

PROCCEDINGS

| 10 - 13 September 2007

FACULTY OF COMPUTER SCIENCE AND AUTOMATION

COMPUTER SCIENCE MEETS AUTOMATION

VOLUME II

- Session 6 Environmental Systems: Management and Optimisation
- Session 7 New Methods and Technologies for Medicine and Biology
- Session 8 Embedded System Design and Application
- Session 9 Image Processing, Image Analysis and Computer Vision
- **Session 10 Mobile Communications**
- Session 11 Education in Computer Science and Automation

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der deutschen Nationalbiografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

ISBN 978-3-939473-17-6

Impressum

Herausgeber:	Der Rektor der Technischen Universität Ilmenau UnivProf. Dr. rer. nat. habil. Peter Scharff
Redaktion:	Referat Marketing und Studentische Angelegenheiten Kongressorganisation Andrea Schneider Tel.: +49 3677 69-2520 Fax: +49 3677 69-1743 e-mail: kongressorganisation@tu-ilmenau.de
Redaktionsschluss:	Juli 2007
Verlag:	Ge
	Technische Universität Ilmenau/Universitätsbibliothek Universitätsverlag Ilmenau Postfach 10 05 65 98684 Ilmenau www.tu-ilmenau.de/universitaetsverlag
Herstellung und Auslieferung:	Verlagshaus Monsenstein und Vannerdat OHG Am Hawerkamp 31 48155 Münster www.mv-verlag.de
Layout Cover:	www.cey-x.de
Bezugsmöglichkeiten:	Universitätsbibliothek der TU Ilmenau Tel.: +49 3677 69-4615 Fax: +49 3677 69-4602

© Technische Universität Ilmenau (Thür.) 2007

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt. Mit Ausnahme der gesetzlich zugelassenen Fälle ist eine Verwertung ohne Einwilligung der Redaktion strafbar.

Preface

Dear Participants,

Confronted with the ever-increasing complexity of technical processes and the growing demands on their efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and new methods of systems operation. The factors likely to affect the design of the smart systems of the future will doubtless include the following:

- As computational costs decrease, it will be possible to apply more complex algorithms, even in real time. These algorithms will take into account system nonlinearities or provide online optimisation of the system's performance.
- New fields of application will be addressed. Interest is now being expressed, beyond that in "classical" technical systems and processes, in environmental systems or medical and bioengineering applications.
- The boundaries between software and hardware design are being eroded. New design methods will include co-design of software and hardware and even of sensor and actuator components.
- Automation will not only replace human operators but will assist, support and supervise humans so that their work is safe and even more effective.
- Networked systems or swarms will be crucial, requiring improvement of the communication within them and study of how their behaviour can be made globally consistent.
- The issues of security and safety, not only during the operation of systems but also in the course of their design, will continue to increase in importance.

The title "Computer Science meets Automation", borne by the 52nd International Scientific Colloquium (IWK) at the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these challenges, cooperating closely on innovative methods in the two disciplines of computer science and automation.

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also deepened between the countries from the East. Today, the objective of the colloquium is still to bring researchers together. They come from the eastern and western member states of the European Union, and, indeed, from all over the world. All who wish to share their ideas on the points where "Computer Science meets Automation" are addressed by this colloquium at the Technische Universität Ilmenau.

All the University's Faculties have joined forces to ensure that nothing is left out. Control engineering, information science, cybernetics, communication technology and systems engineering – for all of these and their applications (ranging from biological systems to heavy engineering), the issues are being covered.

Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as they do, a most interesting colloquium programme of an interdisciplinary nature.

I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your research, to address new concepts and to meet colleagues in Ilmenau.

