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1. Introduction

It is well-known that an isolated real eigenvalue of definite type of a self-adjoint oprerator

A in a Krein space remain real under sufficiently small self-adjoint perturbations.

It is the aim of this paper to extend these results to points from the continuous

spectrum and for non-isolated eigenvalues. In order to do this we recall the definition

of different kind of spectra: The spectral points of positve and of negative type and

the spectral points of type π+ and of π−. A real point λ of the spectrum σ(A) is

called a spectral point of positive (negative) type, if for every normed approximative

eigensequence (xn) corresponding to λ all accumulation points of the sequence ([xn, xn])

are positive (resp. negative). These spectral points were introduced by P. Lancaster, A.

Markus and V. Matsaev in [19]. In [21] the existence of a local spectral function was

proved for intervals containing only spectral points of positive (negative) type or points

of the resolvent set ρ(A). Moreover it was shown that, if A is perturbed by a compact

selfadjoint operator, a spectral point of positive type of A becomes either an inner point

of the spectrum of the perturbed operator or it becomes an eigenvalue of type π+. A

point from the approximative point spectrum of A is of type π+ if the abovementioned

property of approximative eigensequences (xn) holds only for sequences (xn) belonging

to some linear manifold of finite codimension (see Definition 4 below). Every spectral

point of a selfadjoint operator in a Pontryagin space with finite index of negativity is of

type π+. For a detailed study of the properties of the spectrum of type π+ we refer to

[2].

In this paper we show how these notions can be used to decide whether a given

operator has real spectrum only. Moreover, as the main result of this paper, we show

that the spectrum of negative type and the spectrum of positive type of self-adjoint

operators in Krein spaces are stable under perturbations small in the gap metric.

Sign type spectrum is used in the classification of eigenvalues, e.g. [6, 7, 9, 12, 18, 22]

and it can be applied to PT -symmetric problems. We will give an example with a PT -

symmetric multiplication operator in Section 3. Moreover, it is used in the theory of

indefinite Sturm-Liouville operators, e.g. [3, 5, 10, 16], and in the mathematical system

theory, see e.g. [14, 20].

2. Sign type spectrum of self-adjoint operators in Krein spaces

2.1. Self-adjoint operators in Krein spaces

Let (H, [., .]) be a Krein space. We briefly recall that a complex linear space H with a

hermitian nondegenerate sesquilinear form [., .] is called a Krein space if there exists a

so called fundamental decomposition

H = H+ ⊕H− (1)

with subspaces H± being orthogonal to each other with respect to [., .] such that

(H±,±[., .]) are Hilbert spaces. In the following all topological notions are understood
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with respect to some Hilbert space norm ‖ . ‖ on H such that [., .] is ‖ . ‖-continuous.

Any two such norms are equivalent. An element x ∈ H is called positive (negative,

neutral, respectively) if [x, x] > 0 ([x, x] < 0, [x, x] = 0, respectively). For the basic

theory of Krein space and operators acting therein we refer to [8], [1] and, in the context

of PT symmetry, we refer to [22].

Let A be a closed operator in H. We define the extended spectrum σe(A) of A

by σe(A) := σ(A) if A is bounded and σe(A) := σ(A) ∪ {∞} if A is unbounded. The

resolvent set of A is denoted by ρ(A). The operator A is called Fredholm if the dimension

of the kernel of A and the codimension of the range of A are finite. The set

σess(A) := {λ ∈ C | A− λI is not Fredholm}
is called the essential spectrum of A. We say that λ ∈ C belongs to the approximate

point spectrum of A, denoted by σap(A), if there exists a sequence (xn) ⊂ dom(A) with

‖xn‖ = 1, n = 1, 2, . . . , such that

‖xn‖ = 1 and lim
n→∞

‖Axn − λxn‖ = 0

(see e.g. [11, 25]). Obviously, the continuous and the point spectrum of a closed operator

are subsets of the approximate point spectrum. Moreover, we have the following.

Remark 1 The boundary points of σ(A) in C belong to σap(A).

Let A be a self-adjoint operator in the Krein space (H, [., .]), i.e., A coincides with

its adjoint A+ with respect to the indefinite inner product [·, ·]. Then all real spectral

points of A belong to σap(A) (see e.g. Corollary VI.6.2 in [8]).

