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Abstract

A connected graph is λp,q-connected if there is a set of edges whose deletion leaves
two components of order at least p and q, respectively. In this paper we present some
sufficient conditions for graphs to be λp,q-connected. Furthermore, we study λ2,q-
connected graphs in more detail.
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1 Introduction

We consider finite graphs without loops or multiple edges and use standard terminology
as in [1] or [3].

It is an easy exercise to show that every connected graph has a vertex whose deletion
results in a connected graph. The main problem we consider in this paper concerns similar
results for pairs of adjacent vertices. Clearly, a general connected graph need not contain
an edge such that the deletion of the two incident vertices results in a connected graph.
In fact, deleting the vertices incident with any edge can result in a graph not having any
large component.

This motivates the study of so-called λ2,q-connected graphs for integers q ≥ 2. A
connected graph is λ2,q-connected if it contains an edge such that the deletion of the
two incident vertices results in a graph one component of which has order at least q.
Equivalently, a connected graph is λ2,q-connected if there is an edge cut whose removal
results in two components containing at least 2 and at least q vertices, respectively.

This second definition makes it apparent that the problem we consider is closely related
to the so-called restricted edge-connectivity first proposed by Harary [10]. In general, for
integers p, q ≥ 1, a connected graph is called λp,q-connected if it contains an edge cut whose
removal results in two components containing at least p and at least q vertices, respectively.
The smallest size of such an edge cut has been proposed by Esfahanian and Hakimi [6, 7] as
a natural measure of fault-tolerance and was studied for various special network topologies
[4, 5, 6, 16, 17].

For general graphs, the research mainly focused on the case p = q [2, 11, 13, 14, 15, 18,
19, 20]. Next to explicit characterizations for small values of p and q, sufficient conditions
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for λp,q-connectedness and bounds on the sizes of the corresponding edge cuts were studied.
We mention just some results and refer to the abundant cited literature for more.

Esfahanian and Hakimi [6] showed that a connected graph of order n ≥ 4 is λ2,2-
connected if and only if it is not a star. Later Bonsma, Ueffing and Volkmann [2] charac-
terized all λ3,3-connected of order n ≥ 6. Hellwig, Rautenbach and Volkmann [11] studied
sufficient conditions for arbitrary values of p and q and Ou [14] characterized λp,p-connected
graphs of order n ≥ 3p − 2. Recently, Zhao Zhang and Jinjiang Yuan [19] characterized
the graphs which are λp,p-connected for some p which is at most the minimum degree of
the graph plus one.

In the next section we will first show that the last mentioned result is an immediate
consequence of a theorem due to Győri [9] and Lovász [12]. In the third section, we will
then consider λ2,q-connected graphs in detail.

2 λp,q-connected graphs

The main tool of this section is the following beautiful result which was first conjectured
by Frank [8] in 1976. A subgraph of some graph G = (V, E) induced by a set X ⊆ V is
denoted by G[X].

Theorem 2.1 (Győri [9] 1978, Lovász [12] 1977) For every k-connected graph G =
(V, E) of order n, k vertices v1, v2, . . . , vk ∈ V , and k positive integers n1, n2, . . . , nk such
that n1 + n2 + . . . + nk = n there exists a partition {V1, V2, . . . , Vk} of V such that vi ∈ Vi,
|Vi| = ni and G[Vi] is connected for 1 ≤ i ≤ k.

Corollary 2.2 Let p and q be integers with q ≥ p ≥ 1. A connected graph G of order
n ≥ p + q and minimum degree δ is λp,q-connected provided one of the following conditions
is satisfied.

(i) G is 2-connected.

(ii) G has a block of order at least p + 1 containing at most one cut vertex.

(iii) p = q ≤ δ + 1 and G contains a block with at least two cut vertices.

(iv) n ≥ 2q− 1 and G contains a cut vertex u such that all components of G[V \ {u}] are
of order at least p.

