − λ) < γ and γ2

(
1 +

1

k2
λ,−

)
<

1

4

hold, then

λ ∈ σ++(B) ∪ r(B).

(ii) If for some λ ∈ r(A+), kλ,+ > 0 as in (4.12) and γ > 0

δ̂(A− λ,B − λ) < γ and γ2

(
1 +

1

k2
λ,+

)
<

1

4

hold, then

λ ∈ σ−−(B) ∪ r(B).

Proof. We prove only assertion (i). The proof of (ii) is analogous. Suppose that

λ ∈ σap(B) and let
(

x+
n +x−n

x̃+
n +x̃−n

)
∈ B, n = 1, 2 . . . , x+

n , x̃+
n ∈ H+, x−n , x̃−n ∈ H−, be

a sequence with

‖x+
n ‖2 + ‖x−n ‖2 = 1 and lim

n→∞ ‖x̃
+
n − λx+

n ‖2 + ‖x̃−n − λx−n ‖2 = 0. (4.13)

We have

dist







x+
n + x−n

x̃+
n + x̃−n − λx+

n − λx−n


 , A− λ


 < γ

∥∥∥∥∥∥∥




x+
n + x−n

x̃+
n + x̃−n − λx+

n − λx−n




∥∥∥∥∥∥∥
.

Hence, there exist
(

y+
n

ỹ+
n

)
∈ A+ and

(
y−n
ỹ−n

)
∈ A− with

‖x+
n − y+

n ‖2 + ‖x̃+
n − λx+

n − (ỹ+
n − λy+

n )‖2

+ ‖x−n − y−n ‖2 + ‖x̃−n − λx−n − (ỹ−n − λy−n )‖2

< γ2

∥∥∥∥∥∥∥




x+
n + x−n

x̃+
n + x̃−n − λx+

n − λx−n




∥∥∥∥∥∥∥

2

.

In particular,

‖x−n − y−n ‖2 + ‖x̃−n − λx−n − (ỹ−n − λy−n )‖2 < γ2

∥∥∥∥∥∥∥




x+
n + x−n

x̃+
n + x̃−n − λx+

n − λx−n




∥∥∥∥∥∥∥

2

and together with (4.13) we have

lim sup
n→∞

(
‖x−n − y−n ‖2 + ‖ỹ−n − λy−n ‖2

)
< γ2. (4.14)
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With (4.13), (4.14) and ‖ỹ−n − λy−n ‖ ≥ kλ,−‖y−n ‖ we obtain

lim inf
n→∞

[
x+

n + x−n , x+
n + x−n

]
=

= lim inf
n→∞ (‖x+

n ‖2 − ‖x−n ‖2) = lim inf
n→∞ (1− 2‖x−n ‖2)

= 1− 2 lim sup
n→∞

‖x−n − y−n + y−n ‖2

≥ 1− 2 lim sup
n→∞

(
2‖x−n − y−n ‖2 + 2‖y−n ‖2

)

≥ 1− 4 lim sup
n→∞

(
1 +

1

k2
λ,−

) (
‖x−n − y−n ‖2 + ‖ỹ−n − λy−n ‖2

)

≥ 1− 4γ2

(
1 +

1

k2
λ,−

)
> 0.

This implies λ ∈ σ++(B). ¤

5 Spectral points of type π for selfadjoint operators and relations
in Krein spaces

In this section we study the properties of spectral points of type π+ and
type π− for selfadjoint relations in Krein spaces. In particular it will turn out
in Theorem 5.3 below that selfadjoint relations are locally definitizable in the
sense of [23,24] (or even definitizable, cf. [13,27]) over subintervals of R which
consist of spectral points of type π+, type π− and regular points only.

Recall first that the adjoint A+ of a linear relation A in the Krein space H is
defined as

A+ =








y

ỹ


 : [x̃, y] = [x, ỹ] for all




x

x̃


 ∈ A





.

It is clear that A+ is a closed linear relation in H and that this definition
generalizes the usual definition of the adjoint of a densely defined operator.
The relation A is said to be selfadjoint if A = A+ holds. We mention that
every real point in the spectrum of a selfadjoint relation A belongs to σ̃ap(A)
and that σ++(A) ∪ σ−−(A) ⊂ R holds.

For the operator case Theorem 5.1 below coincides with [4, Theorem 18] and
[9, Theorem 4.1]. The idea of the proof is the same as part (ii) of the proof of
[28, Theorem 5.1].

Theorem 5.1 Let A be a selfadjoint relation in H with ρ(A) 6= ∅ and let ∆
be a compact subset of R such that

∆ ∩ σ̃(A) ⊂ σπ+(A) (resp. ∆ ∩ σ̃(A) ⊂ σπ−(A))
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holds. Assume, in addition, that each point of ∆ is an accumulation point of
ρ(A), i.e. ∆ ⊂ ρ(A). Then there exists an open neighbourhood U in C of ∆
such that the following holds.

