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Abstract

For the chromatic index χ′(G) of a (multi)graph G, there are two trivial
lower bounds, namely the maximum degree ∆(G) and the density W(G) =
maxH⊆G,|V (H)|≥2 d|E(H)|/ b|V (H)|/2ce.

A famous conjectures due to Goldberg [3] and Seymour [10] says that
every graph G satisfies χ′(G) ≤ max{∆(G) + 1,W(G)}. This means that
χ′(G) = W(G) for every graph G with χ′(G) ≥ ∆(G) + 2. The considered
class of graphs J can be subdivided into an ascending sequence of classes
(Jm)m≥3, and for m ≤ 13 the conjecture is already proved. The ”last”
step was done by Favrholdt, Stiebitz and Toft [2] 2006, using and extend-
ing results from Tashkinov [12]. These methods are based on a coloring
structure called Tashkinov tree. In this paper the same methods are used
and extended to handle the ”next” step m ≤ 15. This leads to the result
χ′(G) ≤ max

{⌊
15
14∆(G) + 12

14

⌋
,W(G)

}
for every graph G.

Furthermore, the used methods also lead to several improvements of other
known upper bounds for the chromatic index. In particular, an asymptotic
approximation of the chromatic index can be obtained. We prove that for
every ε > 0 and every graph G satisfying ∆(G) ≥ 1

2ε2
the estimate χ′(G) ≤

max{(1 + ε)∆(G),W(G)} holds. This extends a result of Kahn [5] as well as
a result of Sanders and Steurer [7].

1 Notation

1.1 Graphs

By a graph we mean a finite undirected graph without loops, but possibly with
multiple edges. The vertex set and the edge set of a graph G are denoted by V (G)
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and E(G) respectively. For a vertex x ∈ V (G) let EG(x) denote the set of all edges of
G that are incident with x. Two distinct edges of G incident to the same vertex will
be called adjacent edges. Furthermore, if X, Y ⊆ V (G) then let EG(X,Y ) denote
the set of all edges of G joining a vertex of X with a vertex of Y . We write EG(x, y)
instead of EG({x}, {y}). Two distinct vertices x, y ∈ V (G) with EG(x, y) 6= ∅ will
be called adjacent vertices or neighbours.

The degree of a vertex x ∈ V (G) is dG(x) = |EG(x)|, and the multiplicity of two
distinct vertices x, y ∈ V (G) is µG(x, y) = |EG(x, y)|. Let ∆(G) and µ(G) denote
the maximum degree and the maximum multiplicity of G respectively. A graph G is
called simple if µ(G) ≤ 1.

For a graph G and a set X ⊆ V (G) let G[X] denote the subgraph induced by X,
that is V (G[X]) = X and E(G[X]) = EG(X, X). Further, let G−X = G[V (G)\X].
We also write G − x instead of G − {x}. For F ⊆ E(G) let G − F denote the
subgraph H of G satisfying V (H) = V (G) and E(H) = E(G)\F . If F = {e} is a
singleton, we write G− e rather than G− {e}.

By a path, a cycle or a tree we usually mean a graph or subgraph rather than
a sequence consisting of edges and vertices. The only exception in this paper will
be the Tashkinov tree. If P is a path of length p with V (P ) = {v0, . . . , vp} and
E(P ) = {e1, . . . , ep} such that ei ∈ EP (vi−1, vi) for i = 1, . . . , p, then we also write
P = P (v0, e1, v1, . . . , ep, vp). Clearly, the vertices v0, . . . , vp are distinct, and we say
that v0 and vp are the endvertices of P or that P is a path joining v0 and vp.

1.2 Edge Colourings

By a k-edge-coloring of a graph G we mean a map ϕ : E(G) → {1, . . . , k} that
assigns to every edge e of G a colour ϕ(e) ∈ {1, . . . , k} such that no two adjacent
edges receive the same colour. The set of all k-edge-colourings of G is denoted by
Ck(G). The chromatic index or edge chromatic number χ′(G) is the smallest integer
k ≥ 0 such that Ck(G) 6= ∅.

In the classic papers by Shannon [11] and Vizing [13, 14] a simple but very useful
recolouring technique was developed, dealing with edge coloring problems in graphs.
Suppose that G is a graph and ϕ is a k-edge-coloring of G. To obtain a new coloring,
choose two distinct colours α, β, and consider the subgraph H with V (H) = V (G)
and E(H) = {e ∈ E(G) |ϕ(e) ∈ {α, β}}. Then every component of H is either a
path or an even cycle and we refer to such a component as an (α, β)-chain of G
with respect to ϕ. Now choose an arbitrary (α, β)-chain C of G with respect to ϕ.
If we change the colours α and β on C, then we obtain a k-edge-coloring ϕ′ of G
satisfying

ϕ′(e) =





ϕ(e) if e ∈ E(G)\E(C)
β if e ∈ E(C) and ϕ(e) = α
α if e ∈ E(C) and ϕ(e) = β.
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In what follows, we briefly say that the coloring ϕ′ is obtained from ϕ by recolouring
C and write ϕ′ = ϕ/C. Furthermore, for every vertex v ∈ V (G) we denote by
Pv(α, β, ϕ) the unique (α, β)-chain with respect to ϕ that contains the vertex v. For
two vertices v, w ∈ V (G), the chains Pv(α, β, ϕ) and Pw(α, β, ϕ) are either equal or
vertex disjoint.

Consider a graph G and a coloring ϕ ∈ Ck(G). For a vertex v ∈ V (G) we define
the two colour sets

ϕ(v) = {ϕ(e) | e ∈ EG(v)}
and

ϕ̄(v) = {1, . . . , k}\ϕ(v).

We call ϕ(v) the set of colours present at v and ϕ̄(v) the set of colours missing at
v with respect to ϕ. For a vertex set X ⊆ V (G) we define ϕ̄(X) =

⋃
x∈X ϕ̄(x).

If α, β ∈ {1, . . . , k} are two distinct colours and u, v are two distinct vertices of G
satisfying α ∈ ϕ̄(u) and β ∈ ϕ̄(v), then (u, v) is called an (α, β)-pair with respect
to ϕ.

Let α, β ∈ {1, . . . , k} be two distinct colours. Moreover, let v ∈ V (G) and
P = Pv(α, β, ϕ). If v is a vertex v of G such that exactly one of the two colours α
or β is missing at v with respect to ϕ, then P is a path where one endvertex is v
and the other endvertex is some vertex u 6= v such that either α or β is missing at
u. For the coloring ϕ′ = ϕ/P we have ϕ′ ∈ Ck(G). Moreover, if w is an endvertex
of P then we have

ϕ̄′(w) =





(ϕ̄(w)\{β}) ∪ {α} if ϕ̄(w) ∩ {α, β} = {β}
(ϕ̄(w)\{α}) ∪ {β} if ϕ̄(w) ∩ {α, β} = {α}
(ϕ̄(w) if ϕ̄(w) ∩ {α, β} = {α, β}

For all other vertices w beside the endvertices of P , we have ϕ̄′(w) = ϕ̄(w). These
facts shall be used quite often without mentioning it explicitly.

1.3 Critical graphs

Let G be a graph. We call G critical (with respect to χ′) if χ′(H) < χ′(G) for every
proper subgraph H of G. If G is critical and χ′(G) = k then we also say that G is
k-critical. We call e ∈ E(G) a critical edge of G if χ′(G− e) = χ′(G)− 1. Clearly,
G is critical if and only if G is connected and every edge of G is critical. Moreover,
χ′(G) ≤ k if and only if G does not contain a (k + 1)-critical subgraph.

2 Elementary graphs

Consider a graph G and a coloring ϕ ∈ Ck(G). Clearly for every colour γ ∈
{1, . . . , k} and every subgraph H of G with |V (H)| ≥ 2 the edge set Eγ(H) = {e ∈
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E(H) |ϕ(e) = γ} is a matching in H. Consequently we have |Eγ(H)| ≤ |V (H)|
2

, and

therefore |E(H)| ≤ k
⌊
|V (H)|

2

⌋
. This observation leads to the following parameter for

a graph G with |V (G)| ≥ 2, namely the density

W(G) = max
H⊆G

|V (H)|≥2

⌈
|E(H)|⌊
1
2
|V (H)|⌋

⌉
.

For a graph G with |V (G)| ≤ 1 define W(G) = 0. Then, clearly, χ′(G) ≥ W(G) for
every graph G. A graph G satisfying χ′(G) = W(G) is called an elementary graph.
The following conjecture seems to have been thought of first by Goldberg [3] around
1970 and, independently, by Seymour [10] in 1977.

Conjecture 2.1 (Goldberg [3] 1973 and Seymour [10] 1979) Every graph G
with χ′(G) ≥ ∆(G) + 2 is elementary.

The parameter W is related to the so-called fractional chromatic index. A frac-
tional edge coloring of a graph G is an assignment of a non-negative weight wM to
each matching M of G such that for every edge e ∈ E(G) we have

∑
M :e∈M

wM ≥ 1.

Then the fractional chromatic index χ′f (G) is the minimum value of
∑

M wM where
the sum is over all matchings M of G and the minimum is over all fractional edge
colourings w of G. In case of |E(G)| = 0 we have χ′f (G) = 0. From the definition
follows that χ′f (G) ≤ χ′(G) for every graph G. The computation of the chromatic
index is NP-hard, but with matching techniques one can compute the fractional
chromatic index in polynomial time, see [8, 9] for a proof.

From Edmonds’ matching polytope theorem the following characterization of the
fractional chromatic index of an arbitrary graph G can be obtained (see [8, 9] for
details):

χ′f (G) = max{∆(G), max
H⊆G

|V (H)|≥2

|E(H)|⌊
1
2
|V (H)|⌋}.

As an immediate consequence of this characterization we obtain W(G) ≤ ∆(G)
if χ′f (G) = ∆(G), and W(G) =

⌈
χ′f (G)

⌉
if χ′f (G) > ∆(G). This implies, that

Goldberg’s conjecture is equivalent to the claim that χ′(G) =
⌈
χ′f (G)

⌉
for every

graph G with χ′(G) ≥ ∆(G) + 2.
The following result due to Kahn [5] shows that the fractional chromatic index

asymptotically approximates the chromatic index.

Theorem 2.2 (Kahn [5] 1995) For every ε ≥ 0 there is a ∆ε such that for any
graph G with χ′f (G) > ∆ε we have χ′(G) < (1 + ε)χ′f (G).
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This result was proven by probabilistic methods. We will extend this result and
show, using constructive colouring arguments, that for every ε > 0 every graph G
with ∆(G) ≥ 1

2ε2
satisfies χ′(G) ≤ max{(1 + ε)∆(G),W(G)}, see Section 5.

Another equivalent formulation of Goldberg’s conjecture can be obtained as fol-
lows. For an integer m ≥ 3 let Jm denote the class of all graphs G with

χ′(G) >
m

m− 1
∆(G) +

m− 3

m− 1
.

Then for every integer m ≥ 3 we have Jm ⊆ Jm+1. Moreover, the class

J =
∞⋃

m=3

Jm

consists of all graphs G with χ′(G) ≥ ∆(G)+2. Consequently, there is an equivalent
formulation for Goldberg’s Conjecture:

Conjecture 2.3 Let m ≥ 3 be an integer. Then every graph G with χ′(G) >
m

m−1
∆(G) + m−3

m−1
is elementary.

Up to now, this conjecture is known to be true for m ≤ 13. It was proved for
m = 5 by Sørensen (unpublished), Andersen [1] and Goldberg [3], for m = 7 by
Sørensen (unpublished) and Andersen [1], for m = 9 by Goldberg [4], for m = 11 by
Nishizeki and Kashiwagi [6] and by Tashkinov [12] and, eventually, for m = 13 by
Favrholdt, Stiebitz and Toft [2]. The methods used by Tashkinov [12] and extended
by Favrholdt, Stiebitz and Toft [2], shall be used here, too, to show the following
result.

Theorem 2.4 Every graph G with

χ′(G) >
15

14
∆(G) +

12

14

is elementary.

As an immediate consequence of Theorem 2.4 we get the following upper bound
for the chromatic index.

Corollary 2.5 Every graph G satisfies

χ′(G) ≤ max

{⌊
15

14
∆(G) +

12

14

⌋
,W(G)

}
.

In order to prove Theorem 2.4 it is sufficient to show that every critical graph
in J15 is elementary. This follows from the next result.
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Proposition 2.6 Let m ≥ 3 be an odd integer. If every critical graph in Jm is
elementary, then every graph in Jm is elementary, too.

Proof: Let G ∈ Jm. Clearly, G contains a critical subgraph H with χ′(H) = χ′(G).
Since ∆(H) ≤ ∆(G), we have H ∈ Jm. Then, by assumption, H is an elementary
graph. This implies W(G) ≤ χ′(G) = χ′(H) = W(H) ≤ W(G) and therefore χ′(G) =
W(G). Hence G is an elementary graph, too.

The concept of elementary graphs is closely related to the concept of elementary
sets. Consider a graph G, an edge e ∈ E(G), a coloring ϕ ∈ Ck(G− e) and a vertex
set X ⊆ V (G). Then X is called elementary with respect to ϕ if ϕ̄(u) ∩ ϕ̄(v) = ∅
for every two distinct vertices u, v ∈ X. The following result provides some basic
facts about elementary sets which will be useful for our further investigations.

Proposition 2.7 (Favrholdt, Stiebitz and Toft [2] 2006) Let G be a graph
with χ′(G) = k+1 for an integer k ≥ ∆ = ∆(G), and let e ∈ E(G) be a critical edge
of G. If X ⊆ V (G) is an elementary set with respect to a coloring ϕ ∈ Ck(G − e)
such that both endvertices of e are contained in X, then the following statements
hold:

(a) |X| ≤ |ϕ̄(X)|−2
k−∆

≤ k−2
k−∆

provided that k ≥ ∆ + 1

(b)
∑

v∈X dG(v) ≥ k(|X| − 1) + 2

(c) Suppose that

χ′(G) >
m

m− 1
∆(G) +

m− 3

m− 1

for an integer m ≥ 3. Then |X| ≤ m − 1 and, moreover, |ϕ̄(X)| ≥ ∆ + 1
provided that |X| = m− 1.

Let G be a graph and let e ∈ E(G). Moreover, let X ⊆ V (G) and ϕ ∈ Ck(G−e).
The set X is called closed with respect to ϕ if for every edge f ∈ EG(X, V (G)\X)
the colour ϕ(f) is present at every vertex of X, i.e. ϕ(f) ∈ ϕ(v) for every v ∈ X.
Furthermore, the set X is called strongly closed with respect to ϕ if X is closed and
ϕ(f) 6= ϕ(f ′) for every two distinct edges f, f ′ ∈ EG(X,V (G)\X). The relations
between elementary graphs and elementary and strongly closed sets are shown by
the following result, which is implicitly contained in the papers by Andersen [1] and
Goldberg [4]. A proof of this theorem can be found in [2].

Theorem 2.8 (Favrholdt, Stiebitz and Toft [2] 2006) Let G be a graph with
χ′(G) = k+1 for an integer k ≥ ∆(G). If G is critical, then the following conditions
are equivalent.

(a) G is elementary.
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(b) For every edge e ∈ E(G) and every coloring ϕ ∈ Ck(G − e) the set V (G) is
elementary with respect to ϕ.

(c) There is an edge e ∈ E(G) and a coloring ϕ ∈ Ck(G − e) such that V (G) is
elementary with respect to ϕ.

(d) There is an edge e ∈ E(G), a coloring ϕ ∈ Ck(G − e) and a set X ⊆ V (G)
such that X contains the two endvertices of e and X is elementary as well as
strongly closed with respect to ϕ.

This gives the approach to prove Theorem 2.4. We will show, that for every
critical graph in J15 there is an edge e ∈ EG(x, y), a coloring ϕ ∈ Ck(G − e) and a
vertex set X ⊆ V (G) such that x, y ∈ X and X is both elementary and strongly
closed with respect to ϕ. This, by Theorem 2.8 and Proposition 2.6, will be sufficient
to prove Theorem 2.4. The construction of the desired vertex set X highly differs,
depending on several properties of the graph G. These cases are independently
analysed in Section 4. Due to theses results, the proof itself of Theorem 2.4 is
presented at the end of Section 4. In preparation the necessary methods and results
from Tashkinov [12] and Favrholdt, Stiebitz and Toft [2] will be summarized and
extended in the next section.

3 Tashkinov trees

3.1 The basic Tashkinov tree

Definition 3.1 Let G be a graph and let e ∈ E(G) be an edge such that χ′(G−e) =
k. By a Tashkinov tree with respect to e and a coloring ϕ ∈ Ck(G − e) we mean a
sequence (y0, e1, y1, . . . , en, yn) consisting of edges e1, . . . , en and vertices y0, . . . , yn

satisfying the following two conditions:

(T1) The vertices y0, . . . , yn are distinct, e1 = e and for i = 1, . . . , n we have ei ∈
EG(yi, yj) where 0 ≤ j < i.

(T2) For every edge ei with 2 ≤ i ≤ n there is a vertex yj with 0 ≤ j < i such that
ϕ(ei) ∈ ϕ̄(yj).

