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Chapter 1

Introduction

Progresses in laser technique with the possibility to amplify fs laser pulses [Strickland and

Mourou, 1985], thank to the chirped pulse amplification technique, allowed in the last years

giant steps in the comprehension of the laser-plasma interaction subject. The application

of the new knowledges brought to the birth and development of new fields of research:

− femtosecond laser-produced plasma spectroscopy [Gauthier et al., 1995];

− efficient ultra-short X-ray pulse production [Rousse et al., 1994] and its applications

in the time resolved X-ray diffraction field to study, for example, in the sub–ps regime,

the transient state of laser heated organic film [Rischel et al., 1997], the non-thermal

melting in semiconductors irradiated by fs laser pulses [Rousse et al., 2001b] or the

atomic motion (i. e. phonons) in bismuth [Sokolowski-Tinten et al., 2003];

− the possibility to accelerate

electrons [Modena et al., 1995; Amiranoff et al., 1998] by exploiting the coupling

between laser field and electrons;

protons see [Ledingham et al., 2003] and references therein;

ions [Hegelich et al., 2002; Busch et al., 2003] by using the extremely high electric

fields induced by the charge separation at the back side of the target;

− the production of quasi-monochromatic bunches of



2

electrons [Faure et al., 2004; Geddes et al., 2004; Mangles et al., 2004] utilising the

“bubble regime” [Pukhov and Meyer-ter-Vehn, 2002], a solitary plasma cavity

moving in the underdense plasma;

protons [Schwoerer et al., 2006] exploiting micro-dot targets to reduce the extension

(and, on the same time, the differences in the intensity, i. e. the spectrum) of

the accelerating electric field at the back of the target;

ions [Hegelich et al., 2006] by using a well characterized target to reduce the con-

tamintants (hydrogen) to an exploitable level and to have only C5+ and C6+ at

the surface to be accelerated;

− laser triggered nuclear reactions: some authors used MeV photons created by brems-

strahlung to fission Be by using a tabletop laser [Schwoerer et al., 2001] or Au and

U with a PW class laser [Cowan et al., 2000]. [Ditmire et al., 1999] were able to

obtain fusion neutrons by using 1016 W/cm2 laser pulses on deuterium clusters; also

[Pretzler et al., 1998] could show fusion in a deuterated plastic target;

− the proposal of the Fast Ignitor [Tabak et al., 1994] (see next Chapter) and its last

improvements [Kodama et al., 2001, 2002]: the use of hollow cones directly connected

with the core of the target (a deuterated polystyrene) allowed a more effective heating

and ignition from the PW pulse.

This thesis groups heterogeneous results coming from three experiments. The leitmotiv

is the electron behaviour in the target during and after the interaction between a laser

pulse and cold target at relativistic intensities.

The chapter will be organized as follows: first of all I will try to convince the reader

about the importance of such a subject, then the physical methods that were used during

the work will be presented, and finally a picture of the state of the art in the research from

both experimental and theoretical sides will be offered.

This thesis describes the results and the implications of three experiments performed at

the JeTi (Jenaer Ti:Sapphire) laser system. The measurement of the Zeeman effect in the
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X-ray regime by exploiting the magnetic field created by the interaction of ultra-intense fs

laser pulses with solid target will be discussed in Chapter 4. The polarization dependence

of high resolution X-ray spectra as a tool to infer the electron velocity distribution at

relativistic intensities inside the target will be matter of Chapter 5. Finally, in Chapter 6,

the electron transport in solid plasma at intensities of about 5×1019 W/cm2 detected by

an energy resolving 2D X-ray imaging system will be investigated.



Chapter 2

Electron behaviour at relativistic intensities

2.1 Motivations

Three main reasons could be indicated as possible motivations to undertake a work about

the motion of electrons as a result of relativistic interaction between laser and plasma: one

is connected with the fast ignitor approach to the nuclear fusion, the second is the need

to better understand the interaction between laser and plasma (there are only few fields

in the physics expanding so quickly) and the third is the need to better know the physics

behind a laser-produced X-ray source.

2.1.1 The fast ignitor

The fast ignitor is an alternative approach to the inertial confinement fusion [Tabak et al.,

1994]. The basic idea is to separate the compression from the ignition: first, ns laser pulses

are employed to compress the deuterium pellet to about 300g/cm3; second, a multi-ps pulse

drills a hole through the coronal plasma to reduce the distance between the target surface

and core; then an ultra-intense laser pulse of PW class is used to generate hot electrons

that ignite the core. The main advantages of the fast ignitor proposal are reduction of the

total energy required to achieve the ignition and relaxed requirements about the symmetry

of the compression phase (instabilities during the compression phase are less deleterious

because the ignition is a step separated from the compression).

Since the fast ignitor proposal in 1994 huge efforts have been made in the research to

understand the process of generation and transport of hot electrons needed in the last and
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decisive phase of the fast ignitor. However some aspects remain still less understood than

others. I present here a short list.

− The anomalous inhibition of the electron transport in cold solid target is now rel-

atively well understood and good simulation codes have already been working for

non-relativistic intensities [Bell et al., 2006]. What happens if we go to higher inten-

sities?

− What happens if the target is an insulator? There are models to simulate the be-

haviour of metallic targets: very few was done/understood for insulator, even if foam

or plastic targets (coupled with buried fluor layers) have been used since years.

− The role of the magnetic fields. Theoretical works have predicted gigagauss magnetic

fields in the laser-plasma interaction already 15 years ago. However there are only

few experimental works on this subject. Even if we propose in this thesis a new way

to diagnose them by means of the Zeeman effect, the impact of such huge fields on

the electron transport and, mainly, how to exploit them in the fast ignitor scheme is

still not clear.

2.1.2 The laser-plasma interaction at relativistic intensities

When ultra-short laser pulses are focused on to a solid target at intensities of ≥1018 W/cm2,

in a thin layer (≈100 nm) at the interface vacuum–target, ions and electrons experience an

electric field from the incident radiation [Gibbon et al., 1996]. This field is much stronger

than typical atomic fields. The thickness of the created plasma layer is of the order of

the penetration depth of the laser radiation in the target material, which ranges from a

few tens up to a few hundreds of nanometers. Since a typical plasma expansion velocity

is 0.1 nm/fs, no significant hydrodynamic motion occurs during the laser pulse for pulse

durations shorter than 100 fs [Ziener et al., 2002]. This means that the laser interacts with

a plasma of almost solid density (ne ≈ 1023 . . . 1024 e/cm3). In this layer the atoms are

instantaneously ionized and a thin layer of dense plasma is created.
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To describe the type of the interaction, the dimensionless parameter a = eA/mc2 is used

(e is the electron charge and A is the vector potential): if a > 1 one speaks of relativistic

interaction. This condition can be rewritten as Iλ2
0 = 1018 W/cm−2µm2, where λ0 is the

laser wavelength. As soon as a > 1 the charged particles in the plasma are accelerated

up to MeV energies through various mechanisms (Brunel effect [Brunel, 1987], anomalous

skin effect [Rozmus and Tikhonchuk, 1990], resonant absorption) in the forward direction.

The presence of a prepulse has important consequences on the laser-plasma interaction.

It creates a small plasma before the main pulse arrives and changes the physics of the

problem. The plasma scale length L
.
=
∣

∣

∣

n

∇n

∣

∣

∣

n=nc

= vit (n is the plasma density, nc is

the critical plasma density and vi the sound velocity of the plasma) describes how large

the plasma in front of the target is and, more important, how steep the gradient is at the

critical density. If there is no prepulse, the resonant absorption is not effective because

there is no well definite plasma critical layer.

Since the plasma is almost collisionless, there is no reason for the energy-carrying

electrons to have a Maxwellian distribution. On the contrary the energy is given to a small

fraction of electrons, called “hot” or “fast”, with a characteristic energy determined by the

mechanics of the absorption process.

2.1.3 The X-ray source

Electrons accelerated in the plasma by the laser pulse and injected in the cold target create

X-ray radiation via bremsstrahlung and K-shell ionization [Rousse et al., 1994]. There are

many features that makes such a source appealing [Rousse et al., 2001a]: the X-ray burst

is relatively bright (up to 1012 Ti-Kα photons per pulse can be produced [Ewald et al.,

2002]), the expected duration is 200-600 fs, depending on the material, target thickness and

intensity [Feurer et al., 2001; Reich et al., 2000; Reich, 2002; Sokolowski-Tinten et al., 2003;

Bargheer et al., 2004], and the source is small (down to 10 µm as measured in [Zhavoronkov

et al., 2005]). These features make it an ideal source for time resolved X-ray diffraction

experiments in optical pump X-ray probe setup: for example, in [Morak et al., 2006] the
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propagation of acoustical phonons in InSb bulk could be monitored, in [Lübcke et al., 2005]

the Borrmann effect was used to sensibly reduce the X-ray transmission through a GaAs

crystal in the ns timescale.

Moreover, in experiments where high intensity laser pulses are used, the Kα emission

has been often used to monitor the electron behaviour in the matter. Typically layered

target are used. The upper layer is the medium through which the electrons propagate

and, at variable depths, the fluor medium; its Kα emission is observed: intensity and shape

give hints on the electron motion in the target [Batani et al., 2002, 2005; Pisani et al., 2000;

Key et al., 1998; Koch et al., 2001; Beg et al., 1996; Martinolli et al., 2006].

However still many aspects are not clear. The dimension of the Kα-source is expected

to be of the order of the laser spot size with a small broadening due to the scattering of

the electrons inside the target material. While this is confirmed for relatively low laser

intensities (1016-1017 W/cm2), experiments have shown that in the high intensity range

(≥ 1018 W/cm2) the X-ray source is much larger than expected, having the main peak

surrounded by a halo of weak Kα emission, see [Reich et al., 2003]. It is to be noticed

that in [Pretzler et al., 2003] exactly the opposite was found: at relativistic intensities the

source dimension has become much smaller. Possible explanations for this are proposed

by [Reich, 2002]: magnetic fields created by the interaction of the main pulse with the

plasma [Sudan, 1993] in combination with the self induced fields in the target created by

the electron motion [Bell et al., 1997, 1998, 2006] and additional electric fields at the back

of the target [Romagnani et al., 2005], should deflect expanding electrons back to the target

in a large spot and thus producing a larger X-ray source. Another explanation might be:

electrons enter the solid with an angular spread. Such electrons beams were found in a

half-cone angles of 15, 30 and 90 degrees [Wharton et al., 1998; Pretzler et al., 2003; Koch

et al., 2001; Stephens et al., 2004]. In [Wharton et al., 1998] the lower energy electrons

(E≤200 keV) were found to enter the target isotropically while the high energetic ones

from a narrow beam.

It is to be mentioned that already at the beginning of the ’80s some authors [Fabbro and

Mora, 1982; Wallace, 1985; Forslund and Brackbill, 1982] could explain the presence of a
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Figure 2.1: Schematic of the JeTilaser system.

halo surrounding the X-ray emission, observed for example in [Kieffer et al., 1984; Luther-

Davies et al., 1987; Burgess et al., 1985] by taking into account electric and magnetic fields

created at the plasma–vacuum interface.

2.2 The laser system

The experiment was performed using the JeTi, Jenaer Ti:Sapphire, multi-TW chirped-

pulse-amplified laser system [Ziener et al., 2002] (see Fig. 2.1). The system consists of

an oscillator, a stretcher, a regenerative amplifier, two additional multi-pass amplifiers,

and an in-vacuum compressor. The maximum energy output before compression is 1.4 J,

giving about 0.7 J after compression, with a pulse duration of 70 fs at a repetition rate of

10 Hz. After the compression, the laser beam traverses a diagnostic chamber and then it

is guided to the target chamber through a vacuum beam-line in order to avoid a nonlinear
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interaction of the laser pulse with the atmosphere. In the target chamber the beam can

be focused by an off-axis parabolic mirror on to a foil-target to spot sizes down to 5 µm2,

yielding irradiances up to 5·1019 W/cm2.

In the diagnostic chamber a third order autocorrelator can be used to monitor the pulse

temporal profile at ps scale with a dynamic range of four orders of magnitude. There are

two prepulses at 4 ps and 600 fs before the main pulse, having an intensity contrast ratio

of 2×10−4 and 5×10−3, respectively. No other prepulses with a contrast ratio bigger than

10−4 were detected within 200 ps before the main pulse. A typical autocorrelator trace is

reported in Fig. 2.2. The contrast ratio in the time domain 5 ns and more before the main

pulse was measured using a fast photo diode with filters.

An important remark has to be done for the experiments described in Chapters 4 and

5: between the first and the second run a fast Pockels cell unit was inserted after the

regenerative amplifier. The high-intensity part of the pulse is preceded by a 5-ns long low-

intensity pedestal due to ASE mainly generated in the regenerative amplifier. By changing

the position of the gate relative to the main pulse, the pedestal is either fully or partially

transmitted or almost fully suppressed to a minimum prepulse duration of 500 ps. The

two prepulses at 4 ps and 0.6 ps before the main pulse, respectively, create a preplasma
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Figure 2.3: Imaging of the focal spot, together with its horizontal and vertical lineouts.

with a scale length of about 100 nm [Ziener et al., 2002]. The presence of the fast Pockels

cell between the first and the second run could have influenced the characteristics of the

preplasma–plasma: simulations performed in [Kaluza et al., 2004] under similar conditions

indicated an influence of the ASE on the bulk of the target, radiatively heated due to X-

rays generated in the focus of the prepulse on the target front side. Moreover, the presence

of a preplasma has a dramatic influence on the characteristics of the satellite emission and

the magnetic field generation (see later in Chapter 4).

The measurement of the laser focal spot dimension was done in the target chamber. By

using a strong beam attenuator and a microscope objective put in the place of the target

an image of the focal spot, with a magnification of about 50, could be made for the same

conditions used later in the experiment, i. e. vacuum, same laser energy, same amplifiers.

A small CCD was used as a detector. For the calibration a mesh with a 50 µm step was
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imaged (not shown here). In Fig. 2.3 a typical focal spot is shown. The FWHM surface

was about 5 µm2.

2.3 Fast electrons in matter

Let us consider now the motion of the electrons in cold matter. After the laser pulse has

turned off we have the following situation: there are electrons with energies up to MeV, they

are almost collisionless and, for this reason, far away from equilibrium. Their propagation

in the forward direction, in the cold target, encounters immediately the resistance opposed

by the charge separation: the ions, less mobile because of their higher inertia, exert an

attractive electrostatic force that would prevent any further propagation. The fast electrons

can propagate in the cold target only if counter propagating currents (the return currents)

provide a sufficient charge compensation for their motion. In other words: the motion of

high energetic electrons is heavily subjected, through strong electric fields, to the presence

and mobility of electrons with much less energies (up to some keV), forming the return

currents.

The formulae that we will deduce in the next sections, based mainly on the pioneering

works of A. R. Bell, see [Bell et al., 2006] and references therein, make connections between

these two portions of the electron spectrum (high and low energy) showing the surprising

importance of the low energy component. It’s worth mentioning that A. R. Bell is one of

the few people able to reliably simulate these complicated interactions between slow and

fast electrons in dense plasmas, under the influence of self-induced electric and magnetic

fields.

2.3.1 Scaling laws for fast electrons

The electrons in a plasma (with density n) irradiated by a laser pulse acquire an energy

T (in eV)1 and escape the absorption region with a thermal velocity
√

2T/me transport-

1It is the energy kTe of an electron having a temperature Te, where k is the Boltzmann constant
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ing energy with a flux 3

2
neT

√

2T/me (here a Maxwellian distribution was assumed but,

especially for short pulses and high energy electrons, which are almost collisionless, this

need not to be true). Only a fraction of the electrons transports energy: the energy flux is

usually written as Q = fQfree, where Qfree = neT
√

2T/me is “free-streaming heat flow”

and f is a flux limiter. 2

By equating the absorbed energy flux with the electron energy flux we have:

ηI18 = 0.02fn23T
3/2

keV , (2.1)

where TkeV is the energy of the energy-carrying electrons in keV, n23 is their density in

units of 1023 cm−3, I18 is the laser intensity in units of 1018 W/cm2 and η is the fraction

of absorbed laser energy.

