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The problem of asymptotic tracking of reference signals is considered in the context of
m-input, m-output linear systems ðA,B,CÞ with the following structural properties: (i) CB is
sign definite (but not necessarily symmetric), (ii) the zero dynamics are exponentially stable.

The class Yrefð�Þ of reference signals is the set of all possible solutions of a fixed, stable,
linear, homogeneous differential equation (with associated characteristic polynomial �). The
first control objective is asymptotic tracking, by the system output y¼Cx, of any reference
signal r 2 Yrefð�Þ. The second objective is guaranteed error e ¼ y� r transient performance:

e should evolve within a prescribed performance funnel F’ (determined by a function ’).
Both objectives are achieved simultaneously by an internal model in series with a proportional
time-varying error feedback t � uðtÞ ¼ ��ðkðtÞÞeðtÞ, where � is a smooth function with the

properties lim sup�!1 �ð�Þ ¼ þ1 and lim inf�!�1 �ð�Þ ¼ �1, and k(t) is generated via
a nonlinear function of the product keðtÞk’ðtÞ. The feedback structure essentially exploits an
intrinsic high-gain property of the system by ensuring that, if ðt, eðtÞÞ approaches the funnel

boundary, then the gain attains values sufficiently large to preclude boundary contact.

1. Introduction

In the precursor (Ilchmann et al. 2002) to the present
paper, the concept of a performance funnel was
introduced in a context of tracking control for nonlinear
systems. The basic problem addressed there was that
of approximate tracking (with prescribed transient
behaviour), by the system output y, of any absolutely
continuous and bounded function r with essentially
bounded derivative: the terminology ‘‘approximate
tracking’’ means that, for any prescribed �>0, a
control structure can be determined which ensures that
the tracking error e ¼ y� r is ultimately bounded by �
(that is, keðtÞk � � for all t sufficiently large); the termi-
nology ‘‘with prescribed transient behaviour’’ means
that, for some suitable prescribed function ’, the error
function is required to satisfy keðtÞk � 1=’ðtÞ for
all t > 0. The choice of ’ determines the transient

behaviour; moreover, by imposing the property
lim inft!1 ’ðtÞ � 1=� > 0, the approximate tracking
objective is assured. For example, with ’: t �
minft=T, 1g=�, the approximate tracking objective is
achieved in prescribed time T>0. Figure 1 encapsulates
the approach: the function ’ determines the performance
funnel F’, which may be identified with the graph of the
set-valued map t � fvj ’ðtÞkvk < 1g. Simply stated,
the control objective is to maintain the evolution of
the tracking error in the funnel F’. For reference signals
of the generality considered in (Ilchmann et al. 2002)
(namely, signals of classW1,1), the function ’ is required
to be bounded and hence exact asymptotic tracking
cannot be achieved. The purpose of the present note is
to demonstrate that the boundedness condition on ’
may be relaxed if one restricts the class of reference
signals to coincide with the set of solutions of a fixed,
stable, linear, homogeneous differential equation and
confines attention to minimum-phase linear systems
with sign-definite high-frequency gain. Under these
restrictions, exact asymptotic tracking is achieved by*Corresponding author. Email: achim.ilchmann@tu-ilmenau.de



adopting an internal model (capable of replicating the
reference signals) in conjunction with a performance
funnel with radius asymptotic to zero and an output
feedback structure akin to that in (Ilchmann et al. 2002
x 6.3). In an adaptive control context, the use of internal
models in problems of asymptotic tracking for linear
systems is well established (see, for example,
Mårtensson 1986, Miller and Davison 1987, Helmke
et al. 1990, Ilchmann 1993). We emphasize that the
approach adopted in the present paper is non-adaptive:
the control structure involves an internal model and
a proportional feedback term, with gain determined by
a measure of distance between the instantaneous track-
ing error and the funnel boundary; the latter feature
is in contrast with the adaptive schemes where controller
gains are dynamically generated via differential or
integral equations.

