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Abstract We prove that connected cubic graphs of order n and girth g have domination

number at most 0.32127n + O
(

n
g

)
.
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The domination number γ(G) of a (finite, undirected and simple) graph G = (V, E) is one
of the most well-studied graph parameters [4] and is defined as the minimum cardinality
of a set D ⊆ V of vertices such that every vertex in V \D has a neighbour in D.

Initially motivated by Reed’s [10] disproved [6] conjecture that every connected cubic
graph of order n has domination number at most dn

3
e, several authors recently studied the

domination number of cubic graphs of large girth where the girth is the length of a shortest
cycle in G.

Kawarabayashi, Plummer and Saito [5] proved γ(G) ≤
(

1
3

+ 1
9k+3

)
n for every 2-edge

connected cubic graph G of order n and girth at least 3k for some k ∈ N and Kostochka

and Stodolsky [7] proved γ(G) ≤
(

1
3

+ 8
3g2

)
n for every connected cubic graph G of order

n > 8 and girth g. While these two bounds tend to n/3 for g → ∞, Löwenstein and
Rautenbach [8] recently showed that one actually gets below n/3 for sufficiently large girth

by proving γ(G) ≤
(

44
135

+ 82
135g

)
n ≈ 0.3259n + O

(
n
g

)
for every cubic graph of order n

and girth g ≥ 5. In the present paper we will slightly improve the constant in this upper
bound.

Since for fixed d and g the numbers of cycles in random cubic graphs of fixed lengths
r < g are asymptotically distributed as independent Poisson variables [2] with mean
(d − 1)r/2r, the number of cycles in a random cubic graph of length smaller than g is
asymptotically almost surely bounded. Therefore, the asymptotic bounds for the domina-
tion number of random cubic graphs carry over to cubic graph of large girth and indicate
how much more the above constant could be improved. Molloy and Reed [9] proved that
the domination number γ of a random cubic graph of order n asymptotically almost surely
satisfies 0.2636n ≤ γ ≤ 0.3126n and Duckworth and Wormald [3] improved the upper
bound to 0.2794n.

We immediately proceed to our main result.

Theorem 1 If G = (V, E) is a connected, cubic graph of order n, girth g and domination
number γ, then

γ ≤ 0.32127n + O

(
n

g

)
.
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Proof: Let the graph G = (V, E) be as in the statement of the theorem.
Clearly, we may assume g ≥ 7. We will first prove the existence of a matching that

covers all but O
(

n
g

)
vertices. Therefore, for some set S ⊆ V let q1(S) denote the number

of components of G[V \S] of odd order that are joined to S by only one edge and let q2(S)
denote the number of components of G[V \S] of odd order that are joined to S by at least 2
edges. Since G is cubic, all of the q2(G) odd components are joined to S by at least 3 edges
and we have q2(G) ≤ |S|. Furthermore, every component of G[V \ S] of odd order that
is joined S by only one edge must contain a cycle which implies that it has order at least
g and q1(S) ≤ n

g
. Altogether, we obtain q1(S) + q2(S) − |S| ≤ n

g
and by the Tutte-Berge

formula, there is a matching M in G such that the set D0 of vertices not incident to an
edge in M satisfies |D0| ≤ n

g
.

Since there are at most 3|D0| ≤ 3n
g

edges between D0 and V \D0, the graph G[V \D0]−M

consists of cycles and at most 3n
2g

paths. Since all the cycles are of length at least g, we can
decompose them into paths of lengths between g

4
and g

4
+ g

3·4 = g
3
. This implies that there

is a collection of vertex disjoint paths P with |P| ≤ n
g/4

+ 3n
2g

= 11n
2g

which are all of lengths

at most g
3

and contain all vertices in V \D0.

Since g
3

< g−2
2

, these paths are induced and no two of these paths are joined by more
than one edge.

Let H denote the graph with vertex set V \D0 whose edges are the edges of the paths
in P together with the matching M . Note that M is a perfect matching of H. We will
describe a probabilistic procedure for constructing a small dominating set D1 of H in five
phases.

Phase 1

We select a random subset P0 of P by assigning each P ∈ P to P0 independently at random
with probability p for some 0 ≤ p ≤ 1 to be specified later. Let P1 = P \ P0.

Phase 2

For every path P : x1x2...xl ∈ P0 we choose independently at random a parity j ∈ {0, 1, 2}
each with probability 1

3
and set

D(P ) = {xi | 1 ≤ i ≤ l, i ≡ j (mod 3)}.

Phase 3

For every path P : x1x2...xl ∈ P1 we will determine a set D(P ) ⊆ {x1, x2, ..., xl} by the
following procedure:

(1) We set D(P ) := ∅ and i := 1.