In [Beg et al., 1996] a function was used to fit the measured electron energy in depen-

dence of the laser intensity in the range 1016 W/cm2 to 5 × 1018 W/cm2 (Beg’s law):

TkeV = 200(I18λ
2
µm)1/3, (2.2)

where λµm is the wavelength in µm. Rearranging this with eq. 2.1, yields

n21 =
2f

η
I18(I18λ

2
µm)−1/2 : (2.3)

one can see that the density of fast electrons required to carry the energy flux can exceed

the critical density 1.1 × 1021λ−2
µm cm−3 (where the factor 2η/f ≈ 1 can be used for high

intensity laser pulses if electrons are free to escape the absorption region). To this energy

and density corresponds a high pressure:

PMbar = 640
η

f
I18(I18λ

2
µm)−1/6. (2.4)

2If fluid codes are used to model laser-plasma interaction, the heat transfer is described by the Spitzer-

Härm [Spitzer and Härm, 1953] heat diffusion law. This law overestimates the heat flux near the critical

surface because of the steepness of the temperature gradient: an heat flux limiter, f , is therefore used to

be able to reproduce the measured data [Matte and Virmont, 1982]. The heat transport is non-local [Bell

et al., 1981].
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As for eq. 2.1, by using the energy flux conservation, we can get:

j16 = ηI18T
−1

MeV ; IMA = 100ηP100T
−1

MeV , (2.5)

where j16is the current density in 1016 Am−2, IMA is the current in megaamperes and P100

is the laser power in units of 100 TW . Using eq. 2.2, we can rewrite them in:

j16 = 5ηI18(I18λ
2
µm)−1/3; IMA = 500ηP100(I18λ

2
µm)−1/3. (2.6)

If we insert our laser parameters (η = 0.1) we obtain an electron temperature TkeV ≈ 400 keV

(to be compared with the measured value 1.4 MeV, see Chapter. 5), a fast electron density

n ≈ 5×1021 cm−3 and a current of about 200 MA.

2.3.2 Collision times

By inserting eq. 2.2 in the collision time, taken from the NRL plasma formulary [NRL,

2006], one gets the mean free path (mfp) for fast electrons (with Coulomb logarithm set

to 5):

mfp = 104Z−1n−1
23 (I18λ

2
µm)2/3. (2.7)

Substituting with the parameters at our disposal yields mfp ≈ 22 mm which is much larger

than the target thickness.

2.3.3 Return currents

The fast electron current must be balanced by (thermal) electrons moving in the opposite

direction.

In [Bell et al., 1997] the need of these return currents is vividly explained with an

example: let us consider a laser pulse impinging on a target. Let us assume that the

absorbed energy be ǫlaser = 7.1 J, the laser pulse duration τlaser = 1 ps, the fast electron

temperature T0 = 200 keV, and the laser spot diameter 2rspot = 30µm. The current

brought by the fast electrons is I = ǫlaser/τlaser/(1.5T0) = 24 MA. If the current entered

the target, in the cylinder with radius rspot, the magnetic field at the cylinder surface would
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be B = 3200 MG. If the current penetrated into the target for a distance Re ≈ 60µm (the

fast electron root-mean-square range) then the energy stored in the magnetic field would

be (B2/2µ0)πr2
spotRe2 log(Re/rspot) = 5 kJ, which is energetically impossible (the input

energy was much smaller), implying that such a current cannot be maintained.

The return currents are drawn by electric fields. By assuming that the thermal electron

can be considered as a separate component of the plasma having conventional electrical

conductivity σ, one can calculate the electric field E = jf/σ (the subscript “f” and “t”

indicate fast and thermal, respectively), needed to compensate the fast electron current jf :

E10 = 5σ−1
6 ηI18(I18λ

2
µm)−1/3, (2.8)

where E10 is the electric field in units of 1010 V/m and σ6 the electrical conductivity in

units of 106Ω−1 m−1. Such an electric field can stop fast electrons with an energy following

the Beg’s law in a distance:

Lµm = 4σ6η
−1I−1

18 (I18λ
2
µm)2/3. (2.9)

Substituting for our parameters (we used σ6 = 1, the value for aluminium at ≈ 100 eV) we

obtain E ≈ 3.5 × 1010 V/m and L ≈ 12µm. We can see that the electric fields induced by

the fast electrons are strong enough to brake them in very short distances; on the contrary,

collisions, see eq. 2.7, have no effects on the dimension scale of the target thickness.

This transport inhibition was already found in a number of experiment, for example

in [Feurer et al., 1997]. There laser pulses were focused to 5 × 1018 W/cm−2 on a thin

aluminium layer deposited on a copper target. No Cu-Kα photons were measured if the Al

was thicker than 800 nm. Similarly, in other experiments, results could be explained only

by invoking an inhibiting mechanism for the electron transport (see, for example [Feurer

et al., 1997; Pisani et al., 2000; Teubner et al., 1996]).

In [Guerin et al., 1999] a 1D PIC simulation was performed in which the collisions could

be turned off: the fast electrons could, in this case, penetrate in the material because the

thermal electrons were able to provide the return current and, consequently, the electric

fields were relatively small. On the contrary, with the collisions included, the fast electron

transport was inhibited.
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We stress the fact that the mean free path (as shown in eq. 2.7) is much larger than

the target thickness (about 25 µm) and that the fast electrons are inhibited only by the

fields. The collisions are involving only the thermal electrons, anyway collisions have an

enormous impact on the fast electron propagation.

3D PIC code were employed to simulate the return currents, e. g. [Honda et al., 2000;

Sentoku et al., 2002, 2003]. They found that return and fast electron currents balance

out locally (see later eq. 2.12): the total amount of current is almost zero in every point.

Both the forward and return currents are widely distributed in the transverse space, and

they are not well separated, i. e., the current neutralization works well. In [Honda et al.,

2000] the typical energy for return current is estimated to be of the order of ∼ keV 3, i. e.

enough to produce vacancies in the K-shell of a titanium target.

2.3.4 Ohmic Heating

As just mentioned direct heating due to the fast electrons cannot be effective because

they are not collisional. In the same way the electric fields dominate the transport,

they dominate also the heat exchange. The fast electrons do work against the field and,

correspondingly, the thermal electrons are ohmically heated with a volume heating rate

1.5nte(dθ/dt) = j2
fσ, where θ is the thermal electron temperature in eV and nt is the

thermal electron density. By inserting the value for jf from eq. 2.5 one gets a temperature

for the thermal electrons during the laser pulse θ = 90σ−1
6 n−1

t,23tpsη
2I2

18(I18λ
2
µm)−2/3 keV. By

taking into account the variation of σ with the temperature, i. e. by using the Spitzer

formula [NRL, 2006] σ6 = 1.3108Z−1θ
3/2

keV in units of 106Ω−1m−1, the temperature can be

rewritten:

θ(t) = 1.3n
−2/5

t,23 t2/5
ps Z2/5η4/5I

4/5

18 (I18λ
2
µm)−4/15keV, (2.10)

3The energy of return current electrons are difficult to estimate also because the very concept of return

current is difficult to define in a non-ambiguous way. In [Guerin et al., 1999] it is shown that the concept

of return current is badly defined and that one can abstain to use it. Anyway, even if not enough accurate,

it helps, also in a pictorial way, to understand the complicated physics involved.
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σ(t) = 2n
−3/5

t,23 t3/5
ps Z−2/5η6/5I

6/5

18 (I18λ
2
µm)−2/5 × 108Ω−1m−1, (2.11)

where Z is the atomic number.

According to these formulae, the temperature rises up to 1 keV increasing the conduc-

tivity and reducing the electric fields and the inhibition would not occur. The equation

2.11 should be applied to the target as a whole. In reality the plasma temperature increases

first in regions close to the front surface; but the fast electrons already went farther in the

cold target. For them the transport inhibition can indeed occur.

In the derivation of eqs. 2.10 and 2.11 the validity of the Spitzer conductivity for the

thermal electrons was assumed. However, this can be incorrect for low intensities because of

the material properties (insulator and metal for low temperature have different behaviours)

and for high intensities because the amount of hot electrons can be large (in the derivation

of the Spitzer conductivity, the drift velocity is assumed to be much smaller than the

thermal velocity). It is known that the Spitzer conductivity ceases to apply when the heat

flow approaches that of Qfree [Malone et al., 1975; Bell et al., 1981; Matte and Virmont,

1982].

2.3.5 Magnetic Fields

First of all it is interesting to show that the return currents, jt, and fast electron currents,

jf , must balance out also locally, i. e. jf = −jt to a good approximation at every point.

Let us assume that the fast electrons enter the target normally and uniformly in a cylinder

of radius rf ; the same can be done for the thermal electrons, in this case rt = rf + ∆r.

Both beams have the same current I. Writing jf = I/πr2
f and jt = I/πr2

t the magnetic

field is:

B =
µ0I

2π































r

(

1

r2
f

− 1

r2
t

)

if r < rf ,

1

r
− r

r2
t

if rf < r < rt,

0 if rt < r.

(2.12)
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With the assumption that ∆r << rf , Bmax = µ0I(∆r/rf)/πrf . The magnetic energy

per unit length stored in the cylinder is µ0I
2(∆r/rf)

2/4π. With rf = 10µm and I =

200 MA, Bmax = 8 × 104(∆r/rf) MG and the magnetic energy per unit length becomes

103(∆r/rf)
2 J µm−1. The magnetic energy cannot be larger than the absorbed energy:

therefore ∆r ≪ rf , i. e. the two beams are almost overlapping.

In [Davies et al., 1997] a simple formula is given to calculate the peak magnetic field

due to fast electrons at the target surface, considering the conductivity as a constant:

Bmax ≈ 230

(

5 × 105 Ω−1m−1

σ

)(

2 τ

1 ps

)(

10 µm

R

)

( η

0.3

)

(

I

1017 W/cm2

)2/3(

1 µm

λ

)2/3

T,

(2.13)

where τ is the laser pulse duration and R the laser spot radius. With our laser parameters

one gets Bmax ≈ 3 kT or 30 MG. In the same work the interaction between the magnetic

field and the fast electrons was shown: in the simulation the magnetic field in the target

could bend the electron trajectories and refocus them at the back side. Furthermore

they attributed, like [Sentoku et al., 2002; Adam et al., 2006], the halo observed by some

authors [Reich et al., 2003; Burgess et al., 1985; Luther-Davies et al., 1987] to the magnetic

fields present at the target surface: in these magnetic fields the electrons cannot penetrate

in the bulk but they can move along the target surface; in this way they can be transported

many hundreds µm away from the laser focus.

If we have that jf = −jt = E/ρ, where ρ is the resistivity of the material, by using

Faraday’s law ∂B/∂t = −∇× E, we can obtain:

∂B

∂t
= ∇× (ρjf ), (2.14)

which can be decomposed in

∂B

∂t
= ∇ρ × jf + ρ∇× jf . (2.15)

The first term in the right-hand side describes the source of a magnetic field for a change

of the resistivity in the target, the second term is the source due to the motion of the fast

electrons (the cause of the magnetic field in the previous paragraph).
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In [Bell et al., 1998] there is a discussion about the influence of layered target on the

fast electron propagation. A formula is given to calculate the magnetic field in this case

(Spitzer resistivity case):

B ≈ 220

( |Z1 − Z2|
10

)1/2(

Tthermal

300 eV

)

−3/4(

zlayer

10 µm

)

−2(

τlaser

ps

)

−1/2(

Tfast

200 keV

)

−1

×
(

Eabsorbed

10 J

)

MG. (2.16)

For a chromium layer (1.2 µm thick) deposited on nickel (Chapter 6), one gets 220 MG

(or 22 kT) strong magnetic fields. The magnetization parameter M that describes the

dimension of the region occupied by the magnetic fields is introduced. If M > 1, this

region is larger than the fast electron Larmor radius and the fast electrons are magnetized.

In our case M ≈ 20: the magnetic field generates an insulating layer at the interface

between the two materials and could inhibit the transport.

The first experiment showing the presence of a magnetic field generated by the inter-

action of a 20 ns laser pulse with a solid target was reported more than three decades

ago [Stamper et al., 1971]: small coils were used as probes, connected with an oscilloscope

and put close to the focal spot. A magnetic field of ≈ 500 G was measured. They suggested

a thermoelectric source for this: if the gradient of the temperature, ∇T , in a hot collisional

plasma is not collinear with the electron density gradient, ∇n, then a magnetic field can

be created: ∂B/∂t ∝ ∇n ×∇T .

The first MG magnetic field could be detected by using a 100 ps Nd:glass laser able to

reach intensities ≈ 1016 W/cm2 [Raven et al., 1978]. Time and space resolved measurements

were possible by exploiting the Faraday effect.

Years later, after the advent of the chirped pulse amplification and the possibility to

achieve intensities in which the electrons are accelerated to energies comparable or larger

than their rest mass, a PIC simulation was used to simulate the laser-plasma interac-

tion [Wilks et al., 1992]. Magnetic fields with magnitude ≈ 250 MG (or 25 kT) were found

in the overdense region around the laser focal spot. A theoretical work [Sudan, 1993]

tried to model the cited results that could not be explained by means of thermoelectric
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effect. The possibility to create a “dc” (or quasi-static, in opposition to the fast oscillating

magnetic field of the driving electromagnetic wave) magnetic field was shown. The origin

lies with the electrons expelled in the forward direction by the ponderomotive forces of

the laser pulse and piled up: this creates an average electron current that lasts as long

as the laser pulse is increasing in amplitude. Problems with this model were immediately

recognized (in the previous simulation the magnetic field peaked well behind the plasma

vacuum interface, much deeper than predicted in this model) and a possible solution was

indicated in the hot electrons flowing perpendicularly to the plasma-vacuum interface.

Something similar was suggested in [Tripathi and Liu, 1994]: let a short laser pulse

propagate along the direction of density gradient, ∇n ‖ ẑ, and the laser intensity have a

variation along x̂. The laser ponderomotive force ∝ ∇I (where I is the intensity) imparts

on the electrons a drift velocity v ‖ x̂. The produced electron current density J = −n(z)ev

is irrotational (∇ × J 6= 0) and gives rise to a quasistatic magnetic field along ∇I×∇n.

This explanation was also used to interpret the results obtained in another simulation

work [Mason and Tabak, 1998]; there the ponderomotive force could be, during the run,

left off: in this case the magnetic field was a factor 4 lower and confined in a thin layer in

the underdense plasma region.

In [Borghesi et al., 1998a,b] a 4 MG (or 400 T) magnetic field was measured by means

of the Faraday effect; [Sandhu et al., 2002] detected a 25 MG (or 2500 T) peak magnetic

field with excellent temporal resolution by exploiting the ellipticity changes in the probe

beam; [Tatarakis et al., 2002] could attribute the induced high harmonics suppression to

a 350 MG (or 35 kT) magnetic field. All these experiments employed optical methods in

the visible range, allowing only for measurements of magnetic fields present at the plasma–

target interface.

Indirect evidence of the presence of magnetic fields inside the target was experimentally

given by [Tatarakis et al., 1998; Gremillet et al., 1999; Borghesi et al., 1999]. The first one

detected the presence of a plasma plume (very small, ≤ 10µm) on the back side of a 200 µm

thick plastic target. The only possibility to explain it, was to assume that a magnetic field

has guided the electrons through the target. The other two experiments, very similar,
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observed with time resolution, the propagation of electron jets through transparent targets

(glass or plastic). Here the explanation given was the same.

In a series of simulations [Evans, 2006] a number of possible experimental conditions

were explored with the help of the implicit hybrid PIC commercial code LSP. There the

presence of a prepulse increased the magnetic fields by a factor of 5. This can be explained

in terms of resistivity change at the plasma-target interface (a sort of buried layer with

different resistivity).

2.3.6 Weibel and other instabilities

The Weibel instability [Weibel, 1939], filamentation and the two-stream instability [Bret

et al., 2005] are strictly connected to each other and, together, have a strong influence

on the behaviour of the fast electrons in the target. The basic idea is that two counter

propagating streams of electrons (fast current and return current) are not stable because

of the repulsion forces between them. Results of a PIC simulation [Sentoku et al., 2003]

are reported in Fig. 2.4. After short time (some fs) from the perturbations on the surface

of the plasma small ring-like structures emerge from the noise around the focal spot and,

at later times, coalesce in larger filaments. The peak of the wave number spectrum is

kyc/ωpe ≈ 1 . . . 2, where ky is the wave number of the perturbation parallel to the target

surface and ωpe is the plasma frequency; this value shifts to lower values at later times

[Sentoku et al., 2000]. The growth rate, in [Tatarakis et al., 2003] is given by:

γ = ωpeβb

√

nb

γbne

, (2.17)

where nb/ne is the ratio of the beam density to the background plasma density, vb is the

beam velocity, βb = vb/c and γb is the relativistic Lorentz factor of the beam, but for a

more complete view see [Bret et al., 2005]. Inside the filament (diameter of the order of one

µm) the magnetic field is between 1 kT and 20 kT depending on the different conditions

of the simulations [Honda et al., 2000; Sentoku et al., 2002, 2003].

