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Universal Confidence Sets - Sufficient Conditions

Silvia Vogel

Abstract

Universal confidence sets for solutions of optimization problems
are sequences of random sets (Cn)n∈N with the property that for each
sample size n the set Cn covers the true solution at least with a pre-
scribed probability. Universal confidence sets can be derived making
use of uniform concentration-of-measure results for sequences of ran-
dom functions and knowledge about the limit problem, e.g. a growth
condition. We present sufficient conditions for the convergence as-
sumptions and show how estimates for the growth function can be
included.

Keywords: universal confidence sets, uniform concentration-of-
measure, estimates for the growth function
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1 Introduction

Random optimization problems occur in many frameworks. For instance, in
real-life decision problems usually not all parameters, probability distribu-
tions etc. are completely known. Replacing the unknown quantities with
estimates, one arrives at random surrogate problems. Hence there is the
need for assertions that help to evaluate the goodness of the solutions for
the surrogate problems. Stability theory of stochastic programming provides
qualitative and quantitative results for random optimization problems that
can be utilized for that purpose, see [10], [11], [16], [17].

Furthermore, stability theory of stochastic programming can also con-
tribute to asymptotic or non-asymptotic estimation theory. Many statistical
estimators are obtained as solutions of random optimization problems while
the true value can be regarded as the solution of a suitable deterministic
‘limit’ optimization problem. Hence assertions about the appropriate con-
vergence of the solution sets of random optimization problems in the almost
surely or in probability sense can be employed to derive weak or strong con-
sistency statements. Qualitative stability theory of stochastic programming
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provides such results under rather general assumptions. There are results
e.g. for constrained problems or problems with non-unique solution, so-
called non-identifiable problems. Moreover, statistics which are based on
dependent samples can be dealt with. Particularly the paper [16] is intended
as a toolkit of methods which can be put together to prove consistency for
many problems.

If more information about the limit problem and the approximations is
available, also ‘quantitative’ results, e.g. confidence sets, can be derived. In
classical statistics confidence sets are usually obtained in the following way:
One determines the distribution of a suitable statistic and derives conclu-
sions for the parameter under consideration. If the exact distribution is not
available, the asymptotic distribution is used as a surrogate, often without
any information about the ‘distance’ between the asymptotic distribution
and and true distribution for the given sample size.

In order to derive the asymptotic distribution, usually differentiability
assumptions etc. are imposed, see e.g. [7], [9], [12]. If such properties are
not satisfied or hard to prove, again, stability theory of stochastic program-
ming can be employed. Qualitative stability results ’in distribution’ provide
assertions about convergence and one-sided convergence in distribution of
the solution sets. In [8] and [2] results of that kind are employed to derive
asymptotic confidence sets. The paper [9] shows how optimization problems
with fixed constraint set which converge to a deterministic problem with
single-valued solution can be ’blown up’ to obtain a suitable random limit
problem.

Qualitative stability results for convergence in distribution do, however,
not provide reliable confidence sets for small sample sizes n. One way out
is to allow for sets which may be a bit larger than the confidence sets that
would be obtained for the true, but unknown distribution. So-called outer
approximations in probability supplemented with a convergence rate and
common tail behavior function have proved to be useful tools to derive suit-
able supersets [10], [17]. Crucial assumptions for the results in [10], [17] are
uniform convergence-of-measure results for the approximating objective and
constraint functions. In this paper we will suggest a general approach, which
may serve as a bridge between the needed uniform convergence assumptions
and available concentration-of-measure inequalities for sequences of suitable
random variables, see for instance [6]. Furthermore, the derivation of confi-
dence sets requires some knowledge about the deterministic limit problem,
such as growth conditions for the limit objective function. The function
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which describes the growth condition occurs in the convergence rate. Even
if a special form of the objective function can be assumed there are usually
certain unknown parameters. We will show how estimates for the growth
function can be incorporated into the considerations. A natural consequence
are random convergence rates.

The paper is organized as follows. In section 2 we provide the mathe-
matical model and explain how universal confidence sets can be derived from
suitable assertions about convergence in probability with convergence rate
and tail behavior function. In order not to overload the paper with technical
details, we will confine the considerations to problems with a fixed constraint
set. Section 3 contains the convergence result for the solution sets we rely
on. Sufficient conditions for the uniform convergence assumptions are dealt
with in Section 4. Estimation of the growth function for the limit problem
is the topic of Section 5. Section 6 outlines how the results can be combined
to an adaptive procedure for the derivation of ‘good’ confidence sets.