(2) We query whether xi is adjacent in H to a vertex in
⋃

Q∈P0
D(Q).
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• If the answer to the query is ‘yes’ and i ≤ l − 1,

then we set i := i + 1 and go to (2).

• If the answer to the query is ‘yes’ and i = l,

then we terminate.

• If the answer to the query is ‘no’ and i ≤ l − 3,

then we set D(P ) := D(P ) ∪ {xi}, i := i + 3 and go to (2).

• If the answer to the query is ‘no’ and i ≥ l − 2,

then we set D(P ) := D(P ) ∪
{
xmin{i+1,l}

}
and terminate.

Phase 4

For every edge uv ∈ M such that u ∈ D(P ), v ∈ D(Q) with P, Q ∈ P0 we delete at most
one vertex, say u, from D(P ) ∪D(Q), if the neighbour(s) of u on P are adjacent in H to
a vertex in

⋃
R∈P0

D(R) \D(P ). (Note that in H the vertex u has no neighbour on a path
in P1.)

Phase 5

Let D′ denote the set of endvertices of the paths in P0 and let D1 = D′∪
⋃

P∈P D(P ). This
terminates the last phase.

It is obvious from the construction that the set D1 is a dominating set of H. We will now
estimate the expected value of |D1|. Therefore, let n1 = n− |D0|.

The expected number of vertices added to
⋃

P∈P0
D(P ) in the Phase 2 is pn1

3
, because

the probability that a path in P is in P0 is p and subject to this the probability of a vertex
on P to belong to D(P ) is 1

3
.

Now we proceed to the Phase 3. For some path P : x1x2...xl in P1 let q denote the total
number of queries and let qy denote the number of queries with answer ‘yes’ during the
construction of D(P ). Note that while the answers to previous queries influence for which
vertex we ask the next query, the answer to every query is independent of the answers to
previous queries, because no two paths are joined by more than one edge and the random
choices for different paths are independent.

If we query the corresponding adjacency for some vertex, then the path Q containing
its neighbour outside of P lies in P0 with probability p and subject to this the neighbour
lies in D(Q) with probability 1/3. Therefore, the probability of a positive answer to an

individual query is p/3 and the expected values for qy and q satisfy E[qy] = pE[q]
3

.
Since with the exception of queries within distance O(1) of the end of P , for every

positive anser to a query the index i is incremented by 1 and for every negative anser to
a query the index i is incremented by 3, we have q = l+2qy

3
+ O (1). Therefore, E[q] =

l+2E[qy ]

3
+ O (1) which together with E[qy] = pE[q]

3
implies that E[qy] = p

9−2p
l + O(1).
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Since for every query with a negative answer, one vertex is added to D(P ) we have

E[|D(P )|] = E[q − qy] = E[q]− E[qy] = (1− p/3)E[qy] =
3− p

9− 2p
l + O(1).

Finally, since every of the O
(

n
g

)
paths in P belongs to P1 with probability (1 − p), we

obtain, by linearity of expectation, that

E

[∣∣∣∣∣ ⋃
P∈P1

D(P )

∣∣∣∣∣
]

=
3− p

9− 2p
(1− p)n1 + O

(
n

g

)
=

(1− p)n1

3
+

p(p− 1)n1

3(9− 2p)
+ O

(
n

g

)
.

We proceed to Phase 4. The expected number of edges among the total n1

2
edges in M

which join two paths in P0 and for which we remove one vertex from
⋃

P∈P0
D(P ) in the

fourth phase equals
n1

2
p2 1

9

(
2
(p

3

)2

−
(p

3

)4
)

.

(The two paths containing the endpoints of an edge uv in M lie in P0 with probability p2

and the two vertices u and v lie in
⋃

P∈P0
D(P ) as constructed in the second phase with

probability 1
9
. The term

(
2
(

p
3

)2 −
(

p
3

)4
)

is the probability that the neighbour(s) of u and

v are still adjacent in H to a vertex in
⋃

R∈P0
D(R) after removing either u or v.)

Putting everything together, we obtain

E[|D1|] =
pn1

3
+

(1− p)n1

3
+

p(p− 1)n1

3(9− 2p)
+ O

(
n

g

)
− p2n1

18

(
2
(p

3

)2

−
(p

3

)4
)

=
n1

3
− n1

(
p(1− p)

3(9− 2p)
+

p2

18

(
2
(p

3

)2

−
(p

3

)4
))

+ O

(
n

g

)
.

Over the interval [0, 1] the function

f(p) =
p(1− p)

3(9− 2p)
+

p2

18

(
2
(p

3

)2

−
(p

3

)4
)

has maximum value f(0.74379) > 0.012117. Since D0 ∪ D1 is a dominating set of G, we

obtain γ ≤ |D0| + (n− |D0|)
(

1
3
− 0.012117

)
+ O

(
n
g

)
= 0.32127n + O

(
n
g

)
and the proof

is complete. 2
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