In connection with the Weibel instability there are often calculations concerning the

Alfvén limit [Alfven, 1939]. Its value is I = mc3/eβbγb = 17βbγb kA and it is the maximum
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Figure 2.4: Evolution of the magnetic field driven by instabilities at different times. Figure

taken from [Sentoku et al., 2003]. The magnetic field is shown in units of B0, the oscillating laser

magnetic field. The cross sections, parallel to the target surface, are all at a distance of 2.9 µm.

The laser pulse is semi-infinite and reaches its maximum after 7.5 fs. Plot (a) refers to t = 12.5 fs,

(b) t = 37 fs and (c) t = 62 fs.

amount of current that can be transported by a beam before it becomes unstable (the

magnetic field is too high: at this limit, if an electron is added to the beam, it describes a

8–like trajectory without net motion). The fast ignitor scheme involves the transport of an

amount of relativistic electrons exceeding this limit by orders of magnitude. Simulations

shows that the current transported by a single filament is smaller than the Alfvén limit:

if two beams coalesce and the sum of the current is larger than this limit, the exceeding

magnetic energy is converted in transverse heat [Honda et al., 2000; Sentoku et al., 2002].

2.4 Satellites

The aim of the experiment described in Chapter 4 was to measure the magnetic field

produced by the interaction of fs laser pulses with solid matter. The line broadening

caused by the Zeeman effect amounted to 0.5 eV. The presence of other possible sources
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Figure 2.5: Schematic representation of the creation of a Kα satellite.

of line broadening had to be considered and taken into account: the presence of satellites

in the spectra was carefully analysed and, in some cases, could be excluded. We want now

to describe what satellites are and how they are created.

[Compton and Allison, 1954] assigns the first observation of a “non-diagram line” to

[Siegbahn and Stenström, 1916]. These lines are often close to strong diagram lines and

hence are frequently referred to as satellites. Their origin is sketched in Fig. 2.5. If, during

the process of recombination (and Kα emission, in our case), a vacancy is present in the

M-shell, then the emitted line will be blue-shifted.

To understand better the physics involved in the specific case of titanium, we report in

Fig. 2.6 some calculation performed by Moshe Deutsch and Ruth Sharon from the Bar-Ilan

University (Israel) for the case of Kα transitions. The idea behind is that the Kα line shape

is a mixture of many transitions; each of them leave a track on the final line shape. The

results were obtained by means of a multiconfigurational relativistic Dirac-Fock code that is
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able to solve the approximated Hamiltonian of an isolated atom, given an initial and a final

electronic configuration. Relativistic corrections are taken into account. Let us consider for

example the “stick” diagram (b) (the height of the vertical lines gives the intensity of the

allowed transitions involved, their position the transition energy): the external electronic

configuration of a neutral titanium atom (described in the upper left corner) is considered

and, rather counterintuitively, many transitions contributes to the Kα radiation. Many

other different external electronic configurations are taken into account. We note also

that the stick diagrams labeled with (g), (h) and (i) show a blue shift, compared with the

measured spectrum (a). They involve the presence of a vacancy in the 3p-shell or M-shell

(called 3p “spectator” in the graph). The (f) plot, with 3d spectator, shows a red shift:

even if the atom lost some electrons and is positively charged, the Kα transition had a

lower energy. Anyway, in our measurements, we couldn’t observe any hint of red shift due

to satellites.

The code has an accuracy not better than 2–3 eV for the energy. Moreover, it is not

clear, in principle which configuration is involved. In [Deutsch et al., 1995], for Cu, it

is shown that 4 configurations are involved with different weights. The procedure of the

analysis used in that paper is the following: the position of the group of sticks, or multiplet,

(one multiplet for Kα1 and one for Kα2) can be varied and is taken as a free parameter, the

same happens for the intensity (each group is taken as a whole) and the line width (every

stick line has the same common line width of the other sticks belonging to a group). A

high resolution spectrum of Kα1 and Kα2 is acquired at the X-ray tube. A fitting routine

is applied to the calculated spectrum in order to reproduce the measured spectrum. The

free parameters are obtained; in particular the intensity gives the importance of a single

multiplet to the final line shape.

For M-shell holes the line shift amounts to ≈ 2–3 eV per vacancy [Hill et al., 1976;

Zschornack; Mokler and Folkmann, 1978]. For L-shell vacancies in Ti it is about 25 eV

per missing electron. The removal of the first four electrons of the outer shell (4s2 3d2)

causes a line shift of about 0.5–1 eV. The uncertainty comes from the fact that, at least

for M-shell holes, there are no clean measurements, because the satellite lies too close to
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Figure 2.6: Relativistic multiconfigurational Dirac-Fock calculations for the Kα transitions in

an isolated titanium atom. In (a) the measured spectrum. In (b) to (i) many possible electronic

configurations are taken into account and the corresponding “stick” diagrams are plotted.

the diagram line to be independently resolved 4.

4One could measure a “line shift” if all the atoms had the same amount of vacancies: this is obviously

not the case, there is a population and what can be measured is a shoulder on the blue side of the diagram

line, like e. g. in Fig. 5.5 of Chapter 5. There we talk about line shift: what is meant is that, by fitting

the Kα lines with Lorentz functions, the presence of a more or less large shoulder can “pull” the fitting

function in the blue direction. It is no real blue shift.
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In [Deutsch et al., 2004] the evolution of satellites from threshold to saturation is

followed and the asymmetrical shape of copper Kα can be attributed to the presence

of satellites (the line shape is symmetrical just over threshold). Something similar for

titanium can be found in [Shigeoka et al., 2004]. Unfortunately, in this reference, not all

the satellites are taken into account but only the so-called Ti-Kα′′. Ti satellites has been

recently investigated with a laser-plasma source [Hansen et al., 2005] and they were used

to obtain an estimation of the plasma temperature.

2.5 Spectropolarimetry

Spectropolarimetry is the measurement of spectra in dependence of the polarization.

The presence of a magnetic or electric field offers the simplest case of a possible influ-

ence on the polarization features of radiation. In the case of plasma particles having an

anisotropic velocity distribution (this case will be of interest for the present work) one has

an anisotropic excitation. The idea is that the excited atom keeps a sort of memory of

the direction of the collision by which it was produced and presents its memory in form of

polarization of light it emits [Fujimoto and Kazantsev, 1997].

The technique is sensitive to anisotropies in the radiating and transmitting media. The

comparison of spectra acquired with different polarizations can provide an insight into

anisotropies of the electron distribution function. We sketched in Fig. 2.7 the ideas of

the review paper [Fujimoto and Kazantsev, 1997]. Let us consider an electron flying in

the ẑ direction and colliding with a classical atom (ion core and an electron connected by

a harmonic force). If the energy of the electron is just enough to excite the atom, the

atomic electron will start to oscillate in the ẑ direction. The emission will be a dipole

emission, polarized in the ẑ direction, if seen in the x–y plane (π polarization). Let us

consider the other extreme case, the electron passes by the atom with high energy: now

the atom experiences a pulsed electric field directed in the x–y plane. This pulse may be

approximated by a half cycle of an electromagnetic wave propagating in the ẑ direction.

The photo-excited atomic electron will oscillate in the x–y plane and the radiation will be
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Figure 2.7: The working principle behind the spectropolarimetry.

σ polarized.

In the first case the degree of linear polarization P = (Iπ − Iσ)/(Iπ + Iσ) will be P ≈ 1.

In the second case it will have a lower value. In the limit of very high energy it will be

P ≈ −1.

The basic idea behind the spectropolarimetry is to measure the linear polarization

degree of the radiation to obtain information about the electron velocity distribution (EVD)

that caused this kind of emission. The process is not straightforward as it could appear,

because there are many free parameters in play.

To show how the different parts are connected, I’ll follow the theoretical approach

suggested in [Walden et al., 1999]. This description is valid in the absence of electric and

magnetic fields.

Let us consider a plasma with a beam-like electron distribution function parallel to ẑ.

The emitting ions will be excited by collisions with unpolarized electrons governed by a

distribution function f(v) (v is the velocity) or, in terms of energy and pitch angle, by:

f(ǫ, α) = (1 − nfast)ft(ǫ)f0 + nfastffast(ǫ, α), (2.18)

where the subscript fast and t refer to fast (anisotropic) and thermal (Maxwellian) elec-
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trons, f0 =
1

4π
, cos α =

v · ẑ
v

, the energy ǫ is in excitation energy units ǫ = E/Eex and α

is the pitch angle that characterizes the fast electron anisotropic distribution. There are

some normalization factors:

ffast(ǫ, α) = ffast(ǫ)f(ǫ, α),
∫

∞

0

ffast(ǫ)dǫ = 1,

2π

∫

f(ǫ, α)dµdǫ = 1,

µ = cos α.

(2.19)

We have nfast = Nfast/Ne, with Nfast + Nt = Ne, where nfast is the relative density of the

fast electrons (nfast ≪ 1; this is not necessarily the case, but to simplify the calculation it

will be assumed to be true) and Ne is the total electron density.

Expanding the pitch angle distribution function in Legendre polynomials Pl(µ) one can

rewrite eq. 2.18:

f(ǫ, α) = f̃(ǫ)f0 + f̄(ǫ, α)f2 with f2 = 5f0, (2.20)

f̃(ǫ) = (1 − nfast)ft(ǫ),

f̄ = nfastffast(ǫ)

∞
∑

l=2

f̄l(ǫ)Pl(µ),

f̄l(ǫ) =
2l + 1

2f2

∫ 1

−1

f(ǫ, α)Pl(µ)dµ.

(2.21)

If we consider, for example, a beam-like electron distribution with f(ǫ, α) = 1/(2π)δ(1−µ),

(δ is the Dirac delta) we obtain f̄2 = 1; in general it will depend on the energy of the incident

electrons.

For the limit case of lines excited by an electron beam the degree of polarization P can

be expressed through cross sections for the excitation of the m states (magnetic levels),

averaged over the electron distribution function eq. 2.20 with nfast = 1:

P̄ =
〈vσ0(ǫ, α)〉 − 〈vσ1(ǫ, α)〉
〈vσ0(ǫ, α)〉 + 〈vσ1(ǫ, α)〉 , (2.22)
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where the σi(ǫ, α) are the excitation cross sections for the m states relative to the quan-

tization axis rotated by the angle α with respect to the vector ẑ. Transforming the cross

sections for rotations about the quantization axis, one can rewrite P̄ as follows:

P̄ =
3P̃ β

3 − P̃ (1 − β)
, (2.23)

P̃ is the degree of polarization of a beam-like electron distribution and β is:

β =

∫

v [σ0(ǫ) − σ1(ǫ)] ffast(ǫ)f̄2(ǫ)dǫ
∫

v [σ0(ǫ) − σ1(ǫ)] ffast(ǫ)dǫ
. (2.24)

In a plasma we have to consider also an isotropic part of the distribution function: the cross

section have to be averaged also over the Maxwellian part and the m states population

from other processes has to be taken into account. Assuming an isotropic character of the

population we have:

P =
3P̄ g

3 − P̄ (1 − g)
with g =

〈vσ〉fast

X
, (2.25)

where σ is the cross section summed over all the m states and X is the total rate of

excitation of the J level.

For both eqs. 2.23 and 2.25 there are two factors, β and g, which lead to a decrease

of the polarization degree P . The first is connected with the width of the anisotropic

distribution function through the pitch angle α and the second is connected with the

relative contribution of the non-thermal electrons to the total population of a J level. In

other words: P̃ is the polarization degree for a perfect beam-like distribution function

(α = 0 and nfast = 1), P̄ is the polarization degree for an anisotropic distribution function

with some pitch angle (α 6= 0 and nfast = 1): this can be seen in the presence of f̄2 in the

expression for β; if f̄2 = 1, i. e. perfect beam, β = 1 and P̄ = P̃ . P is the polarization

degree if we consider also the Maxwellian part of the distribution: if g = 1, we have only

fast electrons contributing to the population and P = P̄ .

At this point a form for f̄2 is needed: in our case it should come from a code simulating

the laser-plasma interaction. Temporal evolution of the electron density, temperature

and beam-like features of the electron distribution [Hakel et al., 2004] have to be taken
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into account. Moreover, all the terms contributing to the σ for the excitation process

(collisional, radiative) must be considered with time dependence. The evolution of all

these contributions are then put together to give the intensity of the polarized components

of the spectrum, time integrated to be directly comparable with the measurements.



Chapter 3

The X-ray spectrometer

3.1 Introduction

A high resolution X-ray spectrometer was developed to be able to discern an even small line

broadening due to the influence of the Zeeman effect on the Kα lines: the Zeeman energy

splitting, ∆E ∼ µBB (where µB and B are the Bohr magneton and the magnetic field,

respectively) with a magnetic field of some kT (not commonly available in laboratory) is of

the order of 0.1 eV. A high energy resolution is then an essential condition for the success

of the experiment.

In order to be able to distinguish the contribution of the magnetic field from other

possible sources of line broadening, a polarizer was coupled with the spectrometer in a

non-dispersive setup. In this way the components σ, more sensitive to the magnetic field,

can be partially filtered out. A direct comparison (like in [Sarfaty et al., 1995]) polarized

vs. nonpolarized spectra can allow a precise estimation of the amount of the magnetic field

involved in the measurements.

3.2 Principle of the spectrograph

Different types of spectrographs using crystals as wavelength dispersive element are known.

They are using flat crystals, cylindrically bent ones, i.e. Johann, von Hámos, a vertical

variant of Johann spectrograph [Johann, 1931; Johansson, 1933; Kopecky, 1995], or spher-

ically bent crystals [Faenov et al., 1994]. To achieve a spatial resolution in addition to the
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Si 220
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Figure 3.1: The spectrometer setup is sketched in the figure. The flat crystal, working as a

polarizer, could be removed allowing the focusing of the nonpolarized spectrum on the Rowland

circle.

spectral resolution the Johann, von Hámos and the spherically bent crystal setups use a

slit along the dispersion direction to image the plane perpendicular to the dispersion plane.

The slit is positioned between radiating source and the crystal. The ratio of the distances

from the slit to the detector and from the source to the slit defines the magnification factor.

For all these spectrometers the spatial resolution is limited by the slit width. The smaller

the slit, the better the resolution but as a consequence the lower the luminosity of the

instrument.

As an alternative spectrometer an imaging spectrograph using a toroidally bent crystal

is presented here. This type of spectrometer provides an 1D spatial resolution in combina-

tion with a high spectral resolution and high luminosity.

The first use of toroidally bent crystals has been made to increase the spatial resolution

in monochromatic imaging [Förster et al., 1991] or to increase the luminosity by focusing

the X-ray spectrum to a line [Hauer et al., 1985]. In comparison to a spherical surface, the

toroidal surface has the advantage of having two different focal lengths, the horizontal one

fhor and the vertical one fver, corresponding to the two radii of curvature Rhor and Rver.
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These quantities are connected to each other by:

fhor =
Rhor

2
· sin θ0, fver =

Rver

2 · sin θ0

,

where θ0 is the Bragg angle. If the bending radius in the dispersion plane is larger

than the bending radius perpendicular to the dispersion plane, the angle θ̄ for a reduced

astigmatic image is defined by:

Rver

Rhor
= sin2 θ̄ (3.1)

This angle delivers the same focal distance in the dispersion plane and in the plane

perpendicular to it, i. e. fhor = fver. It means that each spatial source element is imaged

in the image plane of the source. By an angular deviation from the reflection angle θ̄ one

gets two focused lines of each source point caused by astigmatism.

Independently of the geometry of the setup the radiation is dispersed into a spectrum

which is focused horizontally by the crystal with bending radius Rhor near the Rowland

circle with a distance to the crystal:

lb = Rhor sin θ0.

In order to use the crystal as a spectrometer, the source was moved inside the Rowland

circle (as shown in Fig. 3.1). For a small source the different wavelengths are reflected at

different positions on the surface of the GaAs bent crystal and collected by the detector

put on the Rowland circle. As already mentioned Rver was chosen such that an 1D imaging

in the vertical direction could be achieved.

3.3 Spectral and spatial properties

In this section experimental conditions are investigated for a situation where a point source

is placed inside the Rowland circle. In this case different wavelengths are reflected at

different portions of the crystal, according to the Bragg equation. Basis equations of the
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Table 3.1: Data concerning the spectrometer and the X-ray radiation used in the experiment.

We note that in our case Mv = 1.8.