2 Universal Confidence Sets

We investigate solutions of a random optimization problem in a complete
separable metric space. Together with the sequence of random optimization
problems we consider a deterministic limit problem. As mentioned in the
introduction we will only investigate problems with fixed constraints.

Let (E, d) be a complete separable metric space, K a compact subset of E,
and [Ω, Σ, P ] a complete probability space. We assume that a deterministic
optimization problem
(P0) min

x∈K
f0(x)

is approximated by a sequence of random problems
(Pn) min

x∈K
fn(x, ω), n ∈ N .

f0|E → R̄1 is a lower semicontinuous function and fn|E × Ω → R̄1 are
lower semicontinuous random functions which are supposed to be (B(E) ⊗
Σ, B̄1)-measurable. B(E) denotes the Borel-σ-field of E and B̄1 the σ-field of
Borel sets of R̄1. The measurability conditions imposed here do not have the
weakest form. We use them for sake of simplicity. They are satisfied in many
applications and guarantee that all functions of ω needed in the following have
the necessary measurability properties. Furthermore, it should be mentioned
that the lower semicontinuity assumption of the objective functions fn can

3



be dropped. Imposing this condition, however, we can omit some technical
details in the proofs. Eventually, we assume that all objective functions are
(almost surely) proper functions, i.e. functions with values in (−∞, +∞]
which are not identically ∞.

By Φn we denote the optimal value and by Ψn the solution set of the
random approximate problems (Pn). Correspondingly, by Φ0 we denote the
optimal value and by Ψ0 the solution set of the deterministic limit problem
(P0).

Our main concern will be with the solution sets. We make use of assertions
of the following form:

∀κ > 0 ∀n ∈ N : P{ω : Ψn(ω) \ Uβn,κΨ0 6= ∅} ≤ Hn(κ) (1)

and

∀κ > 0 ∀n ∈ N : P{ω : Ψ0 \ Uβn,κΨn(ω) 6= ∅} ≤ Hn(κ). (2)

Here (βn,κ)n∈N is a sequence of nonnegative numbers which tends to zero
for each κ > 0. UαX denotes an open neighborhood of the set X ⊂ E with
radius α: UαX := {x ∈ E : d(x, X) < α} and ŪαX means its closure.

In stochastic programming, objective functions and constraint functions
which are expectations of random functions are of special interest. If the
true, but unknown distribution is replaced with the empirical measure, one
often obtains a convergence rate of the form β̂n,κ = κ√

n
for these functions.

As we shall see later, the rate βn,κ which occurs in (1) and (2) is an increasing

function of β̂n,κ. Hence the neighborhoods grow with increasing κ and become
smaller with increasing n, c.f. [17].

Firstly, assume that H does not depend on n. In order to derive universal
confidence sets to the level ε, i.e. a sequence of random sets (Cn)n∈N with
the property that, for each n ∈ N , the limit solution set Ψ0 is covered by Cn

at least with probability ε, i.e. sup
n∈N

P{ω : Ψ0 \Cn(ω) 6= ∅} ≤ ε, we can then

proceed as follows:
Suppose that a sequence (Ψn)n∈N that satisfies inequality (2) is available

and choose to ε > 0 a κ = κ(ε) > 0 such that H(κ) ≤ ε. The sets

Cn := Uβn,κΨn, n ∈ N, (3)

have the desired property. Of course, one is interested in small confidence
sets, hence (βn,κ)n∈N should go to zero as fast as possible and H should
converge to zero as fast as possible if κ tends to infinity.
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In Sections 3 and 4 we derive assertions for tail behavior functions which
have the form Hn(κ) = Ln(κ)H̃(κ). Then, for given ε > 0 and n ∈ N ,
we choose κ̂n(ε) := min{κ : Hn(κ) ≤ ε}. In order to obtain reasonable
confidence sets we assume that for each the condition ε > 0 lim

n→∞
βn,κ̂n(ε) = 0

holds. This assumption is often satisfied in applications.