2. Class of systems

We consider the class of m-input (uðtÞ 2 R
m), m-output

( yðtÞ 2 R
m) linear systems of the form

_xðtÞ ¼ AxðtÞ þ BuðtÞ, xð0Þ ¼ x0 2 R
n

yðtÞ ¼ CxðtÞ,

�
ð2:1Þ

where the triple ðA,B,CÞ 2 R
n�n

� R
n�m

�R
m�n has the

following properties:

P1: strict relative degree one with sign-definite
high-frequency gain, that is,

hx,CBxi ¼ 0 () x ¼ 0,

P2: minimum-phase, that is,

det
sI� A B
C 0

� �
6¼ 0 for all s 2 C with Re s � 0:

We remark that, in P1, it is not assumed that CB is
symmetric and, under assumption P1, the minimum-
phase property P2 is equivalent to the assumption that

the system (2.1) has exponentially stable zero dynamics
(this equivalence can also be deduced from Lemma 3.4).

2.1 Control objectives, class of reference
signals and performance funnel

Let M denote the set of square real matrices having
no eigenvalue with positive real part and such that
every eigenvalue on the imaginary axis is semi-simple.
The reference signals to be tracked are all functions
r : Rþ ! R

m the components ri of which are solutions
of the scalar differential equation �ðd=dtÞrið�Þ ¼ 0,
where � 2 R½s� is the characteristic polynomial of some
M 2 M (and so every such function r is bounded). We
denote this reference signal class by

Yref ð�Þ :¼ r 2 C1ðRþ,R
m
Þ

����� �
d

dt

� �
rð�Þ ¼ 0,

�ðsÞ ¼ det½sI�M�, M 2 M

8<:
9=;:

For example, the admissible reference signals are
functions t � rðtÞ 2 R

m, the components of which are
linear combinations of constants and sinusoids.

The first control objective is asymptotic (output)
tracking of any reference signal r 2 Yrefð�Þ. By this
we mean a (dynamic) output feedback strategy which
incorporates an internal model (capable of replicating
the reference signal) and which ensures that
limt!1

�
yðtÞ� rðtÞ

�
¼ 0 whilst maintaining boundedness

of all the other signals. The second control objective is
the prescribed transient behaviour of the error signal
e ¼ y� r. We capture both the objectives in the concept
of a performance funnel

F’ :¼
	
ðt, eÞ 2 Rþ �R

m
��’ðtÞ kek < 1



ð2:2Þ

associated with a function ’ (the reciprocal of which
determines the funnel boundary) with the following
properties

ðaÞ ’ : Rþ ! Rþ is absolutely continuous and

non-decreasing;

ðbÞ ’ðtÞ ¼ 0() t ¼ 0;

there exists c > 1 such that :

ðcÞ ’ðtÞ � c ’ðt=2Þ for all t 2 Rþ;

ðdÞ _’ðtÞ � c ½1þ ’ðtÞ� for almost all t 2 Rþ:

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
ð2:3Þ

For example, t � ’ðtÞ ¼ ta, a� 1, satisfies (2.3) with
c ¼ 2a. We record the following observation for later use.

Error evolution

Ball of radius 1/j (t )

t

j

Figure 1. Performance funnel F’
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Proposition 2.1: Let ’ be such that (2.3) holds. For
every p � ln c= ln 2,

0 < ’ðtÞ � ’ð1Þ ½1þ ctp� for all t > 0: ð2:4Þ

Proof: Since ’ is non-decreasing with property (b), we
have 0 < ’ðtÞ � ’ð1Þ for all t 2 ð0, 1�. Now, let t 2 ð1,1Þ

be arbitrary and choose n 2 N such that 2n�1 � t � 2n

or, equivalently, 1=2 � t=2n � 1. Then, by (b), (c) and
the non-decreasing property,

0 < ’ðtÞ � c ’ðt=2Þ � � � � � cn ’ðt=2nÞ � cn ’ð1Þ

¼ c ’ð1Þ 2ðn�1Þ ln c= ln 2 � c ’ð1Þ t p:

The claim (2.4) follows. œ

Proposition 2.1 implies, in particular, that exponentially
contracting funnels are excluded.

3. The control

Let ðA,B,CÞ 2 R
n�n

�R
n�m

� R
m�n be such that P1

and P2 hold, and define

sðCBÞ :¼
þ1, if hx,CBxi > 0 8x 6¼ 0

�1, if hx,CBxi < 0 8x 6¼ 0:

�
ð3:5Þ

We will have occasions to consider the two possible
cases: s(CB) known or unknown a priori (the latter
case is largely of academic interest).