For a Tashkinov tree T = (y0, e1, y1, . . . , en, yn) with respect to e and ϕ we
intuitively denote V (T ) = {y0, . . . , yn} and E(T ) = {e1, . . . , en}. In this paper
Tashkinov trees will be the basic structures for coloring graphs. One of their most
important properties is their elementarity as the following result states.
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Theorem 3.2 (Tashkinov [12] 2000) Let G be a graph with χ′(G) = k+1 for an
integer k ≥ ∆(G) + 1, let e ∈ E(G) be a critical edge of G and let ϕ ∈ Ck(G− e). If
T is a Tashkinov tree with respect to e and ϕ, then V (T ) is elementary with respect
to ϕ.

Let T = (y0, e1, y1, . . . , en, yn) be a Tashkinov tree with respect to e and ϕ.
Clearly Tyr = (y0, e1, y1, . . . , er, yr), where 1 ≤ r ≤ n, is a Tashkinov tree with
respect to e and ϕ, too.

We say that a colour α is used on T with respect to ϕ if ϕ(f) = α for some edge
f ∈ E(T ). Otherwise we say that α is unused on T with respect to ϕ.

Theorem 3.3 (Favrholdt, Stiebitz and Toft [2] 2006) Let G be a graph with
χ′(G) = k + 1 for an integer k ≥ ∆(G) + 1, let e ∈ E(G) be a critical edge of G and
let ϕ ∈ Ck(G − e) be a coloring. Moreover, let T be a maximal Tashkinov tree with
respect to e and ϕ and let T ′ = (y0, e1, y1, . . . , en, yn) be an arbitrary Tashkinov tree
with respect to e and ϕ. Then the following statements hold:

(a) V (T ) is elementary and closed both with respect to ϕ.

(b) |V (T )| is odd.

(c) V (T ′) ⊆ V (T ).

(d) There is a Tashkinov tree T̃ with respect to e and ϕ satisfying V (T̃ ) = V (T )
and T̃ yn = T ′.

(e) Suppose that (yi, yj) is a (γ, δ)-pair with respect to ϕ where 0 ≤ i < j ≤ n. Then
γ 6= δ and there is a (γ, δ)-chain P with respect to ϕ satisfying the following
conditions:

(1) P is a path with endvertices yi and yj.

(2) |E(P )| is even.

(3) V (P ) ⊆ V (T ).

(4) If γ is unused on T ′yj with respect to ϕ, then T ′ is a Tashkinov tree with
respect to the edge e and the coloring ϕ′ ∈ Ck(G − e) obtained from ϕ by
recolouring the (γ, δ)-chain P .

(f) G[V (T )] contains an odd cycle.
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3.2 Extended Tashkinov trees

Let G be a critical graph with χ′(G) = k+1 for a given integer k ≥ ∆(G)+1. Since
G is critical, for every edge e ∈ E(G) and every coloring ϕ ∈ Ck(G − e) there is a
Tashkinov tree T with respect to e and ϕ. Hence there is a largest number n such
that n = |V (T )| for such a Tashkinov tree T . We call n the Tashkinov order of G
and write t(G) = n. Furthermore, we denote by T (G) the set of all triples (T, e, ϕ)
such that e ∈ E(G), ϕ ∈ Ck(G − e) and T is a Tashkinov tree on n vertices with
respect to e and ϕ. Evidently T (G) 6= ∅.

For a triple (T, e, ϕ) ∈ T (G) we introduce the following notations. For a colour
α let Eα(e, ϕ) = {e′ ∈ E(G)\{e} |ϕ(e′) = α} the set of all edges of G coloured with
α with respect to ϕ. Further let

Eα(T, e, ϕ) = Eα(e, ϕ) ∩ EG(V (T ), V (G)\V (T )).

The colour α is said to be defective with respect to (T, e, ϕ) if |Eα(T, e, ϕ)| ≥ 2. The
set of all defective colours with respect to (T, e, ϕ) is denoted by Γd(T, e, ϕ). The
colour α is said to be free with respect to (T, e, ϕ) if α ∈ ϕ̄(V (T )) and α is unused
on T with respect to ϕ. The set of all free colours with respect to (T, e, ϕ) is denoted
by Γf (T, e, ϕ).

Proposition 3.4 (Favrholdt, Stiebitz and Toft [2] 2006) Let G be a critical
graph with χ′(G) = k + 1 for an integer k ≥ ∆(G) + 1, and let (T, e, ϕ) ∈ T (G).
Then the following statements hold:

(a) |V (T )| = t(G) ≥ 3 is odd.

(b) V (T ) is elementary and closed both with respect to ϕ.

(c) V (T ) is strongly closed with respect to ϕ if Γd(T, e, ϕ) = ∅.
(d) If α ∈ ϕ̄(V (T )) then Eα(T, e, ϕ) = ∅.
(e) If α ∈ Γd(T, e, ϕ) then |Eα(T, e, ϕ)| ≥ 3 is odd.

(f) For a vertex v ∈ V (T ) we have

|ϕ̄(v)| =
{

k − dG(v) + 1 ≥ 2 if e ∈ EG(v)
k − dG(v) ≥ 1 otherwise.

(g) |Γf (T, e, ϕ)| ≥ 4.

(h) Every colour in Γd(T, e, ϕ) ∪ Γf (T, e, ϕ) is unused on T with respect to ϕ.
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Let G be a critical graph with χ′(G) = k + 1 where k ≥ ∆(G) + 1, and let
(T, e, ϕ) ∈ T (G). A vertex v in V (G) \V (T ) is called absorbing with respect to
(T, e, ϕ), if for every colour δ ∈ ϕ̄(v) and every free colour γ ∈ Γf (T, e, ϕ) with
γ 6= δ the (γ, δ)-chain Pv(γ, δ) contains a vertex u ∈ V (T ) satisfying γ ∈ ϕ̄(u).
Since, by Proposition 3.4(b), V (T ) is elementary with respect to ϕ, this vertex u
is the unique vertex in T with γ ∈ ϕ̄(u) and, moreover, Pv(γ, δ) is a path whose
endvertices are u and v. Clearly u belongs to Pv(γ, δ) if and only if v belongs to
Pu(γ, δ). Let A(T, e, ϕ) denote the set of all vertices in V (G) \ V (T ) which are
absorbing with respect to (T, e, ϕ).

Proposition 3.5 (Favrholdt, Stiebitz and Toft [2] 2006) Let G be a critical
graph with χ′(G) = k + 1 for an integer k ≥ ∆(G) + 1, and let (T, e, ϕ) ∈ T (G).
Then the vertex set V (T ) ∪ A(T, e, ϕ) is elementary with respect to ϕ.

Let P be a path and let u, v be two vertices of P . Then there is a unique subpath
P ′ of P having u and v as endvertices. We denote this subpath by uPv or vPu. If
we fix an endvertex of P , say w, then we obtain a linear order ¹(w,P ) of the vertex
set of P in a natural way, where x ¹(w,P ) y if the vertex x belongs to the subpath
wPy.

Proposition 3.6 (Favrholdt, Stiebitz and Toft [2] 2006) Let G be a critical
graph with χ′(G) = k + 1 for an integer k ≥ ∆(G) + 1, and let (T, e, ϕ) ∈ T (G).
Let α ∈ Γd(T, e, ϕ) be a defective colour and let u be a vertex of T such that ϕ̄(u)
contains a free colour γ ∈ Γf (T, e, ϕ). Then for the (α, γ)-chain P = Pu(α, γ, ϕ) the
following statements hold:

(a) P is a path where one endvertex is u and the other endvertex is some vertex
v ∈ V (G)\V (T ).

(b) Eα(T, e, ϕ) = E(P ) ∩ EG(V (T ), V (G)\V (T )).

(c) In the linear order ¹(u,P ) there is a first vertex v1 that belongs to V (G)\V (T )
and there is a last vertex v2 that belongs to V (T ) where v1 ¹(u,P ) v2.

(d) ϕ̄(v2) ∩ Γf (T, e, ϕ) = ∅.
(e) V (T ) ∪ {v1} is elementary with respect to ϕ.

We call v ∈ V (G) a defective vertex with respect to (T, e, ϕ) if there are two
distinct colours α and γ such that α ∈ Γd(T, e, ϕ) is a defective colour, γ ∈ Γf (T, e, ϕ)
is a free colour and v is the first vertex in the linear order ¹(u,P ) that belongs to
V (G)\V (T ), where u is the unique vertex in T with γ ∈ ϕ̄(u) and P = Pu(α, γ).
The set of all defective vertices with respect to (T, e, ϕ) is denoted by D(T, e, ϕ).
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Proposition 3.7 (Favrholdt, Stiebitz and Toft [2] 2006) Let G be a critical
graph with χ′(G) = k + 1 for an integer k ≥ ∆(G) + 1, and let (T, e, ϕ) ∈ T (G).
Then D(T, e, ϕ) ⊆ A(T, e, ϕ).

Consider an arbitrary triple (T, e, ϕ) ∈ T (G). Let γ ∈ ϕ̄(u) for a vertex u ∈ V (T )
and let δ ∈ Γd(T, e, ϕ). Clearly, the (γ, δ)-chain P = Pu(γ, δ, ϕ) is a path where u is
one endvertex of P and, moreover, exactly one of the two colours γ or δ is missing
at the second endvertex of P with respect to ϕ. Since V (T ) is elementary and δ is
present at every vertex in V (T ), both with respect to ϕ, the second endvertex of P
belongs to V (G)\V (T ). Hence in the linear order ¹(u,P ) there is a last vertex v that
belongs to V (T ). This vertex is said to be an exit vertex with respect to (T, e, ϕ).
The set of all exit vertices with respect to (T, e, ϕ) is be denoted by F (T, e, ϕ).

Lemma 3.8 Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥
∆(G) + 1, and let (T, e, ϕ) ∈ T (G). Then ϕ̄(F (T, e, ϕ)) ∩ Γf (T, e, ϕ) = ∅.

Proof: Let v ∈ F (T, e, ϕ). Then there is a vertex u ∈ V (T ), a colour γ ∈ ϕ̄(u) and
a colour δ ∈ Γd(T, e, ϕ) such that v is the last vertex in the linear order ¹(u,P ) that
belongs to V (T ), where P = Pu(γ, δ, ϕ). Clearly, P is a path with one endvertex u
and another endvertex z ∈ V (G)\V (T ).

Suppose there is a colour α ∈ ϕ̄(v)∩ Γf (T, e, ϕ). By Proposition 3.4(b), V (T ) is
elementary and closed with respect to ϕ, and therefore no edge in EG(V (T ), V (G)\
V (T )) is coloured with α or γ with respect to ϕ. Hence there is a coloring ϕ′ ∈ Ck(G−
e), obtained from ϕ by exchanging the colours α and γ on all edges in EG(V (G)\
V (T ), V (G) \V (T )). Then evidently (T, e, ϕ′) ∈ T (G), Γf (T, e, ϕ′) = Γf (T, e, ϕ)
and Γd(T, e, ϕ′) = Γd(T, e, ϕ). In particular, we have α ∈ ϕ̄′(v) ∩ Γf (T, e, ϕ′) and
δ ∈ Γd(T, e, ϕ′). Moreover, for P ′ = Pv(α, δ, ϕ′) we have P ′ = vPz and, therefore,
on the one hand we have |E(P ′) ∩ EG(V (T ), V (G)\V (T )| = 1. On the other hand
Proposition 3.6(b) implies |E(P ′) ∩ EG(V (T ), V (G)\V (T )| = |Eδ(T, e, ϕ′)| > 1, a
contradiction. Hence we have ϕ̄(v) ∩ Γf (T, e, ϕ) = ∅ and the proof is completed.

Definition 3.9 Let G be a critical graph with χ′(G) = k + 1 where k ≥ ∆(G) + 1,
and let (T, e, ϕ) ∈ T (G). Furthermore let Z be a vertex set with V (T ) ⊆ Z ⊆ V (G).
A sequence F = (e1, u1, . . . , ep, up) is called a fan at Z with respect to ϕ if the
following conditions hold:

(F1) The edges e1, . . . , ep ∈ E(G) as well as the vertices u1, . . . , up ∈ V (G) are
distinct.

(F2) For every i ∈ {1, . . . , p} there are two vertices z ∈ Z and z′ ∈ Z∪{u1, . . . , ui−1}
satisfying ei ∈ EG(z, ui) and ϕ(ei) ∈ ϕ̄(z′).
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Theorem 3.10 (Favrholdt, Stiebitz and Toft [2] 2006) Let G be a critical
graph with χ′(G) = k + 1 for an integer k ≥ ∆(G) + 1, and let (T, e, ϕ) ∈ T (G).
Furthermore let Y ⊆ D(T, e, ϕ) and Z = V (T ) ∪ Y . If F is a fan at Z with respect
to ϕ, then Z ∪ V (F ) is elementary with respect to ϕ.

3.3 Normalized Tashkinov trees

Consider an arbitrary triple (T, e, ϕ) ∈ T (G). Then T has the form

T = (y0, e1, y1, . . . , en−1, yn−1)

where n = t(G). Then T is called a normal Tashkinov tree with respect to e and ϕ
if there are two colours α ∈ ϕ̄(y0) and β ∈ ϕ̄(y1), an integer 2 ≤ p ≤ n − 1 and an
edge f ∈ EG(y0, yp−1) such that P (y1, e2, y2, . . . , ep−1, yp−1, f, y0) is an (α, β)-chain
with respect to ϕ. In this case Typ−1 is called the (α, β)-trunk of T and the number
p is called the height of T denoted by h(T ) = p. Furthermore let T N(G) denote
the set of all triples (T, e, ϕ) ∈ T (G) for which T is a normal Tashkinov tree, and
let h(G) denote the greatest number p such that there is a triple (T, e, ϕ) ∈ T N(G)
with h(T ) = p. The following lemma shows that normal Tashkinov trees can be
generated from arbitrary ones, which also implies that T N(G) 6= ∅.
Lemma 3.11 Let G be a critical graph with χ′(G) = k+1 for an integer k ≥ ∆(G)+
1, and let (T, e, ϕ) ∈ T (G) with e ∈ EG(x, y). Then there are two colours α ∈ ϕ̄(x)
and β ∈ ϕ̄(y), and there is a Tashkinov tree T ′ with respect to e and ϕ satisfying
V (T ′) = V (T ), (T ′, e, ϕ) ∈ T N(G) and h(T ′) = |V (P )| where P = Px(α, β, ϕ).

Proof: Since k ≥ ∆(G) + 1 there are two colours α ∈ ϕ̄(x) and β ∈ ϕ̄(y). By
Theorem 3.3(e) we have α 6= β, and P is an (α, β)-chain with respect to ϕ having
endvertices x and y. This means P is a path of the form

P = P (v1, f2, v2, . . . , fp, vp)

with v1 = y and vp = x. Evidently fj ∈ EG(vj−1, vj) and ϕ(fj) ∈ {α, β} ⊆ ϕ̄({x, y})
for all j ∈ {2, . . . , p}. Hence T1 = (x, e, y, f2, v2, . . . , fp−1, vp−1) is a Tashkinov tree
with respect to e and ϕ. By Theorem 3.3(d) there is a Tashkinov tree T ′ with respect
to e and ϕ with V (T ′) = V (T ) and T ′vp−1 = T1. Then T ′ is normal with respect
to e and ϕ, and therefore (T ′, e, ϕ) ∈ T N(G). Moreover, T1 is the (α, β)-trunk of T ′

and h(T ′) = |V (T1)| = |V (P )|, which completes the proof.

Consider an arbitrary triple (T, e, ϕ) ∈ T N(G) where T has the form T =
(y0, e1, y1, . . . , en−1, yn−1). Then (T, e, ϕ) is called a balanced triple with respect
to e and ϕ if h(T ) = p = h(G) and ϕ(e2j) = ϕ(e2j−1) for p < 2j < n. Let T B(G)
denote the set of all balanced triples (T, e, ϕ) ∈ T (G). The following lemma shows
that T B(G) 6= ∅.

12



Lemma 3.12 Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥
∆(G) + 1. Then the following statements hold:

(a) h(G) ≥ 3 is odd.

(b) If (T, e, ϕ) ∈ T N(G) with h(T ) = h(G), then there is a Tashkinov tree T ′ with
respect to e and ϕ with V (T ′) = V (T ) and (T ′, e, ϕ) ∈ T B(G), and moreover,
all colours used on T’ are used on T .

(c) T B(G) 6= ∅.

Proof: Let (T, e, ϕ) ∈ T N(G) with h(T ) = h(G) = p. Then T has the form T =
(y0, e1, y1, . . . , en−1, yn−1) and Typ is the (α, β)-trunk of T . By definition we have α ∈
ϕ̄(y0), β ∈ ϕ̄(y1) and there is an edge f ∈ EG(y0, yp−1) satisfying P = Py0(α, β, ϕ) =
P (y1, . . . , ep−1, yp−1, f, y0). Hence P is a path with two distinct endvertices, and
moreover P is alternately coloured with two colours with respect to ϕ. Since every
of these two colours is missing at one of the endvertices, we conclude that |E(P )| ≥ 2
is even. Hence p = h(G) ≥ 3 is odd and (a) is proved.

Now let i ≤ n the greatest odd integer for which there exists a Tashkinov tree
T ′ = (y′0, e

′
1, y

′
1, . . . , e

′
i−1, y

′
i−1) with respect to e and ϕ satisfying T ′y′p−1 = Typ−1,

ϕ(E(T ′)) ⊆ ϕ(E(T )) and ϕ(e′2j−1) = ϕ(e′2j) for p < 2j < i. Evidently, we have
i ≥ p, since T fulfils these requirements for i = p.

