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Abstract

For multi-input multi-output (MIMO) linear systems with existing vector relative degree a
normal form is constructed. This normal form is not only structural simple but allows to
characterize the system’s zero dynamics for the design of feedback controllers. A character-
ization of the zero dynamics in terms of the normal form is given.
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Nomenclature
[
l
(n)
1 , . . . , l

(n)
m

]
= L ∈ Rn×m, where l

(n)
i ∈ Rn denotes the i-th column of L and the

superscript (n) remarks the dimension of the vector,[(
l1(m)

)T
, . . . ,

(
ln(m)

)T
]T

= L ∈ Rn×m, where lj(m) ∈ R1×m denotes the j-th row of L and the
subscript (m) remarks the dimension of the row-vector,

e
(n)
k :=

[
01×(k−1), 1, 01×(n−k)

]T , the k-th row unit vector in Rn,

ek
(m) :=

[
01×(k−1), 1, 01×(m−k)

]
, the k-th row unit vector in R1×m,

0n×m ∈ Rn×m, the 0-matrix of dimension n×m,

Xn×m ∈ Rn×m, an arbitrarily matrix of dimension n×m; note that the
use of this symbol implicates that the specific entries of
the matrix are not important but only the dimension,

In ∈ Rn×n, the identity matrix of dimension n× n,

Cm([0,∞) → Rn), the set of m-times continuously differentiable maps
from [0,∞) to Rn,

Cpw([0,∞) → Rm), the set of piecewise continuous maps from [0,∞) to Rm.

∗Institute of Mathematics, Technical University Ilmenau, Weimarer Straße 25, 98693 Ilmenau, DE,
markus.mueller@tu-ilmenau.de
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1 Introduction

In the present work linear systems with m inputs and m outputs of the form

ẋ = Ax +
[
b
(n)
1 , . . . , b(n)

m

]

︸ ︷︷ ︸
=B




u1
...

um




︸ ︷︷ ︸
=u




y1
...

ym




︸ ︷︷ ︸
=y

=




c1
(n)
...

cm
(n)




︸ ︷︷ ︸
=C

x





(1.1)

are considered, where n,m ∈ N with m ≤ n and A ∈ Rn×n, B, CT ∈ Rn×m.

It is well known that a linear single-input single-output (SISO) system (1.1), i.e. m = 1, has
relative degree r ∈ N if, and only if, r is exactly the number of times one has to differentiate the
output to have the input appear explicitly.

In case of MIMO system (1.1), for every (i, j) ∈ {1, . . . , m} × {1, . . . , m}, one can consider the
SISO-system relating input uj to output yi given by

ẋ = Ax + b
(n)
j uj

yi = ci
(n)x , i, j ∈ {1, . . . , m} .

}
(1.2)

Let ri,j ∈ N be the relative degree of (1.2). Then, for i ∈ {1, . . . , m}, ri := minj∈{1,...,m} ri,j is
exactly the number one has to differentiate the i-th output to have at least one of the m inputs
appear explicitly. The vector (r1, . . . , rm) ∈ N1×m is called the vector relative degree of the
MIMO-system (1.1) if, for all j ∈ {1, . . . ,m}, the rows cj

(n)A
rj−1B are linearly independent, see

Definition 2.1(a).

Isidori [9] presents a local definition of the vector relative degree for nonlinear MIMO-systems.

Liberzon et al. [10] give a generalization of the relative degree for time-invariant nonlinear
systems which is extended in [5] for time-varying linear and nonlinear systems. However in these
papers only SISO-systems and MIMO-systems with strict relative degree (see Definition 2.1(c))
are considered.

The relative degree of a system leads to a normal form. For linear SISO-systems one can
construct an invertible matrix U ∈ Rn×n such that the coordinate transformation

(
ξ
η

)
= Ux

converts a linear system
ẋ = Ax + bu , y = cx , (1.3)

with A ∈ Rn×n and b, cT ∈ Rn, which has relative degree r ∈ N, into

d
dt

(
ξ
η

)
=




0 1 0 0
...

. . . . . .
...

0 . . . 0 1 0
R1 . . . Rr S
P 0 . . . 0 Q




(
ξ
η

)
+




0
...
0

cAr−1b
0




u

y = [1, 0, . . . , 0]
(

ξ
η

)
,

(1.4)

where R1, . . . , Rr ∈ R, S ∈ R1×n−r, P ∈ Rn−r and Q ∈ R(n−r)×(n−r) can be presented explicitly
in terms of the system matrices A, b and c, see [7]. This result is implicitly contained in [9,
Chapter 4.1].
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The Byrnes–Isidori normal form for nonlinear and linear SISO-systems, introduced in [1], is
widely used in control theory for the design of local and global feedback stabilization of nonlinear
systems [2], [3], [4], for the design of adaptive observers [11], for the design of adaptive controllers
for linear systems [8], [6], to name but a few applications. Thus a construction of a normal form
for MIMO-systems will assist the design of controllers and observers for MIMO-systems.

Isidori [9, Chapter 5] presents a local normal form for nonlinear MIMO-systems systems, without
specifying the diffeomorphism in terms of the system data which converts the system into a
normal form. In the present work, for the linear case a transformation in terms of A, B and
C is designed which leads to “many zeros and ones” in the normal form and allows to read
off the zero dynamics very easily. The reader will find that the normal form (2.1) for linear
MIMO-systems is, roughly speaking, structured as a “diagonal form of m copies of SISO normal
forms (1.4)”. Furthermore the matrices of the normal form will be characterised explicitly by
the system matrices.

The present paper is structured as follows. In Section 2 the main results, i.e. the normal form for
linear MIMO-systems is presented and the system’s zero dynamics is characterized. Furthermore
the inverse of the system ([9, Chapter 5.1]) is presented. Section 3 contains all the proofs.

2 Normal form and zero dynamics

Consider, for n,m ∈ N with m ≤ n and A ∈ Rn×n, B, CT ∈ Rn×m, a linear system (1.1), that
is a linear system with m-dimensional input u and output y of form

ẋ = Ax + Bu
y = Cx .

For linear MIMO-systems the vector relative degree is defined as follows.

Definition 2.1

(a) A linear system (A,B, C) of form (1.1) has (vector) relative degree r = (r1, . . . , rm) ∈ N1×m

if, and only if,

(i) ∀ j ∈ {1, . . . ,m} ∀ k ∈ {0, . . . , rj − 2} : cj
(n)A

kB = 01×m,

(ii) rk




c1
(n)A

r1−1B

c2
(n)A

r2−1B
...

cm
(n)A

rm−1B




= m.

(b) A linear system (A,B, C) of form (1.1) has ordered (vector) relative degree r = (r1, . . . , rm)
∈ N1×m if, and only if, (1.1) has (vector) relative degree r = (r1, . . . , rm) with r1 ≥ r2 ≥
. . . ≥ rm.