3.1 Internal model

A body of work by Francis and Wonham in the 1970s
(see, for example, Francis and Wonham 1975,
Wonham 1976) led to the so-called Internal Model
Principle, succinctly summarized in the context of
linear systems in (Wonham 1979, p. 210) as ‘‘every
good regulator must incorporate a model of the outside
world’’. Recent extensions of this ‘‘principle’’ to a non-
linear setting are contained in (Sontag 2003).
Let � 2 R½s� be the characteristic polynomial of some

M 2 M (and so every r 2 Yrefð�Þ is bounded). Let
� 2 R½s� be a monic Hurwitz polynomial (i.e. all zeros
of � lie in the open left-half complex plane) and such
that � and � are the coprime of degree p:¼ deg� ¼

deg �. Then

lim
s!1

�ðsÞ=�ðsÞ ¼ 1: ð3:6Þ

The internal model is now defined to be the m-input,
m-output linear system with transfer function

GmðsÞ :¼
�ðsÞ

�ðsÞ
Im: ð3:7Þ

Let ðÂ, b̂, ĉ, 1Þ 2 R
p�p

� R
p�1

� R
1�p

� R be a minimal
state space realization of �ðsÞ=�ðsÞ. Then a minimal
state space realization of the internal model is
given by

_�ðtÞ ¼ eA �ðtÞ þ eBwðtÞ, �ð0Þ ¼ �0

uðtÞ ¼ eC �ðtÞ þ Im wðtÞ

)
ð3:8Þ

with

eA¼ diagfÂ, . . . , Âg 2R
mp�mp,eB¼ diagfb̂, . . . , b̂g 2R

mp�m,eC¼ diagfĉ, . . . , ĉg 2R
m�mp, �0 2R

mp:

We refer to ðeA, eB, eC, ImÞ as the internal model
(although, strictly speaking, the use of ‘‘the’’ here is
incorrect as any quadruple in the similarity orbit of
ðeA, eB, eC, ImÞ also qualifies for the title ‘‘internal
model’’).

3.2 Feedback

Let ’ be such that (2.3) holds, and let F’ be the
associated performance funnel given by (2.2). Let
�: R ! R be any C1 function such that, for some
strictly increasing, unbounded sequence ðkjÞ in ð1,1Þ,

�ðkjÞ sðCBÞ ! 1 as j ! 1: ð3:9Þ

If s(CB) is known a priori, then �: k � k sðCBÞ suffices.
If s(CB) is unknown a priori, then any C1 function �
with the following properties suffices:

lim sup
k!1

�ðkÞ ¼ þ1 and lim inf
k!1

�ðkÞ ¼ �1: ð3:10Þ

A simple example of a function satisfying (3.10) is
�: k � k cos k. In the latter case of unknown s(CB),
the role of the function � is similar to the concept of
a ‘‘Nussbaum’’ function in adaptive control. Note,
however, that the requisite properties (3.10) are less
restrictive than: (a) the ‘‘Nussbaum property’’

lim sup
k!1

1

k

ðk
0

�ð�Þ d� ¼ 1, lim inf
k!1

1

k

ðk
0

�ð�Þ d� ¼ �1,
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as required in (Ye 1999), for example, or (b) the stronger
‘‘scaling invariant’’ Nussbaum property, as required
in (Jiang et al. 2004), for example.
The control strategy is given by

wðtÞ ¼ ��ðkðtÞÞ ½ yðtÞ � rðtÞ�,

kðtÞ ¼
1

1�
�
’ðtÞkyðtÞ � rðtÞk

�2
9>=>;, ð3:11Þ

in series with the internal model (3.8) (see figure 2).

3.3 Closed-loop system

For r 2 Yref, let Dr � Rþ � R
nþmp denote the connected,

relatively open set

Dr :¼ ðt, �Þ 2 Rþ � R
nþmp

j ’ðtÞk �C� � rðtÞk < 1
	 


:

ð3:12Þ

The conjunction of (2.1), (3.8) and (3.11) yields the
closed-loop initial-value problem (on Dr)

_�xðtÞ ¼ fðt, �xðtÞÞ, �x0 ¼
x0

�0

� �
, ð3:13Þ

where f : Dr ! R
nþmp is given by

fðt, �Þ :¼ �A� � � ½1� ð’ðtÞk �C� � rðtÞkÞ2��1
� �

�B½ �C� � rðtÞ�,

ð3:14Þ

with

�A :¼
A BeC
0 eA

" #
, �B :¼

BeB
� �

, �C :¼ C, 0
� 


, ð3:15Þ

�xðtÞ :¼
xðtÞ

�ðtÞ

� �
:

