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Nomenclature

R`×q
+ the set of all nonnegative matrices M = (mij) ∈ R`×q

with mij ≥ 0 for all i = 1, . . . , `, j = 1, . . . , q

A À B iff aij > bij for all entries of A = (aij), B = (bij) ∈ Rl×q

φ ≥ 0 iff the function φ ∈ C(J,Rl×q) is nonnegative, i.e.
φ(t) ∈ Rl×q

+ for all t ∈ J

| · | : a vector norm or induced matrix norm
C(D,R`×q) the vector space of continuous functions y : D → R`×q,

D ⊂ Rp

‖ · ‖ : the supremum norm of continuous functions
y : [0, T ] → Rn, with respect to a given norm | · | on Rn

C0([0, T ],Rn) := {φ ∈ C([0, T ],Rn)| φ(T ) = 0}, T > 0
NBV ([0, T ],Rn×n) := {η ∈ BV ([0, T ],Rn×n)| η is cont. f. left}
∆ := {(t, s) ∈ R2| t ≥ s ≥ 0}
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1. Introduction

We consider linear time-varying Volterra integro-differential equations of non-
convolution type

ẋ(t) = A(t)x(t) +
∫ t

t0

B(t, s)x(s)ds, t ≥ t0 ≥ 0, (1.1)

where
A(·) ∈ C([0,∞),Rn×n), B(·, ·) ∈ C(∆,Rn×n). (1.2)

In Section 2, we characterize positivity of the system (1.1); positivity means,
roughly speaking, that for any nonnegative initial condition the corresponding
(unique) solution is also nonnegative. The theory of positive systems is based on
the theory of nonnegative matrices founded by Perron and Frobenius, as references
we mention [1] and [4]. In recent time, problems of positive systems have attracted
a lot of attention from researchers, see [7]-[10] and the references therein.
The characterization of positivity, which we present in Theorem 2.2, generalizes a
recent result by [10] where A in (1.1) is constant and the equation is of convolution
type.

In Section 3, we exploit positivity and present a sufficient condition for ex-
ponential stability of (1.1) provided A(·) is a diagonal matrix. Theorem 3.2 gen-
eralizes the result by [6] and [3], both of them allow only for scalar equations and
the kernel B must be of convolution type.

2. Positivity

Before we state our main theorem, we recall some basic facts on linear time-varying
Volterra equations of non-convolution type (1.1) provided, for example, in [2]. For
A(·), B(·, ·) as in (1.2) and initial data T ≥ 0 and φ ∈ C([0, T ],Rn), the initial
value problem

ẋ(t) = A(t)x(t) +
∫ t

0

B(t, s)x(s)ds, t ≥ T, x(·)∣∣[0,T ]
= φ(·). (2.1)

has a unique solution x( · ;T, φ) : R+ → Rn, i.e. x(·; T, φ) is continuously differen-
tiable on [T,∞) and satisfies (2.1) for all t ≥ T .

Definition 2.1. Equation (1.1) is said to be positive if, and only if, for any T ≥ 0
and any nonnegative φ ∈ C([0, T ],Rn) the solution x( · ; T, φ) of the initial value
problem (2.1) is nonnegative.

We are now ready to state our main result on positivity of (1.1) in terms of
the system matrices A(·) and B(·, ·).
Theorem 2.2. Equation (1.1) is positive if, and only if, A(t) is a Metzler matrix
for every t ≥ 0 and B(t, s) ≥ 0 for all (t, s) ∈ ∆.
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Theorem 2.2 generalizes a recent result by [10] who consider (1.1) with con-
stant A(·) = A and non-convolutional kernel B(t, s) = B1(t − s); moreover they
assume that B1(·) ∈ L1(R+,Rn×n).

We first collect some well-known facts, see e.g. [2], on time-varying Volterra
equations of non-convolution type (1.1) and prove some lemmata. For A(·), B(·, ·)
as in (1.2), the matrix initial value problem

∂R(t, s)
∂t

= A(t)R(t, s) +
∫ t

s

B(t, u)R(u, s)du, R(s, s) = In (2.2)

has a unique solution R(·, ·) : ∆ → Rn×n, called the resolvent of equation (1.1);
this solution is continuously differentiable.