(c) A linear system (A,B, C) of form (1.1) has strict relative degree % ∈ N if, and only if, (1.1)
has (vector) relative degree r = (r1, . . . , rm) ∈ N1×m with % = r1 = r2 = . . . = rm.

Remark 2.2

(i) Note that Definition 2.1(a) coincides with the definition of the vector relative degree for
nonlinear MIMO-systems, see [9, Chapter 5.1].
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(ii) The linear independence of the rows cj
(n)A

rj−1B, although a quite restrictive requirement,
is significant for the construction of a coordinate transformation and with it the normal
form.

(iii) There exist linear systems (A,B,C) of form (1.1) which do not satisfy condition (ii) in
Definition 2.1(a). For a system that does not satisfy both conditions in Definition 2.1(a)
the vector relative degree does not exist.

(iv) Note that in literature sometimes the relative degree is called uniform instead of strict.

The following lemma shows that the assumption of ordered vector relative degree is not restric-
tive.

Lemma 2.3 Let (A, B,C) be a linear system of form (1.1) with vector relative degree r =
(r1, . . . , rm) ∈ N1×m. Then there exists a permutation matrix P ∈ Rm×m such that the system
(A,B, PC) has ordered vector relative degree rP = (r̃1, . . . , r̃m).

The following theorem presents a normal form for linear systems (A,B,C) of form (1.1) with
ordered vector relative degree. The normal form has similar structural properties as the normal
form for linear SISO-systems and linear MIMO-systems with strict relative degree, respectively,
see (1.4).

Theorem 2.4 Consider a linear system (A,B, C) of form (1.1) with ordered vector relative
degree r = (r1, . . . , rm) ∈ N1×m. Set rs :=

∑m
j=1 rj . Then there exists an invertible matrix

U ∈ Rn×n such that the coordinate transformation(
ξ
η

)
:= Ux , ξ(t) =

(
y1(t), . . . , y

(r1−1)
1 (t)

∣∣∣ . . .
∣∣∣ ym(t), . . . , y(rm−1)

m (t)
)T

∈ Rrs
, η(t) ∈ Rn−rs

,

converts (A,B, C) into
d
dt

(
ξ
η

)
= Ã

(
ξ
η

)
+ B̃u

y = C̃

(
ξ
η

)





(2.1)

where

[
Ã B̃

C̃ 0

]
=







0 1 0
...

. . . . . .
0 . . . 0 1

R1
1,1 . . . R1

1,r1

0 . . . 0
...

...
0 . . . 0

R1
2,1 . . . R1

2,r2

· · ·

0 . . . 0
...

...
0 . . . 0

R1
m,1 . . . R1

m,rm

01×(n−rs)
...

01×(n−rs)

S1

0 . . . 0
...

...
0 . . . 0

R2
1,1 . . . R2

1,r1

0 1 0
...

. . . . . .
0 . . . 0 1

R2
2,1 . . . R2

2,r2

0 . . . 0
...

...
0 . . . 0

R2
m,1 . . . R2

m,rm

01×(n−rs)
...

01×(n−rs)

S2

...
. . .

...

0 . . . 0
...

...
0 . . . 0

Rm
1,1 . . . Rm

1,r1

0 . . . 0
...

...
0 . . . 0

Rm
2,1 . . . Rm

2,r2

0 1 0
...

. . . . . .
0 . . . 0 1

Rm
m,1 . . . Rm

m,rm

01×(n−rs)
...

01×(n−rs)

Sm

P1 0 . . . 0 P2 0 . . . 0 · · · Pm 0 . . . 0 Q







01×m
...

01×m

c1
(n)A

r1−1B

01×m
...

01×m

c2
(n)A

r2−1B

...

01×m
...

01×m

cm
(n)A

rm−1B

0(n−rs)×m







1 0 . . . 0
0 . . . 0
...

...

0 . . . 0

0 . . . 0
1 0 . . . 0
0 . . . 0
...

...
0 . . . 0

· · ·

0 . . . 0
...

...

0 . . . 0
1 0 . . . 0

0m×(n−rs)




0




(2.2)
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and Rj
i,k ∈ R, for i, j ∈ {1, . . . , m} and k ∈ {1, . . . , ri}, S1, . . . , Sm ∈ R1×(n−rs), P1, . . . , Pm ∈

Rn−rs
and Q ∈ R(n−rs)×(n−rs).

More precisely, set, for i ∈ {1, . . . , r1},
mi := #{rj | rj ≥ i , j ∈ {1, . . . , m}} (2.3)

the number of rj ’s, j ∈ {1, . . . , m}, such that rj ≥ i, and define

Γ :=




c1
(n)A

r1−1B
...

cm
(n)A

rm−1B


 ∈ Rm×m (2.4)

C :=




c1
(n)
...

c1
(n)A

r1−1

c2
(n)
...

c2
(n)A

r2−1

...
cm
(n)
...

cm
(n)A

rm−1




∈ Rrs×n (2.5)

B :=
[
BΓ−1

[
e
(m)
1 , . . . , e(m)

m1

]
, ABΓ−1

[
e
(m)
1 , . . . , e(m)

m2

]
, . . . , Ar1−1BΓ−1

[
e
(m)
1 , . . . , e(m)

mr1

]]
(2.6)

∈ Rn×rs

V ∈ Rn×(n−rs) : imV = ker C , and rkVTV = n− rs (2.7)

Û :=
[ C
N

]
∈ Rn×n and N:=(VTV)−1VT

[
I − B(CB)−1C] (2.8)

Ti :=
[
0(ri+n−rs)×(

∑i−1
j=1 rj)

Iri

0(n−rs)×ri

0(ri+n−rs)×(
∑m

j=i+1 rj)
0ri×(n−rs)

In−rs

]
(2.9)

∈ R(ri+n−rs)×n

Ĉi :=
[
Iri , 0ri×(n−rs)

] ∈ Rri×(ri+n−rs) (2.10)

B̂i :=
[
e(ri+n−rs)
ri

,
(
TiÛAÛ−1T T

i

)
e(ri+n−rs)
ri

, . . . ,
(
TiÛAÛ−1T T

i

)ri−1
e(ri+n−rs)
ri

]
(2.11)

∈ R(ri+n−rs)×ri

N̂i :=
[
0(n−rs)×ri

, In−rs

] [
Iri+n−rs − B̂i(ĈiB̂i)−1Ĉi

]
∈ R(n−rs)×(ri+n−rs) (2.12)

Ûi :=




Irs 0rs×(n−rs)

0(n−rs)×(
∑i−1

j=1 rj)
, N̂i

[
Iri

0(n−rs)×ri

]
, 0(n−rs)×(

∑m
j=i+1 rj) In−rs


 ∈ Rn×n , (2.13)

for i ∈ {1, . . . ,m}, and finally

U := Ûm · Ûm−1 · . . . · Û1 · Û . (2.14)
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Then, for i, j ∈ {1, . . . m}, the entries in (2.1) are given by

[
Ri

j,1, . . . , R
i
j,rj

]
=


ci

(n)A
riB(CB)−1




0
(
∑j−1

µ=1 rµ)×rj

Irj

0(
∑m

µ=j+1 rµ)×rj




+ ci
(n)A

riV
[
0(n−rs)×rj

, In−rs

]
B̂j(ĈjB̂j)−1


 (2.15)

Si = ci
(n)A

riV (2.16)

[Pi, 0, . . . , 0] = N̂i

(
TiÛAÛ−1T T

i

)
B̂i(ĈiB̂i)−1 (2.17)

Q = NAV (2.8)
= (VTV)−1VT

[
I − B(CB)−1C] AV . (2.18)

Note that the coordinate transformation does not affect the input u and output y of the original
system (A,B,C).