Reflection Rver Rhor la lb θbent Reflection θflat Ti-Kα1 Ti-Kα2

GaAs 400 [mm] [mm] [mm] [mm] [o] Si 220 [o] [eV] [eV]

305.9 450 244.9 441 76.7 45.7 4510.84 4504.86

76.85 76.90 76.95 77.00
0
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Figure 3.2: Convolution of the rocking curves of two identical flat GaAs crystal (400) reflections

measured with a (n, -n) setup and a Ti-Kα source.

angular distribution on the toroidally bent surface were given in [Förster, 1985; Missalla

et al., 1999]. In Table 3.1 the data concerning the spectrometer are reported.

The difficulty to find a perfect GaAs crystal motivated a careful characterization to find

out which role the crystal imperfections play and what influence on the rocking curve they

have. In order to extract information about the spectral resolution, a measurement was

performed with a double crystal spectometer by using two identical flat GaAs crystals with

(100) orientation with the same dislocation density (n ≃ 6 · 105 cm−2) as the crystal used

in the spectrometer. The double crystal spectrometer measures the convolution of the two

rocking curves. The measurements are shown in Fig. 3.2. From this, through a deconvo-
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Figure 3.3: Calculated rocking curves for flat and toroidally bent GaAs (400) crystals. For

calculations concerning the bent crystal the same parameters of the spectrometer crystal were

used. Differences in the FWHM amount to less than 2.5%.

lution, a FWHM = 55 arcsec for the rocking curve can be calculated. Calculations1 show

that the large radius of curvature used for the GaAs (400) does not change significantly

the width of the rocking curve if compared to a flat crystal, as reported in Fig. 3.3.

The difference between the measured rocking curve and the theoretical one obtained

assuming a perfect crystal amounts to 4%. From the FWHM of the measured rocking

curve a spectral resolution ∆λ/λ ≃ 15000 can be deduced.

Combining the fact that one detects a spectrum on the Rowland circle with the fact

that by choosing the appropriate Rver a 1D imaging can be obtained, it is possible to have

spatial resolution of the source in the vertical direction. This is achieved without using

any slit or aperture in the optical path. To know the position of the source with respect

to the crystal one has to use the lens equation 1/la + 1/lb = 1/f , with lb = Rhor sin θ0 and

f = fver.

1In this thesis the rocking curves were all calculated by means of the code DIXI of G. Hölzer
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Then the distance from the X-ray source to the crystal is fixed by:

la = Rhor sin θ0

1

2
sin2 θ0

sin2 θ̄
− 1

(3.2)

By using a toroidally bent crystal, magnification and Bragg angle can be chosen inde-

pendently; moreover it is possible to achieve magnifications larger than one. The magnifi-

cation can be calculated by:

Mv =
lb
la

= 2
sin2 θ0

sin2 θ̄
− 1.

Because the imaging distance is always the distance to the Rowland circle there is no free

choice of magnification independently of the spectral window being reflected for a fixed

vertical bending radius.

Experiments using spherically bent crystals have already been made [Faenov et al.,

1994; Young et al., 1998]. With spherically bent crystals only a few experimental conditions

can be accessed. Because of the identical radii Rhor = Rver, putting Eq. (3.1) and (3.2)

together, the distance to the source is given by the optic:

la =
Rhor sin θ0

2 sin2 θ0 − 1

But a different magnification using the same crystal material implies that a different

spectral range is reflected. Even further, by looking closely at the equation one can see that

only magnification ratios smaller than one are accessible with a spherical crystal because

of the condition

Mv =
lb
la

= 2 sin2 θ0 − 1.

Moreover an angle θ0 > 45o is required to obtain a vertical image at all.

The limit for demagnified imaging is given by the spectral window of the illumination

of the crystal by parallel light. The torus has to have a ratio of the bending radii with

Rver/Rhor < 2 sin2 θ0. The spectral window for magnified imaging is not limited by ge-

ometric reasons but usually there is a minimal safety distance from crystal to plasma to

protect the crystal from debris.
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Figure 3.4: Upper panel: a 1D image of a mesh with a constant of 12.5 µm. Lower panel:

intensity profile of the 1D image of the same mesh. The resulting spatial resolution is about

4 µm.

The spatial resolution of the spectrometer used in the experiment was tested by putting

a 12.5 µm mesh in front of the source, an X-ray tube. In Fig. 3.4 the results are shown.

The upper part is a 2D scan of the film: vertical modulations are clearly visible. By

summing up several lines the signal to noise ratio can be improved: the lower part of

the figure shows the lineout. To calculate the spatial resolution, the copper mesh was

assumed to be completely absorbing for Ti-Kα radiation. The image of the mesh, assumed

to be composed by rods with squared cross section, would give, in case of infinitely high

resolution, a square function, i. e. a series of flat maxima and minima. The first derivative

would be a series of Dirac delta functions. In the real case the transition between maxima

and minima is not so steep anymore because the finite resolution smears the contours.
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The first derivative of the lineout is composed by peaks with a finite FWHM. We used the

value of the measured FWHM as spatial resolution of the spectrometer. We note that the

assumptions used in the calculations (completely absorbing rods, perfectly squared rods)

are best case assumptions. If they are not satisfied, the calculated final resolution is worse

than the real one. The spectrometer spatial resolution obtained with this method amounts

to 4 µm.

3.4 Non-dispersive setup

In addition to the bent GaAs crystal, a second crystal, a flat Si (220), could be coupled

in a non-dispersive setup, i.e. this second crystal was working as a diffracting element

but reflecting all the wavelengths coming from the first crystal [Uschmann et al., 1993;

F. N. Chukhovskii, 1992]. The total dispersion must be equal to zero. The Bragg angle of

the flat crystal θflat = 45.7o allowed almost only the reflection of the σ-polarized part of

the radiation.

A general and authoritative discussion about double flat crystal spectrometers is given

in [Compton and Allison, 1954].

The non-dispersive setup sets some constraints on the positions of source, crystals and

detector. Given Rhor, the horizontal radius of curvature and θ0, the Bragg angle, the

remaining parameters la, lb and Rver, the distance source-crystal, the distance crystal-

detector and the vertical radius of curvature, respectively, are fixed.

The main steps of such a calculation are shown in the following.

From [Missalla et al., 1999], let us consider the rocking curve of the crystal, i. e. the

function C [σ(α, Φ) − ∆λ/λ0 tan θ0], where σ(α, Φ) = θ − θ0 is the deviation angle θ from

the central Bragg angle θ0 corresponding to different reflection positions on the crystal,

λ0 is the wavelength corresponding to the Bragg angle θ0, ∆λ is the deviation from this

central wavelength, α and Φ are the horizontal (in the dispersion plane) and the vertical
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Figure 3.5: Pictorial representation of the parameters used in the derivation of a non-dispersive

setup.

divergence angles. By putting

σ(α, Φ) − ∆λ/λ0 tan θ0 = 0 (3.3)

we look for the variations of the incident angle (or wavelength) in dependence of the position

on the crystal. We can use the first order approximation [Missalla et al., 1999]:

σ(α, Φ) ≃ σ(α) ≃ k − 1

2k
α, (3.4)

k = khor =
lhor
b

la
can be seen as the magnification due to the horizontal bending and lhor

b

is the position of the image due to this bending, and la = lhor
a . The lens equation can be
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rewritten as

1

lhor
b

+
1

la
=

1

fhor

la
lhor
b

+ 1 =
la

fhor

1

khor
+ 1 =

la
fhor

,

(3.5)

and finally one comes to:

khor =
Rhor sin θ0

2la − Rhor sin θ0

.

Taking Fig. 3.5 into account we can write

α =
∆x sin θb

la
,

the superscript b indicates that the calculations are involving the bent crystal. The sub-

script 0 has been omitted for sake of clarity.

Eq. (3.3) can be now rewritten to give the dispersion [Compton and Allison, 1954] for

the bent crystal:

∆λb

λ
=

1

tan θb

[

sin θb

la
− 1

Rhor

]

∆x. (3.6)

For the part concerning the flat crystal (marked with a superscript f) we can combine

∆θf =
∆x sin θb

lb
(3.7)

with the lens equation

1

la
+

1

lb
=

1

fhor
,

where fhor =
Rhor

2
sin θb to obtain

lb =
laRhor sin θb

2la − Rhor sin θb
.
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Substituting in Eq. 3.7 we get:

∆θf =
2la − Rhor sin θb

laRhor

∆x

and finally

∆λf

λ
=

∆θf

tan θf
=

1

tan θf

2la − Rhor sin θb

laRhor
∆x. (3.8)

The total dispersion is the difference of the two dispersions. The non-dispersive setup is

now achieved by posing the total dispersion equal to zero:

1

tan θb

[

sin θb

la
− 1

Rhor

]

∆x − 1

tan θf

2la − Rhor sin θb

laRhor

∆x = 0. (3.9)

Now we get la in dependence of Rhor :

la =

Rhor sin θb

[

tan θb

tan θf + 1

]

1 + 2
tan θb

tan θf

. (3.10)

The vertical radius of curvature Rvert has now become a function of la and Rhor. It must be

chosen such that the 1D imaging occurs on the Rowland circle. So we have lb = Rhor sin θb

and applying again the lens equation
1

la
+

1

lb
=

1

fver

with fver =
Rver

2 sin θb
one obtains:

Rver =
2laRhor sin2 θb

la + Rhor sin θb

and applying the Eq.(3.10) finally we come to:

Rver =

2Rhor sin2 θb

[

tan θb

tan θf
+ 1

]

2 + 3
tan θb

tan θf

.

The data reported in Table 3.1 fulfill the requirements set by the previous formulae.



3.5. Integrated reflectivity for bent crystals 41

3.5 Integrated reflectivity for bent crystals

From [Missalla et al., 1999] the amount of reflected photons can be written as:

Nref =

∫ αmax

αmin

∫ Φmax

Φmin

∫ λmax

λmin

dα dΦ dλ G(α, Φ) J(λ) C

(

σ(α, Φ) − ∆λ

λ0

tanΘ0

)

,

where G(α, Φ) is the angular distribution of the emitted energy and can be taken = 1, in

our case; the angles α and Φ are the horizontal and the vertical divergence angle. J(λ) is

the energy distribution of the spectrum, C

(

σ(α, Φ) − ∆λ

λ0

tanΘ0

)

is the function already

described in Sec. 3.4.

By taking into account eq. 3.4, for the case of a point source not sitting on the Rowland

circle, and performing a variable change α → Θ, where

Θ = σ(α, Φ) − ∆λ

λ0

tan Θ0,

with dα = 2khor/(khor − 1)dΘ one gets:

Nref ≈
∫ λmax

λmin

J(λ) dλ

∫

Φmax

Φmin

dΦ

∫

Θmax

Θmin

2khor

khor − 1
C(Θ) dΘ

≈ 2khor

khor − 1
Rint

∫ λmax

λmin

J(λ) dλ

∫ Φmax

Φmin

dΦ

≈ 2khor

khor − 1
Rint

∆hcrystal

la

∫ λmax

λmin

J(λ) dλ,

(3.11)

where ∆hcrystal is the crystal height in the vertical plane; the wavelength dependence in

C(Θ) could be neglected under the assumption that the spectral range of the spectrometer

is small enough. By substituting for la = (khor + 1)/(2khor)Rh sin Θ0 one finally gets:

Nref = NL
(2khor)2

(khor)2 − 1

∆hcrystalRint

sin Θ0Rh
, (3.12)

where NL is the number of photons emitted by the laser-plasma source. It’s important to

notice that eq. 3.12 is valid only if the spectral range of the focusing setup

∆λ ≈ λ

∣

∣

∣

∣

khor − 1

khor + 1

∣

∣

∣

∣

∆scrystal

Rh tan Θ0

(3.13)
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is larger than the width ∆λL of the emitted spectral bandwidth of the source; ∆scrystal is

the horizontal crystal dimension.

We have now to determine the value of Rint. The dynamical theory of the X-ray

diffraction [Authier, 2003; Takagi, 1962; Taupin, 1964] gives the value for the integrated

reflectivity in the case of perfect crystals:

Rint =
8

3

1

sin 2Θ0

1 + cos 2Θ0

2

√
χhklχhkl, (3.14)

where χhkl is the Fourier component of the dielectric susceptibility (the indices hkl label

the reflection) and can be written as:

χhkl =
λ2

π

re

V
Fhkl (3.15)

re is the classical electron radius, V is the volume of the unit cell and Fhkl is the structure

amplitude for the hkl reflection.



Chapter 4

Magnetic field measurements: Zeeman effect

in the X-ray regime

4.1 Introduction

The influence of a magnetic field on transitions involving external electrons is well-known

[Zeeman, 1897]; on the contrary, for inner shell electrons in medium – high Z it remained

until now unexplored. Astronomical objects offered already the possibility to study exotic

conditions of the matter [Trümper et al., 1978]: B-fields of the order of 108 T (1012 G)

induced cyclotron transitions between Landau levels of electrons of the hot magnetized

plasma of the X-11 neutron star surface. The Zeeman effect caused by magnetic fields

of 102 . . . 106 T (106 . . . 1010 G) could explain unusual features of white dwarfs visible

light spectra [Kemic, 1974]. However, presently, only H and He spectra can be calculated

for B≈ 102 . . . 104 T (≈ 106 . . . 108 G). The strongest magnetic fields B≈ 1010 . . . 1011 T

(1014 . . . 1015 G) are believed to be caused by the sudden gravitational collapse of neutron

stars in which in short time the rotational energy is transformed in magnetic energy [Dun-

can and Thompson, 1992]. On earth, the effect of a magnetic field on the soft X-ray

emission from atoms has been reported: the emission of an otherwise strictly forbidden

line has been induced by a 3 T (30000 G) magnetic field. The highest magnetic fields

available in lab are of the order of 1000 T (107G) produced by flux compression, in which

a seed field (about 2 T) is compressed by an imploding metal liner (copper ring), triggered

electromagnetically or by chemical explosives [Kane et al., 1997].

The production of magnetic fields of the order of tens of kT [Tatarakis et al., 2002] in
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lab has became possible only few years. This is achieved by using laser-produced plasmas.

By focusing ultra-short ultra-intense laser pulses on to a solid target at intensities of ≥1018

W/cm2 [G. Mourou, 2006], electrons at the target surface are accelerated up to MeV

energies and, due to relativistic effects, mainly in the forward direction. It is expected

that this motion produces currents of several MA and induces extremely intense magnetic

fields.

Theoretical works, partly connected with the Inertial Confinement Fusion, already

suggested that ultra-intense laser pulses could excite quasi-stationary magnetic fields of

≈100 kT (109 G, see [Sudan, 1993], for example). Particle in Cell simulations [Wilks et al.,

1992; Pukhov and Meyer–ter–Vehn, 1996] supported the estimations performed with ana-

lytical methods. [Sentoku et al., 2002; Mason and Tabak, 1998] extended the investigation

to overdense plasmas. In the same time experiments performed with optical techniques in

the visible range (Faraday rotation, high harmonic suppression and ellipsometry, respec-

tively), confirmed the presence of such huge fields [Borghesi et al., 1999; Tatarakis et al.,

2002; Sandhu et al., 2002].

These colossal fields (up to 3.5 × 104 T) are very difficult to diagnose by conventional

methods for several reasons. Their lifetime is very short, of the order of some picosecond,

and they are confined in a small region (a few tens of µm). Since the plasma has a density

close to solid state values it is opaque in the visible and UV spectral regions. Probing a

state of the matter at such high densities requires very high frequency probe beams, e. g.

X-rays.

The Zeeman effect was already used, in the visible range, in combination with a pair

of polarizers, to measure the magnetic field produced by a Z-pinch [Sarfaty et al., 1995].

However, the Zeeman effect [Zeeman, 1897] has never been observed for hard X-rays. This

is due to the fact that in order to be observed, the Zeeman energy splitting, ∆E ∼ µBB

(where B and µB are the magnetic field and Bohr magneton, respectively) must be at least

of order of the width of the X-ray emission line. Even for the relatively narrow, few-eV

wide, X-ray lines of the low-Z, 3d transition elements, this requires extremely high fields,

B ∼ 103 T, which are not commonly available in laboratories.



4.2. Experimental setup 45

e
-

solid  target

fs laser pulse
I = 5 x 10 W/cm

19 2

hot electrons

spectrometer crystal
GaAs (400)

polarizer crystal
Si (220)

unpolarized
spectrum

polarized
spectrum

r

l l

r

fs laser pulse y

x

z

X-ray source

Spatial resolution
1D imaging

Center of emission:
offset = 0

(A) (B)

Figure 4.1: In (A) the experimental setup is shown. In (B) the target geometry is described in

more detail: the laser pulse impinges on the target and the X-ray spectrometer is placed on the

back side of the target. The 1D spatial resolution is along the y-axis: the features of the emission

are integrated together along the x-axis and in the target depth, i. e. everything embraced by

the bluish belt. The position where offset = 0 is also shown.