By a solution of (3.13)–(3.15), we mean a continuously
differentiable function �x: ½0,!Þ ! R

nþmp, with 0 < ! �

1 and ðt, �xðtÞÞ 2 Dr for all t 2 ½0,!Þ, which satisfies
(3.13) and �x is said to be the unique maximal solution

if the following holds

~x : ½0, ~!Þ ! R
nþmp is a solution of (3.13)�ð3:15Þ

¼) ~! � ! and �xj½0, ~!Þ ¼ ~x:

Observe that f is locally Lipschitz on Dr. The following
is now a consequence of the standard theory of ordinary
differential equations (see, for example (Walter 1998,
Theorem IV, p. 108)).

Proposition 3.1: Let r 2 Yref be arbitrary. For each
ðx0, �0Þ 2 R

n
� R

mp, the initial value problem
(3.13)–(3.15) has unique maximal solution �x: ½0,!Þ !
R

nþmp. Moreover, if ! < 1, then, for every compact
C � Dr, there exists t 2 ½0,!Þ such that ðt, �xðtÞÞ 62 C.

3.4 Main result

Theorem 3.2: Let ðA,B,CÞ 2 R
n�n

�R
n�m

� R
m�n

have strict relative degree one, sign-definite high-
frequency gain, and be minimum-phase. Let ’ satisfy
(2.3), let F’ be the performance funnel (2.2) associated
with ’, and let r 2 Yrefð�Þ. Then the feedback (3.11)
applied in series with the internal model (3.8) yields the
initial-value problem (3.13)–(3.15) which, for every
ðx0, �0Þ 2 R

n
� R

mp, has unique maximal solution
�x: Rþ ! R

nþmp. Moreover,

(i) the functions �x, y ¼ �C �x, and

k : t � 1� ð’ðtÞkyðtÞ � rðtÞkÞ2
� 
�1

,

u : t � � �ðkðtÞÞ½yðtÞ � rðtÞ�

are bounded;
(ii) there exists " 2 ð0, 1Þ such that, for all t� 0,

’ðtÞ kyðtÞ � rðtÞk � 1� ";
(iii) if ’ is unbounded, then ð yðtÞ � rðtÞ, uðtÞÞ ! ð0, 0Þ as

t!1.

Remark 3.3: In the specific case of positive-definite CB
and zero reference signal r � 0, it is shown in (Ilchmann
et al. 2002) that the assertions of Theorem 3.2 hold
for the feedback u ¼ �ke without recourse to an internal
model.

The proof of Theorem 3.2 invokes three lemmas; we
briefly digress to present these.

3.5 Three technical lemmas

The first lemma is well known and is a re-statement
of (Ilchmann 1993, Lemma 2.1.3).

Lemma 3.4: Assume that ðA,B,CÞ 2 R
n�n

� R
n�m

�

R
m�n has strict relative degree one. Let V 2 R

n�ðn�mÞ be

Internal model
(A, B, C, Im)

System
(A, B, C )

u−n(k)e w yer ref

Tracking controller

+

−

Figure 2. Tracking control with internal model.
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such that imV ¼ kerC (of dimension n�m) and write

N :¼ ðVTV Þ
�1VT

�
In � BðCBÞ�1C



:

Then

L ¼
C

N

� �

is invertible, with inverse L�1 ¼
�
BðCBÞ�1,V



and

LAL�1 ¼
A1 A2

A3 A4

� �
, LB ¼

CB
0

� �
, CL�1 ¼ Im 0½ �

where A1 2 R
m�m (with A2, A3, A4 of conforming

formats). Furthermore, ðA,B,CÞ is minimum phase if,
and only if, A4 is Hurwitz.

Lemma 3.5: Let ðA,B,CÞ 2 R
n�n

�R
n�m

� R
m�n be

minimum phase with strict relative degree one and
sign-definite high-frequency gain. If ðeA, eB, eC, ImÞ is a
minimal realization of the internal model as specified in
subsection 3.1, then ð �A, �B, �CÞ, as defined in (3.15), is
minimum phase with strict relative degree one and sign-
definite high-frequency gain.