Next the definition of the zero dynamics of a linear system (A,B, C) of form (1.1) is given.
Furthermore, asymptotical stability of linear systems and asymptotical stability of the zero
dynamics of a linear system is defined.

Definition 2.5

(i) The zero dynamics of a linear system (A,B, C) of form (1.1) are defined as the real vector
space of trajectories

ZD(A,B, C) :=
{

(x, u) ∈ C1([0,∞) → Rn)× Cpw([0,∞) → Rm)
∣∣∣

(x, u) solves (1.1) with y ≡ 0 on [0,∞)
}

.

(ii) A linear system ẋ = Ax, for A ∈ Rn×n, is called asymptotically stable on [0,∞) if, and
only if,

∃M, λ > 0 ∀ t ≥ 0 : ‖x(t)‖ ≤ Me−λt‖x(0)‖ ,

for all solutions x of ẋ = Ax.

(iii) The zero dynamics of a linear system (A, B,C) of form (1.1) are called asymptotically
stable if, and only if,

∃M, λ > 0 ∀ (x, u) ∈ ZD(A,B,C) ∀ t ≥ 0 : ‖(x(t), u(t))‖ ≤ Me−λt‖x(0)‖ .

For linear systems (A,B, C) of form (1.1) with ordered vector relative degree r ∈ N1×m the
zero dynamics of (A,B, C) can be read off from normal form (2.1) given by Theorem 2.4.
Proposition 2.6 provides a characterization of the systems zero dynamics in terms of the normal
form. Furthermore asymptotical stability of the zero dynamics of (A,B, C) will be characterized.

Proposition 2.6 For any linear system (A,B, C) of form (1.1) with ordered relative degree
r = (r1, . . . , rm) ∈ N1×m and normal form (2.1), (2.2) the following holds:
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(i) For S :=
[
S1T

, . . . , SmT
]T

, with S1, . . . , Sm defined in (2.16), V defined by (2.7) and Q

defined in (2.18), the zero dynamics of (A,B, C) are given by

ZD(A,B, C) =
{

(Vη,−Γ−1Sη) ∈ C1([0,∞) → Rn)× C1([0,∞) → Rm)
∣∣∣ η̇ = Qη

}
,

(ii) The zero dynamics of (A, B,C) are asymptotically stable if, and only if, η̇ = Qη is an
asymptotically stable linear system.

Given a sufficiently smooth reference signal yR : R≥0 → Rm one can determine an input u =
uR such that the output y of (1.1) matches this signal straightforward by using the normal
form (2.1), (2.2). A system (A,B, C) is called right-invertible if this tracking problem can be
solved [12]. The following proposition presents the solution to this problem.

Proposition 2.7 Consider a linear system (A,B,C) of form (1.1) with ordered relative degree
r = (r1, . . . , rm) ∈ N1×m and normal form (2.1), (2.2). Let yR = (yR1, . . . , yRm)T : R≥0 → Rm

with yRj ∈ Crj ([0,∞) → R), j ∈ {1, . . . ,m}. Let y be the output of (1.1). Then the following
are equivalent

(i) y = yR,

(ii) the input u of (1.1) is given by

u = uR = Γ−1







yR1
(r1)

...
yRm

(rm)


−




R1

...
Rm


 ξ −




S1

...
Sm


 η


 (2.19)

where, for arbitrary η0 ∈ Rn−rs
, η is a solution of the initial value problem

η̇ = Qη + [P1, . . . Pm] yR , η(0) = η0 , (2.20)

ξ =
(
yR1, . . . , yR

(r1−1)
1

∣∣∣ yR2, . . . , yR
(r2−1)
2

∣∣∣ . . .
∣∣∣ yRm, . . . , yR

(rm−1)
m

)T
, Q is defined

in (2.18), P1, . . . , Pm are defined in (2.17), Γ is defined in (2.4), S1, . . . , Sm are defined
in (2.16), Rj :=

[
Rj

1,1, . . . , R
i
1,r1

∣∣∣ . . .
∣∣∣Rj

m,1, . . . , R
i
m,rm

]
and Rj

i,k is defined in (2.15).

System (2.19), (2.20) is called the inverse system of system (1.1) [9].

3 Proofs

This section contains all proofs for the results given in Section 2. It is structured as follows:
First it is shown that for every system with vector relative degree r ∈ N1×m one can find an
permutation of the output such that the system with permuted output has an ordered vector
relative degree. Next linearly independence of the matrices C and B, defined by (2.5) and (2.6),
respectively, is shown. Then the proof for the normal form including the construction of the
coordinate transformation is given. A proof for characterization and stability of the system’s
zero dynamics is presented and finally right-invertibility of (A,B, C) is shown.
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3.1 Ordered vector relative degree

Proof of Lemma 2.3. Let σ : {1, . . . , m} → {1, . . . ,m} be a permutation such that rσ(1) ≥
rσ(2) ≥ · · · ≥ rσ(m). Furthermore set

P :=




e
σ(1)
(m)
...

e
σ(m)
(m)


 .

Then

PC =




e
σ(1)
(m)
...

e
σ(m)
(m)







c1
(m)
...

cm
(m)


 =




c
σ(1)
(m)
...

c
σ(1)
(m)


 ,

and by the assumption on the relative degree it follows that

∀ j ∈ {1, . . . ,m} ∀ k ∈ {0, . . . , rσ(j) − 2} : (PC)j
(n)A

kB = c
σ(j)
(n) AkB = 01×m ,

and

rk




(PC)1(n)A
r1−1B

...
(PC)m

(n)A
rm−1B


 = m,

whence the linear system (A,B, PC) has relative degree Pr = (rσ(1), . . . , rσ(m)) with rσ(1) ≥
· · · ≥ rσ(m). 2

3.2 Linearly independence of C and B
Recall the matrices C ∈ Rrs×n, defined by (2.5), and B ∈ Rn×rs

defined by (2.6). Note that, for
mi, i ∈ {1, . . . , r1}, defined by (2.3), it holds true that m = m1 ≥ m2 ≥ · · · ≥ mr1 ≥ 1 and

rs =
m∑

j=1

rj =
m∑

j=1

r1∑

i=1

max{rj − i + 1, 0}
max{rj − i + 1, 1} =

r1∑

i=1

m∑

j=1

max{rj − i + 1, 0}
max{rj − i + 1, 1}

︸ ︷︷ ︸
#{rj | rj≥i , j∈{1,...,m}}

=
r1∑

i=1

mi .