In Sherte

Professor Peter Scharff Rector, TU Ilmenau

"L. Ummt

Professor Christoph Ament Head of Organisation

Table of Contents

CONTENTS

Page

6 Environmental Systems: Management and Optimisation

T. Bernard, H. Linke, O. Krol A Concept for the long term Optimization of regional Water Supply Systems as a Module of a Decision Support System	3
S. Röll, S. Hopfgarten, P. Li A groundwater model for the area Darkhan in Kharaa river Th. Bernard, H. Linke, O. Krol basin	11
A. Khatanbaatar Altantuul The need designing integrated urban water management in cities of Mongolia	17
T. Rauschenbach, T. Pfützenreuter, Z. Tong Model based water allocation decision support system for Beijing	23
T. Pfützenreuter, T. Rauschenbach Surface Water Modelling with the Simulation Library ILM-River	29
D. Karimanzira, M. Jacobi Modelling yearly residential water demand using neural networks	35
Th. Westerhoff, B. Scharaw Model based management of the drinking water supply system of city Darkhan in Mongolia	41
N. Buyankhishig, N. Batsukh Pumping well optimi ation in the Shivee-Ovoo coal mine Mongolia	47
S. Holzmüller-Laue, B. Göde, K. Rimane, N. Stoll Data Management for Automated Life Science Applications	51
N. B. Chang, A. Gonzalez A Decision Support System for Sensor Deployment in Water Distribution Systems for Improving the Infrastructure Safety	57
P. Hamolka, I. Vrublevsky, V. Parkoun, V. Sokol New Film Temperature And Moisture Microsensors for Environmental Control Systems	63
N. Buyankhishig, M. Masumoto, M. Aley Parameter estimation of an unconfined aquifer of the Tuul River basin Mongolia	67

M. Jacobi, D. Karimanzira Demand Forecasting of Water Usage based on Kalman Filtering	
7 New Methods and Technologies for Medicine and Biology	
J. Meier, R. Bock, L. G. Nyúl, G. Michelson Eye Fundus Image Processing System for Automated Glaucoma Classification	81
L. Hellrung, M. Trost Automatic focus depending on an image processing algorithm for a non mydriatic fundus camera	85
M. Hamsch, C. H. Igney, M. Vauhkonen A Magnetic Induction Tomography System for Stroke Classification and Diagnosis	91
T. Neumuth, A. Pretschner, O. Burgert Surgical Workflow Monitoring with Generic Data Interfaces	97
M. Pfaff, D. Woetzel, D. Driesch, S. Toepfer, R. Huber, D. Pohlers, D. Koczan, HJ. Thiesen, R. Guthke, R. W. Kinne	103
Gene Expression Based Classification of Rheumatoid Arthritis and Osteoarthritis Patients using Fuzzy Cluster and Rule Based Method	
S. Toepfer, S. Zellmer, D. Driesch, D. Woetzel, R. Guthke, R. Gebhardt, M. Pfaff A 2-Compartment Model of Glutamine and Ammonia Metabolism in Liver Tissue	107
J. C. Ferreira, A. A. Fernandes, A. D. Santos Modelling and Rapid Prototyping an Innovative Ankle-Foot Orthosis to Correct Children Gait Pathology	113
H. T. Shandiz, E. Zahedi Noninvasive Method in Diabetic Detection by Analyzing PPG Signals	119
S. V. Drobot, I. S. Asayenok, E. N. Zacepin, T. F. Sergiyenko, A. I. Svirnovskiy Effects of Mm-Wave Electromagnetic Radiation on Sensitivity of Human Lymphocytes to lonizing Radiation and Chemical Agents in Vitro	123
8 Embedded System Design and Application	
B. Däne Modeling and Realization of DMA Based Serial Communication	131