2.2. Spectral points of positive and negative type of A

The indefiniteness of the scalar product [., .] on H induces a natural classification

of isolated real eigenvalues: A real isolated eigenvalue λ0 of A is called of positive

(negative) type if all the corresponding eigenelements (i.e. all elements of all Jordan

chains corresponding to λ0) are positive (negative, respectively). Observe that there is

no Jordan chain of length greater than one which corresponds to a eigenvalue of A of

positive type (or of negative type). This classification of real isolated eigenvalues is used

frequently, we mention here only [6, 7, 9, 12, 18, 22].

There is a corresponding notion for points from the approximate point spectrum.

The following definition was given in [19] and [21] for bounded self-adjoint operators.

Definition 2 For a self-adjoint operator A in the Krein space (H, [., .]) a point λ0 ∈
σ(A) is called a spectral point of positive (negative) type of A if λ0 ∈ σap(A) and for

every sequence (xn) ⊂ dom(A) with ‖xn‖ = 1 and ‖(A − λ0I)xn‖ → 0 as n → ∞ we

have

lim inf
n→∞

[xn, xn] > 0 ( resp. lim sup
n→∞

[xn, xn] < 0).
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The point ∞ is said to be of positive (negative) type of A if A is unbounded and for

every sequence (xn) ⊂ dom(A) with limn→∞ ‖xn‖ = 0 and ‖Axn‖ = 1 we have

lim inf
n→∞

[Axn, Axn] > 0 ( resp. lim sup
n→∞

[Axn, Axn] < 0).

We denote the set of all points of σe(A) of positive (negative) type by σ++(A) (resp.

σ−−(A)).

The sets σ++(A) and σ−−(A) are contained in R. Indeed, for λ ∈ σ++(A)\{∞} and

(xn) as in the first part of Definition 2 we have −(Im λ)[xn, xn] = Im [(A−λ)xn, xn] → 0

for n → ∞ which implies Im λ = 0. Here R denotes the set R ∪ {∞} and C the set

C∪{∞}, each equipped with the usual topology. In the following proposition we collect

some properties. For a proof we refer to [2].

Proposition 3 Let λ0 be a point of σ++(A) (σ−−(A), respectively). Then there exists

an open neighbourhood U in C of λ0 such that the following holds.

(i) We have

U \ R ⊂ ρ(A),

this is, the non-real spectrum of A cannot accumulate to σ++(A) ∪ σ−−(A).

(ii) U ∩ σe(A) ∩ R ⊂ σ++(A) (resp. U ∩ σe(A) ∩ R ⊂ σ−−(A)).

(iii) There exists a number M > 0 such that

‖(A− λ)−1‖ ≤ M

|Im λ| for all λ ∈ U \ R.

2.3. Spectral points of type π+ and of type π− of A

In a similar way as above we define subsets σπ+(A) and σπ−(A) of σe(A) containing

σ++(A) and σ−−(A), respectively (cf. Definition 5 in [2]). They will play an important

role in the following.

Definition 4 For a self-adjoint operator A in H a point λ0 ∈ σ(A) is called a spectral

point of type π+ (type π−) of A if λ0 ∈ σap(A) and if there exists a linear submanifold

H0 ⊂ H with codimH0 < ∞ such that for every sequence (xn) ⊂ H0 ∩ dom(A) with

‖xn‖ = 1 and ‖(A− λ0I)xn‖ → 0 as n →∞ we have

lim inf
n→∞

[xn, xn] > 0 ( resp. lim sup
n→∞

[xn, xn] < 0).

The point ∞ is said to be of type π+ (type π−) of A if A is unbounded and if there

exists a linear submanifold H0 ⊂ H with codimH0 < ∞ such that for every sequence

(xn) ⊂ H0 ∩ dom(A) with limn→∞ ‖xn‖ = 0 and ‖Axn‖ = 1 we have

lim inf
n→∞

[Axn, Axn] > 0 ( resp. lim sup
n→∞

[Axn, Axn] < 0).

We denote the set of all points of σe(A) of type π+ (type π−) of A by σπ+(A) (resp.

σπ−(A)).
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Spectral point of type π+ and type π− of A have properties comparable to those

mentioned in Proposition 3. We will collect them in the following proposition (for a

proof see [2] and [4]).

Proposition 5 Let λ0 be a point of σπ+(A) (σπ−(A), respectively). Then there exists

an open neighbourhood U in C of λ0 such that the following holds.

(i) We have

U \ R ⊂ σp(A).

Moreover, if λ0 ∈ C is non-real then the operator A − λ0 has a closed range and

dim ker (A− λ0) < ∞.

(ii) U ∩ σap(A) ⊂ σπ+(A) (resp. U ∩ σap(A) ⊂ σπ−(A)).