The following lemma shows that C and B have full rank.

Lemma 3.1 If a linear system (A,B, C) of form (1.1) has ordered vector relative degree r =
(r1, . . . , rm) ∈ N1×m, then C and B, defined by (2.5) and (2.6), respectively, have full rank.

Proof. Note that
∑m

j=1 rj ≤ n. It suffices to show that CB ∈ Rrs×rs
is invertible.

First consider the first m1 = m rows of CB. Since (A,B,C) has relative degree r = (r1, . . . , rm) ∈
N1×m it follows that

CB =




c1
(n)
...

c1
(n)A

r1−1

...
cm
(n)
...

cm
(n)A

rm−1




B =




c1
(n)A

0B
...

c1
(n)A

r1−1B
...

cm
(n)A

0B
...

cm
(n)A

rm−1B




=




0(r1−1)×m1

Γ1
(m1)...

0(rm−1)×m1

Γm
(m1)




(3.1)
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where Γi
(m1), i ∈ {1, . . . , m}, is the i-th row of Γ. Thus

CBΓ−1
[
e
(m)
1 , . . . , e(m)

m1

]
=




0(r1−1)×m1

Γ1
(m1)...

0(rm−1)×m1

Γm
(m1)




Γ−1Im1 =




0(r1−1)×m1

e1
(m1)...

0(rm−1)×m1

em1

(m1)




,

which shows that CBΓ−1
[
e
(m)
1 , . . . , e

(m)
m1

]
has rank m1 = m.

Next consider CAi−1BΓ−1
[
e
(m)
1 , . . . , e

(m)
mi

]
, for i ∈ {2, . . . , r1}. Since (A,B, C) has relative de-

gree r = (r1, . . . , rm) ∈ N1×m it follows with the conventions

(i) 0(rj−i)×mi
is of dimension zero, if i ≥ rj , j ∈ {1, . . . ,m}, and

(ii) Γj
(m) and ej

(mi)
do not exist in the following matrices if j > mi, j ∈ {1, . . . , m}, and

(iii) Xµ×ν ∈ Rµ×ν is an arbitrarily matrix of dimension µ× ν,

that

CAi−1BΓ−1
[
e
(m)
1 , . . . , e(m)

mi

]

=




c1
(n)A

i−1B
...

c1
(n)A

r1−1B
...

c1
(n)A

r1+i−2B
...

cm
(n)A

i−1B
...

cm
(n)A

rm−1B
...

cm
(n)A

rm+i−2B




Γ−1
[
e
(m)
1 , . . . , e(m)

mi

]
=




0(r1−i)×m

Γ1
(m)

X(min{r1,i−1})×m...
0(rm−i)×m

Γm
(m)

X(min{rm,i−1})×m




Γ−1
[
e
(m)
1 , . . . , e(m)

mi

]

=




0(r1−i)×mi

e1
(mi)

X(min{r1,i−1})×mi...
0(rm−i)×mi

em
(mi)

X(min{rm,i−1})×mi




, i ∈ {2, . . . , r1} ,

Thus, for all i ∈ {1, . . . , r1}, the mi rows of CAi−1BΓ−1
[
e
(m)
1 , . . . , e

(m)
mi

]
are linearly independent,
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and since

CB =




01×mr1−1 e1
(mr1 )

. . . e1
(mr1−1) X(r1−1)×mr1

0(r1−2)×m2
. . . X(r1−2)×mr1−1

0(r1−1)×m1
e1
(m2) . . .

e1
(m1) X1×m2

0(r2−r1+1)×mr1−1
e2
(mr1 )

. . . e2
(mr1−1) X(min{r1−1,r2})×mr1

0(r2−2)×m2
. . . X(min{r1−2,r2})×mr1−1

0(r2−1)×m1
e2
(m2) . . .

e2
(m1) X1×m2

...
...

...
...

0(rm−r1+1)×mr1−1
em
(mr1 )

. . . em
(mr1−1) X(min{r1−1,rm})×mr1

0(rm−2)×m2
. . . X(min{r1−2,rm})×mr1−1

0(rm−1)×m1
em
(m2) . . .

em
(m1) X1×m2








r1





r2

...



rm

︸ ︷︷ ︸
m1

︸ ︷︷ ︸
m2

. . . ︸ ︷︷ ︸
mr1−1

︸ ︷︷ ︸
mr1

(3.2)

it follows that CB is invertible. 2

As an immediate consequence of Lemma 3.1 it follows that for linear systems (A,B, C) of
form (1.1) with vector relative degree r = (r1, . . . , rm) ∈ N1×m, the matrices C ∈ Rm×n and
B ∈ Rn×m have full rank m.

3.3 Coordinate transformation and normal form

Lemma 3.1 shows that the rows of C qualify as basis, which, if rs =
∑m

j=1 rj < n, has to be
completed, for a coordinate transformation in Rn. Consider a matrix V ∈ Rn×(n−rs), given
by (2.7). For Û and N , given by (2.8), it follows from

[ C
N

] [B(CB)−1,V]
= In

that Û has the inverse
Û−1 =

[B(CB)−1,V]
. (3.3)

Although Û already qualifies as coordinate transformation in Rn we do not obtain a normal form
which has the same structure properties as the normal form (1.4) for linear SISO systems (1.3),
i.e. the transformation matrix Û will not lead in general to a matrix Ã as in (2.2). Therefore it
is necessary to consider the transformation matrix U , given by (2.14) and Ti, Ĉi, B̂i, N̂i, Ûi, for
i ∈ {1, . . . , m}, defined in (2.9)–(2.13), respectively.

Proof of Theorem 2.4. Step 1 : First it is shown that the coordinate transformation
(

χ
ζ

)
:= Ûx , χ(t) =

(
y1(t), . . . , y

(r1−1)
1 (t)

∣∣∣ . . .
∣∣∣ ym(t), . . . , y(rm−1)

m (t)
)T

∈ Rrs
, ζ(t) ∈ Rn−rs

,
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given by (2.7) and (2.8), converts (1.1) into

d
dt

(
χ
ζ

)
= Â

(
χ
ζ

)
+ B̃u

y = C̃

(
χ
ζ

)





(3.4)

where

Â =




Â1,1 Â1,2 . . . Â1,m Ŝ1

Â2,1 Â2,2 . . . Â2,m Ŝ2
...