Moreover, for f ∈ C(R+,Rn) and fixed (t0, x0) ∈ R+ × Rn, the initial value
problem

ẋ(t) = A(t)x(t) +
∫ t

t0

B(t, s)x(s)ds + f(t), x(t0) = x0, t ≥ t0 (2.3)

has a unique solution which may be represented by the variation of constants
formula

x(t) = R(t, t0)x0 +
∫ t

t0

R(t, s)f(s)ds, t ≥ t0. (2.4)

Lemma 2.3. Let t0 ≥ 0 and consider, for (2.1), a sequence of initial functions
(φk)k∈N in C([0, t0],Rn) satisfying

(i) (φk)k∈N is bounded,
(ii) there exists a measurable function φ : [0, t0] → Rn such that limk→∞ φk(t0) =

φ(t0) and limk→∞ φk(t) = φ(t) for almost all t ∈ [0, t0].
Then

lim
k→∞

x(t; t0, φk)

= R(t, t0)φ(t0) +
∫ t

t0

R(t, s)
(∫ t0

0

B(s, u)φ(u)du

)
ds, ∀ t ≥ t0. (2.5)

Proof. Setting

x0 := φ(t0) and f(t) :=
∫ t0

0

B(t, u)x(u)du ∀ t ≥ t0

in (2.3) yields, by invoking (2.4), that

x(t; t0, φk) = R(t, t0)φk(t0) +
∫ t

t0

R(t, s)
(∫ t0

0

B(s, u)φk(u)du

)
ds, ∀ t ≥ t0.

Since R and B are continuous and the assertions (i) and (ii) hold, we may apply
the Lebesgue dominated theorem to arrive at (2.5). ¤
Corollary 2.4. If (1.1) is positive, then the resolvent satisfies R(t, s) ≥ 0 for all
(t, s) ∈ ∆.
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Proof. Fix (t0, x0) ∈ R+ × Rn
+ and consider, for k ∈ N, the continuous function

φk : [0, t0] → Rn, t 7→ φk(t) =

{
0 if t ∈ [0, t0 − 1/k]
ktx0 + (1− kt0)x0 if t ∈ [t0 − 1/k, t0].

Then we have, for all t ∈ [0, t0],

lim
k→∞

φk(t) = φ(t) :=

{
0 if t ∈ [0, t0)
x0 if t = t0.

Since φ so defined is measurable, Lemma 2.3 yields, for all t ≥ t0,

lim
k→∞

x(t; t0, φk) = lim
k→∞

[
R(t, t0)φk(t0) +

∫ t

t0
R(t, s)

(∫ t0
0

B(s, u)φk(u)du
)

ds
]

= R(t, t0)x0 .

Finally, by positivity of (1.1), we may conclude limk→∞ x(t; t0, φk) = R(t, t0)x0 ≥
0, and since x0 ∈ Rn

+ is arbitrary, it follows that R(t, s) ≥ 0 for all (t, s) ∈ ∆. ¤

Lemma 2.5. Let T > 0 and η ∈ NBV ([0, T ],Rn×n). Then the linear operator

L : C0([0, T ],Rn) → Rn, φ 7→ Lφ =
∫ T

0

d[η(θ)]φ(θ)

is positive (i.e. Lφ ≥ 0 for every φ ∈ C0([0, T ], φ ≥ 0) if, and only if, η is
increasing (i.e. every entry function ηij satisfies, for all t1, t2 with 0 ≤ t1 ≤ t2 ≤ T ,
ηij(t2) ≥ ηij(t1)).

Proof. Let η ∈ NBV ([0, T ],Rn×n) be increasing. By definition of the Riemann-
Stieltjes integrals,

Lφ = lim
d(P )→0

p∑

k=1

(η(θk)− η(θk−1))φ(ζk) ≥ 0, ∀ φ ∈ C0([0, T ],Rn), φ ≥ 0.