(iii) If λ0 = ∞ then ∞ ∈ σ++(A). If ∞ ∈ σπ−(A) then ∞ ∈ σ−−(A).

(iv Assume, in addition, that λ0 ∈ R and that there is [a, b] ⊂ U , λ0 ∈ [a, b], such that

each point of [a, b] is an accumulation point of ρ(A). Then there exists an open

neighbourhood V in C of [a, b] such that V \ R ⊂ ρ(A) and either V ∩ σ(A) ∩ R ⊂
σ++(A) or there exists a finite number of points λ1, . . . , λn ∈ σπ+(A) ∩ σp(A) such

that

(V ∩ σ(A) ∩ R) \ {λ1, . . . , λn} ⊂ σ++(A).

Moreover, in this case there exist numbers m ≥ 1 and M > 0 such that

‖(A− λ)−1‖ ≤ M

|Im λ|m for all λ ∈ V \ R.

3. Statements of the results

3.1. Location of the spectrum

Recall that a Krein space (H, [., .]) is called a Pontryagin space if one of the spaces

H+,H− in (1) is finite dimensional. Moreover, we will call a Krein space (H, [., .]) an

anti Hilbert space if (H,−[., .]) is a Hilbert space.

It follows from Proposition 3 that the resolvent near a spectral point of positive

type of a self-adjoint operator in a Krein space grows like the resolvent of a self-adjoint

operator in a Hilbert space (up to a multiplicative constant). If, for some reason, the

spectrum of a self-adjoint operator in a Krein space consists entirely out of spectrum

of positive type, then the underlying Krein space turns out to be a Hilbert space, see

Theorem 6 below.

Theorem 6 Let A be a self-adjoint operator in (H, [., .]). Let A satisfy

σe(A) = σ++(A) (resp. σe(A) = σ−−(A)). (2)

Then (H, [., .]) is a Hilbert space (anti-Hilbert space, respectively).

If A satisfies instead of (2) the following condition

σe(A) = σ++(A) ∪ σ−−(A),

then A is similar to a self-adjoint operator in a Hilbert space.
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Observe, that in the case of an unbounded operator A condition (2) implies also

∞ ∈ σ++(A). There are comparable results for the spectrum of type π+.

Theorem 7 Let A be a self-adjoint operator in (H, [., .]) with ρ(A) 6= ∅ satisfying

σess(A) ⊂ R and σe(A) = σπ+(A) (resp. σe(A) = σπ−(A)). (3)

Then (H, [., .]) is a Pontryagin space and the space H− in the fundamental decomposition

(1) is of finite dimension. Moreover, the set σ(A) \ R consists of at most finitely many

eigenvalues with finite dimensional root subspaces, i.e.

σ(A) \ R ⊂ σp(A) \ σess(A)

If A with ρ(A) 6= ∅ satisfies instead of (3) the following condition

σess(A) ⊂ R and σe(A) = σπ+(A) ∪ σπ−(A). (4)

Then the non-real spectrum of A consists of at most finitely many points which belong

to σp(A) \ σess(A).

3.2. Stability properties of sign type spectrum under compact perturbations and under

perturbations small in gap

Let A be a self-adjoint operator in a Krein space (H, [., .]). We assume that A is

fundamentally reducible, that is, the operator A admits a matrix representation

A =

(
A+ 0

0 A−

)
(5)

with respect to a fundamental decomposition (1) of (H, [., .]) such that A+ and A− are

self-adjoint operators in the Hilbert spaces (H+, (., .)) and (H−,−(., .)), respectively. In

the case of a bounded A and a perturbed operator B of the form

B =

(
A+ C

−C∗ A−

)

with some bounded operator C acting from H− to H+, it was shown in [21] that

dist (λ, σ(A−) > ‖C‖ =⇒ λ ∈ ρ(B) ∪ σ++(B),

dist (λ, σ(A+) > ‖C‖ =⇒ λ ∈ ρ(B) ∪ σ−−(B).

Theorem 8 below can be viewed as a generalization of this result.