...
. . .

...
...

Âm,1 Âm,2 . . . Âm,m Ŝm

P̂1 P̂2 . . . P̂m Q̂




, (3.5)

and, for i, j ∈ {1, . . . , m},

Âi,i :=




0 1 . . . 0
...

. . .
0 . . . 0 1

R̂i
i,1 . . . R̂i

i,ri


 ∈ R

ri×ri , Âi,j :=




0 . . . 0
...

...
0 . . . 0

R̂i
j,1 . . . R̂i

j,rj


 ∈ R

ri×rj , j 6= i, (3.6)

where R̂j
i,k ∈ R, for k ∈ {1, . . . , ri} and i, j ∈ {1, . . . , m}, and, for i ∈ {1, . . . , m},

Ŝi :=
[
0(ri−1)×(n−rs)

Si

]
∈ Rri×(n−rs) , P̂i ∈ R(n−rs)×ri , Q̂ ∈ R(n−rs)×(n−rs) . (3.7)

Step 1a): First the structure of Â is proven. By definition of Û , see (2.8), it follows that

Â = ÛAÛ−1 =
[ C
N

]
A

[B(CB)−1,V]
=

[
CAB(CB)−1 CAV
NAB(CB)−1 NAV

]
.

Thus
[
P̂1, . . . , P̂m

]
= NAB(CB)−1 ∈ R(n−rs)×rs) (3.8)

Q̂ = NAV ∈ R(n−rs)×(n−rs) , (3.9)
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and the definition of C and B, see (2.5) and (2.6), respectively, yields

CAB(CB)−1 =




c1
(n)A
...

c1
(n)A

r1

...
cm
(n)A
...

cm
(n)A

rm




B(CB)−1 =




C2
(n)
...
Cr1

(n)

c1
(n)A

r1

...

C
∑m−1

j=1 rj+2

(n)
...
Crs

(n)

cm
(n)A

rm




B(CB)−1 =




(CB)2(rs)
...

(CB)r1

(rs)

c1
(n)A

r1B
...

(CB)
∑m−1

j=1 rj+2

(rs)
...

(CB)rs

(rs)

cm
(n)A

rmB




(CB)−1

=




e2
(rs)
...

er1

(rs)

c1
(n)A

r1B(CB)−1

...

e
∑m−1

j=1 rj+2

(rs)
...

ers

(rs)

cm
(n)A

rmB(CB)−1




. (3.10)

Furthermore, invoking imV = ker C, it follows that

CAV =




c1
(n)A
...

c1
(n)A

r1−1

c1
(n)A

r1

...
cm
(n)A
...

cm
(n)A

rm−1

cm
(n)A

rm




V =




C2
(n)
...
Cr1

(n)

c1
(n)A

r1

...

(C)
∑m−1

j=1 rj+2

(n)
...

(C)rs

(n)

cm
(n)A

rm




V =




01×(n−rs)
...

01×(n−rs)

c1
(n)A

r1V
...

01×(n−rs)
...

01×(n−rs)

cm
(n)A

rmV




(2.16)
=




0(r1−1)×(n−rs)

S1

...
0(rm−1)×(n−rs)

Sm




, (3.11)

Hence, setting
[
R̂i

1,1, . . . , R̂
i
1,r1

∣∣∣ . . .
∣∣∣ R̂i

m,1, . . . , R̂
i
m,rm

]
:= ci

(n)A
riB(CB)−1 , i ∈ {1, . . . ,m} , (3.12)

(3.10) and (3.11) yield the structure of Â as given in (3.5)–(3.7).

Step 1b): Next the structure of B̃ is proven. By the definition of Û , see (2.8), it follows that

B̃ = ÛB =
[ CB
(VTV)−1VT

[
B − B(CB)−1CB]

]
.
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Recall (3.1), i.e.

CB =




0(r1−1)×m

Γ1
(m)...

0(rm−1)×m

Γm
(m)




=




0(r1−1)×m

c1
(n)A

r1−1B
...

0(rm−1)×m

cm
(n)A

rm−1B




.

Furthermore

(VTV)−1VT
[
B − B(CB)−1CB]

= (VTV)−1VT
[
BΓ−1Γ− B(CB)−1CBΓ−1

[
e
(m)
1 , . . . , e(m)

m

]

︸ ︷︷ ︸
=

[
B(n)

1 ,...,B(n)
m

]
Γ
]

= (VTV)−1VT
[
BΓ−1Γ− B (CB)−1

[
(CB)(r

s)
1 , . . . , (CB)(r

s)
m

]

︸ ︷︷ ︸
=

[
e
(rs)
1 ,...,e

(rs)
m

]
Γ
]

= (VTV)−1VT
([ [

B(n)
1 , . . . ,B(n)

m

]
−

[
B(n)

1 , . . . ,B(n)
m

])
Γ

= 0(n−rs)×m ,

which shows the structure of B̃ as in (2.2).

Step 1c): Now the structure of C̃ is shown. Since the rows of C are also rows of C, i.e.

C =




c1
(n)

c2
(n)
...

cm
(n)




=




C1
(n)

Cr1+1
(n)
...

Crs−rm+1
(n)




and since imV = ker C it follows that CV = 0m×(n−rs). Furthermore

CB(CB)−1 =




(CB)1(rs)

(CB)r1+1
(rs)
...

(CB)rs−rm+1
(rs)




(CB)−1 =




1 01×(r1−1) 0 01×(r2−1) 0 . . . 0 01×(rm−1)

0 01×(r1−1) 1 01×(r2−1) 0 . . . 0 01×(rm−1)

0 01×(r1−1) 0 01×(r2−1) 1
...

...
...

...
...

...
. . . 0 01×(rm−1)

0 01×(r1−1) 0 01×(r2−1) 0 1 01×(rm−1)




.

Hence
C̃ = CÛ−1 =

[
CB(CB)−1, CV]

yields the structure of C̃ as in (2.2).

Step 2 : We show that the coordinate transformation
(

ξ
η

)
:= Ux , ξ(t) =

(
y1(t), . . . , y

(r1−1)
1 (t)

∣∣∣ . . .
∣∣∣ ym(t), . . . , y(rm−1)

m (t)
)T

∈ Rrs
, η(t) ∈ Rn−rs

,

given by (2.7)–(2.14) converts the linear system (A,B, C) of form (1.1) into (2.1) with Ã, B̃, C̃
as in (2.2) with matrix components of Ã as in (2.15)–(2.18).
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Recall the structure of Â given by (3.5)–(3.7). For i ∈ {1, . . . , m}, consider the matrices

Âi :=




0 1 . . . 0
...