Unfortunately, under reasonable conditions one can only prove inequality
(1), which means, roughly spoken, that only a subset of the ‘true’ solution set
Ψ0 is approximated. However, if Ψ0 is single-valued and the sets Ψn, n ∈ N,
are uniformly bounded, inequality (1) implies inequality (2), and we can
proceed as above. The uniform boundedness condition is satisfied because of
the compactness of K. If the solution set to the limit problem is not single-
valued one can consider relaxed problems in order to derive inequalities of the
form (2), see [17]. When dealing with relaxations, all quantities can depend
on κ, especially the optimal values and the solution sets. Here, for sake of
simplicity, we will do without relaxations. We will prove needed assertions
in the form (1) and assume - for the derivation of confidence sets - that the
solution set to the limit problem is single-valued.

Because of the relationship to inner and outer approximations in probabil-
ity we will call a sequence (Ψn,κ)n∈N fulfilling relation (1) an inner approxima-
tion in probability to Ψ0 with convergence rate βn,κ and tail behavior function
Hn (in short, an inner (βn,κ,Hn)-approximation) and a sequence (Ψn,κ)n∈N

fulfilling (2) an outer approximation in probability to Ψ0 with convergence rate
βn,κ and tail behavior functionH (in short, an outer (βn,κ,H)-approximation).
Since supersets of outer approximations are again outer approximations, one
is especially interested in outer approximations which are also inner approx-
imations. The relationship between the two kinds of approximations and
Kuratowski-Painlevè-convergence in probability is discussed in more detail
in [17].

As mentioned, in order to obtain reasonable confidence sets one would
like to have lim

n→∞
βn,κ(ε) = 0 or lim

n→∞
βn,κ̂n(ε) = 0 and the limits should go

to zero as fast as possible. These properties are, however, not needed to
prove the results in Sections 3, 4, and 5. We only assume throughout the
paper that the sequences (βn,κ)n∈N belong to the class B of non-increasing
sequences of positive numbers and the functions H and H̃ belong to the class
H of non-increasing functions which are defined on R+ and map into R+.
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3 Approximation of the Solution Set

In [17] we proved results about inner and outer approximations of constraint
sets and solution sets as well as results about lower and upper approximations
of the optimal values, supplemented with a deterministic convergence rate
and a tail behavior function. Crucial assumptions are uniform concentration-
of-measure conditions for the objective functions and the constraint functions
and conditions about the limit problem, which concern the growth of the
objective function, some kind of semi-continuity of the objective function
and the mutual position of the constraint set and the lower level set of the
optimal value.

We will provide a special case of the results in [17], which applies to many
practical problems and can demonstrate the role of the convergence condi-
tions and the growth condition without many technical details. We present
a result about the inner approximation of the solution set for problems with
a fixed constraint set. In this case only the growth condition for the limit
objective function has to be taken into account in order to derive the con-
vergence rate. The growth condition will be described with a function µ,
which belongs to a set Λ := {µ|R+ → R+: µ is increasing, right-continuous,
and satisfies µ(0) = 0}. For the readers convenience we provide the simple
proof. Theorem 1 is, in fact, with respect to the tail behavior function a bit
more general than the results in [17], because it allows for functions Hn that
depend on n.

Note that for Theorem 1 the single-valuedness of Ψ0 is not needed.

Theorem 1 (Inner Approximation of the Solution Set) Assume that
the following assumptions are satisfied:

(Cf -n) There exist a functions Hn ∈ H and to all κ > 0 a sequence (βn,κ)n∈N ∈
B such that
∀n ∈ N : P{ω : sup

x∈K
|fn(x, ω)− f0(x)| ≥ βn,κ} ≤ Hn(κ).

(G-f0) There exists a function µ ∈ Λ such that for all δ > 0
∀ x ∈ K \ UεΨ0 : f0(x) ≥ Φ0 + µ(δ).