Proof: Clearly, �C �B ¼ CB and so the system ð �A, �B, �CÞ
has strict relative degree one and sign-definite high-
frequency gain.
It remains to show that

det
sI� �A �B

�C 0

� �
6¼ 0 for all s 2 C with Re s � 0:

Since ðÂ, b̂Þ is a controllable pair, the Hautus condition
implies that ½sI� Â, b̂� has full rank p for all s 2 C,
whence

rank sI� eA eB� 

¼ mp for all s 2 C:

By the minimum-phase property of ðA,B,CÞ, we have

rank
sI�A B
C 0

� �
¼ nþm for all s 2 C with ReðsÞ � 0,

and so

rank
sI� �A �B

�C 0

" #
¼ rank

sI� A �B eC B

0 sI� eA eB
C 0 0

264
375

¼ nþmpþm

for all s 2 C with Re s � 0, and the claim follows. œ

A proof of the following lemma can be found in (Miller
and Davison 1991), see also (Ilchmann 1993,
Lemma 5.1.2).

Lemma 3.6: Let ðA,B,CÞ 2 R
n�n

� R
n�m

� R
m�n be

minimum phase with strict relative degree one and

sign-definite high-frequency gain. If ðeA, eB, eCÞ is a minimal
realization of the internal model as specified in
subsection 3.1, then, for any r 2 Yrefð�Þ, there exists
�0 2 R

nþmp such that

_�ðtÞ ¼ �A �ðtÞ, �ð0Þ ¼ �0

rðtÞ ¼ �C �ðtÞ,

)
ð3:16Þ

where �A and �C are given by (3.15).

3.6 Proof of Theorem 3.2

By Proposition 3.1, (3.13)–(3.15) has unique maximal
solution �x: ½0,!Þ ! R

nþmp, with 0 < ! � 1.
By Lemma 3.6, there exists �0 2 R

nþmp such that
rð�Þ ¼ �C�ð�Þ, where �: t �

�
exp �At

�
�0. Writing

xeðtÞ ¼ �xðtÞ � �ðtÞ, eðtÞ ¼ yðtÞ � rðtÞ,

together with (3.13)–(3.15) gives,

_xeðtÞ ¼ �AxeðtÞ � �ðkðtÞÞ �BeðtÞ, xeð0Þ ¼ x0e :¼ �x0 � �0,

eðtÞ ¼ �CxeðtÞ,

kðtÞ ¼ 1�
�
’ðtÞkeðtÞk

�2h i�1

9>>=>>;
8t 2 ½0,!Þ: ð3:17Þ

By Lemma 3.5, ð �A, �B, �CÞ is minimum phase with strict
relative degree one, and so, by Lemma 3.4, there exists
N such that

L :¼
�C

N

" #

is invertible and the transformation

�C

N

" #
xeðtÞ ¼

eðtÞ

zðtÞ

� �

converts (3.17) into the equivalent form

_eðtÞ ¼ A1 eðtÞ þ A2 zðtÞ � �ðkðtÞÞCB eðtÞ

_zðtÞ ¼ A3 eðtÞ þ A4 zðtÞ

kðtÞ ¼ 1�
�
’ðtÞkeðtÞk

�2h i�1

9>>=>>; 8t 2 ½0,!Þ,

ð3:18Þ
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where A4 2 R
ðnþmðp�1ÞÞ�ðnþmðp�1ÞÞ is Hurwitz and we have

invoked the equality �C �B ¼ CB. Since ðt, �xðtÞÞ 2 Dr for
all t 2 ½0,!Þ, we have

’ðtÞkeðtÞk < 1 8t 2 ½0,!Þ ð3:19Þ

and so e is bounded, which, together with the Hurwitz
property of A4 and the second of equations (3.18),
implies that z is bounded. It immediately follows that
xe is bounded, whence boundedness of �x ¼ xe þ �.
Writing e0 ¼ �Cx0e , z

0 ¼ Nx0e and defining

q0ðtÞ :¼A2 expðA4tÞz
0,

q1ðtÞ :¼A1eðtÞþA2

ðt
0

expðA4ðt� sÞÞA3eðsÞds, 8t 2 ½0,!Þ,

ð3:20Þ

then the first two equations in (3.18) are equivalent to

_eðtÞ ¼ q0ðtÞ þ q1ðtÞ � �ðkðtÞÞCB eðtÞ 8t 2 ½0,!Þ: ð3:21Þ

Since A4 is Hurwitz, there exist c1,	 > 0 such that

kq0ðtÞk ¼ kA2 expðA4tÞz
0k � c1 e

�	t 8t 2 ½0,!Þ ð3:22Þ

and

kq1ðtÞk � kA1kkeðtÞk þ c1

ðt=2
0

þ

ðt
t=2

� �
e�	ðt�sÞkeðsÞkds

� kA1kkeðtÞk þ
c1
	

�
e�	 t=2 max

s2½0, t=2�
keðsÞk

þ max
s2½t=2, t�

keðsÞk

�
8t 2 ½0,!Þ: ð3:23Þ

By boundedness of e, together with (3.19) and invoking
property (2.3d) of ’, we may infer the existence of c2>0
such that