Proof: (i) follows immediately from Theorem 2.1.
(ii) In view of (i), we may assume that G is not 2-connected. Let G′ = (V ′, E ′) denote

a block of order at least p + 1 containing exactly one cut vertex v1. Let v2 ∈ V ′ \ {v1}.
Applying Theorem 2.1 to G′ with n1 = |V ′| − p and n2 = p yields a partition V1 ∪ V2 of
V ′ such that G[V2] is a connected graph of order (exactly) p and G[V \ V2] is a connected
graph of order (exactly) n− p ≥ q.
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(iii) Let G′ arise from G by deleting all edges in a block of G with at least two cut
vertices v1 and v2. If Gi denotes the component of G′ containing vi, then Gi obviously has
order at least δ + 1 ≥ p = q for i = 1, 2 which implies the desired result.

(iv) If G′ = (V ′, E ′) is a smallest component of G[V \ {u}], then |V ′| ≥ p, |V \ V ′| ≥
n− n−1

2
= n+1

2
≥ q and G[V \ V ′] is connected. 2

Corollary 2.3 (Zhao Zhang and Jinjiang Yuan [19]) If p ∈ N and G is a connected
graph of order at least 2p and minimum degree at least p − 1, then G is λp,p-connected if
and only if G does not arise by identifying one vertex from each of at least three disjoint
cliques of order p.

Proof: This follows immediately from Corollary 2.2 (i)-(iii). 2

Note that Zhao Zhang and Jinjiang Yuan [19] also estimate the size of the corresponding
edge cut.

Before we proceed to the next section we phrase the following immediate observation
for further reference.

Observation 2.4 For integers p, q ≥ 1 a connected graph is λp.q-connected if and only if
it has a λp,q-connected spanning tree.

Proof: The ‘if’-part is immediate. The ‘only if’-part follows for a graph G = (V, E) with
λp,q-edge cut S by joining spanning trees of the two components of (V, E \ S) by an edge
in S. 2

3 λ2,q-connected graphs

In the following let a, b, c be non-negative integers with a, c ≥ 2. Let S(a, b, c) denote the
tree of order a + b + c that arises by joining the centers of two stars K1,a−1 and K1,c−1 by
a path containing b internal vertices (cf. Figure 3). Furthermore, let R(a, b, c) denote the
graph of order a + b + c that arises by joining the centers of two stars K1,a−1 and K1,c−1

with a new edge and adding b vertices which are adjacent to the centers of the two stars
(cf. Figure 1).

We begin with a result about λ2,q-connected trees.

Theorem 3.1 Let n, q be two integers such that n ≥ q + 2 ≥ 4.

(i) A tree T of order n is λ2,q-connected if and only if it contains a non-endvertex u of
degree at most n− q which is adjacent to at most one non-endvertex.

(ii) A tree T of order n ≥ 3(q−1)
2

is not λ2,q-connected if and only if

T ∈ {K1,n−1} ∪ {S(a, b, c) | a, c ≥ n− q + 1; a + b + c = n}.
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Proof: (i) The ‘if’-part is immediate. For the ‘only if’-part consider a λ2,q-cut edge xy in
a λ2,q-connected tree T . Let the components of T − xy containing x and y have at least 2
and q vertices, respectively. Let u denote a non-endvertex of T in the component of T −xy
containing x at maximum possible distance from y. Clearly, u has degree at most n− q in
T and is adjacent to at most one non-endvertex.

(ii) The ‘if’-part is immediate. For the ‘only if’-part consider a tree T of order n ≥ 3(q−1)
2

which is not λ2,q-connected. By (i), every non-endvertex which is adjacent to at most one
non-endvertex has degree at least n− q + 1, i.e. such a vertex together with the adjacent
endvertices constitute already at least n− q +1 vertices. Note that every tree with at least
three such vertices necessarily also contains a non-endvertex which is adjacent to more
than one non-endvertex. Since 3(n− q +1)+1 > n, T has at most two such vertices which
immediately implies that T is either a star or T = S(a, b, c) with a, c ≥ n − q + 1 and
a + b + c = n. 2

The next result characterizes the λ2,q-connected graphs for orders at least 2q − 3. Note
that (i) implies the result due to Esfahanian and Hakimi [6] mentioned in the introduction.