Now suppose that i < n. Then there is a smallest integer r satisfying yr ∈ V (T )\
V (T ′). Let y′i = yr and e′i = er. Hence e′i ∈ EG(V (T ′), y′i) and ϕ(e′i) ∈ ϕ̄(V (T ′)),
and therefore T1 = (T ′, e′i, y

′
i) is a Tashkinov tree with respect to e and ϕ. Let

γ = ϕ(e′i). Clearly |V (T1)| is even, γ ∈ ϕ̄(V (T1)) and, by Theorem 3.2, V (T1)
is elementary with respect to ϕ. Hence there is an edge e′i+1 ∈ EG(V (T1), y

′
i+1)

satisfying y′i+1 ∈ V (G)\V (T1) and ϕ(e′i+1) = γ. Evidently T2 = (T1, e
′
i+1, y

′
i+1) is

a Tashkinov tree with respect to e and ϕ satisfying T2y
′
p−1 = Typ−1, ϕ(E(T2)) ⊆

ϕ(E(T )) and ϕ(e′2j−1) = ϕ(e′2j) for p < 2j < i + 2. This contradicts the maximality
of i. Consequently, we have i = n and, by Theorem 3.3(d), V (T ′) = V (T ). Hence
(T ′, e, ϕ) ∈ T B(G) with ϕ(E(T ′)) ⊆ ϕ(E(T )) and (b) is proved. Furthermore, (c)
follows simply from (b) and the fact that T N(G) 6= ∅. This completes the proof.

Consider a graph G and a balanced triple (T, e, ϕ) ∈ T B(G). Then T has the
form

T = (y0, e1, y1, . . . , en−1, yn−1)

and Typ is the (α, β)-trunk of T , where p = h(G), α ∈ ϕ̄(y0) and β ∈ ϕ̄(y1).
Moreover, there is an edge fp ∈ EG(y0, yp−1) with ϕ(e0) = β. For i = 1, . . . , p − 1
let fi = ei. Clearly, the edges f1, . . . , fp form a cycle in G. Furthermore, the edge
f1 = e is uncoloured and the edges f2, . . . , fp are coloured alternately with α and β
with respect to ϕ. Now choose a j ∈ {1, . . . , p − 1}. Since (y0, y1) is a (α, β)-pair
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with respect to ϕ, there is a coloring ϕ′ ∈ Ck(G− fj+1) such that ϕ′(e′) = ϕ(e′) for
all edges e′ ∈ E(G)\{f1, . . . , fp} and the edges fj+2, . . . , fp, f1, . . . , fj are coloured
alternately with α and β with respect to ϕ′. Then

T ′ = (yjTyp−1, fp, y0Tyj−1, ep, yp, . . . , en−1, yn−1)

is a normal Tashkinov tree where T ′yj−1 is the (α, β)-trunk of T ′ and, moreover,
the triple (T ′, fj+1, ϕ

′) is balanced. We denote the new triple by (T ′, fj+1, ϕ
′) =

(T, e, ϕ)(y0 → yj).

4 Tashkinov trees and elementary graphs

In this section we will develop several conditions related to Tashkinov trees, which
will imply that a critical graph is elementary. Some of these results are generaliza-
tions of results implicitly given in [2], others, like the following, are new ones. The
next lemma analyses Tashkinov trees with a special structure, they will be used to
handle some of the cases for the proof of Theorem 2.4.

Lemma 4.1 Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥
∆(G) + 1, and let (T, e, ϕ) ∈ T (G). Furthermore let T be of the form

T = (y0, e1, y1, . . . , ep−1, yp−1, f
1
γ1

, u1
γ1

, f 2
γ1

, u2
γ1

, . . . , f 1
γs

, u1
γs

, f 2
γs

, u2
γs

)

where Γ = {γ1, . . . , γs} is a set of s colours, Y = {y0, . . . , yp−1} and the following
conditions hold:

(S1) f j
γ ∈ EG(Y, uj

γ) for every γ ∈ Γ and j ∈ {1, 2}.
(S2) ϕ(f 1

γ ) = ϕ(f 2
γ ) = γ ∈ ϕ̄(Y ) for every γ ∈ Γ.

(S3) ϕ(ej) /∈ Γ for 2 ≤ j ≤ p− 1.

(S4) For every v ∈ F (T, e, ϕ) there is a colour γ ∈ Γ satisfying γ ∈ ϕ̄(v).

Then G is an elementary graph.

Proof: By Proposition 3.4(b) V (T ) is elementary and closed both with respect to
ϕ.

If Γd(T, e, ϕ) = ∅ then we conclude from Proposition 3.4(c) that V (T ) is also
strongly closed with respect to ϕ. Then Theorem 2.8 implies that G is an elemen-
tary graph and we are done. For the rest of the proof we assume Γd(T, e, ϕ) 6= ∅.
Evidently, this implies F (T, e, ϕ) 6= ∅ and s ≥ 1.

Without loss of generality, we may also assume that
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(1) |F (T, e, ϕ)| = s and for every vertex v ∈ F (T, e, ϕ) there is a unique colour
γ ∈ Γ satisfying γ ∈ ϕ̄(v).

Proof of (1): Since V (T ) is elementary with respect to ϕ, for every γ ∈ Γ there
is a unique vertex v ∈ V (T ) satisfying γ ∈ ϕ̄(v). Hence, by (S4), there is a subset
Γ′ ⊆ Γ with s′ = |Γ′| = |F (T, e, ϕ)| so that for every vertex v ∈ F (T, e, ϕ) there is a
unique colour γ ∈ Γ′ satisfying γ ∈ ϕ̄(v).

Now let π : Γ → Γ a permutation satisfying π({γs−s′+1, . . . , γs}) = Γ′. Then,
clearly,

T ′ = (Typ−1, f
1
π(γ1), u

1
π(γ1), f

2
π(γ1), u

2
π(γ1), . . . , f

1
π(γs), u

1
π(γs), f

2
π(γs), u

2
π(γs))

is a Tashkinov tree with respect to e and ϕ and, moreover, (T ′, eϕ) fulfils conditions
similar to (S1)-(S4) just by replacing Γ and Y by Γ′ and Y ′ = Y ∪⋃

γ∈Γ\Γ′{u1
γ, u

2
γ},

respectively.
Consequently, if (1) doesn’t hold for (T, e, ϕ), Y and Γ, then we only need to

consider (T ′, e, ϕ), Y ′ and Γ′ instead. This justifies the assumption.

Since V (T ) is elementary with respect to ϕ, (1) implies that there is a one-to-one
correspondence between the s colours from Γ and the s vertices from F (T, e, ϕ), i.e.
every vertex v ∈ F (T, e, ϕ) corresponds to a colour γ ∈ Γ. This fact shall be used
quite often without mentioning it explicitly.

By (S2), all colours which are used on T with respect to ϕ, belong to ϕ̄(Y ).
Since V (T ) is elementary with respect to ϕ and ϕ̄(v) 6= ∅ for every v ∈ V (G), this
implies that ϕ̄(v) ∩ Γf (T, e, ϕ) 6= ∅ for every vertex v ∈ V (T )\Y . From Lemma 3.8
we then conclude

(2) F (T, e, ϕ) ⊆ Y .

For γ ∈ Γ let T − γ be the Tashkinov tree T without the edges f 1
γ , f 2

γ and
the vertices u1

γ, u
2
γ. Evidently T − γ is a Tashkinov tree with respect to e and ϕ.

Furthermore, let
Uγ = {u1

γ, u
2
γ}

and
Zγ = V (T − γ) = V (T )\Uγ.

Since V (T ) is elementary and closed with respect to ϕ, for every γ ∈ Γ and
every α ∈ ϕ̄(Zγ) \ {γ} there is an edge f ∈ EG(u1

γ, V (T )) with ϕ(f) = α. Now
suppose f ∈ EG(u1

γ, Zγ). Then there is a second edge f ′ ∈ EG(u2
γ, Zγ) with ϕ(f ′) =

α. Hence T ′ = (T − γ, f, u1
γ, f

′, u2
γ) is a Tashkinov tree with respect to e and

ϕ satisfying (T ′, e, ϕ) ∈ T (G), V (T ′) = V (T ) and γ ∈ Γf (T ′, e, ϕ). Moreover,
Γd(T ′, e, ϕ) = Γd(T, e, ϕ), which implies F (T ′, e, ϕ) = F (T, e, ϕ) and therefore γ ∈
ϕ̄(F (T ′, e, ϕ)) ∩ Γf (T ′, e, ϕ), a contradiction to Lemma 3.8. Hence f /∈ EG(u1

γ, Zγ),
but f ∈ EG(u1

γ, u
2
γ) and, therefore, the following statement holds:
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(3) EG(u1
γ, u

2
γ)∩Eα(e, ϕ) 6= ∅ for every colour γ ∈ Γ and every colour α ∈ ϕ̄(Zγ)\

{γ}.
From Proposition 3.4(f) it follows that |ϕ̄(y0)| ≥ 2. Since |Γ ∩ ϕ̄(y0)| ≤ 1, this

implies that there is a colour
α0 ∈ ϕ̄(y0)\Γ.

For every δ ∈ Γd(T, e, ϕ), let

Pδ = Py0(α0, δ, ϕ).

Since V (T ) is elementary and closed with respect to ϕ, and since α0 ∈ ϕ̄(V (T ))
and δ /∈ ϕ̄(V (T )), Pδ is a path where one endvertex is y0 and the other endvertex is
some vertex zδ ∈ V (G)\V (T ). Let v0

δ be the last vertex in the linear order ¹(y0,Pδ)

that belongs to V (T ), and let f 0
δ be the unique edge in E(P )∩EG(v0

δ , V (G)\V (T )).
Clearly, this edge belongs to Eδ(T, e, ϕ). Moreover, since v0

δ ∈ F (T, e, ϕ), by (1)
there is a unique colour γ(δ) ∈ Γ satisfying γ(δ) ∈ ϕ̄(v0

δ ). Then we claim that

(4) EG(Uγ(δ), Zγ(δ)) ∩ Eδ(e, ϕ) = ∅ for every δ ∈ Γd(T, e, ϕ).

Proof of (4): Suppose, on the contrary, that there is a colour δ ∈ Γd(T, e, ϕ) and
an edge g1 ∈ EG(Uγ(δ), Zγ(δ)) with ϕ(g1) = δ, say g1 is incident to u1

γ(δ). From (3)

we know that there is an edge g2 ∈ EG(u1
γ(δ), u

2
γ(δ)) with ϕ(g2) = α0.

Clearly, we have |EG(Uγ(δ), V (G)\V (T ))∩Eδ(e, ϕ)| ≤ 1. Then, evidently, Propo-
sition 3.4(e) implies |EG(Zγ(δ), V (G)\V (T ))∩Eδ(e, ϕ)| ≥ 2. Hence, there is an edge
g3 ∈ EG(Zγ(δ), V (G)\V (T ))\{f 0

δ } with ϕ(g3) = δ. Let u3 be the endvertex of g3

that belongs to V (G)\V (T ).
Now let P1 = v0

δPδzδ. Then, clearly, V (P1) ∩ V (T ) = {v0
δ}. Furthermore, since

α0, γ(δ) ∈ ϕ̄(V (T )) and V (T ) is closed with respect to ϕ, we can obtain a new
coloring ϕ1 ∈ Ck(G− e) from ϕ by changing the colours α0 and γ(δ) on all edges in
EG(V (G)\V (T ), V (G)\V (T )). Then we conclude that P1 = Pv0

δ
(γ(δ), δ, ϕ1). For the

coloring ϕ2 = ϕ1/P1 we obtain that ϕ2 ∈ Ck(G−e), and T1 = T−γ(δ) is a Tashkinov
tree with respect to e and ϕ2 satisfying V (T1) = Zγ(δ) and δ ∈ ϕ̄2(v

0
δ ) ⊆ ϕ̄2(V (T1)).

Since g1, g2, g3 neither belong to EG(V (G)\V (T ), V (G)\V (T )) nor to E(P1), their
colours didn’t change, and therefore we have ϕ2(g1) = ϕ2(g3) = δ and ϕ2(g2) = α0.
Then, evidently, T2 = (T1, g1, u

1
γ(δ), g2, u

2
γ(δ), g3, u3) is a Tashkinov tree with respect

to e and ϕ2 satisfying |V (T2)| > |V (T )| = t(G), a contradiction. This proves (4).

Now, for every δ ∈ Γd(T, e, ϕ), let P ′
δ defined by

P ′
δ = Pv0

δ
(γ(δ), δ, ϕ).

Evidently, P ′
δ is a path where one endvertex is v0

δ and the other endvertex is some
vertex z′δ ∈ V (G)\V (T ). Then we claim
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(5) V (P ′
δ) ∩ V (T ) = {v0

δ} for every δ ∈ Γd(T, e, ϕ).

Proof of (5): Suppose, on the contrary, that there is a δ ∈ Γd(T, e, ϕ) with V (P ′
δ)∩

V (T ) 6= {v0
δ}. Since v0

δ ∈ V (P ′
δ)∩V (T ), the last vertex v1 in the linear order ¹(v0

δ ,P ′δ)

belonging to V (T ) satisfies v1 6= v0
δ . Obviously, v1 ∈ F (T, e, ϕ), and from (2) it then

follows that v1 ∈ Y .
Clearly, there is an edge f1 ∈ EG(v1, V (G) \V (T )) with ϕ(f1) = δ. Let u0 ∈

V (G)\V (T ) be the second endvertex of f 0
δ and let u1 ∈ V (G)\V (T ) be the second

endvertex of f1. Furthermore let P1 = v0
δPδzδ and let P ′

1 = v1P
′
δz
′
δ. Then V (P1) ∩

V (T ) = {v0
δ} and V (P ′

1) ∩ V (T ) = {v1}. Since v1 ∈ F (T, e, ϕ), by (1) there is a
unique j ∈ {1, . . . , s} with γj ∈ ϕ̄(v1). Moreover, v1 6= v0

δ implies γ(δ) 6= γj. To
simplify notation, let γ = γ(δ).

Since V (T ) is closed with respect to ϕ, no edge in EG(V (T ), V (G) \V (T )) is
coloured with α0, γ or γj with respect to ϕ. Hence we can obtain two new colourings
from ϕ, the first one ϕ1 ∈ Ck(G−e) by changing the colours α0 and γ on all edges in
EG(V (G)\V (T ), V (G)\V (T )), the second one ϕ′1 ∈ Ck(G−e) by changing the colours
γ and γj on all edges in EG(V (G)\V (T ), V (G)\V (T )). Clearly (T, e, ϕ1) ∈ T (G)
and (T, e, ϕ′1) ∈ T (G), Γf (T, e, ϕ1) = Γf (T, e, ϕ′1) = Γf (T, e, ϕ), Γd(T, e, ϕ1) =
Γd(T, e, ϕ′1) = Γd(T, e, ϕ) and, moreover, P1 = Pv0

δ
(γ, δ, ϕ1) and P ′

1 = Pv1(γj, δ, ϕ
′
1).

For the coloring ϕ2 = ϕ1/P1 we then obtain that ϕ2 ∈ Ck(G−e), and T1 = T −γ
is a Tashkinov tree with respect to e and ϕ2 satisfying V (T1) = Zγ and δ ∈ ϕ̄2(v

0
δ ) ⊆

ϕ̄(V (T1)). Since f1 belongs neither to EG(V (G)\V (T ), V (G)\V (T )) nor to E(P1),
its colour didn’t change, so we have ϕ2(f1) = δ. Moreover, v1 ∈ Y ⊆ V (T1), and
therefore T2 = (T1, f1, u1) is a Tashkinov tree with respect to e and ϕ2.

Analogously, for the coloring ϕ′2 = ϕ′1/P
′
1 we obtain that ϕ′2 ∈ Ck(G − e), and

T ′
1 = T −γj is a Tashkinov tree with respect to e and ϕ′2 satisfying V (T ′

1) = Zγj
and

δ ∈ ϕ̄′2(v1) ⊆ ϕ̄(v(T ′
1)). Since f 0

δ belongs neither to EG(V (G)\V (T ), V (G)\V (T )) nor
to P ′

1, its colour didn’t change, so we have ϕ′2(f
0
δ ) = δ. Moreover, v0

δ ∈ Y ⊆ V (T ′
1),

and therefore T ′
2 = (T ′

1, f
0
δ , u0) is a Tashkinov tree with respect to e and ϕ′2.

Let Z = V (T1) ∩ V (T ′
1) = V (T ) \Uγ \Uγj

. Since δ /∈ ϕ̄(Z) and |Z| is odd,
also |EG(Z, V (G)\Z) ∩ Eδ(e, ϕ)| is odd. So beside from f 0

δ and f1 there is another
edge f2 ∈ EG(Z, V (G) \Z) with ϕ(f2) = δ. Since f2 has an endvertex in Z ⊆
V (T ), but is distinct from f 0

δ or f1, it neither belongs to E(P1), to E(P ′
1) or to

EG(V (G)\V (T ), V (G)\V (T )). So none of the recolourings have an effect on f2,
which leads to ϕ2(f2) = ϕ′2(f2) = δ.

Let u2 be the endvertex of f2 that belongs to V (G)\Z. We claim that u2 /∈ Uγj
.