Then for all κ > 0 and β̃n,κ = µ−1(2βn,κ) the relation
∀n ∈ N : P{ω : Uβ̃n,κ

Ψ0 ⊂ K and Ψn(ω) \ Uβ̃n,κ
Ψ0 6= ∅} ≤ Hn(κ)

holds.
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Proof. Let κ > 0, n ∈ N , and ω ∈ Ω be such that Uβ̃n,κ
Ψ0 ⊂ K

and Ψn(ω) \ Uβ̃n,κ
Ψ0 6= ∅. Then there is xn(ω) ∈ Ψn(ω) which does not

belong to Uβ̃n,κ
Ψ0. Furthermore, choose x0 ∈ Ψ0. Because of (G-f0)we have

f0(xn(ω)) − f0(x0) ≥ µ(µ)−1(2βn,κ) ≥ 2βn,κ. On the other side we have
fn(x0, ω) − fn(xn(ω), ω) ≥ 0. Consequently, −fn(xn(ω), ω) + f0(xn(ω) +
fn(x0, ω) − f0(x0) ≥ 2βn,κ holds. Hence either −fn(xn(ω), ω) + f0(xn(ω) ≥
βn,κ or +fn(x0, ω)− f0(x0) ≥ βn,κ, and we can employ (Cf -n). �

4 Sufficient Conditions for the Uniform Con-

vergence

4.1 Pointwise Approach

A crucial assumption in Theorem 1 and the results in [17] is the (one-sided)
uniform convergence in probability with convergence rate and tail behavior
function. Some sufficient conditions for these assumptions are presented in
[10] and [17]. In the following we will show how further sufficient conditions
can be derived. We extend an approach, which was exploited for qualitative
stability results in [14] and [5], to the quantitative framework of [17]. The
method can be applied to many optimization problems. The considerations
rely on the following result. The index n,κ at the neighborhoods is to indicate
the dependence on n and κ. It does not mean the radius as in Uα. For sake of
convenience we assume that f0 is continuous. If this condition is not satisfied,
in the proof to Theorem 2 we can not assume that the infimum is a minimum.

Theorem 2 (Pointwise Approach) Assume that there exist a function

H ∈ H and to all κ > 0 sequences (β
(a)
n,κ)n∈N , (β

(b)
n,κ)n∈N , sets Mn,κ =

{x(1)
n,κ, . . . , x

(Ln(κ))
n,κ }, and neighborhoods Un,κ{x}, x ∈ Mn,κ, such that for each

n ∈ N the following conditions are satisfied:

(C1) K ⊂
⋃

xi∈Mn,κ

Un,κ{xi},

(C2) ∀xi ∈ Mn,κ ∀x ∈ Un,κ{xi} : f0(x)− f0(xi) ≤ β
(a)
n,κ,

(C3) sup
n∈N

max
xi∈Mn,κ

P{ω : inf
x∈Un,κ{xi}

fn(x, ω)− f0(xi) ≤ −β
(b)
n,κ} ≤ H(κ).
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Then
sup
n∈N

P{ω : inf
x∈K

(fn(x, ω)− f0(x)) ≤ −β
(a)
n,κ − β

(b)
n,κ} ≤ Ln(κ)H(κ).

Proof. Assume that for fixed κ > 0, n ∈ N, and ω ∈ Ω the relation
inf
x∈K

(fn(x, ω) − f0(x)) ≤ −β
(a)
n,κ − β

(b)
n,κ holds. Then there exists xn(ω) ∈ K

such that fn(xn(ω), ω)− f0(xn(ω)) ≤ −β
(a)
n,κ − β

(b)
n,κ.

Consequently, there is xi ∈ Mn,κ such that xn(ω) ∈ Un,κ{xi}. Hence

fn(xn(ω), ω)−f0(xn(ω), ω) ≥ fn(xn(ω), ω)−f0(xi)−β
(b)
n,κ and fn(xn(ω), ω)−

f0(xi) ≤ −β
(b)
n,κ. It remains to employ (C3). �

Sequences of functions (fn)n∈N which satisfy the conclusion of the above
theorem are called lower semicontinuous approximations in probability to f0

with convergence rate βn,κ := β
(a)
n,κ + β

(b)
n,κ and tail behavior function Hn :=

LnH, in short lower semicontinuous (βn,κ,Hn)-approximations. The deno-
tation ‘lower semicontinuous’ has been chosen because of the relationship to
lower semicontinuity of a function of two parameters where n is regarded
as parameter. A corresponding result can be proved for an upper semicon-
tinuous approximation, replacing fn with −fn and f0 with −f0. Sequences
(fn)n∈N which are lower and upper (βn,κ,Hn)-approximations satisfy con-
dition (Cf -n), which describes the uniform convergence in probability with
convergence rate and tail behavior function.