. . .
0 . . . 0 1

R̂i
i,1 . . . R̂i

i,ri

Ŝi

P̂i Q̂




=

[
Âi,i Ŝi

P̂i Q̂

]
= TiÂT T

i = TiÛAÛ−1T T
i ∈ R(ri+n−rs)×(ri+n−rs) ,

Ĉi :=
[
1, 01×(ri+n−rs−1)

]
= e1

(ri+n−rs) = ei
(m)C̃T T

i ∈ R1×(ri+n−rs) ,

B̂i :=




0(ri−1)×1

1
0(n−rs)×1


 = e(ri+n−rs)

ri
= TiB̃Γ−1e

(m)
i ∈ Rri+n−rs

.

Then



Ĉi

ĈiÂi
...

ĈiÂ
ri−1
i


 =




e1
(ri+n−rs)

e2
(ri+n−rs)

...
eri

(ri+n−rs)




=
[
Iri , 0ri×(n−rs)

] (2.10)
= Ĉi ∈ Rri×(ri+n−rs)

[
B̂i, ÂiB̂i, . . . , Â

ri−1
i B̂i

]
=

[
e(ri+n−rs)
ri

, . . . , Âri−1
i e(ri+n−rs)

ri

]
(2.11)
= B̂i ∈ R(ri+n−rs)×ri .

More precisely B̂i is structured as follows:

B̂i =




0...
0
0
1

0 . . . 0 1... . . . 1 ∗
0 . . . . . .

...
1 ∗ . . . ∗
∗ . . . ∗

0(n−rs)×1 X(n−rs)×(ri−1)



∈ R(ri+n−rs)×ri . (3.13)

Since ĈiÂ
j
i B̂i = 0, for all j ∈ {0, . . . , ri − 2}, and ĈiÂ

ri−1
i B̂i = 1, it follows that the linear

SISO-system
ż = Âiz + B̂iv

w = Ĉiz

}

has relative degree ri. Furthermore, it follows that

ĈiB̂i =




0 . . . 0 1
... . . . . . . ∗
0 1 . . .

...
1 ∗ . . . ∗




and
(
ĈiB̂i

)−1
=




∗ . . . ∗ 1
... . . . . . . 0

∗ 1 . . .
...

1 0 . . . 0




(3.14)
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and thus

B̂i

(
ĈiB̂i

)−1
=




1 0 . . . 0
∗ . . . . . .

......
. . . . . . 0

∗ . . . ∗ 1
∗ . . . ∗

0...
0
0
1

X(n−rs)×(ri−1) 0(n−rs)×1



∈ R(ri+n−rs)×ri (3.15)

[
0(n−rs)×ri

, In−rs

]
B̂i

(
ĈiB̂i

)−1
=

[X(n−rs)×(ri−1), 0(n−rs)×1

]
. (3.16)

Set V̂i :=
[
0ri×(n−rs)

In−rs

]
. Then ker Ĉi = im V̂i and thus

[ [
Iri , 0ri×(n−rs)

]
(
V̂iV̂T

i

)−1
V̂T

i

[
Iri+n−rs − B̂i(ĈiB̂i)−1Ĉi

]
]

(2.10), (2.12)
=

[
Ĉi

N̂i

]

︸ ︷︷ ︸
=[0(n−rs)×ri

,In−rs ]

(3.17)

is invertible with inverse [
Ĉi

N̂i

]−1

=
[
B̂i(ĈiB̂i)−1, V̂i

]
. (3.18)

Furthermore

Ĉi

[
0ri×(n−rs)

In−rs

]
=

[
Iri , 0ri×(n−rs)

] [
0ri×(n−rs)

In−rs

]
= 0ri×(n−rs)

Ĉi

[
Iri

0(n−rs)×ri

]
=

[
Iri , 0ri×(n−rs)

] [
Iri

0(n−rs)×ri

]
= Iri

N̂i

[
0ri×(n−rs)

In−rs

]
=

[
0(n−rs)×ri

, In−rs

] [[
0ri×(n−rs)

In−rs

]
− B̂i(ĈiB̂i)−1Ĉi

[
0ri×(n−rs)

In−rs

]]
= In−rs .

and thus



I∑i−1
j=1 rj

0(
∑i−1

j=1 rj)×ri
0(

∑i−1
j=1 rj)×(

∑m
j=i+1 rj)

0(
∑i−1

j=1 rj)×(n−rs)

0ri×(
∑i−1

j=1 rj)
Ĉi

[
Iri

0(n−rs)×ri

]

︸ ︷︷ ︸
=Iri

0ri×(
∑i−1

j=1 rj)
Ĉi

[
0ri×(n−rs)

In−rs

]

︸ ︷︷ ︸
=0ri×(n−rs)

0(
∑m

j=i+1 rj)×(
∑i−1

j=1 rj)
0(

∑m
j=i+1 rj)×ri

I∑m
j=i+1 rj

0(
∑m

j=i+1 rj)×(n−rs)

0(n−rs)×(
∑i−1

j=1 rj)
N̂i

[
Iri

0(n−rs)×ri

]
0(n−rs)×(

∑m
j=i+1 rj) N̂i

[
0ri×(n−rs)

In−rs

]

︸ ︷︷ ︸
=In−rs




(2.13)
= Ûi

and, since [
Iri , 0ri×(n−rs)

] B̂i(ĈiB̂i)−1 = ĈiB̂i(ĈiB̂i)−1 = Iri ,
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it follows from (3.17) and (3.18) that

Û−1
i =




I∑i−1
j=1 rj

0(
∑i−1

j=1 rj)×ri
0(

∑i−1
j=1 rj)×(

∑m
j=i+1 rj)

0(
∑i−1

j=1 rj)×(n−rs)

0ri×(
∑i−1

j=1 rj)

[
Iri , 0ri×(n−rs)

]

·B̂i(ĈiB̂i)−1

︸ ︷︷ ︸
=Iri

0ri×(
∑i−1

j=1 rj)

[
Iri , 0ri×(n−rs)

] V̂i︸ ︷︷ ︸
=0ri×(n−rs)

0(
∑m

j=i+1 rj)×(
∑i−1

j=1 rj)
0(

∑m
j=i+1 rj)×ri

I∑m
j=i+1 rj

0(
∑m

j=i+1 rj)×(n−rs)

0(n−rs)×(
∑i−1

j=1 rj)

[
0(n−rs)×ri

, In−rs

]

·B̂i(ĈiB̂i)−1
0(n−rs)×(

∑m
j=i+1 rj)

[
0(n−rs)×ri

, In−rs

] V̂i︸ ︷︷ ︸
=In−rs




. (3.19)

Recall Â = ÛAÛ−1 given by (3.5)–(3.7). First apply the transformation Û1. Then, omitting
the dimensions of the zeros and identity matrices in Û1, it follows that

Û1ÂÛ−1
1 =




I 0 0

0 I 0

N̂1

[
I
0

]
0 N̂1

[
0
I

]

︸ ︷︷ ︸
=I







Â1,1 . . . Â1,m Ŝ1

...
. . .