4.2 Experimental setup

The experimental setup is sketched in Fig. 4.1. The laser pulses, with energy on target

varying from 150 to 500 mJ and pulse duration between 70 and 500 fs, were tightly focused

down 5 µm2 yielding intensities up to 5×1019 W/cm2. 2, 5 and 25 µm thick titanium foils

were used as targets. .

This study took advantage of a high spectral resolution experimentally determined to

be E/∆E ≈ 15000 (∆E ≈ 0.3 eV), and an 1D imaging with a spatial resolution of 20 µm

for the first run and 4 µm for the second run. This was done by means of a toroidally

bent GaAs(100) crystal, used at a Bragg angle of 76.60o in the fourth order for the Ti

Kα transition, and placed behind (see Fig. 4.1) the target at an angle of 27o with the

target surface. The large Bragg angle provides a high angular dispersion and diffracted

X-rays are almost nonpolarized: in Fig. 4.2 the reflection curves of the crystal for the two
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Figure 4.2: Calculated reflection curves for the bent GaAs (400) crystal for the two polarizations.

The integrated reflectivity difference amount to about 10%.

polarizations are shown. The vertical bending radius allowed a high resolution 1D imaging

to be achieved simultaneously with the high spectral resolution. Polarized spectra were

acquired by allowing the radiation to reflect off a flat Si(220) crystal polarizer mounted in

a non-dispersive geometry downstream from the bent-crystal analyzer. The spectra were

recorded with calibrated Agfa Structurix X-ray films.

The results about the magnetic field measurements are concerning only the first run.

In the second run, even if a substantial improvement of the spectrometer spatial resolution

should have made the task easier, the massive presence of satellites had a negative impact

on the possibility to clearly demonstrate a line broadening due to Zeeman effect. A better

temporal contrast had (almost paradoxically) negative effects. On one side, according to

simulations, the presence of a prepulse can increase the peak magnetic field (a factor of

5 was found in the simulations performed by [Evans, 2006]. See Fig. 4.3), on the other

side, it is known [Rosmej et al., 2000] that the absence of a small prepulse gives rise to an

increase of satellites.

However the polarization dependent measurements could give interesting hints about
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Figure 4.3: Simulations taken from [Evans, 2006] showing the influence of the prepulse on the

magnetic field. On the left panel the electron jet meets the target without preplasma. On the

right panel a linear preplasma is assumed. Note that the magnetic field is given in Tesla.

the electron velocity distribution inside the target. More details are given in Chapter 5.

4.3 Results

Fig. 4.4 is a typical spectral image, with Fig. 4.5 showing intensity x-axis scans of the Kα1

peak, taken at the intensity maxima of the spectral images measured at the two indicated

intensities. A broadening of 25%, well beyond the scatter of the measured X-ray intensities,

is clearly observed at the higher intensities.

Scans of the Kα1 images were taken at different y-axis offsets from the peak intensity

of each image. Each scan was fitted by two Lorentzian plus a constant background, and

the quantities derived from the fitted Lorentzians are plotted in Fig. 4.6. Fig. 4.6(A)

shows where the X-ray emission takes place, i.e. where the laser intensity was the highest.

Fig. 4.6(B) shows a clear increase in FWHM of about 0.4 eV from the peripheral regions

towards the center for high intensities. At low intensities the linewidths exhibit almost no

change. The dashed line shows the Kα1 line width as measured with an X-ray tube; its
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Figure 4.5: Scans of the Kα1 line measured with the indicated intensities, unpolarized radiation,

and 5 µm2 focal spot on a 25 µm Ti foil target. The dotted spectrum was preceded by a prepulse

150 ps earlier with a one thousandth of the main pulse energy. The solid line spectrum had no

prepulse.

uncertainty is about ±0.02 eV. The FWHM at the maximal intensity used is ∼ 0.55 eV

higher. Fig. 4.6(C) demonstrates that the Kα1 peak position stays constant to better than
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Figure 4.6: The analysis of the spectra. In (A) the area under the fitted Kα1 line as a function

of the position on the target (the emission maximum is the zero position). In (B) and (C) the

same was done with the FWHM and the position of the maximum. In (B), with a dashed line,

the FWHM as measured from an X-ray tube is displayed; the solid line shows the FWHM of

the simulated spectra described later. Low and high intensity refers to the irradiation conditions

described in Fig. 4.5.

±0.07 eV for all offsets and intensities.

Calculations were performed at the Weizmann Institute, Israel, to estimate the influence

of the Doppler and Stark effects due to micro fields in the plasma. Simple energy-balance

considerations, 100 mJ laser energy distributed in the target, modeled as a squared prism

50 × 50 × 25 µm3, gives a mean energy of about 10 . . . 50 eV. The X-ray burst duration,

∼ 500 fs, is of the same order as the electron-ion thermalization time, therefore Ti = Te

can be assumed (Ti and Te are the ion and electron temperature, respectively). From this

ion temperature estimation, the influence of Doppler effect is ruled out easily: this is, in

fact, connected with the ion velocity which is (due to the ion mass to electron mass ratio
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Figure 4.7: Stark broadening of the Ti-Kα components as a function of the plasma electron

temperature.

and the Ti atomic mass) about 10000 times smaller than the electron velocity. A value of

some meV can be expected.

The Stark effect had to be calculated accurately. A computer simulation method de-

scribed in [Stambulchik and Maron, 2006] was used and the local micro fields at ion loca-

tions for electrons and ions, as a function of time, were evaluated by means of a molecular

dynamics (MD) model. The results are shown in Fig. 4.7: the line broadening due to

the Stark effect is given as a function of the temperature for the two Ti-Kα components.

Assuming an electron temperature of about 20 eV one gets a non-measurable broadening

for Kα1 and a 0.1 eV broadening for Kα2, which is smaller than the measured one.

Another possible source of broadening are satellites. M-shell holes produce satellites in

Kα lines too close to the diagram lines to be independently resolved. In experiments where

Ti targets were bombarded with fast heavy ions, M-shell holes were considered responsible

for blue shift and variations in the linewidth of the L-shell satellites of the Kα lines [Hill

et al., 1976]. In some published work [Aglitskii et al., 1982; Morita et al., 1983] a red shift

in the K-shell emission of ionized spark plasmas was observed. This effect was ascribed to

the presence of one vacancy in the M-shell of the emitting atoms. To our knowledge, no
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red shift due to satellites has been measured for laser-plasma sources .

To demonstrate that there is no red shift of any kind in our measurements we compared

scans of spectral images acquired with different intensities and target thicknesses. In any

case no red shift could be discerned. Hence, we can say that any satellites, which may be

present (as e.g. for 2 and 5 µm thick targets, see Chapter 5, Fig. 5.4), can be seen only on

the blue wings of the Kα lines, depending on the intensity and the target thickness. These

two parameters can be considered as two different ways to vary the ionization stage 〈Z〉.
In another study carried out under similar experimental conditions, Hansen et al. made a

direct connection between 〈Z〉 of the plasma and the target thickness [Hansen et al., 2005].

In the present 25 µm target measurements, no significant shift is measured either for

the high intensity or for the low intensity spectra to within ±0.07 eV, as seen in Fig.4.6(C).

Also, the line broadening is symmetrical with respect to the central photon energy, implying

no red- or blue-shifted underlying satellites. Thus, in the absence of the two main signa-

tures of satellites, peak shift and line asymmetry, it is safe to conclude that the observed

broadening does not originate from satellites.

4.4 Simulation

The measurements are the results of many unavoidable averages: the spectra are integrated

in time, in one spatial dimension (along the line of sight) and in the depth. To be able to

extract information about the spatial distribution of the magnetic field, we compared the

measurements with a 2D simulation. In Fig. 4.8 the main ideas behind the simulation are

pictorially shown; in the following the main steps of the simulation are illustrated:

− The magnetic field was modeled as a function of the distance from the laser focal

spot, with a 1/rγ dependence when r is larger than the laser focal spot, and a linear

dependence otherwise (γ = 1 is the case of a wire with streaming current). γ = 0.4

gave a satisfactory agreement with the measured data (see simulation in solid line,

in Fig. 4.6(B)). A cylindrical symmetry and a doughnut-like distribution around the
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Figure 4.8: Illustration of some of the ideas behind the simulation. The X-ray emission in grey

is overlapped with the magnetic field. The blue stripes give the spatial resolution: the emission

features in them are integrated together.

focal spot were assumed for the magnetic field.

− The time dependence of the field is shown in the inset of Fig. 4.10(A) and was

adapted, together with the relative delay with respect to the laser pulse from the

works of [Sandhu et al., 2002, 2006].

− The X-ray emission was assumed to have a Gaussian shape, in space and time (500 fs

FWHM [Reich et al., 2000]).

− The simulation begins 100 fs before the start of the laser pulse and continues for
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1500 fs; at each step (50 fs) the X-ray emission and the magnetic field are sam-

pled with a Monte Carlo routine in different positions; the intensity of the emitted

radiation, the magnetic field and the position of the sampled points are saved.

− The X-ray emission is decomposed in the different polarizations according to the

magnetic field vector orientation.

− The polarization properties of the spectrometer and, if inserted, of the polarizer are

taken into account and the final intensity recorded on the film is calculated.

− The X-ray emission and the spectrum (due to the magnetic field influence1) of points

belonging to a single stripe (the bluish horizontal stripe, in Fig. 4.8) are averaged to

take into account the integration done by the spectrometer because of its 1D imaging

properties.

− The results coming for the single time steps are summed up to obtain the total, 1D

space resolved lineshape. Times beyond 1.5 ps are not important because the X-ray

emission has already ceased.

− The simulation takes into account the apparatus function and the real spatial resolu-

tion of the spectrometer so that the simulation and experimental results are directly

comparable.

Some comments about the works cited in the second point [Sandhu et al., 2002, 2006]:

this is the only time resolved measurement available concerning magnetic fields produced

by fs laser pulses. They shined Al bulk and Al(500 nm) deposited on glass to study the

behaviour of hot electrons. In this thesis, only the case of bulk Al was taken into account

because the target used in this thesis was also made of metal and the target thickness is

1Zeeman splitting and intensity of the resulting components were calculated by means of INTDPH2,

a computer program written by E. Stamboulchik from the Weizmann Institute, Israel. It solves the

Hamiltonian of the system under the influence of external electric and/or magnetic fields.
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Figure 4.9: Simulation of influence of a magnetic field on the Ti-Kα spectrum. More in the

text.

reasonably comparable2. However, in our case a magnetic field duration shorter than some

ps can be expected. Under this point of view the model would be a worst case: a shorter

magnetic field duration would mean higher peak magnetic field needed to reproduce the

measured line broadening.

2Target thickness: 25 µm. The time needed for energetic electrons to go through the Ti foil is ≈100 fs,

to be compared with the some hundred fs expected x-ray pulse duration We note that the magnetic field

duration in the case of a layer of Al + glass is much shorter: the hot electrons do not propagate easily

in glass. The electric fields they build, can stop them very quickly. This implies a shorter duration of

magnetic field. One can think of the target as Ti + vacuum.
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In Fig. 4.9 some features of the simulation are shown to give a clearer view of the

simulation’s behaviour. (A) shows the effect of a constant magnetic field of 18 kT (or

180 MG) on Ti-Kα1,2, i. e. the effect of a constant (in space and time) magnetic field on

delta-like spectral lines. In (B) only the spatial variation of the magnetic field, is taken

into account; the X-ray spatial emission is assumed to be Gaussian, 100 µm FWHM. The

integration in one dimension due to the 1D imaging (the blue stripe in Fig. 4.8) causes

the merging of the spikes into a continuous line: points in different positions experience

different magnetic fields and emit with different intensities and wavelengths. (C): like

(B) but the region considered is 40 µm far from maximum intensity. The magnetic field

is smaller in average, the lines are consequently narrower. In (D) the time dependence

of the magnetic field is taken into account (see inset in (A) Fig. 4.10); the position of

the maximum intensity is considered again: the lines are smoother because the magnetic

field assumes many more values in the different time steps. Let us assume now to repeat

the calculations, not only for two energies of the spectrum, but also for every point of a

spectrum acquired at an X-ray tube, weighting the calculated intensity with the measured

intensity. Then we obtain a complete spectrum in which the evolution of magnetic field and

X-ray emission, together with the energy and the spatial resolution of the spectrometer are

taken into account. If the magnetic field is zero, we get the X-ray tube spectrum. If there

is an influence of the magnetic field, we can calculate it: moreover the characteristics of the

spectrometer are reproduced and we can directly compare the laser-plasma spectrum (with

a certain measured spatial resolution) with the calculated one to get detailed information

about the spatial evolution of the magnetic field. This is what we see in Fig. 4.9 (E) and

(F). In (E) a constant (in time) magnetic field of 18 kT was assumed. In (F) the time

evolution is included and the lines are consequently narrower. The effects of considering

the region of maximum intensity or 40 µm far off are also shown.

The results for the Kα1 line are shown in Fig. 4.10 (A). The peak magnetic field is

found to be ∼18 kT3. The experimentally-observed line broadening (solid line) of 30% is

3As an error a value of ±5 kT can be given. This does not come from the comparison simulation

– measurements but from the model and assumptions used. The magnetic field time dependence, for
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well accounted for by the model (dashed line). A simulation with the very same magnetic

field time dependence is shown for Kα2 in (B). For both plots the spectra shown are all

nonpolarized. The ratio Kα1 / Kα2 for the X-ray tube spectrum and laser-plasma spectrum

are slightly different. For this reason the results of the simulations for the two lines are

shown separately with two different scales.

Simulations showed that the linewidth difference between polarized and nonpolarized

spectra amounts to about 10–14%,as shown in Fig 4.11. Due to the shot number needed

to obtain a sufficient density on the film, the background, caused by charged particles and

bremsstrahlung, is very high in the case of polarized spectra. The resulting low signal to

noise ratio is not enough to draw conclusions about the magnetic field from the comparison

polarized–nonpolarized spectra.

We tried to use the technique described in Sec. 2.4 and successfullly applied in [Deutsch

et al., 1995] in order to find out how much the satellites could have influenced the measured

line broadening. To get a quantitative estimation of the satellite influence we proceeded

in the following steps:

− The best values for the free parameters (position, intensity and common line width

of the multiplets calculated with a relativistic multiconfigurational Dirak–Fock code)

are calculated by fitting them with a high resolution spectrum acquired at an X-ray

tube.

− The procedure is repeated for laser-plasma spectra, allowing changes for the param-

eters only in the line width.

− If this had been enough to reproduce the broadened lines, one could had proved

that only line broadening coming from a magnetic field was present. If, otherwise,

other groups of satellites were needed, the possibility of a presence of satellites in the

broadened profile would have been remarkably high.

example, was measured with lower intensities. The X-ray pulse duration at these laser intensities has not

been measured and can only be roughly estimated.
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Figure 4.10: (A) Measured (solid line) and calculated (dashed line) Kα1 line for a 25 µm thick

target and a laser intensity of 5·1019 W/cm2. The magnetic field time dependence used in the

calculation is shown in the inset. The X-ray-tube-produced Kα1 line is also shown (dotted line).

(B) The same for the Kα2 line by using the same magnetic field. This plot has a different scale.

More in the text.

Unfortunately the complexity of the titanium atomic structure together with the relatively

low quality of the laser-plasma spectra did not allow any statement about the magnetic field

and satellite presence. However, the presence of satellites could be reasonably excluded, as

shown in Sec. 4.3, by taking into account symmetries of the line broadening and possible

line shifts.
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Figure 4.11: Expected changes of the line profile between polarized and nonpolarized spectra

for the same conditions of Fig. 4.10. To be compared with the first spectrum of Fig. 5.5 in

Chapter 5. There the noise level for the polarized spectrum is clearly to high to discern the

expected linewidth change.