Therefore, L is positive.
Conversely, assume that L is positive on C0([0, T ],Rn). We show that η(·) =

(ηij(·)) ∈ NBV ([0, T ],R) is an increasing scalar function for every i, j ∈ {1, 2, ..., n}.
Since L is positive, it is easy to see that the operator

Lij : C0([0, T ],R) → R, φ 7→ Lijφ :=
∫ T

0

φ(θ)d[ηij(θ)]

is also positive for every i, j ∈ {1, 2, ..., n}. Fix

θ1, θ2 ∈ (0, T ) with θ1 < θ2 and k ∈ N with k > max
{

1
θ1

,
1
θ2

,
1

θ2 − θ1

}
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and consider the continuous function

φk : [0, T ] → R, θ 7→ φk(θ) :=





0 if θ ∈ [0, θ1 − 1
k ]

kθ + 1− kθ1 if θ ∈ (θ1 − 1
k , θ1]

1 if θ ∈ (θ1, θ2 − 1
k ]

−kθ + kθ2 if θ ∈ (θ2 − 1
k , θ2]

0 if θ ∈ (θ2, T ].

Since φk is continuous on [0, T ], it follows from a standard property of the Riemann-
Stieltjes integral, see e.g. [11, p.109], that
∫ T

0

φk(θ)d[ηij(θ)] =

(∫ θ1− 1
k

0

+
∫ θ1

θ1− 1
k

+
∫ θ2− 1

k

θ1

+
∫ θ2

θ2− 1
k

+
∫ T

θ2

)
φk(θ)d[ηij(θ)].

This gives, for all k ∈ N sufficiently large,
∫ θ1

θ1− 1
k

φk(θ)d[ηij(θ)] + ηij(θ2 − 1
k

)− ηij(θ1) +
∫ θ2

θ2− 1
k

φk(θ)d[ηij(θ)] ≥ 0.

Taking into account that ηij is continuous from the left at θ1, θ2 and letting k →∞,
we have ηij(θ2) ≥ ηij(θ1) for every θ1, θ2 ∈ (0, T ), θ2 ≥ θ1. In case of θ1 = 0 <
θ2 < T , a similar argument gives ηij(θ2) ≥ ηij(θ1). Finally, since ηij is continuous
from the left at T , we have ηij(T ) ≥ ηij(θ) for all θ ∈ [0, T ]. This completes the
proof. ¤

We are now in the position to prove Theorem 2.2.
Proof of Theorem 2.2: Assume that (1.1) is positive. Fix s ≥ 0. It follows from
(2.2) that

A(s) =
∂R(t, s)

∂t
∣∣t=s

= lim
t↓s

(R(t, s)− In)/(t− s).

Since by Corollary 2.4, R(t, s) ≥ 0 for all (t, s) ∈ ∆, we conclude that A(s) is a
Metzler matrix.

We now show that B(t, s) ≥ 0 for all (t, s) ∈ ∆. Fix T ≥ 0 and φ ∈
C0([0, T ],Rn), φ ≥ 0. Then x(·) := x(·;T, φ) satisfies

0 ≤ lim
t↓T

(x(t)− x(T ))/(t− T ) = lim
t↓T

x(t)/(t− T )

= ẋ(T ) = A(T )φ(T ) +
∫ T

0

B(T, s)φ(s)ds =
∫ T

0

B(T, s)φ(s)ds.

Thus, for η(s) :=
∫ s

0
B(T, θ)dθ, s ∈ [0, T ],

∫ T

0

B(T, s)φ(s)ds =
∫ T

0

d[η(s)]φ(s) ≥ 0, ∀φ ∈ C0([0, T ],Rn), φ ≥ 0.

By Lemma 2.5, η(·) is increasing on [0, T ]. This implies that B(T, s) ≥ 0 for
s ∈ [0, T ]. Since T ≥ 0 is arbitrary, we have B(t, s) ≥ 0 for all (t, s) ∈ ∆.
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Conversely, assume A(t) is a Metzler matrix for every t ≥ 0 and B(t, s) ≥ 0
for all (t, s) ∈ ∆. Fix T ≥ 0 and φ ∈ C([0, T ],Rn) with φ ≥ 0. We prove that
x(t; T, φ) ≥ 0 for all t ≥ T . Fix T1 > T , since A(·) is continuous on [0, T1] and A(t)
is a Metzler matrix for every t ≥ 0, we may choose r > 0 such that rIn + A(t) ≥ 0
for all t ∈ [0, T1]. Consider

z : [0, T1] → Rn, t 7→ z(t) := ertx(t; T, φ).

