

PROCCEDINGS

| 10 - 13 September 2007

FACULTY OF COMPUTER SCIENCE AND AUTOMATION

COMPUTER SCIENCE MEETS AUTOMATION

VOLUME I

- **Session 1 Systems Engineering and Intelligent Systems**
- Session 2 Advances in Control Theory and Control Engineering
- Session 3 Optimisation and Management of Complex Systems and Networked Systems
- **Session 4 Intelligent Vehicles and Mobile Systems**
- **Session 5 Robotics and Motion Systems**

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der deutschen Nationalbiografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

ISBN 978-3-939473-17-6

Impressum

Herausgeber:	Der Rektor der Technischen Universität Ilmenau UnivProf. Dr. rer. nat. habil. Peter Scharff
Redaktion:	Referat Marketing und Studentische Angelegenheiten Kongressorganisation Andrea Schneider Tel.: +49 3677 69-2520 Fax: +49 3677 69-1743 e-mail: kongressorganisation@tu-ilmenau.de
Redaktionsschluss:	Juli 2007
Verlag:	Co Technische Universität Ilmenau/Universitätsbibliothek Universitätsverlag Ilmenau Postfach 10 05 65 98684 Ilmenau www.tu-ilmenau.de/universitaetsverlag
Herstellung und Auslieferung:	Verlagshaus Monsenstein und Vannerdat OHG Am Hawerkamp 31 48155 Münster www.mv-verlag.de
Layout Cover:	www.cey-x.de
Bezugsmöglichkeiten:	Universitätsbibliothek der TU Ilmenau Tel.: +49 3677 69-4615 Fax: +49 3677 69-4602

© Technische Universität Ilmenau (Thür.) 2007

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt. Mit Ausnahme der gesetzlich zugelassenen Fälle ist eine Verwertung ohne Einwilligung der Redaktion strafbar.

Preface

Dear Participants,

Confronted with the ever-increasing complexity of technical processes and the growing demands on their efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and new methods of systems operation. The factors likely to affect the design of the smart systems of the future will doubtless include the following:

- As computational costs decrease, it will be possible to apply more complex algorithms, even in real time. These algorithms will take into account system nonlinearities or provide online optimisation of the system's performance.
- New fields of application will be addressed. Interest is now being expressed, beyond that in "classical" technical systems and processes, in environmental systems or medical and bioengineering applications.
- The boundaries between software and hardware design are being eroded. New design methods will include co-design of software and hardware and even of sensor and actuator components.
- Automation will not only replace human operators but will assist, support and supervise humans so that their work is safe and even more effective.
- Networked systems or swarms will be crucial, requiring improvement of the communication within them and study of how their behaviour can be made globally consistent.
- The issues of security and safety, not only during the operation of systems but also in the course of their design, will continue to increase in importance.

The title "Computer Science meets Automation", borne by the 52nd International Scientific Colloquium (IWK) at the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these challenges, cooperating closely on innovative methods in the two disciplines of computer science and automation.

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also deepened between the countries from the East. Today, the objective of the colloquium is still to bring researchers together. They come from the eastern and western member states of the European Union, and, indeed, from all over the world. All who wish to share their ideas on the points where "Computer Science meets Automation" are addressed by this colloquium at the Technische Universität Ilmenau.

All the University's Faculties have joined forces to ensure that nothing is left out. Control engineering, information science, cybernetics, communication technology and systems engineering – for all of these and their applications (ranging from biological systems to heavy engineering), the issues are being covered.

Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as they do, a most interesting colloquium programme of an interdisciplinary nature.

I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your research, to address new concepts and to meet colleagues in Ilmenau.

In Sherte

Professor Peter Scharff Rector, TU Ilmenau

"L. Ummt

Professor Christoph Ament Head of Organisation

Table of Contents

CONTENTS

1 Systems Engineering and Intelligent Systems	Page
A. Yu. Nedelina, W. Fengler DIPLAN: Distributed Planner for Decision Support Systems	3
O. Sokolov, M. Wagenknecht, U. Gocht Multiagent Intelligent Diagnostics of Arising Faults	9
V. Nissen Management Applications of Fuzzy Conrol	15
O. G. Rudenko, A. A. Bessonov, P. Otto A Method for Information Coding in CMAC Networks	21
Ye. Bodyanskiy, P. Otto, I. Pliss, N. Teslenko Nonlinear process identification and modeling using general regression neuro-fuzzy network	27
Ye. Bodyanskiy, Ye. Gorshkov, V. Kolodyazhniy , P. Otto Evolving Network Based on Double Neo-Fuzzy Neurons	35
Ch. Wachten, Ch. Ament, C. Müller, H. Reinecke Modeling of a Laser Tracker System with Galvanometer Scanner	41
K. Lüttkopf, M. Abel, B. Eylert Statistics of the truck activity on German Motorways	47
K. Meissner, H. Hensel A 3D process information display to visualize complex process conditions in the process industry	53
FF. Steege, C. Martin, HM. Groß Recent Advances in the Estimation of Pointing Poses on Monocular Images for Human-Robot Interaction	59
A. González, H. Fernlund, J. Ekblad After Action Review by Comparison – an Approach to Automatically Evaluating Trainee Performance in Training Exercise	65
R. Suzuki, N. Fujiki, Y. Taru, N. Kobayashi, E. P. Hofer Internal Model Control for Assistive Devices in Rehabilitation Technology	71
D. Sommer, M. Golz Feature Reduction for Microsleep Detection	77