4.2 Functions Which Are Expectations

We will illustrate the method investigating functions f0 which are expecta-
tions with respect to a given probability measure. If the probability measure
is not completely known it is often estimated by the empirical measure. In
this way one arrives at random approximating functions fn.
Assume that the function f0 has the form f0(x) =

∫
Rm

ϕ(x, z)dPZ = Eϕ(x, Z)

where Z is a random variable with values in Rm and distribution PZ . ϕ is
supposed to be measurable with respect to both variables and continuous
in each x for almost all z. The discontinuity set D(x) = {z : ϕ(·, z) is
discontinuous in x} can vary with x.

Furthermore, we assume that to each x ∈ E there is a neighborhood
Uε̂{x} such that E sup

x̃∈Uε̂{x}
|ϕ(x̃, z)| exists. ε̂ can depend on x.
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PZ is approximated by the empirical measure Pn based on a sequence of
i.i.d. random variables Z1, Z2, . . ., and the functions fn are integrals with

respect to Pn: fn(x, ω) =
∫

Rm

ϕ(x, z)dPn(z, ω) = 1
n

n∑
i=1

ϕ(x, Zi(ω)).

Then to each xi ∈ K and each monotonously decreasing sequence (β
(a)
n,κ)n∈N

we can choose a monotonously decreasing sequence of balls (Un,κ{xi})n∈N ,
such that Un,κ{xi} ⊂ Uε̂{xi}, n ∈ N, κ > 0, and the following condition is
satisfied:

(C4) ∀κ > 0 ∀n ∈ N :
∫

Rm

sup
x∈Un,κ{xi}

|ϕ(x, z)− ϕ(xi, z)|dPZ(z) ≤ β
(a)
n,κ.

Since for all x ∈ Un,κ{xi} the relation f0(x) ≤ sup
x∈Un,κ{xi}

∫
Rm

ϕ(x, z)dPZ(z) ≤∫
Rm

sup
x∈Un,κ{xi}

ϕ(x, z)dPZ(z) holds, (C4) implies (C2). Bounds for Ln(κ) de-

pend on the shape of f0 and can be derived under additional assumptions.
Below we present an example.

Now we consider (C3) for a fixed x0 ∈ E. Let Y ε
k (ω) := inf

x∈Uε{x0}
ϕ(x, Zk(ω)).

We will employ the following condition.

(CM) To each κ > 0 there exist a sequence (βn,κ)n∈N ∈ B and a function
H ∈ H such that for all 0 < ε < ε̃ ≤ ε̂(x0) the inequality

sup
n∈N

P{ω : 1
n

n∑
k=1

Y ε
k (ω)− EY ε

1 ≤ −βn,κ} ≤ H(κ)

is fulfilled.

Lemma 1 Let x0 be fixed and suppose that (CM) is satisfied. Choose (Un,κ{x0})n∈N

such that (C4) is fulfilled with β
(a)
n,κ = βn,κ, n ∈ N, and Un,κ{x0} ⊂ Uε̃{x0}

holds for all κ > 0 and n ∈ N .
Then the relation

sup
n∈N

P{ω : inf
x∈Un,κ{x0}

fn(x, ω)− f0(x0) ≤ −2βn,κ} ≤ H(κ) holds.

Proof. Let κ > 0 and n ∈ N be given. Then, due to (C4), we have
−

∫
Rm

inf
x∈Un,κ{x0}

ϕ(x, z)dPZ(z) + f0(x0) < βn,κ. Because of the assumed shape

of Un,κ{x0} we find ε ≤ ε̃ such that Un,κ{x0} = Uε{x0}.
Now consider ω ∈ Ω such that inf

x∈Un,κ{x0}
fn(x, ω)−f0(xi) ≤ −2βn,κ is sat-

isfied. Since
∫

Rm

inf
x∈Un,κ{x0}

ϕ(x, z)dPn(z, ω) ≤ inf
x∈Un,κ{x0}

fn(x, ω) holds for all
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ω ∈ Ω, we obtain
∫