’ðtÞ _’ðtÞ keðtÞk2 � c½1þ ’ðtÞ� ’ðtÞ keðtÞk2

� c ½1þ 2’2ðtÞ� keðtÞk2 � c ½keðtÞk2 þ 2�

� c2 for almost all t 2 ½0,!Þ: ð3:24Þ

Since CB is sign definite, there exists c3 > 0 such that

1

2
c3 kek

2 � jhe,CB eij 8 e 2 R
m: ð3:25Þ

Now we are in a position to prove the boundedness of k.
Define ~� : R ! R as follows

~�ðkÞ :¼ �ðkÞ sðCBÞ:

By property (3.9) of �, there exists a strictly increasing
unbounded sequence ðkjÞ in ð1,1Þ such that
~�ðkjÞ ! 1 as j!1. Passing to a subsequence if neces-
sary, we may assume that the sequence ð ~�ðkjÞÞ is in ð0,1Þ

and is strictly increasing. Seeking a contradiction,
suppose that k is unbounded. For each j 2 N, define


j :¼ inf t 2 ½0,!ÞjkðtÞ ¼ kjþ1

	 

�j :¼ sup t 2 ½0, 
j�j ~�ðkðtÞÞ ¼ ~�ðkjÞ

	 

~�j :¼ sup t 2 ½0, 
j�jkðtÞ ¼ kj

	 

� �j:

Observe that

kð
jÞ > kð�jÞ 8j 2 N: ð3:26Þ

Furthermore, for all j 2 N and all t 2 ½�j, 
j�, we have
kðtÞ � kj and ~�ðkðtÞÞ � ~�ðkjÞ. Therefore,

1 > ð’ðtÞkeðtÞkÞ2 � 1�
1

kj
� 1�

1

k1
¼: c4 > 0

8t 2 ½�j, 
j� 8j 2 N, ð3:27Þ

and since ’ is non-decreasing, we arrive at

max
s2½t=2, t�

keðsÞk <
1

’ðt=2Þ
�

’ðtÞffiffiffiffiffi
c4

p
’ðt=2Þ

keðtÞk

8t 2 ½�j, 
j� 8j 2 N: ð3:28Þ

By (3.23) and (3.28), together with boundedness of e and
property (2.3c) of ’, we may infer the existence of c5 > 0
such that

kq1ðtÞk � c5 e�	t=2 þ keðtÞk
� 


8t 2 ½�j, 
j� 8j 2 N:

ð3:29Þ

Invoking (3.24), (3.22), (3.25), (3.27), recalling that
’ðtÞkeðtÞk < 1 for all t 2 ½0,!Þ, and noting that, by
Proposition 2.1, the functions t � ’ðtÞe�	t and
t � ’ðtÞe�	t=2 are bounded, we may conclude the
existence of c6>0 such that

d

dt
kðtÞ ¼ k2ðtÞ

h
2 ’ðtÞ _’ðtÞ keðtÞk2 þ 2 ’2ðtÞ heðtÞ, q0ðtÞ

þ q1ðtÞ � �ðkðtÞÞCB eðtÞi
i

� k2ðtÞ
h
2 c2 þ 2 ’ðtÞ

�
kq0ðtÞk þ kq1ðtÞk



� 2 ’2ðtÞ ~�ðkðtÞÞ jheðtÞ, CB eðtÞij

i
� k2ðtÞ

h
2 c2 þ 2 c1’ðtÞ e

�	t þ 2 c5 ’ðtÞ

� e�	t=2 þ keðtÞk
� 


� c3 ’
2ðtÞ ~�ðkðtÞÞ keðtÞk2

i
� k2ðtÞ c6 � c3 c4 ~�ðkðtÞÞ½ �

for almost all t 2 ½�j, 
j� and all j 2 N:
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Let j	 2 N be sufficiently large to that c6 � c3 c4 ~�ðkj	 Þ
< 0. Then,