By exploiting the number of photons recorded on the film (about 9000 per pulse) we

tried to estimate the magnetic field that can be expected. By taking into account the crystal

reflectivity (eq. 3.14) and the losses due to 3 passes through Al filters, it is reasonable to

assume 1010 photons created in the source. [Volkmer, 2004] calculated, by making use of

a Monte Carlo + PIC code, for a 25 µm thick Ti foil and a detector at 45 degrees that

one Kα photon is created every 0.008 electron moving with an energy of about 1 MeV

(see Chapter 5). Under the simplifying assumptions that all the electrons involved in the

creation of Kα radiation are going in the forward direction, belonging to the hot part of

the distribution and are not involved in the refluxing at the back side of the target one

finds that about 1012 electrons penetrate the target in a region with about 70 µm diameter

(the measured FWHM of the X-ray source). We are then dealing with a 1.6 MA current

and with an induced magnetic field of about 10 kT.
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Note, that an average magnetic field of about 10 kT would be necessary to explain the

measured line broadening (Fig. 4.10 takes into account a time dependence of the magnetic

field). The resualt of these two completely different ways to calculate the magnetic field

agree with each other.

4.5 Conclusions

For the first time it was possible to detect a laser-induced magnetic field inside the solid

target: this was done by means of X-ray spectroscopy. To my knowledge this is not possible

with any other method known at the moment.

We stress the fact that we observe line broadening when we compare two spectra ac-

quired with different laser intensities (Fig. 4.5) but also when we consider, in the very same

spectral image, two scans with different offsets (Fig. 4.6).

In conclusion we have shown that the Zeeman effect can be exploited to gain an insight

into the complex subject of the laser-matter interaction at relativistic regimes. The ability

to use X-rays to track the magnetic field, i.e. the electrons in their path through the

matter, from inside, offers new intriguing perspectives to understand electron dynamics at

such strong laser intensities.



Chapter 5

Spectropolarimetry of solid-density plasmas

generated by fs laser pulses

5.1 Introduction

Spectropolarimetry allows detailed measurements and analysis of radiation, as well as its

interaction with matter. Polarized spectra are sensitive to anisotropies (in the radiating and

transmitting media) such as directionality in the electron velocity distribution [Fujimoto

and Kazantsev, 1997]. Such polarization-dependent measurements have been employed in

studies of high temperature laser-produced plasma lines [Kieffer et al., 1992, 1993] in high

resolution X-ray spectroscopy of trapped highly charged ions [Shlyaptseva et al., 1997;

Beiersdorfer et al., 1999] and in an X-pinch [Shlyaptseva et al., 2003].

Kα emission in a target, produced by electrons accelerated in a dense, thin plasma layer

at the target surface by laser pulses and then propagating in the cold target, can be used to

monitor the propagation of electrons in matter [Pisani et al., 2000]. Spectropolarimetry of

the Kα emission, allows the study of the behavior of electrons inside the target. Compared

with other techniques, this is a clear advantage. For example, an electron spectrometer

measures the energy of electrons after they exit the target. In between they traverse huge

electric fields, of the order of TV/m [Romagnani et al., 2005], created by the space charge

separation. Thus, the electron spectrum may be altered considerably. Alternatively, a

layered target can be used, in conjunction with an imaging system, to monitor the Kα

emission from the different layers [Feurer et al., 1997; Wharton et al., 1998]. This method

also has drawbacks: the cross-section for the K-shell ionization by electron impact is not
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a monotonic function of the energy. For example, for titanium it has a maximum at

20 – 30 keV, then a fall-off, and again a rise at MeV energies. In looking at the emitted

intensity, it is not possible to determine whether it was generated by the high-energy

electrons, going in the forward direction, or by electrons with much lower energy (thermal

electrons or return current electrons).

5.2 Experimental setup

The experimental setup is given in Fig. 5.1 [Zamponi et al., 2007]. Titanium foils 25, 5, and

2 µm thick were used as target. Behind the target an electron spectrometer was assembled

as an additional diagnostic. Alternatively an image plate stack could be employed to

monitor the total amount of electrons, their energy and directionality.

80°

27°

I=5*10 W/cm
19 2

Target:

Ti foils - 2, 5, 25 µm

Bent crystal, GaAs 400

Angle = 76.5°

Polarizer, Si 220

Angle = 45°
e spectrometer

-

Film

Film

Figure 5.1: Scheme of the experimental setup.

The X-ray spectrometer employed a GaAs (400) crystal toroidally bent to radii of

450 mm in the horizontal direction and 305.9 mm in the vertical direction. It had an
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energy resolution E/∆E ≈ 15000 and a spatial resolution in the vertical direction of

4 µm. A flat Si(220) crystal polarizer could be positioned in a non-dispersive orientation

downstream from the bent-crystal analyzer, to allow the acquisition of polarized spectra

[Uschmann et al., 1993]. The spectrum was recorded by means of Agfa Structurix X-ray

film, which was calibrated in intensity to allow a quantitative extraction of the data.

5.3 Space and polarization dependent spectra

0 2 4 6 8 10 12 14
100

1000

10000

100000

1000000

Detection
threshold

 

 

el
ec

tr
on

s 
/ M

eV
 / 

m
sr

electron energy / MeV

Figure 5.2: A typical electron spectrum.

In Fig. 5.2 we show an electron spectrum generated by focusing a 5 × 1019 W/cm2

intense laser pulse on a 2 µm-thick Ti foil. The electron temperature derived from the

data was about 1.4 MeV and the analysis of the image plate stacks gave a similar value.

The divergence derived for the stack data was ≈ 0.5 rad, with slightly better collimation

for the higher energy electrons.

Fig. 5.3 (B) shows typical recorded spectral images for the same laser and target pa-

rameters described above. The horizontal and the vertical directions correspond to the

energy and the spatial extent of the emission, respectively. Due to the 1D imaging the
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Figure 5.3: In (A) the target and the spectrometer geometry is described: the laser pulse

impinges on the target and the X-ray spectrometer, placed behind, makes an 1D image of the

source. The integration is accomplished along the line of sight, i. e. along the x-axis and in

the depth (in figure shown by the volume embraced by the blue stripe). In (B) typical spectral

images are shown. The upper one was acquired by using 250 laser pulses, with an intensity of

5 × 1019 W/cm2 on a 2 µm-thick Ti foil target; the polarizer was used. For the lower spectral

image the same parameters were used but the polarizer was absent and only 15 laser pulses were

needed. A vertical scan of the film at the Kα1 peak position is shown in (C).

spectra are integrated over the extension of the emission along the line of sight. The two

intensity peaks are the Kα1 and Kα2 lines, as indicated by the arrows. A lineout in the

vertical direction provides the dimension of the Kα source; in this case, a FWHM of about
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Figure 5.4: Comparison of polarized and nonpolarized spectra for different target thickness in

the region of maximum intensity. The lower spatial resolution in B) was required to increase the

signal to noise ratio.

60 µm on target is measured.

In Fig. 5.4 we show a comparison between polarized and nonpolarized spectra for differ-

ent target thicknesses. The nonpolarized spectra show an increasingly pronounced shoulder

on the “blue” side of both Kα1 and Kα2 as the target thickness is decreased, as has been

already noted in Ref. [Hansen et al., 2005]. For the polarized spectra the change is consider-

ably more pronounced than for the nonpolarized ones. For the 2-µm and 5-µm thicknesses

the blue side is so strongly enhanced that Kα2 becomes a small bump on the red side of

Kα1.
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Figure 5.5: The dependence of the measured Kα spectra on the displacement from the position

of the maximum intensity.

The variation of the amount of satellites for the different target thicknesses can be

explained as follows: the energy deposited by the laser pulse has to be distributed among

a certain amount of atoms in the case of a thick target; an electron temperature will result

and correspondingly an ionization degree. If the target is thin, the energy available for

every atom is higher, the temperature and the ionization degree will be higher; there will

be consequently an higher amount of satellites.

Figure 5.5 shows a dependence of both, polarized and nonpolarized spectra on the

displacement from the peak-emission position of 12, 24, and 36 µm, for a 2 µm-thick

target. The spatial resolution was 4 µm, and the laser intensity was 5×1019 W/cm2. It
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is seen that at the peak intensity there is a clear difference between the polarized and

nonpolarized spectra. At 24 µm from the maximum, the difference becomes smaller: the

blue wing of the polarized spectrum is significantly reduced towards the unpolarized wing.

At 36 µm from the maximum the two spectra nearly coincide within the experimental

error-bars.

In Fig. 5.6 the effects of a lower intensity irradiation are clearly to be seen. Here again

a 2 µm-thick target was employed. This figure should be compared with the first one of

the series in Fig. 5.5. The blue side of the polarized spectrum is much less pronounced,

indicating a much lower degree of polarization.

These results may provide insight into the electron motion within the target. The

beam-like feature of the electron velocity distribution, clearly visible in the stack analysis,

spreads out significantly only about 20 µm away from the laser focal spot; 40 µm away

from focus the electron distribution is nearly isotropic. We note that the target concerning

the spectra in Fig. 5.5 was only 2 µm thick and the laser focal spot 5 µm2. The region

over which the electron velocity distribution stays anisotropic is much larger than these

dimensions. It is possible that this is caused by the inhibition of electron propagation due

to electric fields [Bell et al., 1997]. The bending of electron trajectories due to magnetic

fields, as suggested by [Reich et al., 2003] may also have played a role.

At this point we want to stress that the steps to go from the comparison of a pair

plarized–nonpolarized spectra to a reliable expression for the electron velocity distribution

are very complex. In [Hakel et al., 2004] there is an example of the procedures needed to

extract information from spectropolarimetry measurements. The laser target interaction is

simulated by means of a hydrodynamical Lagrangian 1D code and a 1-1/2D particle-in-cell

code. The former is used to monitor the overall target behavior as it is heated by the

laser, including laser energy coupling and deposition, electron and ion heat conduction,

and hydrodynamic motion; the latter to model the electron kinetics of the production of

a beam of energetic electrons due to resonance absorption in the laser-plasma interaction.

The results are used to feed other codes to calculate the overall ionization balance, and

magnetic sub-level populations. Finally the information are put together to obtain, time
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Figure 5.6: Comparison of polarized and nonpolarized spectra for lower intensity.

resolved, the values that can be measured with spectroscopic method, Iσ and Iπ.

It is also worth to mention that the works that can be found in the literature are

always concerning lines coming from a hot plasma (H-like, He-line). These calculations

are relatively simpler than those involved to evaluate the scattering matrix for an almost

complete atom, as it is the case for this thesis: the Ti atoms are three to five-fold ionized.

5.4 Conclusions

We measured spectra of the Kα emission from Ti foil targets irradiated by femtosecond

laser pulses. A strong polarization dependence of the X-ray spectra was observed.

The polarized spectrum evolution as a function of the distance from the peak of the

emitted intensity was determined with a 4-µm spatial resolution.

The results present a clear indication of strongly anisotropic processes inside the laser-

irradiated targets. Spectropolarimetry is thus a sensitive tool, e.g., in the studies of electron

transport properties under such extreme conditions of relativistic plasmas at solid density.



Chapter 6

Energy resolved 2D imaging of an X-ray

source at relativistic intensities

6.1 Introduction

The interaction of femtosecond laser pulses with solid target materials generates ’hot’ elec-

trons which, penetrating into the cold target, produce K-shell ionization and consequently

X-ray emission in the keV energy-range. Even if a lot of efforts have been invested in

the field, there are still many unclear aspects, as already noted in the introduction (see

Sec. 2.1.3), e. g. the role of magnetic and electric fields and laser intensity on the source

dimension. The behaviour of the electrons under these extreme conditions is also not well

understood. This experiment was meant to help to comprehend and, if possible, to explain

the sometimes contradictory results found in the literature.

6.2 Experimental Setup

The electrons, accelerated up to relativistic energy in the thin layer plasma at the interface

laser-target, penetrate into the target. Along their path they ionize the K-shell of the target

atoms, recombination takes place with consequent emission of Kα radiation. We exploited

this connection Kα photon – electron to be able to track the path of the electrons through

the target: a layered target was used in the experiment, so that different Kα photons could

be ascribed to different positions in the target. For this purpose we used two pin-holes

coupled with two X-ray CCDs put at the back and at the front side of the target.
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Figure 6.1: Experimental setup.

In the experiment, sketched in Fig. 6.1, the JeTi Ti:Sapphire laser pulses with 600 mJ

on target in 70 fs, were tightly focused by means of an off-axis parabolic mirror to about

5 µm2 to reach intensities up to 5×1019 W/cm2. The target was either a Ti foil with 5 or

25 µm thickness or a layered target (Cr+Ni+Fe). Two 5 µm diameter pin-holes coupled

with two well characterized deep-depletion back-illuminated charge-coupled device cameras

[Zamponi et al., 2005] were looking to the front and the back side of the target at an angle

of 45o. The spatial resolution of the imaging system was about 5 µm on target with a

magnification M=11. The path between source and camera was shielded by a hollow lead

cylinder containing NdFeB small magnets, to deflect electrons coming from the source. A

careful filtering of the X-ray signal, obtained by using a variable number of 50 µm thick

mylar sheets, allowed the CCD cameras to work in single photon regime, i. e. the number of

detected photon was much smaller than the number of pixels. Since the amount of created

charge on the camera chip is proportional to the photon energy, we could use the CCD
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as a non-dispersive spectrometer. Imaging was made possible, virtually, in every energy

window between 3–4 keV up to 12 keV, limited only by the energy resolution (about 180 eV

for the CCD cooled down to -70o C) and the amount of photons available. In this way,

a comparison for X-ray images recorded with the same laser pulses in different spectral

windows could be made for the first time.

Software written in house remedied for X-ray photons splitted into more pixels (see for

instance [Zamponi et al., 2005; Labate et al., 2002]). Care was taken to avoid the presence

of visible light on the CCDs. A stack electron spectrometer [Galimberti et al., 2005] could

alternatively be put behind the target to monitor electron temperature and divergence.

6.3 Titanium foils: Results

A first run employed Ti foils as a target. In Fig. 6.2 we show sample images of the X-ray

source acquired in consecutive shots. The dimension of the images is 120 µm × 120 µm.

The 45 degrees observation angle was not compensated: even if for 5 µm target foils this

would be an immediate task, for 25 µm thick target foils this would be not straightforward.

In this case the dimension of the source is comparable with the target thickness and it is

impossible to say where photons are coming from.

In this case no filters were used, i. e. the images are not energy resolved. We note that

the spot size increases by increasing the laser intensity (from 11.4 µm to 13.3 µm). The

B–C and D–E series are concerning the very same shots acquired from the front and the

back camera, respectively. The images A6 to E6 were obtained by summing up about 100

single images. To avoid possible effects due to target surface irregularities, the center of

mass of a square 50 × 50 pixel around the expected position of the source was calculated.

Possible shifts were compensated and then the images were summed up.

Naively, from the comparison between D and E series, one would have expected to see

the same features when looking from the front and the back side on to a 5 µm thick Ti foil,

since the attenuation length for Ti Kα photons in Ti is 20.3 µm. On the contrary there

are surprising differences. The intensity for the back camera is about a factor 3 lower (the
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Figure 6.2: Series of consecutive single shots (from 1 to 5 for A to E). For each column a different

scale was used. The dimension of the images is 120 µm × 120 µm. The target thickness in µm,

the camera position, the intensity on target in W/cm2 and the value of the maximum (see color

bar on the right hand side) are reported on the upper side. Note that images B1–C1 to B5–C5

and D1–E1 to D5–E5 are the very same shots as seen from the two cameras. Images A6, B6, C6,

D6, E6: sum of about 110 images with the above described characteristics. The FWHMs of the

vertical lineouts, are reported on the images of the 6–series. Note that vertical lineouts can avoid

possible influences of the target thickness (A6 and B6 comes from a 25 µm thick target, to be

compared with the 5 µm spatial resolution and the attenuation length λT i=20.3 µm for Ti-Kα;

λT i is the path needed to reduce the intensity by a factor 1/e) and the geometry (the observation

angle of 45o).

images have different scales) and the source is broader.

The explanation for this can be found by looking at the spectra recorded by the CCDs.

In Fig. 6.3 spectra of the radiation recorded in the neighbour regions of the maximum
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Figure 6.3: Comparison of spectra measured by taking into account pixels in a squared region

around the region of maximum emission. About 110 single-shot images were analyzed. Solid line:

20×20 pixel region, front CCD, intensity ≈ 5×1019 W/cm2, 5 µm thick Ti foil. Dashed line:

same conditions but a 40×40 pixel region was used. A small peak at 4.5 keV is visible: Ti-Kα

photons come mainly from more peripheral regions. Dotted line: same as for solid line but as

seen from the back camera. A clear Ti-Kα peak is visible together with the Ti K-edge at about

5 keV. Bremsstrahlung is clearly reduced.

intensity are shown. Kα radiation can be seen clearly only from the back camera or in

regions relatively distant from maximum. Bremsstrahlung radiation is the dominant source

for the front camera. A possible role of directional bremsstrahlung (see [Sentoku et al.,

1998; Sheng et al., 2000]) cannot be excluded: in fact the two cameras are set at 45o

symmetrical with respect to the target surface. The laser angle of incidence of 75o can

permit the front camera to see much more bremsstrahlung than the back camera.
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Figure 6.4: 2D images of the Kα sources of Cr, Ni and Fe together with bremsstrahlung

emissions in two different ranges as seen by the two CCDs. In the images belonging to the

“emitted” column the absorption of the Kα radiation, through target layers, filters etc., was

taken into account. The maximum of the color scale is reported in each case. The dimension of

each image is 180 × 180
√

2µm2.

