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Abstract. Let F be a set of graphs and for a graph G let αF(G) and α∗F(G) denote the
maximum order of an induced subgraph of G which does not contain a graph in F as a
subgraph and which does not contain a graph in F as an induced subgraph, respectively.
Lower bounds on αF(G) and α∗F(G) and algorithms realizing them are presented.
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1 Introduction

We consider finite, undirected and simple graphs G with vertex set V (G) and edge set
E(G) and refer to [5] for undefined notation.

As a generalization of the well-studied concept of independent sets [8] in graphs Peter
Mihok [9] proposed the following problem: For two given graphs F and G, what is the
maximum order of an induced subgraph of G that either does not contain F as a subgraph
or does not contain F as an induced subgraph?

The purpose of the present paper is to formalize the independence concept correspond-
ing to this problem and to initiate its study. Therefore, for a graph G and a set M of
graphs we denoted by f(G,M) the maximum order |S| of a subgraph G[S] of G induced
by S ⊆ V (G) such that G[S] belongs to M. Choosing M appropriately allows to capture
Mihok’s independence problem. More precisely, let F be a set of graphs and for a graph G
let αF(G) and α∗F(G) denote the maximum order of an induced subgraph of G which does
not contain a graph in F as a subgraph and which does not contain a graph in F as an in-
duced subgraph, respectively. Clearly, if we defineMF as the set of all graphs which do not
contain a graph in F as a subgraph and M∗

F as the set of all graphs which do not contain
a graph in F as an induced subgraph, then αF(G) = f(G,MF) and α∗F(G) = f(G,M∗

F).
If F = {F}, then we write αF (G) and α∗F (G) for short.
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Several well-known graph parameters are special cases of these notions as shown in the
following result which collects some obvious basic observations.

Proposition 1 Let G be a graph.

(i) αK2(G) equals the independence number α(G) of G.

(ii) αK̄2
(G) equals the clique number of G.

(iii) αP3(G) equals the dissociation number of G [2].

(iv) αKr(G) = α∗Kr
(G).

(v) αK̄r
(G) = min{|V (G)|, r − 1}.

(vi) α∗̄
Kr

(G) = max{|S| | S ⊆ V (G), α(G[S]) ≤ r − 1}.

(vii) α∗F(G) = α∗{F̄ |F∈F}
(
Ḡ

)
.

Our next result is a lower bound on f(G,M) provided the set M has some natural prop-
erties.

Theorem 2 Let M be a set of graphs and let G be a graph.

(i) If M is closed under taking induced subgraphs, then

f(G,M) ≥
∑

S:S⊆V (G),G[S]∈M

(|V (G)|
|S|

)−1

(ii) If M is closed under taking induced subgraphs and under forming the union of graphs,
then

f(G,M) ≥
∑

S:S⊆V (G),G[S]∈M,G[S] is connected

(|NG[S]|
|S|

)−1

where NG[S] = ∪u∈SNG[u].

Proof: We only prove (ii) and leave the very similar proof of (i) to the reader. We choose
a permutation v1, v2, ..., vn of the vertices of G uniformly at random. Let S0 = ∅ and for
1 ≤ i ≤ n let Si = Si−1 ∪ {vi} if G[Si−1 ∪ {vi}] ∈ M and Si = Si−1 otherwise. Clearly,
f(G,M) ≥ |Sn| and vi ∈ Sn if and only if vi ∈ Si and the component Hi of G[Si] containing
vi belongs to M. Therefore, for a set S ⊆ V (G) with vi ∈ S such that G[S] ∈M and G[S]
is connected, a lower bound for the probability that Hi = G[S] is the probability that in
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the chosen permutation the vertices S \ {vi} preceed vi while vi preceeds the vertices in

NG[S] \ S which equals 1
|S|

(|NG[S]|
|S|

)−1
. Therefore, by linearity of expectation

f(G,M) ≥ E(|Sn|) =
n∑

i=1

P(vi ∈ Sn)

≥
n∑

i=1

∑

S:vi∈S⊆V (G),G[S]∈M,G[S] is connected

1

|S|
(|NG[S]|

|S|
)−1

=
∑

S:S⊆V (G),G[S]∈M,G[S] is connected

∑
i:vi∈S

1

|S|
(|NG[S]|

|S|
)−1

=
∑

S:S⊆V (G),G[S]∈M,G[S] is connected

(|NG[S]|
|S|

)−1

and the proof is complete. ¤

Corollary 3 Let G be a graph.

(i) α(G) ≥ ∑
u∈V (G)

1
1+dG(v)

(Caro [3], Wei [11]).

(ii) The dissociation number satisfies

αP3(G) ≥
∑

u∈V (G)

1

1 + dG(v)
+

∑

uv∈E(G)

2

|NG[u] ∪NG[v]| (|NG[u] ∪NG[v]| − 1)
.

Proof: Note that M{K2} =
{
K̄r | r ∈ N

}
and M{P3} = M{K2} ∪

{
K2 ∪ K̄r | r ∈ N

}
. Both

statements follow immediately from Theorem 2(ii) and the observation that the only con-
nected graph in M{K2} is K1 and the only connected graphs in M{P3} are K1 and K2.
¤

The famous bound due to Caro [3] and Wei [11] from Corollary 3 has yet another general-
ization in this context.