(i) U \ R ⊂ ρ̃(A).
(ii) Either U ∩ σ(A) ∩ R ⊂ σ++(A) (resp. U ∩ σ(A) ∩ R ⊂ σ−−(A)) or there

exists a finite number of points λ1, . . . , λn in σπ+(A) (resp. σπ−(A)) such
that

(U ∩ σ̃(A) ∩ R) \ {λ1, . . . , λn} ⊂ σ++(A)(
resp. (U ∩ σ̃(A) ∩ R) \ {λ1, . . . , λn} ⊂ σ−−(A)

)
.

(5.1)

Proof. We prove the statements only for ∆ ∩ σ̃(A) ⊂ σπ+(A). Assume first
that ∞ /∈ ∆. As a consequence of Proposition 3.8 there is a bounded open
neighbourhood U in C of ∆ such that U ∩ σap(A) ⊂ σπ+(A). If a nonreal
λ ∈ U∩σ(A) does not belong to σap(A) then λ ∈ σap(A). Suppose the assertion
of the theorem is not true. Then, cf. Lemma 2.2, there exists a sequence (µn) ⊂
σap(A) ∩ U, (µn) ⊂ σπ+(A) \ σ++(A), such that µn 6= µm, µn 6= µm for n 6= m
and (µn) converges to some µ0 ∈ ∆. By Lemma 3.2, µ0 ∈ σπ+(A) \ σ++(A).
By Theorem 3.10, for every n ∈ N, we have µn ∈ σp(A) and there exists an
eigenvector xn of A corresponding to µn which is nonpositive, [xn, xn] ≤ 0. We
have [xn, xm] = 0 for n 6= m.

Let L0 be the linear span of the elements
(

xn
µnxn

)
∈ H × H, n ∈ N. Then

L := L0 is a nonpositive subspace of H×H. Let AL := A ∩ L. There are two
possibilities.

a) AL − µ0 has closed range with dim ker (AL − µ0) < ∞. As all µn, n ∈ N,
are eigenvalues of AL there exists a neighbourhood in C of µ0 which
consists only of eigenvalues of A, cf. [12, Theorem 2.4]. This contradicts
the fact that µ0 is an accumulation point of ρ(A).

b) It is not true that AL−µ0 has a closed range with dim ker (AL−µ0) < ∞.
Then for any ε > 0 and an arbitrary subspaceN of AL with codimAL N <

∞ there exists an
(

f

f̃

)
∈ N such that ‖f‖ = 1 and ‖f̃ − µ0f‖ < ε. The

same construction as in the proof of Theorem 3.9 shows that there exists

a sequence
(

fn

f̃n

)
∈ AL, n = 1, 2, . . ., with ‖fn‖ = 1 and ‖f̃n − µ0fn‖ → 0

as n → ∞ such that (fn) converges weakly to zero. Since
(

fn

f̃n

)
∈ L

we have [fn, fn] ≤ 0, n ∈ N. By Theorem 3.9 this contradicts µ0 ∈
σπ+(A) \ σ++(A).

If∞ ∈ ∆ we choose two closed subsets ∆1 and ∆2 of R with∞ /∈ ∆1,∞ ∈ ∆2,
0 /∈ ∆2 and ∆ = ∆1∪∆2. The relation A−1 is selfadjoint and each point of the
set {λ−1 : λ ∈ ∆2 \ {∞}}∪{0} is an accumulation point of ρ(A−1). Moreover,
each point of that set belongs to σπ+(A−1) ∪ ρ(A−1), cf. Lemma 3.7. By the
first part of this proof and Lemma 3.7 the assertion of Theorem 5.1 follows. ¤
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Next we recall the notion of locally definitizable selfadjoint relations, see, e.g.
[24]. For this let Ω be some domain in C symmetric with respect to the real
axis such that Ω∩R 6= ∅ and the intersections of Ω with the upper and lower
open half-planes are simply connected.

Definition 5.2 Let A be a selfadjoint relation in the Krein space H such that
σ(A)∩ (Ω\R) consists of isolated points which are poles of the resolvent of A,
and no point of Ω∩R is an accumulation point of the non-real spectrum of A
in Ω. The relation A is said to be definitizable over Ω, if the following holds.

(i) Every point µ ∈ Ω ∩ R has an open connected neighbourhood Iµ in R
such that each component of Iµ\{µ} belongs either to σ++(A) ∪ ρ̃(A) or
to σ−−(A) ∪ ρ̃(A).

(ii) For every finite union ∆ of open connected subsets of R, ∆ ⊂ Ω ∩ R,
there exists m ≥ 1, M > 0 and an open neighbourhood U of ∆ in C such
that

‖(A− λ)−1‖ ≤ M
(1 + |λ|)2m−2

|Im λ|m
holds for all λ ∈ U\R.