Suppose, on the contrary, that u2 ∈ Uγj
, say u2 = u1

γj
. From (3) we then conclude

that there is an edge f ′ ∈ EG(u1
γj

, u2
γj

) with ϕ(f ′) = α0. Obviously, we have ϕ′2(f
′) =

α0 ∈ ϕ̄′2(V (T ′
2)) and, therefore, T ′ = (T ′

2, f2, u
1
γj

, f ′, u2
γj

) is a Tashkinov tree with
respect to e and ϕ′2 satisfying |V (T ′)| > |V (T )| = t(G), a contradiction. This proves
the claim, thus we have u2 /∈ Uγj

. Moreover, from (4) we conclude that u2 /∈ Uγ and,
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therefore, u2 ∈ V (G)\V (T ). Hence T3 = (T2, f2, u2) is a Tashkinov tree with respect
to e and ϕ2 and T ′

3 = (T ′
2, f2, u2) is a Tashkinov tree with respect to e and ϕ′2. Since

|V (T3)| = |V (T ′
3)| = |V (T )| = t(G), this implies (T3, e, ϕ2), (T

′
3, e, ϕ

′
2) ∈ T (G).

From Proposition 3.4(f) it follows that |ϕ̄({y0, y1})| ≥ 4. So there is a colour
β ∈ ϕ̄({y0, y1}) with β /∈ {α0, γ, γj}. Obviously, we also have β 6= δ, and therefore
the colour β doesn’t matter in any of the mentioned recolourings, which leads to
Eβ(e, ϕ) = Eβ(e, ϕ2) = Eβ(e, ϕ′2). Then, evidently, β ∈ ϕ̄2(V (T3)). By Proposi-
tion 3.4(b), V (T3) is elementary and closed both with respect to ϕ2. Hence there is
an edge f3 ∈ EG(u2, V (T3)) with ϕ2(f3) = β. Clearly, we also have ϕ(f3) = β, but
since V (T ) is closed with respect to ϕ, the edge f3 cannot have an endvertex in V (T ).
Therefore we conclude f3 ∈ EG(u2, u1). Moreover, we have ϕ′2(f3) = β ∈ ϕ̄′3(V (T ′

3))
and hence T ′

4 = (T3, f3, u1) is a Tashkinov tree with respect to e and ϕ′2 satisfying
|V (T ′

4)| > |V (T )| = t(G), a contradiction. This proves (5).

Now, for every δ ∈ Γd(T, e, ϕ), we define a new coloring ϕδ ∈ Ck(G− e) by

ϕδ = ϕ/P ′
δ.

From (5) we then obtain the following.

(6) For every δ ∈ Γd(T, e, ϕ) the coloring ϕδ ∈ Ck(G− e) satisfies:

- ϕδ(f
0
δ ) = γ(δ),

- ϕδ(f) = ϕ(f) for every edge f ∈ EG−e(V (T ), V (G))\{f 0
δ },

- ϕδ(f) = ϕ(f) for every edge f ∈ E(G− e)\E(P ′
δ),

- ϕ̄δ(v
0
δ ) = ϕ̄(v0

δ )\{γ(δ)} ∪ {δ},
- ϕ̄δ(v) = ϕ̄(v) for every vertex v ∈ V (T )\{v0

δ},
- ϕ̄δ(v) = ϕ̄(v) for every vertex v ∈ V (G)\V (P ′

δ).

Next we claim that

(7) |EG(Zγ(δ), V (G)\V (T )) ∩ Eδ(e, ϕ)| = 3 for every δ ∈ Γd(T, e, ϕ).

Proof of (7): Suppose, on the contrary, that there is a δ ∈ Γd(T, e, ϕ) satisfying
|EG(Zγ(δ), V (G)\V (T )) ∩ Eδ(e, ϕ)| 6= 3.

Consider the case |EG(Zγ(δ), V (G) \ V (T )) ∩ Eδ(e, ϕ)| > 3. Then beside f 0
δ

there are another three edges g1, g2, g3 ∈ EG(Zγ(δ), V (G) \V (T )) with endvertices
z1, z2, z3 ∈ V (G)\V (T ) and ϕ(g1) = ϕ(g2) = ϕ(g3) = δ. From (6) it then follows
that ϕδ(g1) = ϕδ(g2) = ϕδ(g3) = δ. Hence T1 = (T − γ(δ), g1, z1, g2, z2, g3, z3) is
a Tashkinov tree with respect to e and ϕδ satisfying |V (T1)| > |V (T )| = t(G), a
contradiction. Consequently, we have |EG(Zγ(δ), V (G)\V (T )) ∩ Eδ(e, ϕ)| < 3.
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From (4) we know that |EG(Zγ(δ), Uγ(δ)) ∩ Eδ(e, ϕ)| = 0. Therefore we have
|EG(Zγ(δ), V (G)\Zγ(δ)) ∩ Eδ(e, ϕ)| = |EG(Zγ(δ), V (G)\V (T )) ∩ Eδ(e, ϕ)| < 3. Since
δ /∈ ϕ̄(Zγ(δ)) and |Zγ(δ)| is odd, this implies that |EG(Zγ(δ), V (G)\Zγ(δ)) ∩ Eδ(e, ϕ)|
is odd, too, which leads to |EG(Zγ(δ), V (G)\Zγ(δ))∩Eδ(e, ϕ)| = 1. Consequently, we
have EG(Zγ(δ), V (G)\Zγ(δ)) ∩ Eδ(e, ϕ) = {f 0

δ }.
By (3) we have EG(Zγ(δ), Uγ(δ))∩Eα0(e, ϕ) = ∅. Since α0 ∈ ϕ̄(V (T )) and V (T ) is

closed with respect to ϕ, this implies EG(Zγ(δ), V (G)\Zγ(δ))∩Eα0(e, ϕ) = ∅. Hence
EG(Zγ(δ), V (G)\Zγ(δ)) ∩ E(Pδ) = {f 0

δ }. For the subpath P1 = y0Pδv
0
δ this means

V (P1) ⊆ Zγ(δ). Since v0
δ is the last vertex in the linear order ¹(y0,Pδ) that belongs to

V (T ), we conclude V (Pδ) ∩ V (T ) ⊆ Zγ(δ).
Then especially the vertices u1

γ(δ), u
2
γ(δ) don’t belong to Pδ. Hence, the chain

P2 = Pu1
γ(δ)

(α0, δ, ϕ) is vertex disjoint to Pδ and, moreover, V (P2) ∩ V (T ) ⊆ Uγ(δ).

Then, evidently, E(P2) ∩ E(T ) = ∅ and hence T is a Tashkinov tree with respect
to e and the coloring ϕ2 = ϕ/P2. Since |EG(Zγ(δ), V (G) \V (T )) ∩ Eδ(e, ϕ)| = 1,
Proposition 3.4(e) implies that there are two edges g4 ∈ EG(u1

δ , V (G)\V (T )) and
g5 ∈ EG(u2

δ , V (G) \ V (T )) with ϕ(g4) = ϕ(g5) = δ. Evidently g4 ∈ E(P2) and
ϕ2(g4) = α0 ∈ ϕ̄2(y0). If u4 is the endvertex of g4 belonging to V (G)\V (T ), then
T2 = (T, g4, u4) is a Tashkinov tree with respect to e and ϕ2 satisfying |V (T2)| >
|V (T )| = t(G), a contradiction. This proves the claim.

For every δ ∈ Γd(T, e, ϕ) we know from (7) that beside f 0
δ there are two other

edges f 1
δ , f 2

δ ∈ EG(Zγ(δ), V (G) \V (T )) with ϕ(f 1
δ ) = ϕ(f 2

δ ) = δ. For j = 1, 2 let

f j
δ ∈ EG(vj

δ , u
j
δ) where v1

δ , v
2
δ ∈ Zγ(δ) and u1

δ , u
2
δ ∈ V (G)\V (T ). Furthermore, let

Uδ = {u1
δ , u

2
δ}.

By (5) we have f 1
δ , f 2

δ /∈ E(P ′
δ) and therefore u1

δ , u
2
δ /∈ V (P ′

δ). Hence (6) implies:

(8) ϕδ(f) = ϕ(f) for every δ ∈ Γd(T, e, ϕ) and every f ∈ EG(Uδ, V (G)).

In particular, for every δ ∈ Γd(T, e, ϕ) this leads to ϕδ(f
1
δ ) = ϕδ(f

2
δ ) = δ. From

δ ∈ ϕ̄δ(v
0
δ ) then follows that Tδ, defined by

Tδ = (T − γ(δ), f 1
δ , u1

δ , f
2
δ , u2

δ),

is a Tashkinov tree with respect to e and ϕδ satisfying |V (Tδ)| = |V (T )|. Therefore,
we obtain that

(9) (Tδ, e, ϕδ) ∈ T (G) for every δ ∈ Γd(T, e, ϕ).

Since V (T ) is closed with respect to ϕ, for every δ ∈ Γd(T, e, ϕ) and every
α ∈ ϕ̄(Zγ(δ))\{γ(δ)} we have EG(Zγ(δ), V (G)\V (T )) ∩ Eα(e, ϕ) = ∅. This implies
EG(Zγ(δ), Uδ) ∩ Eα(e, ϕ) = ∅ and, moreover, by (8), EG(Zγ(δ), Uδ) ∩ Eα(e, ϕδ) =
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∅. Since α ∈ ϕ̄δ(Zγ(δ)) ⊆ ϕ̄δ(V (Tδ)) and since, by Proposition 3.4(b), V (Tδ) is
elementary and closed with respect to ϕδ, there must be an edge between u1

δ and u2
δ

coloured with α with respect to ϕδ and by (8) also with respect to ϕ. Therefore, we
have

(10) EG(u1
δ , u

2
δ) ∩ Eα(e, ϕ) 6= ∅ for every δ ∈ Γd(T, e, ϕ) and every α ∈ ϕ̄(Zγ(δ))\

{γ(δ)}.

Further we claim that the following two statements are true.

(11) EG(u1
γ(δ), u

2
γ(δ)) ∩ Eδ(e, ϕ) 6= ∅ for every δ ∈ Γd(T, e, ϕ).

(12) EG(u1
δ , u

2
δ) ∩ Eγ(δ)(e, ϕ) 6= ∅ for every δ ∈ Γd(T, e, ϕ).

Proof of (11): Let δ ∈ Γd(T, e, ϕ). We have |Zγ(δ)| = p + 2s− 2 and therefore, by
Proposition 3.4(f), |ϕ̄(Zγ(δ))| ≥ p + 2s. Since there are at most p − 2 + s colours
used on T with respect to ϕ, there is a colour β ∈ ϕ̄(Zγ(δ)) ∩ Γf (T, e, ϕ).

Let v ∈ Zγ(δ) be the unique vertex with β ∈ ϕ̄(v), and let P = Pv(β, δ, ϕ). From
(7) and Proposition 3.6 we conclude that P is a path having one endvertex v and
another endvertex z ∈ V (G) \ V (T ) satisfying E(P ) ∩ EG(Zγ(δ), V (G) \ V (T )) =
{f 0

δ , f 1
δ , f 2

δ }. By (2) we have F (T, e, ϕ) ⊆ Y ⊆ Zγ(δ), so for the last vertex v′ in the
linear order ¹(v,P ) belonging to V (T ) we conclude v′ ∈ {v0

δ , v
1
δ , v

2
δ}.

From (10) follows that there is an edge g ∈ EG(u1
δ , u

2
δ) with ϕ(g) = β. Hence the

path P1 = P (v1
δ , f

1
δ , u1

δ , g, u2
δ , f

2
δ , v2

δ ) is a subpath of P , and therefore v′ /∈ {v1
δ , v

2
δ},

but v′ = v0
δ .

By (3), we have EG(Uγ(δ), Zγ(δ)) ∩ Eβ(e, ϕ) = ∅, and from (4) follows that
EG(Uγ(δ), Zγ(δ)) ∩ Eδ(e, ϕ) = ∅. Hence, for the subpath P2 = vPv0

δ we conclude
V (P2) ⊆ Zγ(δ) ∪ Uδ. Further, for P3 = v0

δPz we clearly have V (P3) ∩ V (T ) =
{v0

δ} and hence V (P ) ∩ Uγ(δ) = ∅. Then from Proposition 3.6(b) follows that
EG(Uγ(δ), V (G) \V (T )) ∩ Eδ(e, ϕ) = ∅. Since EG(Uγ(δ), Zγ(δ)) ∩ Eδ(e, ϕ) = ∅ and
δ /∈ ϕ̄(V (T )), we conclude EG(u1

γ(δ), u
2
γ(δ)) ∩ Eδ(e, ϕ) 6= ∅. This proves the claim.

Proof of (12): Let δ ∈ Γd(T, e, ϕ). We have |Zγ(δ)| = p + 2s− 2 and therefore, by
Proposition 3.4(f), |ϕ̄δ(Zγ(δ))| ≥ p + 2s. Since there are at most p − 2 + s colours
used on Tδ with respect to ϕδ, there is a colour β ∈ ϕ̄δ(Zγ(δ)) ∩ Γf (T, e, ϕδ). Let
v ∈ Zγ(δ) be the unique vertex with β ∈ ϕ̄δ(v).

By (6) we have ϕδ(f
0
δ ) = ϕδ(f

1
γ(δ)) = ϕδ(f

2
γ(δ)) = γ(δ) and therefore γ(δ) ∈

Γd(Tδ, e, ϕδ). Moreover, beside this three edges there can be no further edge in
EG(Zγ(δ), V (G)\V (Tδ)) coloured with γ(δ) with respect to ϕδ. Otherwise such an
edge f would, by (6), satisfy ϕ(f) = γ(δ) and it would belong to EG(V (T ), V (G)\
V (T )). This would contradict the fact that V (T ) is closed with respect to ϕ. Hence,
we have EG(Zγ(δ), V (G) \V (Tδ)) ∩ Eγ(δ)(e, ϕδ) = {f 0

δ , f 1
γ(δ), f

2
γ(δ)}. From this and

20



Proposition 3.6 we conclude that P = Pv(β, γ(δ), ϕδ) is a path having one endvertex
v and another endvertex z ∈ V (G)\V (Tδ) satisfying E(P )∩EG(Zγ(δ), V (G)\V (Tδ)) =
{f 0

δ , f 1
γ(δ), f

2
γ(δ)}.

By Proposition 3.4(f) we have ϕ̄δ(u
1
δ) 6= ∅ and ϕ̄δ(u

2
δ) 6= ∅. Since no colour

in ϕ̄δ(Uδ) is used on Tδ with respect to ϕδ, Lemma 3.8 implies F (Tδ, e, ϕδ) ⊆ Zγ(δ).
Hence, for the last vertex v′ in the linear order ¹(v,P ) belonging to V (T ) we conclude
v′ ∈ {v0

δ , v1, v2}, where v1, v2 are the two endvertices of f 1
γ(δ), f

2
γ(δ) belonging to Zγ(δ).

From (3) follows that there is an edge g ∈ EG(u1
γ(δ), u

2
γ(δ)) with ϕ(g) = β and,

by (6), also ϕδ(g) = β. Hence, P1 = P (v1, f
1
γ(δ), u

1
γ(δ), g, u2

γ(δ), f
2
γ(δ), v2) is a subpath

of P , and therefore v′ /∈ {v1, v2}, but v′ = v0
δ .

Since V (T ) is closed with respect to ϕ, we clearly have EG(Uδ, Zγ(δ))∩Eβ(e, ϕ) =
∅ and EG(Uδ, Zγ(δ)) ∩ Eγ(δ)(e, ϕ) = ∅. Therefore, by (6), we have EG(Uδ, Zγ(δ)) ∩
Eβ(e, ϕδ) = ∅ and EG(Uδ, Zγ(δ))∩Eγ(δ)(e, ϕδ) = ∅. Hence for the subpath P2 = vPv0

δ

we conclude V (P2) ⊆ Zγ(δ) ∪ Uγ(δ). Furthermore, for P3 = v0
δPz we clearly have

V (P3)∩V (Tδ) = {v0
δ} and, therefore, V (P )∩Uδ = ∅. Then from Proposition 3.6(b)

follows that EG(Uδ, V (G)\V (Tδ)) ∩ Eγ(δ)(e, ϕδ) = ∅. Since we have EG(Uδ, Zγ(δ)) ∩
Eγ(δ)(e, ϕδ) = ∅ and γ(δ) /∈ ϕ̄δ(V (Tδ)), we conclude EG(u1

δ , u
2
δ) ∩ Eγ(δ)(e, ϕδ) 6= ∅.

From (8) then follows EG(u1
δ , u

2
δ) ∩ Eγ(δ)(e, ϕ) 6= ∅. This proves the claim.

Further we claim, that the following two statements are true:

(13) EG(u1
γ(δ), u

2
γ(δ)) ∩ Eα(e, ϕ) 6= ∅ for every δ ∈ Γd(T, e, ϕ) and every α ∈ ϕ̄(Uδ).

(14) EG(u1
δ , u

2
δ) ∩ Eα(e, ϕ) 6= ∅ for every δ ∈ Γd(T, e, ϕ) and every α ∈ ϕ̄(Uγ(δ)).

Proof of (13): Let δ ∈ Γd(T, e, ϕ) and let α ∈ ϕ̄(Uδ). Then clearly α 6= δ and
by (12) also α 6= γ(δ). Hence Eα(e, ϕ) = Eα(e, ϕδ), and therefore α ∈ ϕ̄δ(Uδ).
Moreover α0 ∈ ϕ̄δ(y0), and V (Tδ) is elementary with respect to ϕδ. Hence, we have
α 6= α0. Since V (Tδ) is also closed with respect to ϕδ, for P = Pu1

γ(δ)
(α0, α, ϕ) =

Pu1
γ(δ)

(α0, α, ϕδ) we have V (P ) ⊆ V (G)\V (Tδ). This implies V (P ) ∩ V (T ) ⊆ Uγ(δ)

and therefore E(P ) ∩ E(T ) = ∅. Then T is a Tashkinov tree with respect to e and
the coloring ϕ′ = ϕ/P , and from y0 /∈ V (P ) we conclude α0 ∈ ϕ̄′(V (T )).