Theorem 4 If G is a graph and r ∈ N, then αKr+1(G) ≥ ∑
v∈V (G)

1
1+dG(v)−αKr (G[NG(v)])

.

Proof: We mimic a proof from [1]. For every vertex v ∈ V (G) let the set Xv ⊆ NG(v)
be such that |Xv| = dG(v) − αKr(G[NG(v)]) and G[NG(v) \ Xv] does not contain Kr as
a subgraph. Let v1, v2, ..., vn be a permutation of the vertices of G chosen uniformly at
random and let vi ∈ S if and only if Xvi

∩ {v1, v2, ..., vi} = ∅, i.e. vi is the first vertex of
{vi} ∪Xvi

that appears within the permutation. Clearly, G[S] does not contain Kr+1 as a
subgraph and

αKr+1(G) ≥ E(|S|) =
∑

v∈V (G)

P(v ∈ S) =
∑

v∈V (G)

1

1 + dG(v)− αKr(G[NG(v)])
.¤
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The next result relies on methods proposed in [7].

Theorem 5 If G is a graph with vertex set {v1, v2, ..., vn} and r ∈ N, then

αK1,r(G) = max
∑

vi∈V (G)

pi

∑

Y :Y⊆NG(vi),|Y |<r


 ∏

vj∈Y

pj

∏

vk∈NG(vi)\Y
(1− pj)


 ,

where the maximum is taken over all (p1, p2, ...pn) ∈ [0, 1]n.

Proof: Let pi ∈ [0, 1] for 1 ≤ i ≤ n. We consider a random subset X of V (G) formed by
choosing every vertex vi independently with probability pi. If S = {v ∈ X | dG[X](v) < r},
then

αK1,r(G) ≥ E(S) =
∑

vi∈V (G)

pi

∑

Y :Y⊆NG(vi),|Y |<r


 ∏

vj∈Y

pj

∏

vk∈NG(vi)\Y
(1− pj)


 .

Conversely, if S ⊆ is such that αK1,r(G) = |S| and G[S] has maximum degree less than r,
then setting p∗i = 1 for all vi ∈ S and p∗i = 0 for all vi 6∈ S yields

αK1,r(G) = E(S) =
∑

vi∈V (G)

p∗i
∑

Y :Y⊆NG(vi),|Y |<r


 ∏

vj∈Y

p∗j
∏

vk∈NG(vi)\Y
(1− p∗j)




which completes the proof. ¤

It is trivial that for several specific choices of M and F the decision problems associated
with f(G,M), αF(G) and α∗F(G) are NP-complete. In view of Mihok’s original problem,
we consider the case that F consists of just one graph in more detail.

Theorem 6 If F is a graph containing at least one edge, then the following problems are
NP-complete problem.

(i) For a given graph G and k ∈ N, decide whether αF (G) ≥ k.

(ii) For a given graph G and k ∈ N, decide whether α∗F (G) ≥ k.

Proof: Let uv be an arbitrary edge of F . For a graph G let the graph G′ arise as follows:
For every edge xy of G add a copy Fxy of F and identify the copy of the edge uv in Fxy

with xy (in any orientation).
It is obvious that for every set T ⊆ V (G′) of minimum cardinality such that G′[V (G′)\T ]

does not contain F as a subgraph (or induced subgraph), T must intersect every copy Fxy of
F in G′. Since deleting either x or y from Fxy clearly deletes this copy of F , we can assume
that T ⊆ V (G) and that T ∩ {x, y} 6= ∅ for all xy ∈ E(G). Hence T is exactly a vertex
cover of G. This implies α(G) = αF (G′) = α∗F (G′) and the desired statement follows from
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the NP-completeness of the corresponding decision problem for the independence number
[6]. ¤

Note that in view Proposition 1(vii), the decision problem “α∗F(G) ≥ k?” remains NP-
complete even if F is edge-less.

Tuza [10] observed the following nice relation between the independence number and
the domination number γ(G) of a graph G [7]:

α(G) = max{γ(H) | H is an induced subgraph of G}.

We close with a generalization of this equality. For a set F of graphs and a graph G let
γF(G) (γ∗F(G)) denote the minimum cardinality |D| of a set D ⊆ V (G) such that for every
vertex u ∈ V (G) \ D there is a graph F ∈ F and a set D′ ⊆ D with |D′| = |V (F )| − 1
such that G[D′ ∪ {u}] contains a graph in F as a(n induced) subgraph.

Theorem 7 If F is a set of graphs and let G is a graph G, then

αF(G) = max{γF(H) | H is an induced subgraph of G}
α∗F(G) = max{γ∗F(H) | H is an induced subgraph of G}.

Proof: We only prove the first equality and leave the very similar proof of the second
equality to the reader.

If S ⊆ V (G) is such that |S| = αF(G) and G[S] does not contain a graph in F as a
subgraph, then γF(G[S]) = |S| ≥ αF(G).

Conversely, if G[S] is an induced subgraph of G for which γF(G[S]) is maximum, then
let S ′ ⊆ S be of maximum cardinality such that G[S ′] does not contain a graph in F as a
subgraph. We obtain γF(G[S]) ≤ |S ′| = αF(G[S]) ≤ αF(G) and the proof is complete. ¤
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