Rm

inf
x∈Un,κ{x0}

ϕ(x, z)dPn(z, ω)− f0(x0) ≤ −2βn,κ. Together

with −
∫

Rm

inf
x∈Uε{x0}

ϕ(x, z)dPZ(z) + f0(x0) < βn,κ this implies∫
Rm

inf
x∈Uε{x0}

ϕ(x, z)dPn(z, ω) −
∫

Rm

inf
x∈Unκ){x0}

ϕ(x, z)dPZ(z) ≤ −βn,κ and even-

tually 1
n

n∑
k=1

Y ε
k (ω)− EY ε

1 ≤ −βn,κ. Hence we can employ (CM). �

The assumption (CM) is a concentration-of-measure result which has to
be fulfilled for each ε > 0 with the same convergence rate and tail behavior
function. Taking into account the special form of the random variables under
considerations, we see that the condition is often satisfied if it is fulfilled for a
certain ε̃. Hence the meanwhile large collection of concentration-of-measure
results can be exploited, see for instance [6] or [1].

The neighborhoods Un,κ{x}, x ∈ E, need not have the same radius.
Hence the radius can be fitted to the shape of f0. We can derive bounds for
the number of neighborhoods needed if we have some knowledge about f0,
e.g. a Lipschitz condition. If a Lipschitz condition is satisfied we can even
use the same radius for all neighborhoods Un,κ{xi}, see the following lemma.

Lemma 2 Let E = Rp and suppose that there is a ball B with radius r which
contains K. Additionally, assume that ϕ fulfils a Lipschitz condition in the
following form:

(L) ∃x0 ∈ B ∀x ∈ B : ϕ(x, z)− ϕ(x0, z) ≤ L(z)d(x, x0)
with an integrable Lipschitz constant L.

Then Ln(κ) = b rβ
(a)
n,κ

EL
+ 1c

p

neighborhoods Un,κ{xi} can be chosen such that

(C1) and (C2) are fulfilled.

Proof. We consider balls Un,κ(xi), xi ∈ Rp, with radius rn,κ which does
not depend on xi. Then we have

sup
x∈Un,κ{xi}

ϕ(x, z)− ϕ(xi, z) ≤ L(z)rn,κ. The condition∫
Rm

sup
x∈Un,κ{xi}

ϕ(x, z)dPZ(z)−
∫

Rm

ϕ(xi, z)dPZ(z) ≤ β
(a)
n,κ is fulfilled if rn,κ satis-

fies the condition rn,κ ≤ β
(a)
n,κ

EL
. Hence b rβ

(a)
n,κ

EL
+ 1c

p

balls cover K. �
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5 Estimation of the Growth Function

In this section we shall show how adaptive approximations of the function
µ can be included. If the growth condition (G-f0) is satisfied for a given
µ ∈ Λ it is also fulfilled for each smaller µ̃ ∈ Λ. Because µ−1 occurs in the
convergence rate one is interested in approximating the largest µ. Therefore
in the following we consider functions µ which do not only satisfy condition
(G-f0), but the the following condition (lG-f0).
Let δ0 := sup{δ > 0 : K \ UδΨ0 6= ∅}.

(lG-f0) There exist a function µ ∈ Λ such that ∀δ ∈ (0, δ0] the following rela-
tions are satisfied:
∀x ∈ K \ UδΨ0 : f0(x)− Φ0 ≥ µ(δ),
∃xδ ∈ bdyUδΨ0 : f0(x)− Φ0 ≤ µ(δ).

µ will be estimated by µn. For an ω ∈ Ω the approximate objective function
fn(·, ω) is known. Hence we can determine a growth function µn(·, ω) ∈ Λ
such that ∀x ∈ K \ UδΨn(ω) : fn(x, ω)− Φn(ω) ≥ µn(δ, ω).
Again, a smaller function µ̃n(·, ω) ∈ Λ would do. We only have to make sure
that the estimate µn does not become too large, because this would result in
unjustified small confidence sets if µ is replaced with µn. Theorem 3 guar-
antees that this case can occur only with a small probability if, additionally
to (lG-f0) and (Cf), the following condition (G-fn) is satisfied.