Recall that the gap between two subspaces M and N of a Hilbert space is defined

by

δ̂(M, N) := max{ sup
u∈M,‖u‖=1

dist (u,N), sup
v∈N,‖v‖=1

dist (v, M)}

(cf. [17]). If PM and PN denote the orthogonal projections on M and N , respectively,

it follows

δ̂(M, N) = ‖PM − PN‖.
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Theorem 8 Let A and B be self-adjoint operators in (H, [., .]). Let A be a

fundamentally reducible operator. If A+ and A− are given by the matrix representation

(5) and if there exists a real γ > 0 such that for λ ∈ R

δ̂(graph (A− λ), graph (B − λ)) < γ and γ2
(
1 + (dist (λ, σ(A−)))−2

)
<

1

4
,

then

λ ∈ ρ(B) ∪ σ++(B).

If there exists a real γ > 0 such that for λ ∈ R

δ̂(graph (A− λ), graph (B − λ)) < γ and γ2
(
1 + (dist (λ, σ(A+)))−2

)
<

1

4
,

then

λ ∈ ρ(B) ∪ σ−−(B).

Theorem 8 can be considered as a generalization of Corollary 3.4 in [23].

Finally, we mention a perturbation result for spectral points of type π+ (type π−)

which was already proved in [2].

Theorem 9 Let A and B be self-adjoint operators in the Krein space (H, [., .]). Assume

that ρ(A) ∩ ρ(B) 6= ∅ and that for some (and hence for all) µ ∈ ρ(A) ∩ ρ(B)

(A− µ)−1 − (B − µ)−1 is a compact operator. (6)

Then

(σπ+(A) ∪ ρ(A)) ∩ R = (σπ+(B) ∪ ρ(B)) ∩ R, (7)

(σπ−(A) ∪ ρ(A)) ∩ R = (σπ−(B) ∪ ρ(B)) ∩ R. (8)

Moreover, ∞ ∈ σ++(A) (∞ ∈ σ−−(A)) if and only if ∞ ∈ σ++(B) (resp. ∞ ∈ σ−−(B)).

We mention that a similar statement as in Theorem 9 for spectral points of positive or

negative type is in general not true.

3.3. Example

Denote by I the closed interval [−1, 1]. Suppose V and W are functions from L∞(I),

that is, V and W are essentially bounded. Moreover, we assume that V is real-valued

and even, that is

V (−x) = V (x) = V (x), x ∈ I,

and that W is PT -symmetric, that is

W (−x) = W (x), x ∈ I.

Let D be the set of all f ∈ L2(I) such that f and f ′ are absolutely continuous,

f(−1) = f(1) = 0 with f ′′ ∈ L2(I). In the Hilbert space L2(I), equipped with the

usual inner product

(f, g) =

∫

I

f(x)g(x)dx, f, g ∈ L2(I),
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we consider the operators A and B defined on D,

A := − d2

dx2
+ V and B := − d2

dx2
+ W, dom A = dom B = D.

It is easily seen that A is a self-adjoint operator in the Hilbert space (L2(I), (., .)).

In general the potential W is not real-valued and the operator B is not a self-adjoint

operator in the Hilbert space (L2(I), (., .)). Therefore, we consider the inner product

[f, g] =

∫

I

f(x)g(−x)dx, f, g ∈ L2(I).

Then (L2(I), [., .]) is a Krein space and W is a a self-adjoint operator in the Krein

space (L2(I), [., .]), see [22]. The operator A is also self-adjoint in the Krein space

(L2(I), [., .]) and A is fundamental reducible. If ‖V ‖L∞ < 3π2

8
, then the spectrum

consists of eigenvalues which are alternating between positive and negative type (see

Theorem 4.1 in [22]), that is

σ(A) = σ++(A) ∪ σ−−(A).

Moreover, we have ∞ /∈ σ++(A) ∪ σ−−(A).

Observe that

δ̂(graph (A− λ), graph (B − λ)) ≤ ‖V −W‖L∞ .

Now Theorem 8 implies the following.

Theorem 10 Let λ ∈ R. If

‖V −W‖2
L∞

(
1 + (dist (λ, σ−−(A)))−2

)
<

1

4
,

then

λ ∈ ρ(B) ∪ σ++(B).

If

‖V −W‖2
L∞

(
1 + (dist (λ, σ++(A)))−2

)
<

1

4
,

then

λ ∈ ρ(B) ∪ σ−−(B).