Theorem 3.2 Let n, q be two integers such that n ≥ q + 2 ≥ 4.

(i) A connected graph G of order n ≥ 2q − 1 is not λ2,q-connected if and only if G =
K1,n−1.

(ii) A connected graph G of order n = 2q − 2 is not λ2,q-connected if and only if

G ∈ {K1,n−1, S(q − 1, 0, q − 1)}.

(iii) A connected graph G of order n = 2q − 3 is not λ2,q-connected if and only if (cf.
Figure 1)

G ∈ {K1,n−1, S(q − 1, 0, q − 2), S(q − 2, 1, q − 2), R(q − 2, 1, q − 2)}.

Proof: (i) The ‘if’-part is immediate. For the ‘only if’-part we consider a connected graph
G of order n ≥ 2q−1 which is not λ2,q-connected. By Observation 2.4 and (ii) of Theorem
3.1, the only spanning tree of G is K1,n−1. This implies the desired result that G = K1,n−1.

(ii) The ‘if’-part is immediate. For the ‘only if’-part we consider a connected graph G
of order n = 2q − 2 which is not λ2,q-connected. By (i) of the present result and (ii) of
Theorem 3.1, all spanning trees of G belong to {K1,n−1, S(q − 1, 0, q − 1)}. Since adding
any further edge to one of these trees results in a λ2,q-connected graph, it follows that
G ∈ {K1,n−1, S(q − 1, 0, q − 1)}.

(iii) The ‘if’-part is immediate. For the ‘only if’-part we consider a connected graph
G of order n = 2q − 3 which is not λ2,q-connected. By (i) of the present result and (ii) of
Theorem 3.1, all spanning trees of G belong to {K1,n−1, S(q−1, 0, q−2), S(q−2, 1, q−2)}.
To S(q− 1, 0, q− 2) one can only add one further edge, for example vy1 (cf. Figure 1), and
also to S(q − 1, 1, q − 2) one can only add the edge vw (cf. Figure 1) resulting in a graph,
namely R(q− 2, 1, q− 2), which is not λ2,q-connected. This leads to the desired result that

G ∈ {K1,n−1, S(q − 1, 0, q − 2), S(q − 2, 1, q − 2), R(q − 2, 1, q − 2)}. 2
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Remark 3.3 Analogously to the proof of Theorem 3.2 (iii), one can show the following
supplement to Theorem 3.2.

(iv) A connected graph G of order n = 2q − 4 ≥ q + 2 is not λ2,q-connected if and only if
it is isomorhic to a star or to one of the ten graphs in Figure 2. (Note that n ≥ q +2
implies q ≥ 6.)

The next result characterizes λ2,q-connected graphs in terms of a specified spanning tree
and properties of the additional edges.

Theorem 3.4 Let n, q be two integers such that n ≥ q + 2 ≥ 4. If G = (V, E) is a graph
of order n which has a spanning tree that is isomorphic to S(a, b, c) with a, c ≥ n − q + 1
and a + b + c = n, then G is λ2,q-connected if and only if one of the following conditions is
satisfied. We denote the vertices of G as specified in Figure 3. (Note that the conditions
on a, b and c imply n ≤ 2q − 2.)

(i) xixj ∈ E for indices i and j with

either 1 ≤ i < j ≤ a− 1,

or a + b + 2 ≤ i < j ≤ n,

or 1 ≤ i ≤ a− 1 and a + 3 ≤ j ≤ n,

or 1 ≤ i ≤ a + b− 2 and a + b + 2 ≤ j ≤ n,

or a ≤ i < j ≤ a + b + 1 and j − i ≥ 3.

(ii) xixj, xkxl ∈ E for indices i, j, k and l with

either 1 ≤ i < k ≤ a− 1, j = a + 1 ≤ a + b and l = a + 2,

or a + b + 2 ≤ i < k ≤ n, j = a + b− 1 and l = a + b ≥ a + 1,

or 1 ≤ i ≤ a− 1, j = a + 1 ≤ a + b, k = a and l = a + 2,

or a + b + 2 ≤ i ≤ n, j = a + b ≥ a + 1, k = a + b− 1 and l = a + b + 1,

or 1 ≤ i ≤ a− 1, j = a + 2 ≤ a + b, k = a + 1 and l = a + 3,

or a + b + 2 ≤ i ≤ n, j = a + b− 1 ≥ a + 1, k = a + b− 2 and l = a + b.