6.4 Layered Target: Results

We also used a layered target, composed by 1.2 µm Cr + 10.9 µm Ni + 10 µm Fe1,

with laser pulses impinging on the Cr side. To be able to work in single photon regime

attenuation filters (12 sheets of 50 µm thick mylar) were put between the front camera

and the source. No filtering was needed for the back camera. Due to the energy resolution

of about 200 eV (for CCD cooled down to -70o C), and the low number of photons in the

source region, by adding many single shot images (1600 for Fig. 6.4) an energy resolved

2D imaging of the X-ray source at relativistic intensity was possible.

1The Fe layer contained also about 10–15% Ni and Cr.
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Figure 6.5: Horizontal lineout of the Kα sources as recorded by the front and back CCDs,

together with a fit performed with two Gauss functions. We show also the FWHMs of the two

fitting functions and their position (x0). The label “1” refers to the narrower curve. Note that the

values of the FWHM does not consider possible effects coming from the geometry (angle of sight:

45o) or target thickness. For the sake of clarity, data concerning the bremsstrahlung images were

not shown but are reported, in concise form, in Table 6.1.

In Fig. 6.4 the results of the X-ray source image reconstruction are reported. In the

column “recorded” the images are shown as they were acquired by the CCDs; in the

column “emitted” corrections for the absorption through filters and the different target

layers were applied. The upper part of the panel shows the X-ray sources acquired in

an energy window around a Kα line (±230 eV). In the lower panel we concentrated to

regions of the spectrum where no spectral lines are present: those images are concerning

only bremsstrahlung photons. To increase the number of collected photons a range much
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broader that the CCD energy resolution was chosen. The energies involved are directly

lower than the Cr-Kα and higher than Ni-Kα. Higher energies would have meant lower

resolution because of the 2.5 µm thick Pt pin-hole and lower energies would have been too

strongly absorbed by the filters.

We traced horizontal lineouts of the reconstructed images (shown in Fig. 6.5 together

with fits made with two Gauss functions) to be able to resolve the different positions of

the source: since the observation angle is 45o, different positions on the CCD correspond

to different positions, i. e. depths, on the target. We made connections between fitted

curves and origin of the sources by observing the FWHM and the positions (the x0’s). The

basic idea is that one fitting Gaussian should be related with one kind of emission (either

bremsstrahlung or Kα) from a specific layer. Two Gaussians were needed to well reproduce

the emission features.

From Fig. 6.6 one can get a clearer overview in the X-ray emission structure. There,

a series of sources is shown (the coloured ellipses) together with their dimensions, their

origin (referring to Fig. 6.5) and the position on the CCD (which is directly related to the

depth in the target).

Some words about the numbers given to indicate the position, they are the positions in

pixel directly read from the CCD. A layer 1 µm thick (Cr is 1.2 µm), seen from 45 degrees,

considering a magnification factor M=11 and the pixel dimension, about 26 µm, appears

0.3 pixel thick (10 µm ≈ 3 pixel)2

As an example, let us consider the emission on top. It is labeled as “Cr, Fe Front”: it

means that, looking this emission in Fig. 6.5 (FWHM ≈ 14 µm), can be found in the Cr

and in the Fe source, as observed by the front CCD. We can reliably state that they come

from the top of the target by observing their position: 250.4 ±0.2 and 250.0 ±0.2 pixel.

The values for the positions of the other sources are all smaller, i. e. deeper in the target.

In the same way we note that the Fe source recorded by the front CCD (Fig. 6.4) is an

artifact: its position (250.0 ±0.2 and 248.9 ±0.5 pixel read from Fig. 6.5; the Fe emission

2The sub-pixel resolution can be achieved by considering the Gaussian distribution used to fit the X-ray

source. The errors bars are calculated by the fitting routine.
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Figure 6.6: Overview of Fig. 6.5 with possible geometrical and physical explanation. The ellipses

under the laser focal positions are the different sources at different positions on the CCD, i. e.

depths. In the columns on left hand side the FWHM, the lineout (the kind of source; BS means

bremsstrahlung) they come from and the position on the front CCD (as obtained by fitting the

horizontal lineout) are given: they are at the same height of the sources they are referring to. In

blue, right column, the same for the positions on the back CCD.

should be deeper) suggests that it consists of bremsstrahlung emission, with 6.4 keV energy,

coming from the Cr and Ni layer (see later on). Support for this explanation comes from

Fig. 6.7; the spectra seen by the two CCDs are plotted. The front CCD spectrum has no

Fe-Kα peak.

There are interesting features in the X-ray emission to be mentioned. The source on

the target surface (laser side, orange ellipse) is the smallest, ≈14 µm, and is seen only from

the front CCD, in two different energy ranges (lineout A and C in Fig. 6.5): in both cases
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Figure 6.7: Spectra acquired by the CCDs working in single photon regime corrected for the

filter used and the CCD quantum efficiency. Note the absence of Fe-Kα on the front CCD. As

already explained the Fe source seen by the first CCD was an artifact: now we see the absence

of the line. In the inset, not corrected, a larger portion of the spectrum. The peaks at ≈ 25 keV

are due to Ag present in the CCD circuitry.

the FWHM is similar (16 ±3 µm and 12 ±2 µm) and the positions are also corresponding

(250.4 ±0.2 and 250.0 ±0.2 pixel). From the extremely small dimensions of the source,

from the fact that its position is the closest to the surface, and that its emission is not seen

from the back target (as already seen in Sec. 6.3), we think that this is bremsstrahlung,

caused by energetic electrons close to the surface3. A bremsstrahlung source (4-5 keV) is

seen in any case in the higher regions of the target (labeled with “BS 4-5 Front & Back”)

even if with larger FWHM.

Another interesting feature is the relatively large emission region at the back side of the

target (gray ellipse). It is seen only from the back CCD (lineout D, E and F in Fig. 6.5).

In all the three cases FWHM and position coincide. It should be caused by the colossal

electric fields created by the space charge [Romagnani et al., 2005] at the back side of the

3We emphasize the fact that a Kα photon cannot be distinguished by a bremsstrahlung photon having

the same energy
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CCD Energy Position FWHM

(keV) (pixel) (µm)

Front 4–5 250.0 ± 0.2 21.8 ± 1.0

Front 9–11 249.5 ± 0.1 19.5 ± 0.8

Back (*) 4–5 740.7 ± 0.6 54 ± 3

Back (*) 4–5 744.7 ± 0.2 24 ± 2

Back 10–11 741.9 ± 0.3 30 ± 2

Table 6.1: Values of the peak position and FWHM for the different bremsstrahlung images as

obtained from a fit with one (two for (*) case) Gauss function.

target: electrons are pulled back by such fields, not necessarily in the same point where

they escaped the target (hence the broader emission) and create Kα radiation. We remind

that the Fe layer contained also about 15% of Ni and Cr. We come now to what we

believe to be the “normal” Kα radiation (green ellipses): electrons, with energies ranging

from tens of keV up to tens of MeV, in their path through the target ionize the K-shell,

recombination takes place and Kα photons are emitted. The main characteristic of this

emission is that it was recorded in all the three layers. It was seen by both cameras and,

with very good reproducibility, has the same FWHM of about 26 µm.

An unusually large emission (front CCD, purple ellipse) is seen between the Kα emis-

sions in Cr and Ni layer4. Because of its position, it is believed to be caused by mag-

netic fields induced by the resistivity change at the interface Cr-Ni, through the term

jfast × ∇η which bent the original electron trajectories in the target [Bell et al., 1998;

Fuchs et al., 2003; Evans, 2006]. The idea is that electrons propagating in the target feel

the resistivity change and, if they are not going exactly perpendicular to the interface,

they build very intense magnetic fields. These fields, in turn influence the electron trajec-

tories. Bremsstrahlung emission is believed to be created. We emphasize that the emission

4If we assume that the Cr Kα emission takes place at about 249.5 (green ellipse), the purple ellipse is

half pixel lower ≈ 1 µm. This should be approximately the interface region between Cr and Ni.
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recorded by the CCD should also have been bremsstrahlung because, in addition to Ni-Kα

also photons with Fe-Kα energy are recorded; but in that region there is no Fe.
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Figure 6.8: Halo of Cr-Kα as seen from the front CCD. The dimension is 600 µm × 900 µm

(already corrected for the 45 degrees observation angle). A radial lineout is also presented.

There is a similar emission, probably at the Ni-Fe interface, seen by the back camera

(pixel 741.9 ± 0.3). It’s reasonable to assume that we are dealing with a source caused by

a jfast ×∇η magnetic field. The source dimension is 5 µm smaller but, while in the other

case we had a good conductor – bad conductor transition, here the situation is opposite.

In Fig. 6.8 we show a weak ring-like halo surrounding the Cr-Kα source. It is seen

only by the front CCD and only with this energy: it could be the same halo observed in

[Reich et al., 2003; Burgess et al., 1985; Luther-Davies et al., 1987]. It comes from the

upper target layer and it could be caused by the presence of magnetic fields which bend

the electron trajectories to regions hundreds µm away from the focal spot.

6.5 Conclusion

− For the first time an energy resolved 2D imaging of an X-ray source at relativistic

intensities was done.



6.5. Conclusion 80

− By considering the FWHM of the green ellipses, and taking the error bars into account

a maximal divergence of 0.15 rad can be obtained. The electron stack spectrometer

gave a value of 0.7 rad. A plausible explanation for this is that the presence of space

charge with electric fields of the order of TV/m at the back side of the target could

have strongly influenced the electron beam features.

− We find an about 60 µm (×
√

2) diameter halo at the back of the target, we attribute

this to reflux effects of the space charge fields. A much weaker and broader ring

(some hundreds of µm) was found at the front side.

− We could monitor the bremsstrahlung emission. It comes mainly from the top layer

and from interface regions.

− We see a broad (30–35 µm ×
√

2) bremsstrahlung emission at the two interfaces, with

both cameras. We believe to have seen for the first time directly the influence of the

jfast ×∇η term of the magnetic field on the electron motion in the target [Bell et al.,

1998]. This term, originating from a change in resistivity, can give rise to tens of kT

magnetic fields and be able to bend electron trajectories in the target. This results

in a bremsstrahlung emission caused by the bending. Note that this source is clearly

larger than the “normal” Kα source.5.

5Is it possible that in other experiments, e. g. [Wharton et al., 1998; Stephens et al., 2004], based on

buried fluor materials, this term could have negatively influenced the results, as already anticipated by

[Bell et al., 1998]?
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Discussion

We put here some idea together, taken from the different chapters. The aim is to mix

the knowledge from one experiment to elucidate not perfectly understood sides of another

experiment.

1. In Fig. 5.5 we reported a comparison polarized – nonpolarized spectra for different

distances (offsets) from the maximum intensity. Even if we were dealing with a 2 µm

thick Ti foil target, we had that the comparison polarized–nonpolarized spectra gave

a hint at an anisotropic electron velocity distribution for distances of tens of µm. A

possible interpretation of this can come again from the halo in the target back side.

It is commonly believed to be caused by the space charge separation created by the

electrons: there electric fields of 1012 V/m are generated and are responsible for the

proton acceleration, for example. The idea is now that the positively charged target

pulls the electrons back: this happens in a larger region than the original electron

path (hence the halo is larger than the “normal” Kα emission) and they acquire

enough energy to create Kα radiation. The spectropolarimetry sees a beam-like

electron distribution, but the electrons are traveling now in the opposite direction.

Support for this could come from time resolved measurements.

2. The stack electron spectrometer measured a total amount of electrons of about 1010

(for the 25 µm thick Ti foils). This is approximately two orders of magnitude lower

than needed to explain a 10 kT magnetic field. The electron transport inhibition

played here a major role: no other explanation can be taken into account if we

consider that we had 1010 photons from the source (see Sec. 4.4).
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3. The stack electron spectrometer gave for the experiment in Chapter 6 measured a

divergence of about 0.7 rad. If the assumption that the green ellipses in Fig. 6.6

are correctly representing the path of the fast electrons in the target, then we must

conclude that the stack spectrometer has suffered a strong influence from the TV/m

electric fields at the back side of the target. Even assuming a slightly divergent beam,

∼ 0.1 rad considering the error bars, the features recorded by the stack spectrometer

are only weakly connected with the characteristics of the electron beam inside the

target.

4. As already mentioned, there are return currents that can greatly influence the physics

of the electron transport in the cold matter but they are not recognizable. The

electrons belonging to them, can have energies of ∼ keV, i. e. they can create

Kα radiation but there is no chance to identify them in a non-ambiguous way, to

distinguish them from the more energetic, forward currents.

5. Eq. 2.6 states that, for our experimental conditions, the fast current amounts to

∼ 200 MA. Our simple estimation in Chapter 4 gave 1.6 MA as a result. As calculated

in [Sentoku et al., 2002], the fast–return current compensation is always almost

perfect; the difference of two orders of magnitude found here could be seen as an

“almost perfect” compensation and accounts for, at least partially, the measured

magnetic field. An additional hint for this, is given by the fact that the exponent

in the simulated radial dependence of the magnetic field (we remind ∝ 1/rγ) was

smaller than 1. If return currents had played a major role in the measured magnetic

field, it should have been γ ≫ 1 (for perfect compensation γ = ∞ and B 6= 0 only

for the portion of space where the currents flow).



Chapter 8

Summary

In this thesis the behaviour of electrons in solid density targets in a wide energy range

(4 keV. . . 14 MeV) as a result of laser-plasma interactions at relativistic intensities was

investigated. Ultra-intense ultra-short laser pulses were tightly focused up to intensities

of 5·1019 W/cm2 on a target and the X-ray emission was observed by means of a high-

resolution spectrometer (E/∆E ≈ 15000) with 1D imaging capabilities coupled with a

polarizer, in one case, or of an energy resolving 2D X-ray imaging system, in the other

case.

Ti-Kα lines were monitored and a clear intensity dependent symmetrical line broadening

was observed. Calculations performed at the Weizmann Institute (Israel), could exclude

an influence of Stark and Doppler effect. Careful analysis of the data, observation of

symmetries of the broadening and the absence of a significant line shift could rule out

also the presence of satellites in the line shape leaving only magnetic fields to account

for the observed changes. Thus, we could observe for the first time in laboratory the

Zeeman effect in the X-ray regime caused by the extremely strong magnetic fields created

in the laser-plasma interaction and by the electron propagation in the “cold” target. We

stress the fact that the line broadening is observed by comparing two spectra acquired

with different laser intensities but also by considering, in the very same spectral image,

two scans (spectra) with different distances from the region of maximum intensity. The

averaged measured magnetic field amounts to about 10 kT; simulations gave an estimate

for the peak magnetic field: 18±5 kT. Moreover, for the first time it was possible to detect

magnetic field in the solid density plasma; to my knowledge this is not possible with any
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other method known at the moment.

In the second part of this thesis, the use of an X-ray polarizer coupled with the high-

resolution X-ray spectometer, allowed the study of the polarization properties of Ti-Kα

line satellites. A strong polarization dependence of the satellites was observed. Further,

the polarized spectrum evolution as a function of the distance from the peak of the laser

intensity was determined. If the influence of electric and magnetic field are neglected,

the polarization dependence is strictly connected with the beam-like characteristics of the

electrons propagating in the target; hence these results could demonstrate the presence

of strongly anisotropic processes inside the laser-irradiated targets and this technique can

be successfully employed to study the electron transport properties under such extreme

conditions.

Finally, energy resolved 2D images of a laser-plasma produced X-ray source, for the

first time, were obtained. Impressive differences in intensity and source dimension between

the front and the back side of the target, even for very thin foils, were found. The use

a three layer target together with the possibility to observe the same source at different

energies with 5 µm spatial resolution, allowed quantitative statements about the source

features.

− Different types of emission could be recognized, at different depths with different

dimensions, between 14 and more 65 µm.

− The target geometry together with the high spatial resolution suggested a possible

structure for the many X-ray emissions.

− We believe to have observed, for the first time, the interfacial emission induced by the

magnetic field created by the term jfast×∇η, due to a change in the resistivity. These

giant fields by bending the electron trajectories, induce bremsstrahlung emission.