From (3) we know that EG(u1
γ(δ), u

2
γ(δ)) ∩ Eα0(e, ϕ) 6= ∅ and, therefore, we have

u2
γ(δ) ∈ V (P ). If there is an edge g ∈ EG(Uγ(δ), z) for a vertex z ∈ V (G)\V (T ) and

ϕ(g) = α, then we have ϕ′(g) = α0 ∈ ϕ̄′(V (T )), and T ′ = (T, g, z) is a Tashkinov tree
with respect to e and ϕ′, satisfying |V (T ′)| > |V (T )| = t(G), a contradiction. If there
is an edge g ∈ EG(Uγ(δ), Zγ(δ)) with ϕ(g) = α, then we have ϕδ(g) = α ∈ ϕ̄δ(V (Tδ)),
a contradiction, too, because V (Tδ) is closed with respect to ϕδ. Consequently, we
have EG(Uγ(δ), V (G)\Uγ(δ)) ∩ Eα(e, ϕ) = ∅. Since V (T ) is elementary with respect
to ϕ, we conclude that there is an edge g ∈ EG(u1

γ(δ), u
2
γ(δ)) with ϕ(g) = α. This

proves the claim.
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Proof of (14): Let δ ∈ Γd(T, e, ϕ) and let α ∈ ϕ̄(Uγ(δ)). Then, clearly, we have α 6=
γ(δ) and, by (11), also α 6= δ. Hence Eα(e, ϕ) = Eα(e, ϕδ). Moreover, α0 ∈ ϕ̄δ(y0)
and V (T ) is elementary with respect to ϕ, and hence α 6= α0. Since V (T ) is also
closed with respect to ϕ, for P = Pu1

δ
(α0, α, ϕ) = Pu1

δ
(α0, α, ϕδ) we have V (P ) ⊆

V (G)\V (T ). This implies V (P ) ∩ V (Tδ) ⊆ Uδ and therefore E(P ) ∩ E(Tδ) = ∅.
Then Tδ is a Tashkinov tree with respect to e and the coloring ϕ′ = ϕδ/P , and from
y0 /∈ V (P ) we conclude α0 ∈ ϕ̄′(V (Tδ)).

From (10) we know EG(u1
δ , u

2
δ)∩Eα0(e, ϕ) 6= ∅, and therefore u2

δ ∈ V (P ). If there
was an edge g ∈ EG(Uδ, z) with z ∈ V (G)\V (Tδ) and ϕδ(g) = α, then we would have
ϕ′(g) = α0 ∈ ϕ̄′(V (Tδ)), and T ′ = (Tδ, g, z) would be a Tashkinov tree with respect
to e and ϕ′ satisfying |V (T ′)| > |V (Tδ)| = t(G), a contradiction. If there was an
edge g ∈ EG(Uδ, Zγ(δ)) with ϕδ(g) = α, then we would have ϕ(g) = α ∈ ϕ̄(V (T )),
a contradiction, too, because V (T ) is closed with respect to ϕ. Consequently, we
have EG(Uδ, V (G)\Uδ) ∩ Eα(e, ϕδ) = ∅. Since V (Tδ) is elementary with respect to
ϕδ, we conclude that there is an edge g ∈ EG(u1

δ , u
2
δ) with ϕδ(g) = ϕ(g) = α. This

proves the claim.

Next we claim

(15) Uδ ⊆ A(T, e, ϕ) for every δ ∈ Γd(T, e, ϕ).

Proof of (15): Let δ ∈ Γd(T, e, ϕ), let α ∈ ϕ̄(Uδ) and let β ∈ Γf (T, e, ϕ) \ {α}.
Clearly, we have α 6= δ and, by (12), also α 6= γ(δ). Since neither δ nor γ(δ) is a
free colour with respect to (T, e, ϕ), we also have β /∈ {δ, γ(δ)}. Hence Eα(e, ϕ) =
Eα(e, ϕδ) and Eβ(e, ϕ) = Eβ(e, ϕδ).

Let u ∈ Uδ be the unique vertex with α ∈ ϕ̄(u) = ϕ̄δ(u), and let v ∈ V (T ) be the
unique vertex with β ∈ ϕ̄(v) = ϕ̄δ(v). Moreover, let P = Pu(α, β, ϕ) = Pu(α, β, ϕδ).
Obviously, P is a path having u as an endvertex. We now have to show that v is
the second endvertex of P , this would imply u ∈ A(T, e, ϕ).

In the case v ∈ Zγ(δ) we have v ∈ V (Tδ) and therefore β ∈ ϕ̄δ(V (Tδ)). Since also
α ∈ ϕ̄δ(V (Tδ)), Theorem 3.3(e) implies that v is the second endvertex of P .

In the other case, we have v ∈ Uγ(δ). By (14) we have EG(u1
δ , u

2
δ) ∩ Eβ(e, ϕ) 6= ∅

and therefore Uδ ⊆ V (P ). Since α ∈ ϕ̄δ(u) and V (Tδ) is elementary and closed
with respect to ϕδ, there is an edge f2 ∈ EG(Uδ, Zγ(δ)) with ϕδ(f2) = α and, more-
over, EG(Zγ(δ), V (G)\Zγ(δ)) ∩Eα(e, ϕδ) = {f2}. Therefore EG(Zγ(δ), V (G)\Zγ(δ)) ∩
Eα(e, ϕ) = {f2} and f2 ∈ E(P ). Since β ∈ ϕ̄(Uγ(δ)) and V (T ) is elementary and
closed with respect to ϕ, there is an edge f3 ∈ EG(Uγ(δ), Zγ(δ)) with ϕ(f3) = β and,
moreover, EG(Zγ(δ), V (G)\Zγ(δ)) ∩ Eβ(e, ϕ) = {f3}. Since we have f2 ∈ E(P ) and
α, β /∈ ϕ̄(Zγ(δ)) and since f2, f3 are the only two edges in EG(Zγ(δ), V (G) \Zγ(δ))
coloured with α or β with respect to ϕ, we conclude that f3 ∈ E(P ). By (13) there
is an edge f4 ∈ EG(u1

γ(δ), u
2
γ(δ)) with ϕ(f4) = α. This implies f4 ∈ E(P ) and there-
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fore Uγ(δ) ⊆ V (P ). Hence we have v ∈ V (P ), so v must be the second endvertex of
P .

In both cases P is a path with endvertices u and v. Hence, by definition, we
have u ∈ A(T, e, ϕ) and the claim is proved.

Now let
X = V (T ) ∪

⋃

δ∈Γd(T,e,ϕ)

Uδ.

Then, by (15), we have X ⊆ V (T ) ∪ A(T, e, ϕ). Hence Proposition 3.5 implies

(16) X is elementary with respect to ϕ.

The aim is to show that X is also closed with respect to ϕ. To do this, we first
claim

(17) Xδ = V (T ) ∪ Uδ is closed with respect to ϕ for every δ ∈ Γd(T, e, ϕ).

Proof of (17): Let δ ∈ Γd(T, e, ϕ) and let α ∈ ϕ̄(Xδ). We have to show that
EG(Xδ, V (G)\Xδ) ∩ Eα(e, ϕ) = ∅.

If α ∈ ϕ̄(V (T )) we conclude from (10), (12) and (14) that EG(u1
δ , u

2
δ)∩Eα(e, ϕ) 6=

∅ and therefore EG(Uδ, V (G)\Xδ) ∩ Eα(e, ϕ) = ∅. Moreover, since V (T ) is closed
with respect to ϕ, we also have EG(V (T ), V (G) \Xδ) ∩ Eα(e, ϕ) = ∅. Hence, we
conclude EG(Xδ, V (G)\Xδ) ∩ Eα(e, ϕ) = ∅.

If α ∈ ϕ̄(Uδ) then, clearly, we have α 6= δ and, by (12), we also have α 6= γ(δ).
Hence Eα(e, ϕ) = Eα(e, ϕδ). Consequently, α ∈ ϕ̄δ(V (Tδ)), and since V (Tδ) is closed
with respect to ϕδ, we conclude EG(V (Tδ), V (G)\Xδ)∩Eα(e, ϕ) = EG(V (Tδ), V (G)\
Xδ)∩Eα(e, ϕδ) = ∅. Moreover, from (13) we know that EG(u1

γ(δ), u
2
γ(δ))∩Eα(e, ϕ) 6= ∅

and therefore EG(Uγ(δ), V (G)\Xδ)∩Eα(e, ϕ) = ∅. Hence, we conclude EG(Xδ, V (G)\
Xδ) ∩ Eα(e, ϕ) = ∅.

In any case, we have EG(Xδ, V (G)\Xδ)∩Eα(e, ϕ) = ∅. This proves the claim.

Since, by (10), we have EG(u1
δ , u

2
δ) ∩ Eα0(e, ϕ) 6= ∅ for all δ ∈ Γd(T, e, ϕ), we

easily conclude the following.

(18) For any δ, δ′ ∈ Γd(T, e, ϕ) the sets Uδ and Uδ′ are either equal or disjoint.

Now we can show that

(19) X is closed with respect to ϕ.
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Proof of (19): Suppose, on the contrary, that X is not closed with respect to
ϕ, i.e. there exists a colour α ∈ ϕ̄(X) and an edge f ∈ EG(X, V (G) \X) with
ϕ(f) = α. Then, clearly, there is a colour δ ∈ Γd(T, e, ϕ) satisfying f ∈ EG(V (T ) ∪
Uδ, V (G)\X). Since, by (17), V (T )∪Uδ is closed with respect to ϕ, we conclude that
α ∈ ϕ̄(X \V (T )\Uδ) and therefore, by (18), α ∈ ϕ̄(Uδ′) for a colour δ′ ∈ Γd(T, e, ϕ)
with Uδ ∩ Uδ′ = ∅.

Since, by (17), also V (T )∪Uδ′ is closed with respect to ϕ, we have f /∈ EG(V (T )∪
Uδ′ , V (G)\X). In particular, this means f /∈ EG(V (T ), V (G)\X) and, therefore,
we conclude f ∈ EG(u, v) for two vertices u ∈ Uδ and v ∈ V (G) \X. Now let
P = Pu(α0, α, ϕ). Since α0, α ∈ ϕ̄(V (T ) ∪ Uδ′) and V (T ) ∪ Uδ′ closed with respect
to ϕ, this implies V (P ) ∩ V (T ) = ∅. Hence we have E(P ) ∩ E(Tδ) = ∅.

By (16) X is elementary with respect to ϕ. Since α ∈ ϕ̄(Uδ′) and Γ ⊆ ϕ̄(V (T )),
we conclude α /∈ Γ. Moreover, since, by (17), V (T ) ∪ Uδ′ is closed with respect
to ϕ and since f 1

δ ∈ EG(V (T ), V (G) \V (T ) \Uδ′), we also conclude that α 6= δ.
Moreover, we also have α0 /∈ Γ and α0 6= δ. Evidently, we conclude Eα(e, ϕ) =
Eα(e, ϕδ) and Eα0(e, ϕ) = Eα0(e, ϕδ), which especially implies P = Pu(α0, α, ϕδ).
From E(P )∩E(Tδ) = ∅ then follows that Tδ is a Tashkinov tree with respect to e and
ϕ′ = ϕδ/P . Since f ∈ E(P ), we have ϕ′(f) = α0 ∈ ϕ̄′(V (Tδ). Hence T ′ = (Tδ, f, v)
is a Tashkinov tree with respect to e and ϕ′ satisfying |V (T ′)| > |V (Tδ)| = t(G), a
contradiction. This proves the claim.

Next, we claim the following:

(20) If α /∈ ϕ̄(X) and P = Py0(α0, α, ϕ), then |E(P ) ∩ EG(X, V (G)\X)| = 1.

Proof of (20): By (16), X is elementary with respect to ϕ and, since α0 ∈ ϕ̄(y0),
we know that P is a path with one endvertex y0 and another endvertex z ∈ V (G)\X.
Evidently, there is a last vertex v in the linear order ¹(y0,P ) that belongs to X and
there is an edge in g ∈ EG(v, V (G)\X) with ϕ(g) = α. For the subpath P1 = y0Pv
of P we have to show that V (P1) ⊆ X, this would complete the proof of (20). To
do this, we distinct the following cases.

Case 1: v ∈ V (T ) and α /∈ Γd(T, e, ϕ). Then we have EG(V (T ), V (G)\V (T ))∩
Eα(e, ϕ) = {g}. Since α0 ∈ ϕ̄(V (T )) and V (T ) is closed with respect to ϕ, we
conclude that E(P )∩EG(V (T ), V (G)\V (T ) = {g} and, therefore, V (P1) ⊆ V (T ) ⊆
X.

Case 2: v ∈ V (T ) and α ∈ Γd(T, e, ϕ). Then from (7) and (11) we conclude that
EG(V (T ), V (G)\V (T )) ∩ Eα(e, ϕ) = {f 0

α, f 1
α, f 2

α}. Hence, we have EG(Xα, V (G)\
Xα) = {f 0

α}, which implies g = f 0
α. Since α0 ∈ ϕ̄(Xα) and, by (17), Xδ is closed

with respect to ϕ, it follows that V (P1) ⊆ Xα ⊆ X.

Case 3: v /∈ V (T ). Then, evidently, v ∈ Uδ for some δ ∈ Γd(T, e, ϕ). Since
ϕ(g) = α, we conclude that α 6= δ. Clearly, we also have α 6= γ(δ) and, therefore,
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we infer that Eα(e, ϕ) = Eα(e, ϕδ). Moreover, we also have α0 /∈ {δ, γ(δ)} and,
therefore, it follows that P = Py0(α0, α, ϕδ). Clearly, v is the last vertex in ¹(y0,P )

that belongs to V (Tδ). Since no colour from ϕ̄δ(v) is used on Tδ with respect to
ϕδ, we infer that ϕ̄δ(v) ∩ Γf (Tδ, e, ϕδ) 6= ∅. Then from Lemma 3.8 follows that
v /∈ F (Tδ, e, ϕδ) and, therefore, α /∈ Γd(Tδ, e, ϕδ). Hence, we conclude that E(P ) ∩
EG(V (Tδ), V (G)\V (Tδ)) = {g}, which implies V (P1) ⊆ V (Tδ) ⊆ X. This settles
the case.

In any of the three cases we have V (P1) ⊆ X, which implies E(P )∩EG(X, V (G)\
X) = {g}. Hence the proof is finished.

Eventually, we can show that

(21) X is strongly closed with respect to ϕ.

Proof of (21): Suppose, on the contrary, that X is not strongly closed with respect
to ϕ. Since, by (19), X is closed with respect to ϕ, this implies that there is a colour
α satisfying α /∈ ϕ̄(X) and |EG(X, V (G)\X)∩Eα(e, ϕ)| ≥ 2. Obviously, this implies
|EG(X,V (G)\X) ∩ Eα(e, ϕ)| ≥ 3, because |X| is odd.

If |EG(V (T ), V (G)\X) ∩ Eα(e, ϕ)| ≥ 2 then we would have α ∈ Γd(T, e, ϕ), but
then (7) and (11) would imply EG(V (T ), V (G)\V (T ))∩Eα(e, ϕ) = {f 0

α, f 1
α, f 2

α} and,
therefore, EG(V (T ), V (G)\X) ∩ Eα(e, ϕ) = {f 0

α}, a contradiction. Consequently,
we have |EG(V (T ), V (G)\X) ∩Eα(e, ϕ)| ≤ 1, which leads to |EG(X \V (T ), V (G)\
X) ∩ Eα(e, ϕ)| ≥ 2.

For the path P = Py0(α0, α, ϕ) then follows from (20) that |E(P )∩EG(X, V (G)\
X)| = 1. Hence there is a colour δ ∈ Γd(T, e, ϕ) and an edge f ∈ EG(Uδ, V (G)\X)
satisfying ϕ(f) = α and f /∈ E(P ). Let u be the endvertex of f that belongs to
V (G)\X, and let P ′ = Pu(α0, α, ϕ). Since f ∈ E(P ′) but f /∈ E(P ), we infer that
P and P ′ are vertex disjoint. Further we claim that V (P ′) ∩ V (T ) = ∅. To prove
this, we have two consider two cases.

Case 1: α ∈ Γd(T, e, ϕ). From (7) and (11) we then conclude EG(V (T ), V (G)\
V (T )) ∩ Eα(e, ϕ) = {f 0

α, f 1
α, f 2

α} and, therefore, we have |EG(Xα, V (G) \Xα) ∩
Eα(e, ϕ)| = 1. Since α0 ∈ ϕ̄(Xα) and, by (17), Xα is closed with respect to
ϕ, we also have EG(Xα, V (G) \Xα) ∩ Eα0(e, ϕ) = ∅. Since the only edge in
EG(Xα, V (G)\Xα)∩Eα(e, ϕ) must belong to E(P ), we conclude that V (P ′)∩Xα = ∅
and, therefore, also V (P ′) ∩ V (T ) = ∅.