(iii) xixi+2, xi+1xi+3, xi+2xi+4 ∈ E for a ≤ i ≤ a + b− 3.

(iv) xi1xj, xi2xj, . . . , xirxj ∈ E with

either 2 ≤ i1 < i2 < . . . < ir ≤ a− 1, r ≥ q + a− n and j ∈ {a + 1, a + 2},
or a + b + 3 ≤ i1 < i2 < . . . < ir ≤ n, r ≥ q + b− n and j ∈ {a + b, a + b + 1}.

Proof: For the ‘if’-part we have to check that every edge configuration as specified in
one of the above conditions would result in a λ2,q-connected graph. This is equivalent to
showing the existence of an edge e∗ such that the deletion of the two vertices incident with
e∗ results in a graph that has one component with at least q vertices. We will specify

5



such an edge for the various conditions. Since it is trivial to check the existence of a large
component, we leave this task to the reader.

If two endvertices xi and xj are adjacent (cf. the first four conditions in (i)), then
e∗ = xixj. If xixj ∈ E with 1 ≤ i ≤ a− 1 and a+3 ≤ j ≤ a+ b+1, then e∗ = xa+1xa+2. If
xixj ∈ E with a ≤ i ≤ a + b− 2 and a + b + 2 ≤ j ≤ n, then e∗ = xa+b−1xa+b. If xixj ∈ E
with a ≤ i < j ≤ a + b + 1 and j − i ≥ 3, then e∗ = xi+1xi+2.

If xixj, xkxl ∈ E satisfy any of the conditions given in (ii), then e∗ = xixj.
If xixi+2, xi+1xi+3, xi+2xi+4 ∈ E for a ≤ i ≤ a + b− 3, then e∗ = xi+1xi+3.
If xi1xj, xi2xj, . . . , xirxj ∈ E with 2 ≤ i1 < i2 < . . . < ir ≤ a − 1, r ≥ q + a − n and

j ∈ {a + 1, a + 2}, then e∗ = x1xa. If xi1xj, xi2xj, . . . , xirxj ∈ E with a + b + 3 ≤ i1 < i2 <
. . . < ir ≤ n, r = q + b− n and j ∈ {a + b, a + b + 1}, then e∗ = xa+b+1xa+b+2.

For the ‘only if’-part one has to check that a graph G as in the theorem for which none
of the above conditions holds is not λ2,q-connected. Equivalently, one can argue that the
deletion of the endpoints of any edge ẽ = ũṽ from G results in a graph all components of
which have order at most q − 1. Note that a + b, b + c ≤ q − 1. Let G̃ = G[V \ {ũ, ṽ}].

First, we consider the case that ẽ is an edge of S(a, b, c). If ẽ is incident to an endvertex
of S(a, b, c), then at least min{(a−1)−(q+a−n−1)−1, (b−1)−(q+b−n−1)−1} = n−q−1
of the endvertices of S(a, b, c) will be isolated in G̃, because condition (iv) does not hold.
Therefore, there are at most n− 2− (n− q − 1) = q − 1 vertices in any component of G̃.
If ẽ is xaxa+1 or xa+bxa+b+1, then a very similar argument applies. If ẽ is any other edge
of S(a, b, c), then no component of G̃ contains at least q vertices, because the last three
conditions in (i) do not hold.

Next, we consider the case that ẽ is not an edge of S(a, b, c). Similarly, as above one
can consider the cases that ẽ is or is not incident to an endvertex of S(a, b, c). In each case
it is very simple to see which of the conditions not being satisfied implies that there is no
large component. We leave the details to the reader. 2

Theorem 3.1 together with the last result allow a characterization of λ2,q-connected graphs
for orders between max

{
q + 2, 3q−3

2

}
and 2q − 2.