Then z satisfies

ż(t) = (A(t) + rIn)z(t) +
∫ t

0

er(t−s)B(t, s)z(s)ds, ∀t ∈ [T, T1]. (2.6)

It remains to consider two cases:
(i) Assume φ(T ) À 0. We show that z(t) ≥ 0 for all t ∈ [T, T1]. Seeking a contra-
diction, suppose

T0 = inf{t ∈ [T, T1]| z(t) 6≥ 0} ∈ [T, T1].

Then by continuity z(T0) ≥ 0 and so (2.6) yields

z(T0) = z(T ) +
∫ T0

T

ż(τ)dτ

= φ(T )+
∫ T0

T

(
(A(τ) + rIn)z(τ) +

∫ τ

0

er(τ−s)B(τ, s)z(s)ds

)
dτ ≥ φ(T ) À 0.

By continuity, there exists ε > 0 such that z(t) À 0 for all t ∈ [T0, T0 + ε).
However, this contradicts the definition of T0; whence z(t) ≥ 0 for all t ∈ [T, T1].
Since T1 ≥ T is arbitrary, we have z(t) ≥ 0 for all t ≥ T and therefore, x(t) ≥ 0
for all t ≥ T .
(ii) Assume φ(T ) ≥ 0. Then φk := φ + (1/k)e, where e = (1, 1, ..., 1)T ∈ Rn and
k ∈ N, yields φk(T ) À 0. Now (2.5) together with Part (i) gives

lim
k→∞

x(t; T, φk) = x(t; T, φ) ≥ 0, ∀ t ≥ T.

This completes the proof of the theorem. ¤

We finalize this section with a remark showing that positivity of (1.1) holds uni-
formly in time t.

Remark 2.6. Let t0, T ≥ 0 and ψ ∈ C([t0, t0 + T ],Rn) be given. Then it is easy
to see that there exists a unique solution y( · ; t0, t0 + T, ψ) : [t0,∞) → Rn of the
initial value problem

ẏ(t) = A(t)y(t) +
∫ t

t0

B(t, s)y(s)ds, t ≥ t0 + T, y(·)∣∣[t0,t0+T ]
= ψ(·). (2.7)
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Furthermore, y(·) := y( · ; t0, t0 + T, ψ) is the solution of (2.7) if, and only if,
x(·) := y(·+ t0) is the solution of the initial value problem

ẋ(t) = A(t+t0)x(t)+
∫ t

0

B(t+t0, s+t0)x(s)ds, t ≥ T, x(·)∣∣[0,T ]
= ψ(·+t0). (2.8)

In view of Definition 2.1, it is not more general to define positivity of (1.1) as: For
any t0, T ≥ 0 and any nonnegative ψ ∈ C([t0, t0 +T ],Rn) the solution y( · ; t0, t0 +
T, ψ) of (2.7) is nonnegative.

3. Exponential stability

In this section, we give a sufficient condition for exponential stability of (1.1) which
is defined as follows.

Definition 3.1. Equation (1.1) is said to be exponentially stable if, and only if,

∃ M, α > 0 ∀ (t, t0) ∈ ∆ ∀ T ∈ [0, t0] ∀ φ ∈ C([t0 − T, t0],Rn) :

|x(t; t0 − T, t0, φ)| ≤ Me−α(t−t0)‖φ‖ ∀ t ≥ t0 − T,

where x( · ; t0 − T, t0, φ) denotes the unique solution of (1.1) satisfying the initial
condition x(t) = φ(t), t ∈ [t0 − T, t0].

Opposed to [3, 6], the above definition of exponential stability is uniform in
time t.

Theorem 3.2. Suppose A(·) ∈ C([0,∞),Rn×n) and B(·, ·) ∈ C(∆,Rn×n) satisfy

(i) A(·) = diag{a1(·), . . . , an(·)},
(ii) ∃α > 0 ∀ (t, t0) ∈ ∆ : A(t) +

∫ t

t0
B(t, s) e−

∫ t
s

A(u)duds ≤ −αIn,

(iii) sups≥0

∫∞
0

eατ |B(τ + s, s)| dτ < ∞.

Then positivity of (1.1) implies exponentially stability of (1.1).