Case 2: α /∈ Γd(T, e, ϕ). Then the only edge in EG(V (T ), V (G)\V (T ))∩Eα(e, ϕ)
belongs to E(P ). Since α0 ∈ ϕ̄(V (T )) and V (T ) is closed with respect to ϕ, we
conclude that V (P ′) ∩ V (T ) = ∅. This settles the case.

In any case we have V (P ′)∩V (T ) = ∅, which implies E(P ′)∩E(Tδ) = ∅. More-
over, from α, α0 /∈ {δ, γ(δ)} we conclude that P ′ = Pu(α0, α, ϕδ). Then, evidently, Tδ
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is a Tashkinov tree with respect to e and ϕ′ = ϕδ/P
′. From ϕ′(f) = α0 ∈ ϕ̄′(V (Tδ))

it then follows that T ′ = (Tδ, f, u) is also a Tashkinov tree with respect to e and ϕ′

satisfying |V (T ′)| > |V (Tδ)| = t(G), a contradiction. This proves (21).

Now by (16) and (21) X is elementary and strongly closed with respect to ϕ.
Hence Theorem 2.8 implies that G is an elementary graph, which completes the
proof.

Proposition 4.2 Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥
∆(G) + 1. If h(G) > t(G)− 4 then G is an elementary graph.

Proof: Let h(G) > t(G)− 4. By Proposition 3.4(a) and Lemma 3.12(a), both t(G)
and h(G) are odd. Hence we have either h(G) = t(G) or h(G) = t(G)− 2.

By Lemma 3.12(c), we have T B(G) 6= ∅. Hence there is an edge e ∈ EG(x, y), a
coloring ϕ ∈ Ck(G − e) and a Tashkinov tree T with respect to e and ϕ satisfying
(T, e, ϕ) ∈ T B(G).

If h(G) = t(G) then T consists only of its trunk, and only two colours α ∈
ϕ̄(x) and β ∈ ϕ̄(y) are used on T with respect to ϕ. Therefore Proposition 3.4(f)
implies that ϕ̄(v) ∩ Γf (T, e, ϕ) 6= ∅ for every vertex v ∈ V (T ). Then we have
Γd(T, e, ϕ) = ∅, because Γd(T, e, ϕ) 6= ∅ would contradict Proposition 3.6(d). From
Proposition 3.4(b) and (c) it then follows that V (T ) is elementary and strongly
closed with respect to ϕ. Therefore, by Theorem 2.8, G is an elementary graph.

In the other case we have h(G) = t(G)− 2 and, therefore, T has the form

T = (y0, e1, y1, . . . , ep−1, yp−1, f1, u1, f2, u2)

where x = y0, y = y1 and p = h(T ). Clearly, exactly two colours α ∈ ϕ̄(x) and
β ∈ ϕ̄(y) are used on Typ−1 with respect to ϕ. Moreover ϕ(f1) = ϕ(f2) = γ ∈
ϕ̄({y0, . . . , yp−1})\{α, β}, and for j = 1, 2 we have fj ∈ EG({y0, . . . , yp−1}, uj). By
Proposition 3.4(b), V (T ) is elementary with respect to ϕ and therefore there is a
unique vertex yr ∈ {y0, . . . , yp−1} with γ ∈ ϕ̄(yr). Since there are exactly three
colours α ∈ ϕ̄(x), β ∈ ϕ̄(y) and γ ∈ ϕ̄(yr) used on T with respect to ϕ, we conclude
from Proposition 3.4(f) that ϕ̄(v)∩Γf (T, e, ϕ) 6= ∅ for every vertex v ∈ V (T )\{yr}.
Then Lemma 3.8 implies F (T, e, ϕ) ⊆ {yr}. Hence (T, e, ϕ) fulfils the structural
conditions of Lemma 4.1, and therefore G is an elementary graph. This completes
the proof.

Proposition 4.3 Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥
∆(G) + 1. If h(G) < 5 then G is an elementary graph.

Proof: Let p = h(G) < 5. Then, by Lemma 3.12(a), we have p = 3 and, by
Lemma 3.12(c), there is a triple (T, e, ϕ) ∈ T B(G). Hence T has the form

T = (y0, e1, y1, . . . , en−1, yn−1)
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where n = t(G), and T1 = (y0, e1, y1, e2, y2) is the (α, β)-trunk of T where α ∈ ϕ̄(y0)
and β ∈ ϕ̄(y1). Moreover there is an edge f ∈ EG(y2, y0) with ϕ(f) = β.

Suppose that G is not an elementary graph. Then, by Proposition 4.2, we have
n = t(G) ≥ p+4 = 7. Hence there is a colour γ = ϕ(e3) = ϕ(e4) ∈ ϕ̄(yj) for some j ∈
{1, 2, 3}. Without loss of generality we may assume j = 0, otherwise we could replace
the triple (T, e, ϕ) by the balanced triple (T, e, ϕ)(y0 → yj). Therefore we have
e3, e4 ∈ EG({y1, y2}, {y3, y4}) and, moreover, (y0, y1) is a (γ, β)-pair with respect
to ϕ. From Theorem 3.3(e) we then conclude that there is a (γ, β)-chain P with
respect to ϕ having endvertices y1 and y0 and satisfying V (P ) ⊆ V (T ). Evidently,
p′ = |V (P )| is odd, f, e3, e4 ∈ E(P ) and y0, y1, y2, y3, y4 ∈ V (P ). Therefore we have
p′ ≥ 5 and, by Lemma 3.11, there is a Tashkinov tree T ′ with respect to e and ϕ
satisfying (T ′, e, ϕ) ∈ T N(G) and h(T ′) = p′ ≥ 5 > h(G), a contradiction. Hence G
is an elementary graph.

Lemma 4.4 Let G be a critical graph with χ′(G) = k + 1 for k ≥ ∆(G) + 1.
Furthermore let h(G) = 5, (T, e, ϕ) ∈ T N(G) and T ′ = (y0, e1, y1, e2, y2, e3, y3, e4, y4)
be the (α, β)-trunk of T . If γ ∈ ϕ̄(y0) is a colour satisfying EG(V (T ′), V (T )\V (T ′))∩
Eγ(e, ϕ) 6= ∅, then the following statements hold:

(1) There are three edges f1 ∈ EG(y1, V (T )\V (T ′)), f2 ∈ EG(y4, V (T )\V (T ′)) and
f3 ∈ EG(y2, y3) with ϕ(f1) = ϕ(f2) = ϕ(f3) = γ.

(2) For the two endvertices v1, v2 ∈ V (T )\V (T ′) of the two edges f1, f2 we have
EG(v1, v2) ∩ Eα 6= ∅ and EG(v1, v2) ∩ Eβ 6= ∅.

Proof: By definition we have e1 = e, ϕ(e2) = ϕ(e4) = α ∈ ϕ̄(y0), ϕ(e3) = β ∈ ϕ̄(y1)
and there is an edge e0 ∈ EG(y4, y0) with ϕ(e0) = β.

Let P1 = Py0(γ, β, ϕ). By Theorem 3.3(e), P1 is a path of even length having
endvertices y0 and y1. Then, by Lemma 3.11, there is a Tashkinov tree T1 with
respect to e and ϕ satisfying (T1, e, ϕ) ∈ T N(G) and h(T1) = |V (P1)|. Since h(G) =
5, we conclude that |V (P1)| ≤ 5. Since y0, y1 are the endvertices of P1 and ϕ(e0) = β,
we have e0 ∈ E(P1) and y0, y1, y4 ∈ V (P1).

Now we claim that EG({y2, y3}, V (T )\V (T ′)) = ∅. Suppose this is not true. Then
there is an edge g ∈ EG({y2, y3}, V (T )\V (T ′)) with ϕ(g) = γ. Let v ∈ V (T )\V (T ′)
be the second endvertex of g. We conclude that none of the three vertices y2, y3, v
belongs to V (P1), otherwise all three would belong to V (P1) and therefore we would
have |V (P1)| ≥ 6, a contradiction. Hence, by Theorem 3.3(e), T is a Tashkinov tree
with respect to e and ϕ1 = ϕ/P1 satisfying α ∈ ϕ̄1(y0), γ ∈ ϕ̄1(y1), ϕ1(e0) = ϕ1(g) =
γ and ϕ1(e2) = ϕ1(e4) = α. Evidently, P2 = Py0(α, γ1, ϕ1) contains the two subpaths
P (y0, e0, y4, e4, y3) and P (y1, e2, y2), which implies g ∈ E(P2) and v ∈ V (P2). Hence
we have |V (P2)| ≥ 6 and, by Lemma 3.11, there is a Tashkinov tree T2 with respect
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to e and ϕ1 satisfying (T2, e, ϕ1) ∈ T N(G) and h(T2) = |V (P2)| ≥ 6 > 5 = h(G), a
contradiction. This proves the claim.

Since γ ∈ ϕ̄(y0) and since, by Proposition 3.4(b), V (T ) is elementary with respect
to ϕ, there are edges f3 ∈ EG(y2, V (T ′)) and f ′3 ∈ EG(y3, V (T ′)) with ϕ(f3) =
ϕ(f ′3) = γ. Then f3 6= f ′3 would imply f3, f

′
3 ∈ EG({y2, y3}, {y1, y4}) and therefore

EG(V (T ′), V (T ) \V (T ′)) ∩ Eγ(e, ϕ) = ∅, a contradiction. Consequently, we have
f3 = f ′3 ∈ EG(y2, y3) with ϕ(f3) = γ, exactly as claimed in (1).

Since V (T ) is elementary with respect to ϕ, there are edges f1 ∈ EG(y1) and f2 ∈
EG(y4) with ϕ(f1) = ϕ(f2) = γ. If f1 = f2 then we would have EG(V (T ′), V (T )\
V (T ′))∩Eγ(e, ϕ) = ∅, a contradiction. Consequently, we have f1 6= f2 and, therefore,
f1 ∈ EG(y1, V (T )\V (T ′)) and f2 ∈ EG(y4, V (T )\V (T ′)), which, eventually, proves
(1).

Let v1, v2 the two endvertices of f1, f2 belonging to V (T ) \ V (T ′). Then P1

contains the two subpaths P (y0, e0, y4, f2, v2) and P (y1, f1, v1). Since V (P1) ≤ 5,
there is an edge g1 ∈ EG(v1, v2) with ϕ(g1) = β and, therefore, we have P1 =
P (y1, e5, y5, g1, y6, e6, y4, e0, y0), which proves part of (2).

Let P3 = Py0(α, β, ϕ) = P (y1, e2, y2, e3, y3, e4, y4, e0, y0) and ϕ2 = ϕ/P3. Then, by
Theorem 3.3(e), T is a Tashkinov tree with respect to e and ϕ2, satisfying α ∈ ϕ̄2(y1),
γ ∈ ϕ̄2(y0), ϕ2(e0) = α and ϕ2(f1) = ϕ2(f2) = γ. Hence, P4 = Py0(γ, α, ϕ2)
contains the two subpaths P (y0, e0, y4, f2, v2) and P (y1, f1, v1) and, therefore, we
have |V (P4)| ≥ 5. If we had |V (P4)| > 5 then, by Lemma 3.11, there would be
a Tashkinov tree T3 with respect to e and ϕ2 satisfying (T3, e, ϕ2) ∈ T N(G) and
h(T3) = |V (P4)| > 5 = h(G), a contradiction. Hence we have |V (P4)| = 5 and
there is an edge g2 ∈ EG(v1, v2) with ϕ2(g2) = α. Since g2 /∈ E(P3), we also have
ϕ(g2) = α, which eventually proves (2).

Proposition 4.5 Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥
∆(G) + 1. If t(G) < 11 then G is an elementary graph.

Proof: Suppose, on the contrary, that t(G) < 11 but G is not elementary. By
Proposition 3.4(a), t(G) is odd and, therefore, we have t(G) ≤ 9. Moreover, from
Proposition 4.2 and Proposition 4.3 we conclude that 5 ≤ h(G) ≤ t(G)− 4 ≤ 5 and,
therefore, we have h(G) = 5 and t(G) = 9.

Let (T, e, ϕ) ∈ T B(G). Then T has the form

T = (y0, e1, y1, e2, y2, e3, y3, e4, y4, e5, y5, e6, y6, e7, y7, e8, y8)

where e1 = e, ϕ(e2) = ϕ(e4) = α ∈ ϕ̄(y0), ϕ(e3) = β ∈ ϕ̄(y1), ϕ(e5) = ϕ(e6) = γ1 ∈
ϕ̄({y0, . . . , y4}) and ϕ(e7) = ϕ(e8) = γ2 ∈ ϕ̄({y0, . . . , y6}). Moreover, T1 = Ty4 is
the (α, β)-trunk of T and there is an edge e0 ∈ EG(y4, y0) with ϕ(e0) = β.

Clearly, γ1 ∈ ϕ̄(yi) for some i ∈ {0, . . . , 4}. Without loss of generality we may
assume i = 0, otherwise we could replace the triple (T, e, ϕ) by the balanced triple
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(T, e, ϕ)(y0 → yi). Since e5 ∈ EG({y0, . . . , y4}, y5), we conclude from Lemma 4.4
that there are five edges f1, f2, f3, g1, g2 satisfying f1 ∈ EG(y1, v1) for a vertex v1 ∈
{y5, . . . , y8}), f2 ∈ EG(y4, v2) for a vertex v2 ∈ {y5, . . . , y8}), ϕ(f1) = ϕ(f2) = γ1,
f3 ∈ EG(y2, y3), ϕ(f3) = γ1, g1, g2 ∈ EG(v1, v2), ϕ(g1) = α and ϕ(g2) = β. In
particular, this implies {e5, e6} = {f1, f2} and {y5, y6} = {v1, v2}.

Now we have ϕ(e2) = ϕ(e4) = ϕ(g1) = α ∈ ϕ̄(y0), ϕ(e0) = ϕ(e3) = ϕ(g2) = β ∈
ϕ̄(y1), ϕ(f1) = ϕ(f2) = ϕ(f3) = γ1 ∈ ϕ̄(y0) and e7, e8 ∈ EG({y0, . . . , y6}, {y7, y8})
and, therefore, γ2 /∈ {α, β, γ1}. Since, by Proposition 3.4(b), V (T ) is elementary
and closed with respect to ϕ, there are three edges f4, g3, g4 ∈ EG(y7, y8) satisfying
ϕ(f4) = γ1, ϕ(g3) = α and ϕ(g4) = β.

We may assume that γ2 ∈ ϕ̄({y0, . . . , y4}), otherwise we could replace T by T1 =
(y0, e1, y1, f1, v1, g2, v2, f2, y4, e2, y2, e4, y3, e7, y7, e8, y8). Obviously (T1, e, ϕ) ∈ T B(G)
and T1y4 is the (γ1, β)-trunk of T . Hence, T1 has the same structure as T , just the
two colours α and γ1 changed their role.

Now we claim that EG({y0, . . . , y4}, {y7, y8}) ∩ Eγ2(e, ϕ) 6= ∅. Suppose this
is not true. Then we have e7, e8 ∈ EG({y5, y6}, {y7, y8}) and, by symmetry, we
may assume e7 ∈ EG(y5, y7) and e8 ∈ EG(y6, y8). Evidently, the chain P1 =
Py7(γ2, β, ϕ) = P (y7, e7, y5, g2, y6, e8, y8, g4, y7) is a cycle and T is a Tashkinov tree
with respect to e and ϕ1 = ϕ/P1. Moreover, we have P2 = Py0(γ1, β, ϕ1) =
P (y1, f1, v1, e7, y7, f4, y8, e8, v2, f2, y4, e0, y0), and therefore, by Lemma 3.11, there is
a Tashkinov tree T2 with respect to e and ϕ1 satisfying (T2, e, ϕ1) ∈ T N(G) and
h(T2) = |V (P2)| = 7 > h(G), a contradiction. This proves the claim.

Since we have γ2 ∈ ϕ̄(yj) for some j ∈ {0, . . . , 4}, we can construct a new
Tashkinov tree as follows. In the case j = 0 let (T ′, e′, ϕ′) = (T, e, ϕ), otherwise let
(T ′, e′, ϕ′) = (T, e, ϕ)(y0 → yj). In any case we have (T ′, e′, ϕ′) ∈ T B(G), and T ′ has
the form

T ′ = (y′1, e
′
1, y

′
2, e

′
3, y

′
3, e

′
4, y

′
4, e5, y5, e6, y6, e7, y7, e8, y8)

where {y′0, . . . , y′4} = {y0, . . . , y4} and γ2 ∈ ϕ̄′(y′0). By Lemma 4.4, there are two
vertices v′1, v

′
2 ∈ {y5, . . . , y8} and four edges f ′1, f

′
2, f

′
3, g

′
1 satisfying f ′1 ∈ EG(y′1, v

′
1),

f ′2 ∈ EG(y′4, v
′
2), ϕ′(f1) = ϕ′(f2) = γ2, f ′3 ∈ EG(y′2, y

′
3), ϕ′(f ′3) = γ2, g′1 ∈ EG(v′1, v

′
2)

and ϕ′(g′1) = α. Consequently, we have f ′1, f
′
2 ∈ EG({y0, . . . , y4}, {y5, . . . , y8}),

f ′3 ∈ EG({y0, . . . , y4}, {y0, . . . , y4}), ϕ(f ′1) = ϕ(f ′2) = ϕ(f ′3) = γ2 and ϕ(g′1) = α.
This implies |EG({y0, . . . , y4}, {y5, . . . , y8}) ∩ Eγ2(e, ϕ)| = 2. Since we also have
EG({y0, . . . , y4}, {y7, y8}) ∩ Eγ2(e, ϕ) 6= ∅, we conclude that {y7, y8} ∩ {v′1, v′2} 6= ∅.
Then from ϕ(g′1) = ϕ(g3) = α follows {y7, y8} = {v′1, v′2}.