By [24, Theorem 4.7] a selfadjoint relation A in H is definitizable over C if and
only if A is definitizable, that is, the resolvent set of A is nonempty and there
exists a rational function r 6= 0 with poles only in ρ(A) such that r(A) ∈ L(H)
is a nonnegative operator in K, that is

[r(A)x, x] ≥ 0

holds for all x ∈ H (see [27] and [13, §4 and §5]).

Theorem 5.3 Let A be a selfadjoint relation in H and let ∆ be a closed
connected subset of R such that

∆ ∩ σ̃(A) ⊂ σπ+(A) ∪ σπ−(A)

holds. Assume that each point of ∆ is an accumulation point of ρ(A), i.e.
∆ ⊂ ρ(A). Then there exists a domain Ω ⊂ C symmetric with respect to real
line with Ω ∩ C+ and Ω ∩ C− simply connected such that ∆ ⊂ Ω and A is
definitizable over Ω.

Proof. Assume first ∞ /∈ ∆. Then ∆ is a closed bounded interval, ∆ = [a, b].
By Theorem 5.1 we find real numbers a0, a

′
0, b0, b

′
0 with a0 < a′0 < a < b <

b′0 < b0 such that either [a0, a) ⊂ σ++(A) ∪ ρ(A) or [a0, a) ⊂ σ−−(A) ∪ ρ(A)
and such that either (b, b0] ⊂ σ++(A) ∪ ρ(A) or (b, b0] ⊂ σ−−(A) ∪ ρ(A).
Moreover, we choose a0 and b0 in such a way that no point of [a0, b0] is an
accumulation point of the non-real spectrum of A, see Theorem 5.1. Then
[24, Theorem 3.18] implies the existence of a (local) spectral function of A on
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(a0, a
′
0) and on (b′0, b0). Therefore, the Krein space H can be written as the

direct orthogonal sum

H = E((a0, a
′
0) ∪ (b′0, b0))H [+̂]

(
I − E((a0, a

′
0) ∪ (b′0, b0))

)
H

and with respect to this decomposition the selfadjoint relation A becomes the
direct orthogonal sum of the selfadjoint relations

A1 := A ∩
(
E((a0, a

′
0) ∪ (b′0, b0))H

)2

and
A2 := A ∩

((
I − E((a0, a

′
0) ∪ (b′0, b0))

)
H

)2
,

A = A1 [+̂] A2, where the spectrum of A2 is a subset of [a0, a
′
0]∪ [b′0, b0] and the

spectrum of A2 belongs to C \ {(a0, a
′
0) ∪ (b′0, b0)}. Then, with Theorem 5.1,

the interval (a′0, b
′
0) is a spectral set for the operator A2, hence the Riesz-

Dunford projection E(a′0,b′0) corresponding to (a′0, b
′
0) and A2 is defined. Now,

by [4, Theorem 23], there exists a domain Ω in C with the properties stated in
Theorem 5.3 such that A2E(a′0,b′0) is definitizable over Ω. Thus, A is definitizable
over Ω.

If ∞ ∈ ∆ we choose two closed connected subsets ∆1 and ∆2 of R with
∞ /∈ ∆1, ∞ ∈ ∆2, 0 /∈ ∆2 and ∆ = ∆1 ∪ ∆2. Then by the first part of this
proof and by Lemma 3.7 there exist domains Ω1 and Ω2, ∆1 ⊂ Ω1, ∆2 ⊂ Ω2,
with the properties stated in the Theorem 5.3 such that A is definitizable over
Ω1 and A−1 is definitizable over {λ−1 : λ ∈ Ω2 \ {∞}} ∪ {0}. Then it follows
that A is definitizable over Ω = Ω1 ∪ Ω2. ¤

Theorem 5.3 together with Corollary 4.3 now implies a result on compact
perturbations which is well-known, see [8]. We mention that it was proved for
bounded operators in [28] and in [23] for unbounded operators under some
additional assumptions.

Theorem 5.4 Let A be a selfadjoint relation in H which is definitizable over
some domain Ω ⊂ C and let Ω \ R ⊂ ρ(A). 3 Assume that ∆ = Ω ∩ R is an
open connected set such that

∆ ∩ σ̃(A) ⊂ σπ+(A) (∆ ∩ σ̃(A) ⊂ σπ−(A))

holds. If B is a selfadjoint relation in H, ρ(B)∩Ω 6= ∅ and (A−µ)−1−(B−µ)−1

is a compact operator for some, and hence for all, µ ∈ ρ(A)∩ ρ(B), then B is
also definitizable over Ω and

∆ ∩ σ̃(B) ⊂ σπ+(B) (resp. ∆ ∩ σ̃(B) ⊂ σπ−(B)).

3 We remark that in the formulation of Theorem 29 in [4] the assumption Ω \R ⊂
ρ(A) is missing.
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