Theorem 3.2 present a sufficient condition for a diagonal matrix A(·) only.
However, this generalizes a result by [6] and a recent contribution by [3]; both of
them allow only for scalar equations and the kernel B must be of convolution type.

In what follows the matrix norms are assumed to be induced by monotonic
vector norms; this implies that

∀P, Q ∈ Rl×q, 0 ≤ P ≤ Q =⇒ |P | ≤ |Q|, (3.1)

see e.g. [10].

Proof of Theorem 3.2: Fix t0 ≥ 0 and let R denote the resolvent of (2.2).
Step 1: We show

R(s, t0) ≤ e−
∫ t

s
A(µ)dµR(t, t0) =: G(t), ∀s ∈ [t0, t] ∀t ≥ t0. (3.2)
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An elementary calculation yields, for all τ ∈ [s, t],

d
dτ

G(τ) =
∂

∂τ
e−

∫ τ
s

A(µ)dµ ·R(τ, t0) + e−
∫ τ

s
A(µ)dµ · ∂

∂τ
R(τ, t0)

= −e−
∫ τ

s
A(µ)dµ A(τ) R(τ, t0)

+ e−
∫ τ

s
A(µ)dµ

[
A(τ)R(τ, t0)

∫ τ

t0

B(τ, u)R(u, t0)du

]

= e−
∫ τ

s
A(µ)dµ

∫ τ

t0

B(τ, u)R(u, t0)du. (3.3)

By assertion (i), Theorem 2.2 and Corollary 2.4 we may conclude that

∀ t0 ≤ s ≤ τ ≤ t ∀ t0 ≤ u ≤ τ : e−
∫ τ

s
A(µ)dµ ≥ 0, B(τ, u) ≥ 0, R(u, t0) ≥ 0,

and (3.3) yields

d
dτ

G(τ) ≥ 0, ∀τ ∈ [s, t].

Therefore,

∀ t0 ≤ s ≤ t : R(s, t0) = G(s) ≤ G(t) = e−
∫ t

s
A(u)duR(t, t0).

Step 2: We show that

0 ≤ R(t, t0) ≤ e−α(t−t0)In ∀(t, t0) ∈ ∆. (3.4)

The first inequality of (3.4) follows from Corollary 2.4. An elementary calculation
yields, for all t ≥ t0,

d
dt

(
e−α(t−t0)R(t, t0)

)
(2.2)
= αe−α(t−t0)R(t, t0)

+ e−α(t−t0)

[
A(t)R(t, t0) +

∫ t

t0

B(t, u)R(u, t0)du

]

(3.2)

≤ e−α(t−t0)

[
αIn + A(t) +

∫ t

t0

B(t, u)e−
∫ t

u
A(µ)dµdu

]
R(t, t0)

(ii)

≤ 0.
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Step 3: We finally have for any solution x( · ; t0−T, t0, φ) of (2.1) and for all t ≥ t0,

|x(t; t0 − T, t0, φ)|
(2.4)

≤ |R(t, t0)| |φ(t0)|+
∫ t

t0

|R(t, τ)|
∫ t0

t0−T

|B(τ, s)| |φ(s)|ds dτ

(3.1)−(3.4)

≤ e−α(t−t0) ‖φ‖+
∫ t

t0

e−α(t−τ)

∫ t0

t0−T

|B(τ, s)|ds dτ ‖φ‖

= e−α(t−t0) ‖φ‖+
∫ t0

t0−T

e−α(t−s)

∫ t

t0

eα(τ−s)|B(τ, s)|dτ ds ‖φ‖

(iii)

≤
[
e−α(t−t0) + K

∫ t0

0

eα(s−t)ds

]
‖φ‖,

where

K := sup
s≥0

∫ ∞

0

eατ |B(τ + s, s)|dτ,

and therefore

|x(t; t0 − T, t0, φ)| ≤
(

e−α(t−t0) +
K

α
(e−α(t−t0) − e−αt)

)
‖φ‖

=
(

1 +
K

α
(1− e−αt0)

)
e−α(t−t0) ‖φ‖

≤
(

1 +
K

α

)
e−α(t−t0) ‖φ‖, t ≥ t0 ≥ 0.

This completes the proof. ¤
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