Now we have γ1 ∈ ϕ̄(y0), γ2 ∈ ϕ̄(yj) for some j ∈ {0, . . . , 4}. Moreover, Propo-
sition 3.4(f) implies |ϕ̄(v)\{α, β}| ≥ 1 for every v ∈ V (T ). Since no colours beside
α, β, γ1 and γ2 are used on T with respect to ϕ, we conclude that for every vertex
v ∈ V (T ) \ {y0, yj} the set ϕ̄(v) contains at least one free colour with respect to
(T, e, ϕ). Then from Lemma 3.8 follows that F (T, e, ϕ) ⊆ {y0, yj}. Since γ1 6= γ2
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and e5, e6, e7, e8 ∈ EG({y0, . . . , y4}), the triple (T, e, ϕ) fulfils the structural condi-
tions from Lemma 4.1 and, therefore, G is an elementary graph. This completes the
proof.

Lemma 4.6 Let G be a graph with χ′(G) = k + 1 for an integer k ≥ ∆(G) + 1 and
let (T, e, ϕ) ∈ T (G). Moreover, let α, β ∈ {1, . . . , k} and let P be an (α, β)-chain
with respect to ϕ satisfying V (P ) ∩ V (T ) = ∅. Then for the coloring ϕ′ = ϕ/P the
following invariants hold:

- (T, e, ϕ′) ∈ T (G), Γf (T, e, ϕ′) = Γf (T, e, ϕ) and Γd(T, e, ϕ′) = Γd(T, e, ϕ).

- D(T, e, ϕ′) = D(T, e, ϕ).

Proof: From V (P ) ∩ V (T ) = ∅ we conclude that ϕ′(f) = ϕ(f) for every edge
f ∈ EG−e(V (T ), V (G)). Evidently, this implies (T, e, ϕ′) ∈ T (G), Γf (T, e, ϕ′) =
Γf (T, e, ϕ) and Γd(T, e, ϕ′) = Γd(T, e, ϕ).

Now let v ∈ D(T, e, ϕ). Then there are two colours γ ∈ Γf (T, e, ϕ) and δ ∈
Γd(T, e, ϕ) such that v is the first vertex in the linear order ¹(u,P1) that belongs to
V (G)\V (T ), where u ∈ V (T ) is the unique vertex with γ ∈ ϕ̄(u) and P1 = Pu(γ, δ, ϕ).
Consequently, for P2 = uP1v we have E(P2) ⊆ EG−e(V (T )). Since γ ∈ Γf (T, e, ϕ′),
δ ∈ Γd(T, e, ϕ′) and γ ∈ ϕ̄′(u), we conclude that ϕ′(f) = ϕ(f) for every edge
f ∈ E(P2). Hence, we have P2 = uP ′

1v where P ′
1 = Pu(γ, δ, ϕ′). This leads to

v ∈ D(T, e, ϕ′), and therefore we have D(T, e, ϕ) ⊆ D(T, e, ϕ′).
Since P is also an (α, β)-chain with respect to ϕ′ and since we not only have

ϕ′ = ϕ/P but also ϕ = ϕ′/P , we conclude D(T, e, ϕ′) ⊆ D(T, e, ϕ) in an analogous
way. Consequently D(T, e, ϕ′) = D(T, e, ϕ), and the proof is finished.

Lemma 4.7 Let G be a graph with

χ′(G) >
m

m− 1
∆(G) +

m− 3

m− 1

for an odd integer m ≥ 3. Moreover, let (T, e, ϕ) ∈ T (G) and Z = V (T )∪D(T, e, ϕ).
Then the following statements hold:

(a) |Z| ≤ m− 2.

(b) If |Z| = m− 2 then G is elementary.

Proof: Since χ′(G) > ∆(G), we have ∆(G) ≥ 2. Then χ′(G) > m
m−1

∆(G) + m−3
m−1

≥
∆(G) + 1 and therefore χ′(G) ≥ ∆(G) + 2. Hence, for k = χ′(G) − 1 we have
k ≥ ∆(G) + 1 and ϕ ∈ Ck(G− e).
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From Proposition 3.5 and Proposition 3.7 we conclude that Z is elementary with
respect to ϕ. Then Proposition 2.7(c) implies |Z| ≤ m− 1.

Now suppose |Z| = m− 1. Since we have k ≥ ∆(G), there is a colour α ∈ ϕ̄(Z).
Moreover, Z is elementary with respect to ϕ and |Z| is even, so there is an edge
g ∈ EG(Z, V (G)\Z) having an endvertex z ∈ V (G)\Z and satisfying ϕ(g) = α.
Therefore F = (g, z) is a fan at Z with respect to ϕ, and Theorem 3.10 implies
that Z ∪ {z} is elementary with respect to ϕ. Since |Z ∪ {z}| = m, this contradicts
Proposition 2.7(c). Consequently, we have |Z| ≤ m− 2 and (a) is proved.

For the proof of (b) let |Z| = m−2. We claim that Z is closed with respect to ϕ.
Suppose this is not true. Then there is a colour α′ ∈ ϕ̄(Z) satisfying EG(Z, V (G)\
Z) ∩ Eα′(e, ϕ) 6= ∅. Since Z is elementary with respect to ϕ and |Z| is odd, we
conclude that there are at least two distinct edges g1, g2 ∈ EG(Z, V (G)\Z) having
endvertices z1, z2 ∈ V (G)\Z and satisfying ϕ(g1) = ϕ(g2) = α′. Clearly, z1 6= z2

and, therefore, F ′ = (g1, z1, g2, z2) is a fan at Z with respect to ϕ. Hence, by
Theorem 3.10, Z∪{z1, z2} is elementary with respect to ϕ, but then |Z∪{z1, z2}| = m
contradicts Proposition 2.7(c). This proves the claim that Z is closed with respect
to ϕ.

Now we want to show that Z is also strongly closed with respect to ϕ. Suppose
this is not true. Then there is a colour δ ∈ {1, . . . , k} satisfying δ /∈ ϕ̄(Z) and
|EG(Z, V (G)\Z) ∩ Eδ(e, ϕ)| ≥ 2. Since |Z| is odd, we conclude that |EG(Z, V (G)\
Z)∩Eδ(e, ϕ)| ≥ 3. Moreover, by Proposition 3.4(g), there is a colour γ ∈ Γf (T, e, ϕ),
and there is a unique vertex v ∈ V (T ) satisfying γ ∈ ϕ̄(v). Let P = Pv(γ, δ, ϕ).
Then P is a path and v is an endvertex of P . Since Z is elementary with respect
to ϕ and δ /∈ ϕ̄(Z), the other endvertex of P belongs to V (G)\Z. Hence in the
linear order ¹(v,P ) there is a first vertex u that belongs to V (G)\Z. We claim that
there is a coloring ϕ′ ∈ Ck(G − e) satisfying (T, e, ϕ′) ∈ T (G), D(T, e, ϕ′) = D,
Eδ(e, ϕ

′) = Eδ(e, ϕ) and Pv(γ, δ, ϕ′) = vPu. For the proof of this claim we have to
consider the following two cases:

Case 1: ϕ̄(u) ∩ ϕ̄(Z) 6= ∅. Then, for some colour β ∈ ϕ̄(u) ∩ ϕ̄(Z), let P1 =
Pu(γ, β, ϕ). Since Z is closed with respect to ϕ, we conclude that V (P1)∩Z = ∅. By
Lemma 4.6, for the coloring ϕ′ = ϕ/P1 we have (T, e, ϕ′) ∈ T (G) and D(T, e, ϕ′) =
D. Moreover, γ ∈ ϕ̄′(u) implies Pv(γ, δ, ϕ′) = vPu. Hence, ϕ′ has the desired
properties.

Case 2: ϕ̄(u) ∩ ϕ̄(Z) = ∅, i.e. Z ∪ {u} is elementary with respect to ϕ. Then
there is a vertex u′ ∈ V (G)\Z and an edge f ∈ EG(u, u′) with ϕ(f) = γ. From
Proposition 2.7(c) we infer that Z∪{u, u′} is not elementary with respect to ϕ. Since
Z ∪ {u} is elementary with respect to ϕ, this implies that ϕ̄(u′) ∩ ϕ̄(Z ∪ {u}) 6= ∅.
We have to consider three subcases.

Case 2a: There is a colour γ1 ∈ ϕ̄(u′) ∩ ϕ̄(u). Then we can simply obtain the
desired coloring ϕ′ from ϕ by recolouring the edge f with the colour γ1.
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Case 2b: There is colour γ1 ∈ ϕ̄(u′) ∩ ϕ̄(Z) satisfying γ1 ∈ Γf (T, e, ϕ). Then
there is a unique vertex v′ ∈ V (T ) with γ1 ∈ ϕ̄(v′). Moreover, let γ2 ∈ ϕ̄(u).
Since Z ∪ {u} is elementary with respect to ϕ, we clearly have γ1 6= γ2. Now let
P2 = Pv′(γ1, γ2, ϕ). Then P2 is a path, where v′ is an endvertex of P2. Moreover, we
have Eγ1(T, e, ϕ) ⊆ E(P2), which follows either from |Eγ2(T, e, ϕ)| = 1 if this is the
case, or otherwise from Proposition 3.6(b).

If u is the second endvertex of P2 then, evidently, u′ is not an endvertex of P2

and, therefore, u′ doesn’t belong to V (P2) at all. For P3 = Pu′(γ1, γ2, ϕ) we then
conclude that V (P3)∩V (T ) = ∅ and u /∈ V (P3). For the coloring ϕ3 = ϕ/P3 we then
have γ2 ∈ ϕ̄2(u) ∩ ϕ̄2(u

′) and since, by Lemma 4.6, we still have (T, e, ϕ3) ∈ T (G)
and D(T, e, ϕ3) = D, we can obtain the desired coloring ϕ′ from ϕ3 by recolouring
the edge f using the colour γ2.

If otherwise u is not the second endvertex of P3 then, evidently, u doesn’t belong
to V (P3) at all. For P4 = Pu(γ1, γ2, ϕ) we then conclude that V (P4)∩V (T ) = ∅. For
the coloring ϕ4 = ϕ/P4 we then have γ1 ∈ ϕ̄4(u)∩ ϕ̄4(v

′) and, since, by Lemma 4.6,
we still have (T, e, ϕ4) ∈ T (G) and D(T, e, ϕ4) = D, we can obtain the desired
coloring ϕ′ from ϕ4 by recolouring analogously to Case 1.

Case 2c: There is colour γ1 ∈ ϕ̄(u′)∩ ϕ̄(Z) satisfying γ1 /∈ Γf (T, e, ϕ). Then let
γ3 ∈ Γf (T, e, ϕ). Evidently, γ1 6= γ3 and P5 = Pu′(γ1, γ3, ϕ) is a path with V (P5) ∩
Z = ∅, because Z is closed with respect to ϕ. Therefore, by Lemma 4.6, the coloring
ϕ5 = ϕ/P5 satisfies (T, e, ϕ5) ∈ T (G), Γf (T, e, ϕ5) = Γf (T, e, ϕ), Γd(T, e, ϕ5) =
Γd(T, e, ϕ) and D(T, e, ϕ5) = D. Moreover, we have γ3 ∈ ϕ̄5(u

′) ∩ Γf (T, e, ϕ5).
Hence, we can obtain the desired coloring ϕ′ from ϕ5 by recolouring analogously to
Case 2b.

Hence the claim is proved and there is a coloring ϕ′ ∈ Ck(G − e) satisfying
(T, e, ϕ′) ∈ T (G), D(T, e, ϕ′) = D, Eδ(e, ϕ

′) = Eδ(e, ϕ) and P ′ = Pv(γ, δ, ϕ′) =
vPu. Evidently, we have |E(P ′) ∩ EG(Z, V (G) \Z)| = 1. Since, by assumption,
we also have |EG(Z, V (G) \Z) ∩ Eδ(e, ϕ)| ≥ 3, there must be two edges f1, f2 ∈
EG(Z, V (G)\Z)\E(P ′) having endvertices v1, v2 ∈ Z and u1, u2 ∈ V (G)\Z and
satisfying ϕ(f1) = ϕ(f2) = δ, which also implies ϕ′(f1) = ϕ′(f2) = δ.

Now let P ′
1 = Pu1(γ, δ, ϕ′) and P ′

2 = Pu2(γ, δ, ϕ′). Note that P ′
1 and P ′

2 may be
equal. Since P ′ ∩ {u1, u2} = ∅, both chains P ′

1 and P ′
2 are vertex disjoint to P ′.

Moreover, Proposition 3.6(b) implies that V (P ′
1) ∩ V (T ) = ∅ and V (P ′

2) ∩ V (T ) =
∅. If P ′

1 = P ′
2 then let ϕ′2 = ϕ′/P ′

1, otherwise let ϕ′2 = (ϕ′/P ′
1)/P

′
2. Then from

Lemma 4.6 we conclude (T, e, ϕ′2) ∈ T (G), Γf (T, e, ϕ′2) = Γf (T, e, ϕ′) = Γf (T, e, ϕ),
Γd(T, e, ϕ′2) = Γd(T, e, ϕ′) = Γd(T, e, ϕ) and D(T, e, ϕ′2) = D. Moreover, we have
ϕ′2(f1) = ϕ′2(f2) = γ and, therefore, F = (f1, u1, f2, u2) is a fan at Z with respect to
ϕ′2. From Theorem 3.10 then follows that Z ∪{u1, u2} is elementary with respect to
ϕ′2, but since |Z ∪ {u1, u2}| = m, this contradicts Proposition 2.7(c). Consequently,
Z is strongly closed with respect to ϕ and, by Theorem 2.8, G is an elementary
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graph. This completes the proof.

Proposition 4.8 Let G be a critical graph with

χ′(G) >
m

m− 1
∆(G) +

m− 3

m− 1

for an odd integer m ≥ 3. Then the following statements hold:

(a) If t(G) > m− 4 then G is elementary.

(b) If t(G) = m− 4 and h(G) > t(G)− 8 then G is elementary.

Proof: Let t(G) > m − 4. Since m is odd and, by Proposition 3.4(a), t(G) is
odd, too. This implies t(G) ≥ m − 2. Evidently, for any (T, e, ϕ) ∈ T (G) we have
|V (T ) ∪D(T, e, ϕ)| ≥ m− 2. Hence Lemma 4.7 implies that |V (T ) ∪D(T, e, ϕ)| =
m− 2 and G is elementary. This proves (a).

Now let t(G) = m− 4 and h(T ) > |V (T )| − 8. By Lemma 3.12 there is a triple
(T, e, ϕ) ∈ T B(G). Therefore, we have e ∈ EG(x, y) for two vertices x, y ∈ V (T ) and
ϕ ∈ Ck(G−e) where k = χ′(G)−1. Since χ′(G) > ∆(G), we conclude that ∆(G) ≥ 2.
Then χ′(G) > m

m−1
∆(G) + m−3

m−1
≥ ∆(G) + 1 and, therefore, χ′(G) ≥ ∆(G) + 2 and

k ≥ ∆(G) + 1.
If Γd(T, e, ϕ) = ∅ then Proposition 3.4 implies that V (T ) is elementary as well as

strongly closed with respect to ϕ, and therefore, by Theorem 2.8, G is elementary.
So for the rest of the proof we assume Γd(T, e, ϕ) 6= ∅. In particular, this implies
D = D(T, e, ϕ) 6= ∅. If |D| ≥ 2 then |V (T ) ∪ D| ≥ m − 2 and from Lemma 4.7
follows that |V (T ) ∪ D| = m − 2 and G is elementary. So from now on we may
assume that |D| = 1.

Let δ ∈ Γd(T, e, ϕ) and E ′ = Eδ(T, e, ϕ). Then, by Proposition 3.4(e), we have
|E ′| ≥ 3. Let s be the number of vertices v ∈ V (T ), such that ϕ̄(v) contains no free
colour with respect to ϕ. Then, obviously, we have s ≥ |E ′| − |D| ≥ |E ′| − 1 ≥ 2.

Let α1 ∈ ϕ̄(x) and α2 ∈ ϕ̄(y) be the two colours used on the trunk of T with
respect to ϕ. Clearly, we have |ϕ̄(v)| ≥ k − ∆(G) + 1 for v ∈ {x, y} and |ϕ̄(v)| ≥
k − ∆(G) for v ∈ V (T ) \ {x, y}. This implies that |ϕ̄(v) \ {α1, α2}| ≥ k − ∆(G)
for every v ∈ V (T ). Since (T, e, ϕ) is a balanced triple and h(T ) > |V (T )| − 8, we
conclude that beside α1, α2 there are at most 3 other colours used on T with respect
to ϕ, which leads to s ≤ 3

k−∆(G)
.

Now we have 2 ≤ |E ′| − 1 ≤ s ≤ 3
k−∆(G)

which implies k = ∆(G) + 1 and,

therefore, 2 ≤ |E ′| − 1 ≤ 3. Since, by Proposition 3.4(e), |E ′| is odd, we then
conclude that |E ′| = 3.