4. Proofs

In this section we will prove Theorems 6-8 from Section 3.
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4.1. Proof of Theorems 6 and 7

Let A be a self-adjoint operator in the Krein space (H, [., .]) with ρ(A) 6= ∅ satisfying

(4). The resolvent set of a self-adjoint operator in a Krein space is symmetric with

respect to the real axis (cf. [8]), hence there are points from ρ(A) in the upper and in

the lower half-plane. This and σess(A) ⊂ R imply that σ(A)\R consists only of isolated

eigenvalues with finite algebraic multiplicity (see §5.6 in [17]). In particular, each point

in R is an accumulation point of ρ(A) and Proposition 5 implies that the spectrum of

A cannot accumulate to a real point. Moreover, from (4) and Proposition 5 (iii) we

conclude ∞ ∈ σ++(A)∪ σ−−(A). Therefore the non-real spectrum of A is bounded and

the second part of Theorem 7 is proved. In order to show the first part of Theorem 7

we assume without loss of generality

σess(A) ⊂ R and σe(A) = σπ+(A). (9)

It remains to show that (H, [., .]) is a Pontryagin space. Relation (9), Theorem 23 in

[2] and Theorem 4.7 in [15] imply that A is a definitizable operator. Recall that a self-

adjoint operator A in a Krein space (H, [., .]) is called definitizable if ρ(A) 6= ∅ and if

there exists a rational function p 6= 0 having poles only in ρ(A) such that [p(A)x, x] ≥ 0

for all x ∈ H. Then the spectrum of A is real or its non-real part consists of a finite

number of points. Moreover, A has a spectral function E(.) defined on the ring generated

by all connected subsets of R whose endpoints do not belong to some finite set which is

contained in {t ∈ R : p(t) = 0} ∪ {∞} (see [24]). Now Corollary 28 and Theorem 26 of

[2] show that Theorem 7 holds true.

Theorem 6 is now a consequence of Theorem 7: Assume without loss of generality

σe(A) = σ++(A).

Then Theorem 7 implies that (H, [., .]) is a Pontryagin space and the space H− in the

fundamental decomposition (1) is of finite dimension. If H− 6= 0, then there exists at

least one non-positive eigenvector of A (see §12 in [13]) for some eigenvalue λ0. This

implies λ0 /∈ σ++(A), hence H− = 0 and (H, [., .]) is a Hilbert space. The second part

of Theorem 6 follows from Proposition 25 and Corollary 28 in [2].

4.2. Proof of Theorem 8

We will only prove the first part of Theorem 8. The second one follows then by a similar

reasoning. Let λ be a real number in σ(B) and assume that there exists a γ > 0 such

that

δ̂(graph (A− λ), graph (B − λ)) < γ and γ2
(
1 + (dist (λ, σ(A−)))−2

)
<

1

4
.

Then λ ∈ σap(B). Let (x+
n + x−n ) ∈ dom B, n = 1, 2 . . ., x+

n ∈ H+, x−n ∈ H−, be a

sequence with

‖x+
n ‖2 + ‖x−n ‖2 = 1 and lim

n→∞
‖(B − λ)(x+

n + x−n )‖ = 0 (10)
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We have

dist

((
x+

n + x−n
(B − λ)(x+

n + x−n )

)
, graph (A− λ)

)
< γ

∥∥∥∥∥

(
x+

n + x−n
(B − λ)(x+

n + x−n )

)∥∥∥∥∥ .

Hence, there exists y+
n ∈ dom A+, y−n ∈ dom A− with

‖x+
n − y+

n ‖2 + ‖x−n − y−n ‖2 + ‖(B − λ)(x+
n + x−n )− (A+ − λ)y+

n − (A− − λ)y−n ‖2

is less than

γ2

∥∥∥∥∥

(
x+

n + x−n
(B − λ)(x+

n + x−n )

)∥∥∥∥∥

2

.

In view of (10), we have

lim sup
n→∞

‖x−n − y−n ‖2 + ‖A−y−n − λy−n ‖2 < γ2. (11)

With (11), (10) and ‖A−y−n − λy−n ‖ ≥ dist (λ, σ(A−))‖y−n ‖ we obtain

lim inf
n→∞

[
x+

n + x−n , x+
n + x−n

]
=

= lim inf
n→∞

‖x+
n ‖2 − ‖x−n ‖2 = lim inf

n→∞
1− 2‖x−n ‖2

= 1− 2 lim sup
n→∞

‖x−n − y−n + y−n ‖2

≥ 1− 2 lim sup
n→∞

(
2‖x−n − y−n ‖2 + 2‖y−n ‖2

)

≥ 1− 4 lim sup
n→∞

(
1 + dist (λ, σ(A−))−2

) (‖x−n − y−n ‖2 + ‖A−y−n − λy−n ‖2
)

≥ 1− 4γ2
(
1 + dist (λ, σ(A−))−2

)
> 0

and Theorem 8 is proved.
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