− A maximal divergence of 0.15 rad can be obtained for the electron beam in the target.

The electron stack spectrometer gave a value of 0.7 rad. A plausible explanation for

this is that the presence of space charge with electric fields of the order of TV/m at
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the back side of the target could have strongly influenced the electron beam features.

− A about 90 µm diameter halo at the back of the target was measured, we attribute

this to reflux effects of the space charge fields. A much weaker and broader ring

(some hundreds of m) was found at the front side.
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Appendix A

Characterization of the CCD

A.1 Introduction

In recent years the use of CCDs as detector for X-rays has been increasing [Gruner et al., 2002].

The constraint to have high QE together with high spatial resolution also in the range of 5-10

keV forced the development of detectors with new features [Strüder, 2000; Janesick, 2001]. After

the advent of “Back-Illuminated” (BI) CCDs, since few years Deep Depletion (DD) CCDs are

commercially available [Bootsma et al., 2000]. DD means that the sensitive region has been made

thicker to increase the probability of an interaction between the impinging radiation and the

detector [Holland et al., 2003; Groom, 2000; Groom et al., 2000; Stover et al., 1997]. Another

stringent requirement that new generations of CCDs must fulfill is the capability of single photon

detection: this means that every single detected photon must leave a clear track on CCD signal

[Livet et al., 2000]. This is crucial for applications in Time Resolved X-ray Diffraction (TRXD)

context [Rischel et al., 1997; Rousse et al., 2001a].

A.2 The Quantum Efficiency

The used device was a back-illuminated deep depletion ANDOR 420DX-BD-DD CCD. The chip

consists of 256 times 1024 squared pixels of 26 µm × 26 µm for a total available area of 6.7 mm

times 26.6 mm.

The QE was tested with the setup shown in Fig.A.1 [Hashimodotani et al., 1998; Poletto et al.,

1999]: the Bremsstrahlung radiation created in a tungsten X-ray tube, was sent on to the target

(titanium, copper, iron, silver and tin were used). K shell fluorescence radiation was produced.
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Figure A.1: Experimental setup for the measurement of the quantum efficiency.

The CCD and the AMP-TEK diode (a cooled silicon diode with known QE 1) were put at the

same distance from the target. In order to cool the CCD without having ice condensation on

the chip, the CCD was put in a small vacuum chamber (pressure ∼ 10−5 mbar). The CCD was

cooled down to -40 oC. We used a readout time of 16 µs corresponding to a conversion factor

of 7 e− per channel. The readout noise for this setting is 6 e−. To screen the chip from visible

radiation 2 sheets of Al-coated Mylar were used. A Kapton window of 50 µm was the interface

between vacuum and air.

The shutter, put in the primary beam, was open for 1 s. The CCD exposure time was 3 s.

For Ti, Cu and Fe we set the X-ray tube to 20 kV and 10 mA. In order to excite K-lines for silver

and tin we worked with 40 kV. To take into account the reduced QE of the CCD in that regime

of energies we used a current of 30 mA.

The same parameters of the X-ray tube were also used for the AMP-TEK detector; in this

case the shutter was open for about 60 s.

The CCD was working in “single photon regime” [Labate et al., 2002; Livet et al., 2000], i.e.

the number of photons recorded by the CCD, N , was much smaller than the number of pixels,

Np. In our case N/Np ≃ 0.01. Exploiting the fact that a photon interacting with the CCD

1www.amptek.com
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Figure A.2: Spectra of Cu, Fe, Ag and Sn are here shown. The thicker line is a 20 times

magnification. Note that different scales were used.

creates a charge proportional to its energy, one can plot in a histogram excited channels vs. how

often such channels appear. What is obtained is a spectrum of the impinging radiation; the CCD

is working as a non-dispersive spectrometer. The reconstruction of split events was done by a

program developed to recognize simple patterns. If a pattern was matching the distribution of

the signal on different pixels then the values from these pixels were summed up to reconstruct

the original signal.

All the images were background subtracted, in order to remove CCD imperfections and hot

spots.

Fig. A.2 shows four of such spectra, for copper, iron, silver and tin, respectively. Each

histogram is calculated by applying the program to three different images and then summing up



A.2. The Quantum Efficiency 98

Table A.1: Percentage of events consisting of 1, 2, 3 or 4 pixels. The results of titanium, iron

and copper are comparable and therefore grouped together. The same was done for silver and

tin. More in the text.

pixels Ti, Fe & Cu Ag & Sn

involved [%] [%]

1 57 47

2 36 41

3 4 6

4 3 6

the results. The thicker line in the Cu spectrum is a magnification to show the Si-Kα peak and

the escape peak (see [Strüder, 2000]).

Peaks at two times the photon energy are the “two photon events”: in one pixel or in a small

region two photons impinged; the program recognized them as a single event and the signal was

summed up to create a second fictitious peak.

Further, the program was used to plot histograms, that were made with reconstructed events

concerning only 1, 2, 3 and 4 pixels. Events with a higher amount of involved pixels are very

unfrequent. We report in fig. A.3 such histograms for titanium.

In table A.1 we report how often the pixel splitting appears. To do this, we divide the number

of Kα (and Kβ for Ti) events for 1, 2, 3 and 4 pixels by the total amount of Kα (and Kβ for Ti)

events. No noticeable differences between titanium, copper, iron were found. For these energies

57 % of the detected photons is recorded in one single pixel.

In order to measure the QE of the CCD for the different energies we compared the number of

photons detected by the CCD and the AMP-TEK. For AMP-TEK an absolute calibration curve

is available.

In fig. A.4a the results are reported. All the possible sources of attenuation were taken into

account. The number of photons on the detector per unit area and time was determined. The

estimated errors were 10% for titanium, iron and copper, due to fluctuations of the number of

detected photons, and 20% for silver and tin because of the reduced sensitivity of both instruments
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Figure A.3: The histograms for the four different kind of events are reported. Note the different

scale on the four graphs. The thicker line is a 20 times magnification.

at such energies. For titanium and iron the AMP-TEK detector couldn’t resolve Kα and Kβ: the

efficiency is then concerning photons belonging to both lines. The QE for W-Lα and W-Lβ is

also reported. We found here much higher fluctuations in the number of photons detected by the

AMP-TEK. The absorption of 40 µm of silicon as a function of energy (solid line) is plotted. This

is a measure of the CCD depletion region depth (and also of the CCD thickness: the CCD under

exam was a BI), i.e. the depth of the region where the charge produced by an X-ray photon can

be completely collected. The manufacturer gives an interval for such a value between 30 µm and

50 µm.

An excellent sensitivity for Ti-Kα is to be noticed. For Cu-Kα the QE is almost 50%.

In fig. A.4b we plot the incoming photon energy vs. the channel number together with a
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Figure A.4: In a) the measured QEs for the different energies under test are presented. We

plot also (solid line) the absorption of 40 µm Si as a function of energy. This is the depletion

region depth. In b) the channel value for very different photon energies is reported together with

a linear fit. In c) the fit residuals are displayed. Note the different scales for the last 2 graphs.

linear fit. In fig. A.4c the fit residuals are shown: deviations from linearity are in the order of

0.2%.

By taking into account both Ti and Cu Kα peaks, their “full width half maximum” (FWHM)

value was found: ∆EFWHM ∼ 340 eV. This is the energy resolution of the CCD at this temper-

ature.

From [Strüder, 2000], the theoretical energy resolution for a silicon detector for such energy

is 102 eV. The measured energy resolution is a factor 3 lower the theoretical value for a silicon

detector: the high thermal noise of this kind of system could explain the reduced performance.

The chip can anyway be cooled down to -70 oC.
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A.3 Spatial resolution

Figure A.5: Experimental setup used to test the spatial resolution of the CCD.

To test more carefully the spatial resolution of the CCD we performed an additional exper-

iment [Tsunemi et al., 1999; Karcher et al., 2004]. The aim was to measure the charge cloud

dimensions. As shown in Fig. A.5, we mounted the CCD on a translation stage, whose move-

ment, parallel to the chip plane, could be accurately monitored by means of a caliper with about

2 µm precision. The beam of an X-ray tube (Titanium target, 10 keV, 30 mA), collimated by

two, about 15 µm wide slits, was sent on the CCD. We acquired images for different positions

of the translation stage; steps were about 2-3 µm long. The beam dimension was smaller than

the pixel dimension. The idea is simple: as the slit width can be considered small compared to

the pixel dimension, we can assume that the broadening effect (responsible for the more-pixel

events) is exclusively due to charge diffusion in silicon (see later on). To measure the amount of

broadening the chip was moved, until the beam was impinging in a region close to a pixel border.

At this position it was possible to observe the adjacent pixel collecting a part of the charge. We

had then a rough estimation of the cloud dimension. We moved farther until we acquired images

for a total path of 56 µm, that means more than two pixels.

A spatial Gaussian distribution was assumed for the charge cloud. The Gaussian distribution

had only one free parameter, σ (i.e. the dimension of the charge cloud). In fact the area and the

position were given by the channel value of the involved pixels and the position of the CCD read

on the caliper, respectively.
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Figure A.6: Results obtained with the setup used in fig. A.5. On the abscissa is the pixel

involved, on ordinate the measured intensity at the different positions of the CCD. The different

positions, indicated on the right hand side of each plot, have been translated for the sake of

clarity. The amount of photons involved for every plot is about 60.

By taking into account the apparatus function, we found σ = (3.4 ± 1.1) µm [Groom et al.,

1999; Prigozhin et al., 2003; Tsunemi et al., 2001; Hiraga et al., 2001; Torii et al., 1995]. It’s

interesting to compare σ with what was found in tab. A.1. To do this, we define that there is a

split event when more than 15% of the total generated charge lies in the neighbour pixel. Then

the measured σ means that 53 % of the total amount of events are single pixel events, in good

agreement with the measured value, 57%.

Photons with higher energies create more electron-hole pairs in a larger region. We performed

Monte Carlo simulations to know which is the contribution to the dimension of the electron-hole
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Figure A.7: The simulated path of 100 electrons having an energy of 4.5 keV in silicon. The

scale for the three axis is the same.

cloud coming from the photon energy.

In the simulation the photon energy was supposed to be given to a single electron, that is

uniformly slowed down in the matter, following [Joy, 1995], and that creates electron-hole pairs

along his path.

The number of electron-hole pairs vs. radius of the generated cloud was plotted in fig. A.8.

For titanium the radius is some hundreds of nm large, it means that the measured charge

cloud dimension was due only to the charge diffusion in silicon.

For tin the situation is clearly different. Here the final dimension is the sum of two contribu-

tions: the diffusion part (the σ previously measured) and the part caused by the longer path of

electrons in silicon. Using the quadrature sum we get σtotal=4.3 µm. Again we want to compare

the σtotal coming from the simulation with the amount of single pixel event found in tab. A.1:

here we find 45 %, to be compared to the 47 % previously measured.

In conclusion a calibration of a deep-depletion back-illuminated CCD used for TRXD purposes

was performed. For Ti-Kα an efficiency of about 90% and for Cu-Kα almost 50% was found. In

comparison, a similar CCD not deep depletion from the same manufacturer, was tested and gave
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Figure A.8: The radial distributions of the electron hole pairs cloud produced by one electron

having the energy of different Kα lines. The values are normalized to the highest value to allow

a direct comparison.

44% and 18% quantum efficiency for titanium and copper, respectively [Volkmer, 2004].

Especially in the case of titanium, almost every impinging photon is detected and a clear

track is left on the CCD.



Appendix B

Zusammenfassung

Im Rahmen dieser Arbeit wurde das Verhalten von Elektronen im Festkörpertarget im En-

ergiebereich 4 keV. . . 14 MeV als Folge von relativistischer Laser-Plasma Wechselwirkung er-

forscht. Ultrakurze, ultraintensive Laserpulse wurden auf Intensitäten von bis zu 5·1019 W/cm2

fokussiert. Mit Hilfe eines hochauflösenden Röntgenspektrometers (E/∆E ≈ 15000) sowie eines

energieauflösenden Röntgen-2D-Abbildungsystems wurde die Röntgenemission untersucht.

Ti-Kα Linien wurden beobachtet, und eine eindeutige intensitätsabhängige symmetrische Ver-

breiterung konnte gemessen werden. Im Weizmann Institut (Israel) durchgeführte Berechnungen

zeigen, dass es sich nicht um Stark- oder Doppler-Effekt handelt. Sorgfältige Datenanalyse,

Betrachtung von den Symmetrien der Linienverbreiterungen und die Tatsache, dass es keine Lin-

ienverschiebung gab, konnten auch den im Prinzip möglichen Einfluss von Satelliten ausschliessen.

Nur der Einfluss von Magnetfeldern kann die Größe der Linienverbreiterung erklären. Es wurde

also zum ersten Mal der Zeeman-Effekt im Labor im Röntgenbereich beobachtet. Verantwortlich

dafür sind die extrem hohen Magnetfelder, die bei der Laser-Plasma Wechselwirkung und bei

der Elektronenausbreitung im “kalten” Target entstehen. Es wird betont, dass die Linienver-

breiterung auf zwei unabhängige Art und Weisen sichtbar wird: Sowohl bei der Auswertung

zweier Spektren, die bei verschiedenen Laserintensitäten aufgenommen wurden als auch in ein

und demselben spektralen Bild, wenn zwei Scans (Spektren) verglichen werden, die verschiedene

Abstände vom Intensitätsmaximum haben. Mittlere Magnetfeldstärken von ≈ 104 T erklären

die gemessene Kα Linienverbreiterung. In Simulationen wird eine maximale Feldstärke von

(18±5)103 T abgeschätzt. Zum ersten Mal konnten laser-produzierte Magnetfelder in Plasmen mit

Festkörperdichte beobachtet werden. Nach heutigem Kenntnisstand ist die Röntgenspektroskopie

die einzige Methode, die solche Messungen erlaubt.

Im zweiten Teil dieser Dissertation wurde ein Röntgenpolarisator mit dem hochauflösenden
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Röntgenspektrometer gekoppelt, um die Polarisationseigenschaften der Ti-Kα Liniensatelliten

zu untersuchen. Eine starke Polarisationsabhängigkeit der Satelliten wurde festgestellt. Die

Evolution der polarisierten Spektren als Funktion des Abstandes vom Intensitätsmaximum wurde

bestimmt. Kann der Einfluss elektrischer und magnetischer Felder vernachlässigt werden, ist die

Polarisationsabhängigkeit eng verbunden mit einer strahlartigen Elektronenverteilung und weist

daher auf stark anisotrope Prozesse in dem laserbestrahlten Target hin. Die Spektralpolarimetrie

kann deshalb benutzt werden, um Elektronentransporteigenschaften unter extremen Bedingungen

zu studieren.

Im dritten Teil dieser Arbeit wurde ein energieauflösendes 2D abbildendes System verwendet,

um eine durch relativistische Laserintensitäten erzeugte Röntgenquelle zu untersuchen. Deutliche

Unterschiede in Intensität und Größe der Quelle zwischen Vorder- und Rückseite wurden (sogar

für sehr dünne Folien) gemessen. Die Benutzung von Schichttargets für die energieaufgelösten

Abbildungen mit hoher räumlicher Auflösung (5 µm) erlaubt, quantitative Aussagen über die

Quelleigenschaften zu treffen:

− In verschiedenen Targettiefen wurden verschiedene Quellen unterschiedlicher Größe (zwis-

chen 14 und mehr als 65 µm) identifiziert.

− Es deutet vieles darauf hin, dass erstmals die Grenzflächenemission beobachtet werden kon-

nte, die durch ein Magnetfeld erzeugt wird, das durch den Sprung im spezifischen Wider-

stand η an der Grenzfläche zweier Materialien entsteht (∂B
∂t = jfast × ∇η). Diese großen

Felder führen zu einer Ablenkung der Elektronen und damit zur Emission von Bremst-

strahlung.

− Die Röntgendiagnostik liefert eine maximale Divergenz des Elektronenstrahles im Target

von 0.15 rad, während ein Elektronenspektrometer einen Wert von 0.5 rad liefert. Diese

Diskrepanz kann durch große elektrische Felder(∼ TV/m) auf der Targetrückseite, die durch

Raumladungen induziert wurden, erklärt werden.

− Die Quelle auf der Targetrückseite ist von einem 90 µm großen Halo umgeben. Dieses wird

einem Rückflusseffekt durch die Raumladungsfelder zugeschrieben. Ein deutlich schwächerer

und breiterer Ring (einige hundert µm) tritt auch auf der Vorderseite auf.
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