Let E ′ = {f1, f2, f3}, and for i = 1, 2, 3 let ui be the endvertex of fi belonging to
V (G)\V (T ). Clearly, one of these vertices belongs to D, say u1 ∈ D. Since |D| = 1,
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we then have D = {u1}. From Proposition 3.5 and Proposition 3.7 we conclude
that Z = V (G) ∪ D = V (T ) ∪ {u1} is elementary with respect to ϕ. Since, by
Proposition 3.4, V (T ) is closed with respect to ϕ, there is a vertex u ∈ V (G)\Z and
an edge f ∈ EG(u1, u) with ϕ(f) ∈ ϕ̄(V (G)). Then (f, u) is a fan at Z with respect
to ϕ, and therefore, by Theorem 3.10, X = Z ∪{u} is elementary with respect to ϕ.

Now we claim that δ /∈ ϕ̄(X). Suppose this is not true. Since δ /∈ ϕ̄(Z), this
implies that δ ∈ ϕ̄(u). Then (f, u, f2, u2, f3, u3) is a fan at Z with respect to ϕ, and
therefore, by Theorem 3.10, X1 = X ∪ {u2, u3} is elementary with respect to ϕ.
Since |X1| = m, this contradicts Proposition 2.7(c). This proves the claim.

This implies k ≥ |ϕ̄(X)| + 1. Since |ϕ̄(v)| ≥ 2 for v ∈ {x, y} and |ϕ̄(v)| ≥ 1 for
v ∈ V (T ) − {x, y} and since X is elementary with respect to ϕ, we have |ϕ̄(X)| ≥
|X| + 2 = m. Hence on the one hand we have k ≥ m + 1. On the other hand we
have k + 1 = χ′(G) > m

m−1
∆(G) + m−3

m−1
= k + k−3

m−1
, which leads to k < m + 2. Since

k and m both are integers, we conclude that k = m + 1 = |ϕ̄(X)|+ 1.
Now we claim that X is closed with respect to ϕ. Suppose this is not true. Then

there is a colour α ∈ ϕ̄(X) satisfying E1 = EG(X,V (G)\X)∩Eα(e, ϕ) 6= ∅. Since X
is elementary with respect to ϕ, there is a unique vertex in X where the colour α is
missing with respect to ϕ. Moreover, |X| = m−2 is odd and, therefore, |E1| is even
and |E1| ≥ 2. Hence, there is at least one edge f ′ ∈ E1 having an endvertex in Z.
Let u′ ∈ V (G)\X be the other endvertex of f ′. Then (f, u, f ′, u′) is a fan at Z with
respect to ϕ and, by Theorem 3.10, X2 = X ∪ {u′} is elementary with respect to ϕ.
From k = m + 1 and |X2| = m − 1 we conclude k = |X2| + 2 ≤ |ϕ̄(X2)| ≤ k and,
therefore, |ϕ̄(X2)| = k. This implies δ ∈ ϕ̄(X2), and from δ /∈ ϕ̄(X) we then infer
δ ∈ ϕ̄(u′). Consequently, we have u′ /∈ {u2, u3} and, therefore, at least one of the
vertices u2, u3 doesn’t belong to X2, say u2 /∈ X2. Then, evidently, (f, u, f ′, u′, f2, u2)
is a fan at Z with respect to ϕ, and therefore, by Theorem 3.10, X3 = X2 ∪ {u2}
is elementary with respect to ϕ, but |X3| = m contradicts Proposition 2.7(c). This
proves the claim.

Let E ′′ = EG(X, V (G) \X) ∩ Eδ(e, ϕ). Since δ /∈ ϕ̄(X) and |X| is odd, we
conclude that |E ′′| ≥ 1 is odd, too. We claim that |E ′′| = 1|. Suppose on the
contrary |E ′′| > 1. Since |E ′′| is odd, this implies |E ′′| ≥ 3. From E ′ = {f1, f2, f3}
and f1 ∈ EG(X, X) it then follows that |E ′′| = 3 and E ′′ = {f2, f3, g} for an edge
g ∈ EG(u, v) where v ∈ V (G)\X. Let β ∈ ϕ̄(v). Evidently, we have β 6= δ, and since
k = |ϕ̄(X)|+ 1 and δ /∈ ϕ̄(X), we have β ∈ ϕ̄(X). Moreover, by Proposition 3.4(g),
there is a colour γ ∈ Γf (T, e, ϕ)\{β}. Now let P = Pv(β, γ, ϕ) and ϕ′ = ϕ/P . Since
X is closed with respect to ϕ, we conclude that V (P ) ∩X = ∅. By Lemma 4.6 we
then have (T, e, ϕ′) ∈ T (G), γ ∈ Γf (T, e, ϕ′), δ ∈ Γd(T, e, ϕ′) and D(T, e, ϕ′) = {u1}.
Moreover, we have ϕ′(f1) = ϕ′(f2) = ϕ′(f3) = ϕ′(g) = δ and γ ∈ ϕ̄′(v). Since V (T )
and X both are closed with respect to ϕ, there is an edge g′ ∈ EG(u1, u) satisfying
ϕ′(g′) = ϕ(g′) = γ. Let v′ ∈ V (T ) be the unique vertex with γ ∈ ϕ̄′(v), and let
P ′ = Pv′(γ, δ, ϕ′). Since D(T, e, ϕ′) = {u1}, we conclude that u1 is the first vertex in
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the linear order ¹(P ′,v′) that belongs to V (G)\V (T ). Then, evidently, u, v are the
next vertices in the linear order ¹(P ′,v′) and, moreover, v is the second endvertex
of P ′. Consequently, we have f2, f3 /∈ E(P ′), a contradiction to Proposition 3.6(b).
Hence the claim is proved.

Since k = |ϕ̄(X)|+ 1 and δ /∈ ϕ̄(X) and since X is closed with respect to ϕ, we
then conclude that every edge in EG(X, V (G)\X) is coloured with δ with respect to
ϕ. Hence, |E ′′| = 1 implies that X is strongly closed with respect to ϕ. Since X is
also elementary with respect to ϕ, we infer from Theorem 2.8 that G is elementary.
This, eventually, proves (b).

In this section we have developed several sufficient conditions for a critical graph
G being elementary depending on the Tashkinov-tree-related parameters t(G) and
h(G). Eventually, using these results, we can easily prove Theorem 2.4.

Proof of Theorem 2.4: Let G be a graph with χ′(G) > 15
14

∆(G) + 12
14

. Moreover,
let H be a critical subgraph of G satisfying χ′(H) = χ′(G). Clearly, we have
∆(H) ≤ ∆(G) and, therefore,

χ′(H) >
15

14
∆(H) +

12

14
.

Now we distinguish four cases.

Case 1: t(H) < 11. Then, by Proposition 4.5, H is elementary.

Case 2: t(H) > 11. Then, by Proposition 4.8(a), H is elementary.

Case 3: t(H) = 11 and h(H) ≤ 3. Then from Proposition 4.3 follows that H is
elementary.

Case 4: t(H) = 11 and h(H) > 3. Then from Proposition 4.8(b) follows that H is
elementary.

In any case H is an elementary graph, so we have χ′(H) = W(H). This implies
W(G) ≤ χ′(G) = χ′(H) = W(H) ≤ W(G) and, therefore, we have χ′(G) = W(G).
Hence, G is elementary, too, and the proof is complete.

5 Upper bounds for the chromatic index

From Theorem 2.4 we derived the parameter max
{⌊

15
14

∆ + 12
14

⌋
,W

}
as an upper

bound for the chromatic index χ′. This was stated in Corollary 2.5 already. But
there are some other upper bounds for χ′ that can be derived from the results of
the last section. They improve some known bounds and asymptotically support
Goldberg’s conjecture.

35



For every ε > 0 let the graph parameter τε be defined by

τε(G) = max

{
b(1 + ε)∆(G) + 1− 2εc , ∆(G)− 1 +

1

2ε
, W(G)

}
.

Clearly, this graph parameter is monotone, i.e., τε(H) ≤ τε(G) for every subgraph
H of G. The following theorem states that τε is for every ε > 0 an upper bound
for the chromatic index χ′. In particular, this is an improvement of a result due to
Sanders and Steurer [7].

Theorem 5.1 For every ε > 0 every graph G satisfies χ′(G) ≤ τε(G).

Proof: Suppose, on the contrary, that this is not true. Then there is a minimal
graph G and there is an ε > 0 satisfying χ′(G) > τε(G). Evidently, G is a critical
graph, because otherwise we would have χ′(H) = χ′(G) > τε(G) ≥ τε(H) for a
proper subgraph H of G, a contradiction to the minimality of G.

Let ∆ = ∆(G). From χ′(G) > τε(G) ≥ W(G) we easily infer that ∆ ≥ 2.
Then we have τε(G) ≥ b(1 + ε)∆ + 1− 2εc ≥ ∆ + 1 and, therefore, χ′(G) ≥ ∆ + 2.
From Lemma 3.12 we then conclude that there is a triple (T, e, ϕ) ∈ T B(G). Then
e ∈ E(G), ϕ ∈ Ck(G− e) where k = χ′(G)− 1 ≥ ∆ + 1, and

T = (y0, e1, y1, . . . , en−1, yn−1)

is a Tashkinov tree with respect to e and ϕ with n = t(G).
Let p = h(G). If p < 5 then, by Proposition 4.3, G is an elementary graph,

implying χ′(G) = W(G) ≤ τε(G), a contradiction. Consequently we have p ≥ 5.
Since (T, e, ϕ) is a balanced triple, we have h(T ) = p, and Typ−1 is the (α, β)-trunk
of T with respect to ϕ. Hence, there are at most n−p

2
≥ n−5

2
colours used on ypT

with respect to ϕ. Consequently, there are at most n−5
2

+ 2 = n−1
2

colours used on
T with respect to ϕ.

From Theorem 3.3 we know that V (T ) is elementary and closed both with respect
to ϕ. If Γd(T, e, ϕ) = ∅ then, by Proposition 3.4(c), V (T ) is also strongly closed with
respect to ϕ, and therefore, by Theorem 2.8, G is an elementary graph, implying
χ′(G) = W(G) ≤ τε(G), a contradiction. Consequently, we have Γd(T, e, ϕ) 6= ∅.
By Proposition 3.4(g), we also have Γf (T, e, ϕ) 6= ∅, implying D(T, e, ϕ) 6= ∅ and
F (T, e, ϕ) 6= ∅.

Let v ∈ D(T, e, ϕ). From Proposition 3.5 and Proposition 3.7 we conclude that
Y = V (T ) ∪ {v} is elementary with respect to ϕ. Then for a colour γ ∈ ϕ̄(V (T ))
there is an edge f ∈ EG(v) with ϕ(f) = γ. Since V (T ) is closed with respect to ϕ,
the second endvertex v′ of f belongs to V (G) − V (T ). Then F = (f, v′) is a fan
at Y and therefore, by Theorem 3.10, Z = Y ∪ {v′} is elementary with respect to
ϕ. Then Proposition 2.7 implies n + 2 = |Z| ≤ k−2

k−∆
= 1 + ∆−2

k−∆
. Moreover, from
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k+1 > τε(G) ≥ b(1 + ε)∆ + 1− 2εc we conclude k−∆ ≥ b1 + ε(∆− 2)c ≥ ε(∆−2).
Hence we have n + 2 ≤ 1 + ∆−2

ε(∆−2)
= 1 + 1

ε
and, therefore, n ≤ 1

ε
− 1.

Since we have F (T, e, ϕ) 6= ∅, there is a vertex u ∈ F (T, e, ϕ). Then, by
Lemma 3.8, all colours from ϕ̄(u) are used on T with respect to ϕ. In the case
u ∈ {y0, y1} we have |ϕ̄(u)| = k− dG−e(u) ≥ k−∆ + 1 and hence at least k−∆ + 1
colours are used on T with respect to ϕ. In the other case we have u = yj for some
j ∈ {2, . . . , n− 1} and |ϕ̄(u)| = k− dG−e(u) ≥ k−∆. Then for the colour γ = ϕ(ej)
we clearly have γ ∈ ϕ(u) and, moreover, γ is used on T with respect to ϕ. Hence
at least k −∆ + 1 colours are used on T with respect to ϕ. Consequently, in both
cases, at least k−∆+1 colours and at most n−1

2
colours are used on T with respect

to ϕ and, therefore, we conclude k − ∆ + 1 ≤ n−1
2

. Since n ≤ 1
ε
− 1, this implies

χ′(G) = k + 1 ≤ ∆− 1 + 1
2ε
≤ τε(G), a contradiction. This completes the proof.

A consequence of Theorem 5.1 is the following result about an asymptotic ap-
proximation of the chromatic index for graphs with sufficiently large maximum de-
gree. In particular, it supports Goldberg’s conjecture asymptotically and extends a
result of Kahn [5] (Theorem 2.2).

Corollary 5.2 Let G be a graph with ∆(G) = ∆ and let ε > 0.

(a) If ∆ ≥ 1
2ε2
− 2

ε
+ 2 then

χ′(G) ≤ max{(1 + ε)∆ + 1− 2ε,W(G)}.

(b) If ∆ ≥ 1
2ε2

then
χ′(G) ≤ max{(1 + ε)∆,W(G)}.

Proof: Let ∆ ≥ 1
2ε2
− 2

ε
+ 2. Then we have

∆ + 1 + ε(∆− 2) ≥ ∆ + 1 + ε

(
1

2ε2
− 2

ε

)
= ∆− 1 +

1

2ε

and, therefore,

∆ + 1 + ε(∆− 2) ≥ max{b∆ + 1 + ε(∆− 2)c , ∆− 1 +
1

2ε
}.

By Theorem 5.1, this implies

χ′(G) ≤ τε(G) ≤ max{(1 + ε)∆ + 1− 2ε,W(G)}.

Hence (a) is proved.
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Now let ∆ ≥ 1
2ε2

and ε′ = ε
1+2ε

. Then ε = ε′
1−2ε

and, therefore,

∆ ≥ 1

2ε2
=

(1− 2ε′)2

2ε′2
=

1

2ε′2
− 2

ε′
+ 2.

From (a) we then infer χ′(G) ≤ max{(1 + ε′)∆ + 1− 2ε′,W(G)}. Moreover, we have

(1 + ε′)∆ + 1− 2ε′ = ∆ + ε
1+2ε

∆ + 1− 2ε
1+2ε

= ∆ + ε
1+2ε

∆ + 1
1+2ε

≤ ∆ + ε
1+2ε

∆ + 2ε2∆
1+2ε

= (1 + ε)∆.

This proves (b).

The following result is a simple consequence from Corollary 5.2, matching the
notation of the equivalent formulation of Goldberg’s conjecture (Conjecture 2.3) and
improving a result due to Favrholdt, Stiebitz and Toft [2].

Corollary 5.3 Let G be a graph and m ≥ 3 an odd integer. If ∆(G) ≥ 1
2
(m − 3)2

then

χ′(G) ≤ max{ m

m− 1
∆(G) +

m− 3

m− 1
,W(G)}.

Proof: Let ε = 1
m−1

. Then we have ∆(G) ≥ 1
2
(1

ε
− 2)2 = 1

2ε2
− 2

ε
+ 2 and Corol-

lary 5.2(a) implies χ′(G) ≤ max{(1 + ε)∆ + 1 − 2ε,W(G)} = max{ m
m−1

∆(G) +
m−3
m−1

,W(G)}.
Another consequence from Theorem 5.1 is an upper bound for χ′ by means of

its lower bound, the fractional chromatic index χ′f .

Corollary 5.4 Every graph G satisfies χ′(G) ≤ χ′f (G) +
√

1
2
χ′f (G).

Proof: Let G be an arbitrary graph and ∆ = ∆(G). If ∆ ≤ 1 then E(G) is an,
possibly empty, independent edge set, and we can colour all edges of G with the
same colour. Obviously, we then have χ′(G) = χ′f (G) = ∆ and we are done. In the
other case we have ∆ ≥ 2 and, therefore,

χ′f (G) +

√
1

2
χ′f (G) ≥ χ′f (G) + 1 ≥ W(G).

Moreover, for ε = 1√
2∆+2

we have

(1 + ε)∆ + 1− 2ε = ∆ + 1 + ε(∆− 2) = ∆ + 1 + ∆−2√
2∆+2

= ∆ + ∆+
√

2∆√
2∆+2

= ∆ +
√

1
2
∆

≤ χ′f (G) +
√

1
2
χ′f (G)
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as well as
∆− 1 + 1

2ε
= ∆ +

√
1
2
∆ ≤ χ′f (G) +

√
1
2
χ′f (G) .

Hence we conclude τε(G) ≤ χ′f (G)+
√

1
2
χ′f (G). By Theorem 5.1, this completes the

proof.

6 Concluding Remarks

In Section 5 several upper bounds for the chromatic index χ′ were developed. The
question is whether they can be attained by an efficient algorithms. All these bounds
are based on the results about Tashkinov trees in Section 4. Although the proofs of
these results and all related proofs deal with optimal colourings in critical graphs,
the used recolouring techniques work for arbitrary colourings in any graph. Based on
these proofs several edge coloring algorithms can be constructed which will attain the
several upper bounds. These algorithms will basically work by successively building
and recolouring Tashkinov trees and will have time complexity polynomial in the
numbers of vertices and edges. For the related proofs not in this paper the reader
is referred to [2].

Since the Tashkinov tree is an improvement of the fan introduced by Vizing [13],
this method of building and recolouring Tashkinov trees may be generally useful
to construct new edge coloring algorithms or to improve various other that rely on
Vinzing’s fan argument.
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