for a Multi Processor System

M. Müller, A. Pacholik, W. Fengler Tool Support for Formal System Verification	137
A. Pretschner, J. Alder, Ch. Meissner A Contribution to the Design of Embedded Control Systems	143
R. Ubar, G. Jervan, J. Raik, M. Jenihhin, P. Ellervee Dependability Evaluation in Fault Tolerant Systems with High-Level Decision Diagrams	147
A. Jutmann On LFSR Polynomial Calculation for Test Time Reduction	153
M. Rosenberger, M. J. Schaub, S. C. N. Töpfer, G. Linß Investigation of Efficient Strain Measurement at Smallest Areas Applying the Time to Digital (TDC) Principle	159
9 Image Processing, Image Analysis and Computer Vision	
J. Meyer, R. Espiritu, J. Earthman Virtual Bone Density Measurement for Dental Implants	167
F. Erfurth, WD. Schmidt, B. Nyuyki, A. Scheibe, P. Saluz, D. Faßler Spectral Imaging Technology for Microarray Scanners	173
T. Langner, D. Kollhoff Farbbasierte Druckbildinspektion an Rundkörpern	179
C. Lucht, F. Gaßmann, R. Jahn Inline-Fehlerdetektion auf freigeformten, texturierten Oberflächen im Produktionsprozess	185
HW. Lahmann, M. Stöckmann Optical Inspection of Cutting Tools by means of 2D- and 3D-Imaging Processing	191
A. Melitzki, G. Stanke, F. Weckend Bestimmung von Raumpositionen durch Kombination von 2D-Bildverarbeitung und Mehrfachlinienlasertriangulation - am Beispiel von PKW-Stabilisatoren	197
F. Boochs, Ch. Raab, R. Schütze, J. Traiser, H. Wirth	203

3D contour detection by means of a multi camera system

M. Brandner Vision-Based Surface Inspection of Aeronautic Parts using Active Stereo	209
H. Lettenbauer, D. Weiss X-ray image acquisition, processing and evaluation for CT-based dimensional metrology	215
K. Sickel, V. Daum, J. Hornegger Shortest Path Search with Constraints on Surface Models of In-the-ear Hearing Aids	221
S. Husung, G. Höhne, C. Weber Efficient Use of Stereoscopic Projection for the Interactive Visualisation of Technical Products and Processes	227
N. Schuster Measurement with subpixel-accuracy: Requirements and reality	233
P. Brückner, S. C. N. Töpfer, M. Correns, J. Schnee Position- and colour-accurate probing of edges in colour images with subpixel resolution	239
E. Sparrer, T. Machleidt, R. Nestler, KH. Franke, M. Niebelschütz Deconvolution of atomic force microscopy data in a special measurement mode – methods and practice	245
T. Machleidt, D. Kapusi, T. Langner, KH. Franke Application of nonlinear equalization for characterizing AFM tip shape	251
D. Kapusi, T. Machleidt, R. Jahn, KH. Franke Measuring large areas by white light interferometry at the nanopositioning and nanomeasuring machine (NPMM)	257
R. Burdick, T. Lorenz, K. Bobey Characteristics of High Power LEDs and one example application in with-light-interferometry	263
T. Koch, KH. Franke Aspekte der strukturbasierten Fusion multimodaler Satellitendaten und der Segmentierung fusionierter Bilder	269
T. Riedel, C. Thiel, C. Schmullius A reliable and transferable classification approach towards operational land cover mapping combining optical and SAR data	275
B. Waske, V. Heinzel, M. Braun, G. Menz Classification of SAR and Multispectral Imagery using Support Vector Machines	281

I. Aksit, K. Bünger, A. Fassbender, D. Frekers, Chr. Götze, J. Kemenas 29 An ultra-fast on-line microscopic optical quality assurance concept for	93 97
small structures in an environment of man production) 7
D. Hofmann, G. Linss 29 Application of Innovative Image Sensors for Quality Control	
A. Jablonski, K. Kohrt, M. Böhm 30 Automatic quality grading of raw leather hides)3
M. Rosenberger, M. Schellhorn, P. Brückner, G. Linß 30 Uncompressed digital image data transfer for measurement techniques using a two wire signal line)9
R. Blaschek, B. Meffert Feature point matching for stereo image processing using nonlinear filters	15
A. Mitsiukhin, V. Pachynin, E. Petrovskaya 32 Hartley Discrete Transform Image Coding	21
S. Hellbach, B. Lau, J. P. Eggert, E. Körner, HM. Groß 32 Multi-Cue Motion Segmentation	27
R. R. Alavi, K. Brieß Image Processing Algorithms for Using a Moon Camera as Secondary Sensor for a Satellite Attitude Control System	33
S. Bauer, T. Döring, F. Meysel, R. Reulke 34 Traffic Surveillance using Video Image Detection Systems	11
M. A-Megeed Salem, B. Meffert 34 Wavelet-based Image Segmentation for Traffic Monitoring Systems	17
E. Einhorn, C. Schröter, HJ. Böhme, HM. Groß 35 A Hybrid Kalman Filter Based Algorithm for Real-time Visual Obstacle Detection	53
U. Knauer, R. Stein, B. Meffert 35 Detection of opened honeybee brood cells at an early stage	59