(G-fn) There exist continuous, increasing functions µn, ξn|R+×Ω → R+ with
trajectories in Λ and ξn(δ, ω) ≥ δ such that for all ω ∈ Ω and ∀δ ∈ (0, δ0

2
]

the following relations are satisfied:
∀x ∈ K \ UδΨn(ω) : fn(x, ω)− Φn(ω) ≥ µn(δ, ω),
∀x ∈ K \Uδ+ξn(δ,ω)Ψn(ω) ∀y ∈ UδΨn(ω) : fn(x, ω)−fn(y, ω) ≥ µn(δ, ω).

Because fn(·, ω) is known, for a given δ > 0, we can determine µn(δ, ω)
and then ξn(δ, ω). Particularly, if fn is generated in a way that guarantees
certain convexity conditions, µn and ξn can be determined without too much
effort.

We confine the considerations to tail behavior functions which do not
depend on n. Therefore we specialize condition (Cf -n) to condition (Cf)
below. We abbreviate αn(δ, ω) := 2δ + ξn(δ, ω). Then we can estimate µ in
the following way:
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Theorem 3 (Approximation of µ) Suppose that (lG-f0), (G-fn), and the
following condition are satisfied:

(Cf) There exist a function H and to all κ > 0 a sequence (βn,κ)n∈N ∈ B
such that
sup
n∈N

P{ω : sup
x∈K

|fn(x, ω)− f0(x)| ≥ βn,κ} ≤ H(κ).

Then for all κ > 0
sup
n∈N

P{ω : sup
0<δ<

δ0
2

(µn(δ, ω)− µ(αn(δ, ω)) > 2βn,κ} ≤ H(κ).

Proof. Let κ > 0, n ∈ N , and ω be such that
sup

0<δ<
δ0
2

(µn(δ, ω) − µ(αn(δ, ω)) > 2βn,κ. Then there is δ ∈ (0, δ0
2
) such that

µn(δ, ω)− µ(αn(δ, ω)) > 2βn,κ.
We choose x̂n(ω) at the boundary of Uαn(δ,ω)Ψ0 such that

∀x0 ∈ Ψ0 : f0(x̂n(ω))− f0(x0) ≤ µ(αn(δ, ω)).
Furthermore, choose xn(ω) ∈ Ψn(ω) with minimal distance to x̂n(ω), and

x0(ω) ∈ Ψ0 with minimal distance to x̂n(ω).
We distinguish the cases d(xn(ω), x0(ω)) ≥ δ and d(xn(ω), x0(ω)) < δ.
Firstly, assume that d(xn(ω), x0(ω)) ≥ δ. Then, because of fn(x0(ω), ω)−

fn(xn(ω), ω) ≥ µn(δ) and the choice of x̂n(ω), we have the following inequal-
ities:
2βn,κ < µn(δ, ω)− µ(αn(δ, ω)) ≤ −fn(xn(ω), ω) + fn(x0(ω), ω)− f0(x̂n(ω)) +
f0(x0(ω)). Since f0(x0(ω)) ≤ f0(xn(ω)) and −f0(x̂n(ω)) ≤ −f0(x0(ω)) we
obtain 2βn,κ < −fn(xn(ω), ω) + f0(xn(ω)) + fn(x0(ω), ω)− f0(x0(ω)). Hence
either −fn(xn(ω), ω) + f0(xn(ω)) > βn,κ or fn(x0(ω), ω) − f0(xn(ω)) > βn,κ.
Consequently sup

x∈K
|fn(x, ω)− f0(x)| > βn,κ and we employ (Cf).

Secondly, assume that d(xn(ω), x0(ω)) < δ. Then we have
d(x̂n(ω), Ψn(ω)) = d(x̂n(ω), xn(ω)) ≥ d(x̂n(ω), x0(ω)) − d(x0(ω), xn(ω)) ≥
2δ + ξn(δ, ω) − δ = δ + ξn(δ, ω). Consequently x̂n(ω) ∈ K \ Uδ+ξn(δ,ω)Ψn(ω).
Otherwise x0(ω) ∈ UδΨn(ω). Hence we can make use of (G-fn) and obtain
2βn,κ < µn(δ, ω) − µ(αn(δ, ω)) ≤ fn(x̂n(ω), ω) − fn(x0(ω), ω) − f0(x̂n(ω)) +
f0(x0(ω)). Hence either fn(x̂n(ω), ω)− f0(x̂n(ω)) > βn,κ or −fn(x0(ω), ω) +
f0(xn(ω)) > βn,κ and we can proceed as in the first case. �

We are now ready to replace the unknown function µ in the convergence
rate by the known function µn.
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Theorem 4 ( Inner Approximation of the Solution Set) Suppose that
(lG-f0), (G-fn), and (Cf) are satisfied. Then for all κ > 0, n ∈ N , and
β̃n,κ(ω) = αn(µ−1

n (4βn,κ, ω), ω) we have
sup
n∈N

P{ω : β̃n,κ(ω) ≤ δ0
2

and Ψn(ω) \ Uβ̃n,κ(ω)Ψ0 6= ∅} ≤ H(κ).

Proof: Let κ > 0, n ∈ N and ω ∈ Ω be such that β̃n,κ(ω) ≤ δ0 and
Ψn(ω) \ Uβ̃n,κ(ω)Ψ0 6= ∅.

Firstly assume that sup
0<δ<

δ0
2

(µn(δ, ω) − µ(αn(δ, ω)) > 2βn,κ. Then we can

employ Theorem 3.
Secondly assume that for all 0 < δ < δ0

2
the inequality µn(δ, ω)−µ(αn(δ, ω)) ≤

2βn,κ is fulfilled. Because of Ψn(ω) \ Uβ̃n,κ(ω)Ψ0 6= ∅ there exist xn(ω) ∈
Ψn(ω) with d(xn(ω), Ψ0) ≥ β̃n,κ. Hence, for an x0 ∈ Ψ0, f0(xn(ω)) −
f0(x0) ≥ µ(β̃n,κ). Furthermore, from µn(δ, ω) − µ(αn(δ, ω)) ≤ 2βn,κ we
obtain with the special choice δ = µ−1

n (4βn,κ) the inequality µ(β̃n,κ) =
µ(αn(µ−1

n (4βn,κ, ω), ω) ≥ µn(µ−1
n (4βn,κ, ω), ω))− 2βn,κ ≤ 2βn,κ.

Consequently, f0(xn(ω)) − f0(x0) ≥ 2βn,κ. Taking into account that
−fn(xn(ω), ω) + fn(x0, ω) ≥ 0, we see that −fn(xn(ω), ω) + fn(x0, ω) +
f0(xn(ω)) − f0(x0) ≥ 2βn,κ. Hence either −fn(xn(ω), ω) + f0(xn(ω)) ≥ βn,κ

or fn(x0, ω)− f0(x0) ≥ βn,κ, and we can employ (C-f). �

5.1 Outlook

In order to derive adaptive confidence sets, we can proceed as follows. Let
the problem (P0), a sequence of random approximating problems (Pn), and a
prescribed probability level ε0 be given. For sake of simplicity we assume that
the solution set to the problem (P0) is single-valued and we can deal with
inner approximations of the solution sets. Suppose that there exist functions
Hn ∈ H and to all κ > 0 (possibly random) sequences (βn,κ)n∈N such that
∀n ∈ NP{ω : βn,κ ≤ δ0

2
and Ψn(ω) \ Uβn,κΨ0 6= ∅} ≤ Hn(κ).

Choose a sequence (δk)k∈N of positive numbers such that
∞∑

k=1

δk = 1.

Furthermore, choose n1, κ̂n1(δ1), βn1,κ̂n1 (δ1), and Ψn1 . Then we can determine
a confidence set Uβn1,κ̂n1 (δ1)

Ψn1 with confidence level δ1.

The procedure can be repeated with a larger n and the additional restric-
tion x ∈ Uβn1,κ̂n1 (δ1)

Ψn1 . Thus, at the one side, in this second stage we can

expect a better convergence rate and less effort to determine the solution etc.
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On the other side, however, approximations of the constraint sets come into
play and we have to take into account additional functions λ and ν which
describe the continuity behavior of the objective function and the mutual
position of the constraint set and certain level sets for the limit problem, see
[17]. The estimation of λ and ν would go beyond the scope of this paper
and will be dealt with elsewhere. With suitable estimates for λ, µ, and ν the
above procedure can be repeated for the elements of the sequence (δk)k∈N as
often as improvements of the solution set are obtained.
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