Corollary 3.5 Let n, q be two positive integers with max
{
q + 2, 3q−3

2

}
≤ n ≤ 2q − 2. If

G = (V, E) is a connected graph of order n and T is a spanning tree of G, then G is
λ2,q-connected if and only if

(i) either T 6∈ {K1,n−1} ∪ {S(a, b, c) | a, c ≥ n− q + 1; a + b + c = n},

(ii) or T = K1,n−1 and G has at least n edges,

(iii) or T = S(a, b, c) for some positive integers a, b, c with a, c ≥ n−q+1 and a+b+c = n
such that one of the conditions specified in Theorem 3.4 are satisfied.

Proof: The ‘if’-part is immediate. For the ‘only if’-part let G be a connected and λ2,q-
connected graph of order n with spanning tree T . If T 6∈ {K1,n−1} ∪ {S(a, b, c) | a, c ≥
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n− q + 1; a + b + c = n}, then (i) holds. Hence, we may assume that either T = K1,n−1 or
T ∈ {S(a, b, c) | a, c ≥ n− q +1, a+ b+ c = n}. In the first case, G needs at least one edge
more than T in order to be λ2,q-connected. In the second case, the result follows directly
from Theorem 3.4. Hence (ii) or (iii) hold which completes the proof. 2

From the last result one can deduce the following extremal result about λ2,q-connected
graphs for orders between max

{
q + 2, 3q−3

2

}
and 2q − 2.

Corollary 3.6 Let n, q be two positive integers with max
{
q + 2, 3q−3

2

}
≤ n ≤ 2q − 2. If

G = (V, E) is a connected graph of order n and size at least 2q−2, then G is λ2,q-connected.
The graph R(n− q + 1, 2p−n− 2, n− q + 1) of size exactly 2q− 3 shows that the above

bound on the size is best possible.

Proof: The proof relies on Theorem 3.4. By considering the maximum possible number
of edges to add to S(a, b, c) which do not result in a λ2,q-connected graph, one easily sees
that the largest such number of edges can be added to S

(⌊
n
2

⌋
, 0,

⌈
n
2

⌉)
. In fact, one can

add 2q − n − 2 edges to this graph resulting in R(n − q + 1, 2p − n − 2, n − q + 1) which
implies the desired result. 2

For orders below 3q−3
2

a number of edges linear in q does no longer suffice in order to
ensure λ2,q-connectedness. A simple example for this effect is obtained by attaching l ≥ 2
new envertices to all but one vertex of a clique of order k. Clearly, this graph has order
n = (k−1)(l+1)+1, is not λ2,n−l-connected and has

(
k
2

)
+(k−1)l edges which is quadratic

in n for fixed l.
The next result analyses the effect of long cycles on λ2,q-connectedness.

Theorem 3.7 For an integer t ≥ 1 and r ∈ {0, 1, 2, 3} let q = 4t + r. If G is a connected
graph of order n with n ≥ q + 2 that contains a cycle C of length l with l ≥ 2t + r + 1 for
r ∈ {0, 1, 2} and l ≥ 2t + r for r = 3, then G is λ2,q-connected.

Proof: Let C : v0v1v2...vl−1v0. It is easy to see that G has a spanning tree T which
contains all but one edge from C. Deleting from T the remaining l− 1 edges of C yields l
components with vertex sets V0, V1, V2, ..., Vl−1 where vi ∈ Vi for 0 ≤ i ≤ l−1. Let ni = |Vi|
for 0 ≤ i ≤ l − 1.

Note that for every 0 ≤ i ≤ l−1 and 1 ≤ j ≤ l−1 the two graphs G[Vi∪Vi+1∪...∪Vi+j−1]
and G[Vi+j ∪ Vi+j+1 ∪ ... ∪ Vi−1] are connected (all indices are taken modulo l).

Therefore, if ni = 2 or ni = ni+1 = 1 for some 0 ≤ i ≤ l − 1, then G is clearly λ2,q-
connected. Hence we may assume that ni 6= 2 and that no two consecutive ni’s are equal
to 1. This implies that

ni + ni+1 ≥ 1 + 3 = 4 (1)

for 0 ≤ i ≤ l − 1. This implies

n =
l−1∑
i=0

ni = (n0 + n1) + (n2 + n3) + ... ≥
{

2l , l even,
2(l − 1) + 3 = 2l + 1 , l odd.