10 Mobile Communications

K. Ghanem, N. Zamin-Khan, M. A. A. Kalil, A. Mitschele-Thiel Dynamic Reconfiguration for Distributing the Traffic Load in the Mobile Networks	367
N. ZKhan, M. A. A. Kalil, K. Ghanem, A. Mitschele-Thiel	373
Future Heterogeneous Networks	
N. ZKhan, K. Ghanem, St. Leistritz, F. Liers, M. A. A. Kalil, H. Kärst, R. Böringer Network Management of Future Access Networks	379
St. Schmidt, H. Kärst, A. Mitschele-Thiel Towards cost-effective Area-wide Wi-Fi Provisioning	385
A. Yousef, M. A. A. Kalil	391
A New Algorithm for an Efficient Stateful Address Autoconfiguration Protocol in Ad hoc Networks	
M. A. A. Kalil, N. Zamin-Khan, H. Al-Mahdi, A. Mitschele-Thiel Evaluation and Improvement of Queueing Management Schemes in Multihop Ad hoc Networks	397
M. Ritzmann Scientific visualisation on mobile devices with limited resources	403
R. Brecht, A. Kraus, H. Krömker Entwicklung von Produktionsrichtlinien von Sport-Live-Berichterstattung für Mobile TV Übertragungen	409
N. A. Tam RCS-M: A Rate Control Scheme to Transport Multimedia Traffic over Satellite Links	421
Ch. Kellner, A. Mitschele-Thiel, A. Diab Performance Evaluation of MIFA, HMIP and HAWAII	427
A. Diab, A. Mitschele-Thiel MIFAv6: A Fast and Smooth Mobility Protocol for IPv6	433
A. Diab, A. Mitschele-Thiel CAMP: A New Tool to Analyse Mobility Management Protocols	439

S. Bräunig, HU. Seidel Learning Signal and Pattern Recognition with Virtual Instruments	447
St. Lambeck Use of Rapid-Control-Prototyping Methods for the control of a nonlinear MIMO-System	453
R. Pittschellis Automatisierungstechnische Ausbildung an Gymnasien	459
A. Diab, HD. Wuttke, K. Henke, A. Mitschele-Thiel, M. Ruhwedel MAeLE: A Metadata-Driven Adaptive e-Learning Environment	465
V. Zöppig, O. Radler, M. Beier, T. Ströhla Modular smart systems for motion control teaching	471
N. Pranke, K. Froitzheim The Media Internet Streaming Toolbox	477
A. Fleischer, R. Andreev, Y. Pavlov, V. Terzieva An Approach to Personalized Learning: A Technique of Estimation of Learners Preferences	485
N. Tsyrelchuk, E. Ruchaevskaia Innovational pedagogical technologies and the Information edu- cational medium in the training of the specialists	491
Ch. Noack, S. Schwintek, Ch. Ament Design of a modular mechanical demonstration system for control engineering lectures	497

Education in Computer Science and Automation

11

A. Jablonski / K. Kohrt / M. Böhm

Automatic quality grading of raw leather hides

ABSTRACT

The quality assessment of leather hides is to a large extent a tedious manual process. Although in the past many attempts have been started, up to now no working automatical system is available on the market. This is due to the large complexity of the task and the time constraints the system has to meet to become a reasonable alternative for human inspectors. We present a prototype system, which is currently in development but already achieves promising results in the rough production environment. We describe the challenges of the automatic grading of leather hides and explain the ideas behind the efficient and robust defect detection algorithms.