...
...

Âm,1 . . . Âm,m Ŝm

P̂1 . . . P̂m Q̂







[I, 0] B̂1(Ĉ1B̂1)−1

︸ ︷︷ ︸
=I

0 0

0 I 0

[0, I] B̂1(Ĉ1B̂1)−1 0 I




=




Â1,1 Â1,2 . . . Â1,m Ŝ1

Â2,1
...

Âm,1

Â2,2 . . . Â2,m
...

...
Âm,2 . . . Âm,m

Ŝ2
...

Ŝm

N̂1

[
I
0

]
Â1,1 + N̂1

[
0
I

]
P̂1

N̂1

[
I
0

] [
Â1,2, . . . , Â1,m

]

+I
[
P̂2, . . . , P̂m

] N̂1

[
I
0

]
Ŝ1 + N̂1

[
0
I

]
Q̂




·




[I, 0] B̂1(Ĉ1B̂1)−1

︸ ︷︷ ︸
=I

0 0

0 I 0

[0, I] B̂1(Ĉ1B̂1)−1 0 I




=




Â1,1I + Ŝ1 [0, I] B̂1(Ĉ1B̂1)−1 Â1,2 . . . Â1,m Ŝ1


Â2,1
...

Âm,1


 +




Ŝ2
...

Ŝm


 [0, I] B̂1(Ĉ1B̂1)−1

Â2,2 . . . Â2,m
...

...
Âm,2 . . . Âm,m

Ŝ2
...

Ŝm

N̂1

[[
I
0

]
Â1,1 +

[
0
I

]
P̂1

]
[I, 0] B̂1(Ĉ1B̂1)−1

+N̂1

[[
I
0

]
Ŝ1 +

[
0
I

]
Q̂

]
[0, I] B̂1(Ĉ1B̂1)−1

N̂1

[
I
0

] [
Â1,2, . . . , Â1,m

]

+
[
P̂2, . . . , P̂m

] N̂1

[
I
0

]
Ŝ1 + Q̂




.

(3.20)
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Furthermore, for j ∈ {2, . . . , m},

Â1,1Ir1 + Ŝ1

[
0(n−rs)×r1

, Ir1

] B̂1(Ĉ1B̂1)−1

= Â1,1 +
[
0(r1−1)×(n−rs)

S1

] [
0(n−rs)×r1

, Ir1

] B̂1(Ĉ1B̂1)−1

(3.11)
=

[
0(r1−1)×1, Ir1−1[
R̂i

1,1, . . . , R̂
i
1,r1

]
]

+
[
0(r1−1)×(n−rs)

c1
(n)A

r1V
] [

0(n−rs)×r1
, Ir1

] B̂1(Ĉ1B̂1)−1

(3.12)
=




0(r1−1)×1, Ir1−1

c1
(n)A

r1B(CB)−1

[
Ir1

0(rs−r1)×r1

]

 +

[
0(r1−1)×(n−rs)

c1
(n)A

r1V
] [

0(n−rs)×r1
, Ir1

] B̂1(Ĉ1B̂1)−1 (3.21)

Âj,1 + Ŝj

[
0(n−rs)×r1

, Ir1

] B̂1(Ĉ1B̂1)−1

(3.11)
=

[
0(rj−1)×r1[

R̂j
1,1, . . . , R̂

j
1,r1

]
]

+

[
0(rj−1)×(n−rs)

cj
(n)A

rjV

]
[
0(n−rs)×r1

, Ir1

] B̂1(Ĉ1B̂1)−1

(3.12)
=




0(rj−1)×r1

cj
(n)A

rjB(CB)−1

[
Ir1

0(rs−r1)×r1

]

 +

[
0(rj−1)×(n−rs)

cj
(n)A

rjV

]
[
0(n−rs)×r1

, Ir1

] B̂1(Ĉ1B̂1)−1 (3.22)

N̂1

[
Ir1

0(n−rs)×r1

]
Â1,j

(3.17)
=

[
0(n−rs)×r1

, In−rs

] [
Ir1+n−rs − B̂1(Ĉ1B̂1)−1Ĉ1

] [
Ir1

0(n−rs)×r1

] [
0(r1−1)×rj[

R̂1
j,1, . . . , R̂

1
j,rj

]
]

(2.10)
=

[
0(n−rs)×r1

, In−rs

] [
Ir1

0(n−rs)×r1

][
0(r1−1)×rj[

R̂1
j,1, . . . , R̂

1
j,rj

]
]

− [
0(n−rs)×r1

, In−rs

] B̂1(Ĉ1B̂1)−1
[
Ir1 , 0r1×(n−rs)

] [
Ir1

0(n−rs)×r1

][
0(r1−1)×rj[

R̂1
j,1, . . . , R̂

1
j,rj

]
]

(3.16)
= 0r1×rj −

[X(n−rs)×(r1−1), 0(n−rs)×1

]
[

0(r1−1)×rj[
R̂1

j,1, . . . , R̂
1
j,rj

]
]

= 0r1×rj (3.23)

N̂1

[
Ir1

0(n−rs)×r1

]
Ŝj

(3.11)
=

[
0(n−rs)×r1

, In−rs

] [
Ir1+n−rs − B̂1(Ĉ1B̂1)−1Ĉ1

] [
Ir1

0(n−rs)×r1

] [
0(r1−1)×rj

S1

]

(3.23)
= 0r1×rj (3.24)

17



and

N̂1

[[
I
0

]
Â1,1 +

[
0
I

]
P̂1

]
[I, 0] B̂1(Ĉ1B̂1)−1 + N̂1

[[
I
0

]
Ŝ1 +

[
0
I

]
Q̂

]
[0, I] B̂1(Ĉ1B̂1)−1

= N̂1

([
Â1,1

P̂1

]
[I, 0] +

[
Ŝ1

Q̂

]
[0, I]

)
B̂1(Ĉ1B̂1)−1

= N̂1Â1B̂1(Ĉ1B̂1)−1

=
(
V̂1V̂T

1

)−1
V̂T

1

[
Ir1+n−rs − B̂1(Ĉ1B̂1)−1Ĉ1

]
Â1B̂1(Ĉ1B̂1)−1

=
(
V̂1V̂T

1

)−1
V̂T

1

[
Â1B̂1 − B̂1(Ĉ1B̂1)−1Ĉ1Â1B̂1

]
(Ĉ1B̂1)−1

=
(
V̂1V̂T

1

)−1
V̂T

1

[[
(B̂1)

(r1+n−rs)
2 , . . . , (B̂1)(r1+n−rs)

r1
, ∗

]

−B̂1(Ĉ1B̂1)−1
[
(Ĉ1B̂1)

(r1)
2 , . . . , (Ĉ1B̂1)

(r1)
2 , ∗

]]
(Ĉ1B̂1)−1

=
(
V̂1V̂T

1

)−1
V̂T

1

[[
(B̂1)

(r1+n−rs)
2 , . . . , (B̂1)(r1+n−rs)

r1
, ∗

]
− B̂1

[
0 ∗

Ir1−1 ∗
]]

(Ĉ1B̂1)−1

(3.14)
=

(
V̂1V̂T

1

)−1
V̂T

1 [0, . . . , 0, ∗]




∗ . . . ∗ 1
... . . . . . . 0

∗ 1 . . .
...