(2)
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If one of the l connected graphs G[Vi ∪ Vi+1 ∪ ... ∪ Vi+l−3] for 0 ≤ i ≤ l − 1 has order at
least q, then G is λ2,q-connected because G[Vi+l−2 ∪ Vi+l−1] has order at least 2. Hence, we
may assume that

l−3∑
j=0

ni+j ≤ q − 1

for 0 ≤ i ≤ l − 1. This implies

(l − 2)n = (l − 2)
l−1∑
i=0

ni =
l−1∑
i=0

l−3∑
j=0

ni+j ≤ (q − 1)l = (4t + r − 1)l. (3)

The second equation follows from a double-counting argument - each ni is counted exactly
l − 2 times in the inner sums of the right term.

First we assume that l is even. Now (2) and (3) imply (l − 2)2l ≤ (4t + r − 1)l, i.e.
l ≤ 2t + 3

2
+ r

2
. Since l is even, this implies l ≤ 2t for r = 0 and l ≤ 2t + 2 for r ∈ {1, 2, 3}.

For r ∈ {0, 2, 3} this contradicts the assumption on l.
Hence it remains the case that r = 1 and l = 2t + 2. If n = 2l = 4t + 4 = q + 3, then

we may assume that n0 = 3 which clearly implies that G is λ2,q-connected. If n ≥ 2l + 1,
then (3) implies (l − 2)(2l + 1) ≤ 4tl, i.e. l ≤ 2t + 3

2
+ 1

l
. Since l ≥ 3 is even, this implies

the contradiction l ≤ 2t.
Next we assume that l is odd. Now (2) and (3) imply (l − 2)(2l + 1) ≤ (4t + r − 1)l,

i.e. l ≤ 2t + 1 + r
2

+ 1
l
. Since l ≥ 3 is odd, this implies l ≤ 2t + 1. For r ∈ {1, 2, 3} this

contradicts the assumption on l.
Hence it remains the case that r = 0 and l = 2t+1. If n = 2l+1 = 4t+3 = q +3, then

we may assume that n0 = 3 which clearly implies that G is λ2,q-connected. If n ≥ 2l + 2,
then (3) implies (l − 2)(2l + 2) ≤ (4t− 1)l, i.e. l ≤ 2t + 1

2
+ 2

l
. If l ≥ 5, then this implies

the contradiction l ≤ 2t− 1. If l = 3, then q = 4 and we may assume that n0 + n1 ≥ 4 and
n2 ≥ 2 which clearly implies that G is λ2,q-connected. This completes the proof. 2

The next example shows that Theorem 3.7 is best-possible in the case that r = 2. Similar
examples exist for all parities r ∈ {0, 1, 3}.

Example 3.8 Let q = 4t+2 for an integer t ≥ 1, and let C = v1v2 . . . vq−2t = v1v2 . . . v2t+2

be a cycle of length q − 2t = 2t + 2. In addition, let u1, u2, . . . , u2t+2 be 2t + 2 further
vertices such that v2i−1 is adjacent to u2i−1 and u2i for 1 ≤ i ≤ t + 1. The resulting graph
H (cf. Figure 4) is of order q + 2 with a cycle of length q − 2t, however, it is a simple
matter to verify that H is not λ2,q-connected.

We want to close with the following observation which establishes λ2,q-connectedness using
a structural property.

Observation 3.9 Let q ≥ 2 be an integer. If G is a connected and claw-free graph of
order n ≥ q + 2, then G is λ2,q-connected.
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Proof: Let u1u2 . . . ut be a longest path in G. Since G is claw-free, it is a simple matter
to verify that G− {u1, u2} is connected, and the proof is complete. 2
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Figure 1: S(q − 1, 0, q − 2), S(q − 2, 1, q − 2) and R(q − 2, 1, q − 2).
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Figure 2: Graphs of order 2q − 4 which are not λ2,q-connected.
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