INTRODUCTION

Raw leather hides undergo a sophisticated sequence of processing steps: After removing remains of tissue, the hides are treated with salt and acid. Then they pass several tanning and dyeing steps. The complexity of this treatment varies depending on the quality of the raw leather: The better the quality, the fewer steps have to be passed, and the more cost-saving is the production. The quality also influences the market value of the leather, because the final usage ranges from high-value products like car seats, sofas or upper leather for shoes to small parts like leather belts.

Several attempts have been made to find a way to automize the quality control of tanned leather, but until now no practical solution has been found. The Leather Research Association (Forschungsgemeinschaft Leder e.V.) stated that there is no quality inspection system for industrial use available on the market.

The Fraunhofer Institute for Industrial Mathematics (Fraunhofer-Institut für Techno- und Wirtschaftsmathematik) in Kaiserslautern is working in a project together with a tannery in Sweden and the Swedish Fraunhofer-Chalmers Research Centre for Industrial Mathematics in Gothenburg. The objective is to find a way to grade hides automatically in the production process with the help of optical sensors and novel image processing

methods. For this purpose, a prototype system has been integrated in the production line. The conditions at the tannery are very rough, humidity and dust are present everywhere, so all system components must be very robust or have to be enclosed in a protective case. Lighting and sensors have to be arranged carefully to deal with the low-contrast structures in the leather in the best possible way. Last but not least, additional challenges arise from the great demands on the defect detection algorithms that form the basis for the grading of the hides. The existing fast segmentation methods are simply unable to detect the relevant regions with reasonable false positives rates. The main difficulty is that many true defects are very similar to natural structures of the leather (Figure 1). Furthermore, the contrast of the defects can be weak and is not always proportional to their severity. The image processing algorithms have to deal with these complexities, and they have to do it fast, because approximately 100 megapixels of raw data have to be processed in 20 seconds.

Figure 1: Unwanted (top row) and Natural (bottom row) Structures on Leather

FROM IMAGE TO GRADING

Starting from the acquired grayscale images, image analysis methods are applied to attain the grading result. The grading itself depends on the strength, the spatial distribution and the kind of defects present on the hide. A reliable and robust defect detection step is thus the basis for an accurate automatic grading.

The appearance of possible defects can be roughly characterized as follows: **Bites** are small and point-like dark spots, sometimes accumulated in clusters. **Scratches** appear

as line segments and can be exceedingly thin. Their contrast ranges from very good to very poor and the intensity from dark to bright. Locally, they are similar to veins. **Warts** turn out to be bright shiny spots in the images. **Shingles** are agglomerations of circular spots with a complex geometry and usually of extremely poor contrast.

Different kinds of defects require different detection algorithms. The detection of warts and bites is the simplest and can be achieved with standard image processing methods. The detection of shingles is very difficult, the current prototype is not able to detect them reliably. In this article we concentrate on the scratch detection as scratches appear most frequently and the usual standard algorithms are not sufficient to detect them.

SCRATCH DETECTION ALGORITHM

The scratch detection algorithm consists of several processing steps (Figure 2): The preprocessing step (A) generates a binary image, the detection step (B) enhances and segments line like binary structures and the additional classification step (C) further suppresses the false positive detections.

Figure 2: Image Processing Steps

To segment line like structures (i.e. potential scratches) in a highly noisy binary image two strategies are used. The first one relies on an adaptive anisotropic smoothing (**AAS**) and works well for images with sufficient contrast. The second one is more involved and consists of several iterations of adaptive erosion/dilation and reconstruction steps (**IEDR**). Both approaches try to obtain each candidate scratch as one connected region.