d

dt
kðtÞ < 0 for almost all t 2 ½�j	 , 
j	 �,

which contradicts (3.26). This proves the boundedness
of k.
Next, we show the boundedness of u. Since k is

bounded, there exists ">0 such that ’ðtÞkeðtÞk � 1� "
for all t 2 ½0,!Þ. By boundedness of e, z and k, it follows
that u is bounded.
We proceed to prove that ! ¼ 1. Suppose that ! is

finite. Let c7 > 0 be such that kxeðtÞk � c7 for all
t 2 ½0,!Þ, and set

C :¼ ðt, �Þ 2 Dr
’ðtÞ k �C� � rðtÞk � 1� ",

k�k � c7, t 2 ½0,!�

�����
)
:

(
Then C is a compact subset of Dr with the property
that ðt, �xðtÞÞ 2 C for all t 2 ½0,!Þ. This contradicts
Proposition 3.1. Therefore, the supposition that ! is
finite is false. This completes the proof of
assertions (i)–(iii).
It remains only to establish the assertion (iv). Assume

that ’ is unbounded. Then keðtÞk < 1=’ðtÞ ! 0 as
t!1. By boundedness of k, we have uðtÞ ¼
��ðkðtÞÞeðtÞ ! 0 as t ! 1: œ

4. Example

Let ðA, b, cÞ be a single-input, single-output minimum-
phase system with positive high-frequency gain cb > 0.
Assume that the class of reference signals r : Rþ ! R

comprises all the linear combinations of constant
functions and the sinusoidal functions of period 2�.
Choosing as internal model the linear system with
transfer function

�ðsÞ

�ðsÞ
¼

ðsþ 1Þ3

sðs2 þ 1Þ
,

and selecting the funnel function t � ’ðtÞ :¼ t2, then the
feedback

uðtÞ ¼ �kðtÞeðtÞ, kðtÞ ¼
1

1� ðt2 eðtÞÞ2
, eðtÞ ¼ yðtÞ � rðtÞ,

in series with the internal model, ensures the asymptotic
tracking of every admissible reference signal r and
achieves a tracking error decay rate of the order t�2.
In the specific case

A ¼

1 1 1

1 �1 0

1 0 �1

264
375, b ¼

1

0

0

264
375, c ¼ ½1 0 0�,

with zero initial conditions and reference signal

r : t �
1

2
1þ cos t½ �,

the behaviour of the feedback system is depicted in
figure 3(a–d).

5. Conclusion

We have presented a ‘‘funnel’’ controller for m-input,
m-output, linear, minimum-phase systems which have
strict relative degree one. This controller achieves

30
−1

0

0

1

e

Funnel

(a)

30
−0.2

0

0

1.8
y

r

(b)

30
0

0

10

k

(c)

30
−5

0

0

5

u

(d)

Figure 3. Example (a) The funnel and tracking error e,
(b) The reference r and output y, (c) The gain function k,

(d) The control u.
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asymptotic tracking – with prescribed transient behav-
iour – of signals r : Rþ ! R

m, the components of
which are solutions of a scalar ordinary differential
equation. The novelty – compared to the previous
contribution on funnel control in (Ilchmann et al.
2002) – is that the asymptotic tracking is exact whereas,
in (Ilchmann et al. 2002) only approximate tracking is
achieved. Otherwise stated, the funnels in the present
paper are permitted to have radius 1=’ðtÞ converging
to zero as t!1 whereas, in (Ilchmann et al. 2002),
boundedness of the function ’ is required. However,
the enhanced tracking performance of the present
paper is achieved at the expenditure of a reference
signal class which is more restrictive than that consid-
ered in (Ilchmann et al. 2002). This restriction underpins
a linear internal model approach to control design in the
present paper, an approach which differs fundamentally
from that adopted in (Ilchmann et al. 2002). A notable
feature of the funnel control is the non-dynamic
nature of the feedback gain: this contrasts favourably
with the existing adaptive designs for stabilizing or
tracking control of the linear systems (see, e.g. Byrnes
and Willems 1984, Helmke et al. 1990, Ilchmann 1993,
Mårtensson 1986, Miller and Davison 1987, 1991)
where the feedback gain is dynamically
generated. It remains to investigate how far the present
approach carries over to certain classes of nonlinear
systems: in this context, the recent results on the use
of nonlinear internal models in regulator design
(Byrnes and Isidori 2004) may be of relevance.
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