1 0 . . . 0




=
(
V̂1V̂T

1

)−1
V̂T

1 [∗, 0, . . . , 0] . (3.25)

Hence the equations (3.21)–(3.25) show that only the first r1 columns of Â change when applying
the transformation Û1. Furthermore the first r1 columns of Û1ÂÛ−1

1 are equal to the first r1

columns of Ã and by (3.21)–(3.25) equations (2.15) and (2.17) hold for i = 1.

Moreover an application of the transformation Ûi, i ∈ {2, . . .m}, has the similar effect as
in (3.20)–(3.25) on the ri columns from column number

∑i−1
j=1 rj +1 to column number

∑i
j=1 rj

of matrix
(
Ûi−1 . . . Û1ÂÛ−1

1 . . . Û−1
i−1

)
, which, when finally all transformation matrices Ûi are

applied, yields (2.2) and (2.15)–(2.18). This completes the proof. 2

3.4 Proof of the zero dynamics

Now a proof for the characterization and stability of the zero dynamics of linear MIMO-systems
with ordered vector relative degree is given.

Proof of Proposition 2.6
(i) Set

Z =
{

(Vη,−Γ−1Sη) ∈ C1([0,∞) → Rn)× C1([0,∞) → Rm)
∣∣∣ η̇ = Qη

}
.

“⊆”: If (x, u) ∈ ZD(A, B,C) then y ≡ 0 on [0,∞) and so

ξ =
(
y1, y

(1)
1 , . . . , y

(r1−1)
1

∣∣∣ y2, . . . , y
(r2−1)
2

∣∣∣ . . .
∣∣∣ ym, . . . , y(rm−1)

m

)T
≡ 0 ,
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which yields, in view of (2.1)–(2.2),

0rs×1 =




0(r1−1)×(n−rs)

S1

...
0(rm−1)×(n−rs)

Sm




η +




0(r1−1)×m

c1
(n)A

r1−1B
...

0(rm−1)×m

cm
(n)A

rm−1B




u

η̇ = Qη ,

and

0m×1 =




S1

...
Sm




︸ ︷︷ ︸
=:S

η +




c1
(n)A

r1−1B
...

cm
(n)A

rm−1B


u

thus (2.4) yields u = −Γ−1Sη. Since x = U−1
(
ξT , ηT

)T it follows from (3.3) and (3.19) that
(x, u) = (Vη,−Γ−1Sη) for η being a solution of η̇ = Qη and therefore (x, u) ∈ Z.

“⊇”: If (x̃, ũ) = (Vη,−Γ−1Sη) ∈ Z, then, by (2.7), we have

ỹ := Cx̃ = CVη ≡ 0 ,

and so
ξ̃ =

(
ỹ1, . . . , ỹ

(r1−1)
1

∣∣∣ ỹ2, . . . , ỹ
(r2−1)
2

∣∣∣ . . .
∣∣∣ ỹm, . . . , ỹ(rm−1)

m

)T
≡ 0 ,

and therefore
((

0
η

)
, ũ

)
solves the first equation in (2.1) with y ≡ 0 on [0,∞). Thus it follows

that

(x̃, ũ) =
(

U−1

(
0
η

)
, ũ

)
= (Vη, ũ) ∈ ZD(A,B, C) .

(ii) From (i) it follows that

x = Vη and η = (VTV)−1VT x ,

where η is a solution of η̇ = Qη. Thus

∃M,λ > 0 ∀ (x, u) ∈ ZD(A,B, C) ∀ t ≥ 0 : ‖(x(t), u(t))‖ ≤ Me−λt‖x(0)‖ .

if, and only if, η̇ = Qη is an asymptotically stable system. 2

3.5 Proof of the right-invertibility

Proof of Proposition 2.7

“⇒”: If y = yR then by (2.1) ξ =
(
yR1, . . . , yR

(r1−1)
1

∣∣∣ . . .
∣∣∣ yRm, . . . , yR

(rm−1)
m

)T
. Thus, by (2.1)

it follows that

yR
(rj)
j = y

rj−1
j = ξ̇∑j

i=1 ri
= Rjξ + Sjη + cj

(m)A
rj−1Bu , j ∈ {1, . . . , m} ,
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hence 


yR
(r1)
1
...

yR
(rm)
m


 =




R1

...
Rm


 ξ +




S1

...
Sm


 η +




c1
(m)A

r1−1B
...

cm
(m)A

rm−1B




︸ ︷︷ ︸
=Γ

u

and so

u = Γ−1







yR
(r1)
1
...

yR
(rm)
m


−




R1

...
Rm


 ξ −




S1

...
Sm


 η


 .

Furthermore it follows that η has to be a solution of

η̇ =
[
P1, 0, . . . , 0

∣∣P2, 0, . . . , 0
∣∣ . . .

∣∣ Pm, 0, . . . , 0
]
ξ + Qη = Qη + [P1, . . . , Pm] yR

for any initial value η(0) ∈ Rn−rs
.

“⇐”: Assume the (ii) holds. By (2.1) it follows that

ξ̇∑j
i=1 ri

= Rjξ + Sjη + cj
(m)A

rj−1BΓ−1

︸ ︷︷ ︸
=ej

(m)







yR
(r1)
1
...

yR
(rm)
m


−




R1

...
Rm


 ξ −




S1

...
Sm


 η


 = yR

(rj)
j

where, for any η0 ∈ Rn−rs
, η is a solution of the initial value problem

η̇ = [P1, . . . , Pm] yR + Qη , η(0) = η0 .

This yields, in view of (2.1), ξ =
(
yR1, . . . , yR

(r1−1)
1

∣∣∣ . . .
∣∣∣ yRm, . . . , yR

(rm−1)
m

)T
and thus y =

(
ξ1, ξr1+1, . . . , ξ∑m−1

i=1 ri+1

)T
= yR. Hence that last row of the normal form (2.1) reads

η̇ = [P1, . . . , Pm] yR + Qη =
[
P1, 0, . . . , 0

∣∣ P2, 0, . . . , 0
∣∣ . . .

∣∣Pm, 0, . . . , 0
]
ξ + Qη

which completes the proof. 2
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