Figure 3: Scratch Detection using AAS

AAS (Figure 4) estimates the local covariance matrix from the data and smoothes the data in the direction of the largest variance. This effectively removes the binary noise and at the same time improves the contrast of candidate scratches (Figure 3).

Figure 4: Adaptive Anisotropic Smoothing (AAS)

The **IEDR** approach (Figure 5, Figure 6) aims to connect the highly fragmented scratch candidates to obtain regions with large aspect ratio. The noise pixels are either removed or become connected components with low aspect ratio. After labeling with the aspect ratio and thresholding, only the correct regions remain (Figure 7).

Figure 6: One IEDR Step

Figure 7: Scratch Detection using IEDR

SUMMARY

In the course of the mentioned cooperative project, a prototype system has been successfully integrated in the production process of a Swedish tannery. Image processing algorithms have been developed and implemented which already yield satisfying defect detection results. A reliable shingle detection algorithm is still in development, a method based on gray level geodesic reconstruction performs currently the best.

The prototype system achieves a processing speed of approximately 1 hide per minute instead of the aimed 3 hides per minute. Further improvements in the performance of the algorithms are thus still necessary.

References:

- [1] N. Bauer, M. Maasland: "Oberflächen zuverlässig prüfen", wt Werkstatttechnik online, Springer VDI Verlag, 6: 402-404, 2006
- [2] T. Decker: "Datenklassifikation mittels Bayestechniken", Diploma Thesis, TFH Berlin, Department of Mathematics, 2005
- [3] GFal Berlin: "Automatische Lederfehlererkennung im Produktionsprozess", Abschlussbericht zum AiF FV-Nr.: 13801 BR, Berlin, May 2006
- [4] S. Halim: "Spatially Adaptive Detection of Local Disturbances in Time Series and Stochastic Processes on the Integer Lattice $\mathbb{Z}^{2^{4}}$, Dissertation, University of Kaiserslautern, Department of Mathematics, 2005
- [5] K. Kohrt: "Automatische Qualitätskontrolle Bildverarbeitung in der Industrie", Keramische Zeitschrift, 2: 90-92, 2005
- [6] M. Rauhut: "Konzeption und Aufbau eines Online-Oberflächeninspektionssystems", Leitfaden zur Inspektion von Oberflächen mit Bildverarbeitung, Fraunhofer Vision, 9: 5-8, 2006
- [7] H. Spies: "Kostenfunktionen und Scheduling von (2D-)Bildverarbeitungsalgorithmen", Diploma Thesis, University of Kaiserslautern, Department of Computer Sciences, 2005
- [8] C. Wolf: "Erstellung eines webbasierten Leitstandes für die industrielle Oberflächeninspektion", Diploma Thesis, FH Zweibrücken, Department of Computer Sciences, 2005
- [9] L. Zedler, G. Stanke, A. Trommer: "Fehlererkennung an Halbfabrikaten und Fertigledern mittels digitaler Bildverarbeitung", Tagungsband 3. Freiberger Kollagensymposium, September 2004
- [10] L. Zedler, G. Stanke, A. Tromer, M. Meyer: "Identification of Surface Leather Defects in Wet Blue State by Digital Image Processing", Poster, 28th IULTCS Congress, Firenze, Italy, March 2005
- [11] Plutarch. Der Geist ist kein Schiff, das man beladen kann, sondern ein Feuer das man entfachen muss.

Authors:

Dipl.-Phys. Andreas Jablonski Dipl.-Math. Kristina Kohrt Prof. Dr. Martin Böhm Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Fraunhofer-Platz 1 D 67663 Kaiserslautern Phone: +49 (0) 631 / 31600 – 4385 (Andreas Jablonski) +49 (0) 631 / 31600 – 4485 (Kristina Kohrt) +49 (0) 631 / 31600 – 4687 (Martin Böhm) Fax: +49 (0) 631 / 31600 – 1099 E-mail: andreas.jablonski@itwm.fraunhofer.de kristina.kohrt@itwm.fraunhofer.de martin.boehm@itwm.fraunhofer.de