F. Müller, A. Wenzel, J. Wernstedt A new strategy for on-line Monitoring and Competence Assignment to Driver and Vehicle	
V. Borikov Linear Parameter-Oriented Model of Microplasma Process in Electrolyte Solutions	89
A. Avshalumov, G. Filaretov Detection and Analysis of Impulse Point Sequences on Correlated Disturbance Phone	95
H. Salzwedel Complex Systems Design Automation in the Presence of Bounded and Statistical Uncertainties	101
G. J. Nalepa, I. Wojnicki Filling the Semantic Gaps in Systems Engineering	107
R. Knauf Compiling Experience into Knowledge	113
R. Knauf, S. Tsuruta, Y. Sakurai Toward Knowledge Engineering with Didactic Knowledge	119
2 Advances in Control Theory and Control Engineering	
U. Konigorski, A. López Output Coupling by Dynamic Output Feedback	129
H. Toossian Shandiz, A. Hajipoor Chaos in the Fractional Order Chua System and its Control	135
O. Katernoga, V. Popov, A. Potapovich, G. Davydau Methods for Stability Analysis of Nonlinear Control Systems with Time Delay for Application in Automatic Devices	141
J. Zimmermann, O. Sawodny Modelling and Control of a X-Y-Fine-Positioning Table	145
A. Winkler, J. Suchý Position Based Force Control of an Industrial Manipulator	151
E. Arnold, J. Neupert, O. Sawodny, K. Schneider Trajectory Tracking for Boom Cranes Based on Nonlinear Control and Optimal Trajectory Generation	157

K. Shaposhnikov, V. Astakhov The method of ortogonal projections in problems of the stationary magnetic field computation	165
J. Naumenko The computing of sinusoidal magnetic fields in presence of the surface with bounded conductivity	167
K. Bayramkulov, V. Astakhov The method of the boundary equations in problems of computing static and stationary fields on the topological graph	169
T. Kochubey, V. Astakhov The computation of magnetic field in the presence of ideal conductors using the Integral-differential equation of the first kind	171
M. Schneider, U. Lehmann, J. Krone, P. Langbein, Ch. Ament, P. Otto, U. Stark, J. Schrickel Artificial neural network for product-accompanied analysis and control	173
l. Jawish The Improvement of Traveling Responses of a Subway Train using Fuzzy Logic Techniques	179
Y. Gu, H. Su, J. Chu An Approach for Transforming Nonlinear System Modeled by the Feedforward Neural Networks to Discrete Uncertain Linear System	185
3 Optimisation and Management of Complex Systems and Networked Systems	
R. Franke, J. Doppelhammer Advanced model based control in the Industrial IT System 800xA	193
H. Gerbracht, P. Li, W. Hong An efficient optimization approach to optimal control of large-scale processes	199
T. N. Pham, B. Wutke Modifying the Bellman's dynamic programming to the solution of the discrete multi-criteria optimization problem under fuzziness in long-term planning	205
S. Ritter, P. Bretschneider Optimale Planung und Betriebsführung der Energieversorgung im liberalisierten Energiemarkt	211
P. Bretschneider, D. Westermann Intelligente Energiesysteme: Chancen und Potentiale von IuK-Technologien	217

Z. Lu, Y. Zhong, Yu. Wu, J. Wu WSReMS: A Novel WSDM-based System Resource Management Scheme	223
M. Heit, E. Jennenchen, V. Kruglyak, D. Westermann Simulation des Strommarktes unter Verwendung von Petrinetzen	229
O. Sauer, M. Ebel Engineering of production monitoring & control systems	237
C. Behn, K. Zimmermann Biologically inspired Locomotion Systems and Adaptive Control	245
J. W. Vervoorst, T. Kopfstedt Mission Planning for UAV Swarms	251
M. Kaufmann, G. Bretthauer Development and composition of control logic networks for distributed mechatronic systems in a heterogeneous architecture	257
T. Kopfstedt, J. W. Vervoorst Formation Control for Groups of Mobile Robots Using a Hierarchical Controller Structure	263
M. Abel, Th. Lohfelder Simulation of the Communication Behaviour of the German Toll System	269
P. Hilgers, Ch. Ament Control in Digital Sensor-Actuator-Networks	275
C. Saul, A. Mitschele-Thiel, A. Diab, M. Abd rabou Kalil A Survey of MAC Protocols in Wireless Sensor Networks	281
T. Rossbach, M. Götze, A. Schreiber, M. Eifart, W. Kattanek Wireless Sensor Networks at their Limits – Design Considerations and Prototype Experiments	287
Y. Zhong, J. Ma Ring Domain-Based Key Management in Wireless Sensor Network	293
V. Nissen Automatic Forecast Model Selection in SAP Business Information Warehouse under Noise Conditions	299
M. Kühn, F. Richter, H. Salzwedel Process simulation for significant efficiency gains in clinical departments – practical example of a cancer clinic	305

D. Westermann, M. Kratz, St. Kümmerling, P. Meyer Architektur eines Simulators für Energie-, Informations- und Kommunikations- technologien	311
P. Moreno, D. Westermann, P. Müller, F. Büchner Einsatzoptimierung von dezentralen netzgekoppelten Stromerzeugungs- anlagen (DEA) in Verteilnetzen durch Erhöhung des Automatisierungsgrades	317
M. Heit, S. Rozhenko, M. Kryvenka, D. Westermann Mathematische Bewertung von Engpass-Situationen in Transportnetzen elektrischer Energie mittels lastflussbasierter Auktion	331
M. Lemmel, M. Schnatmeyer RFID-Technology in Warehouse Logistics	339
V. Krugljak, M. Heit, D. Westermann Approaches for modelling power market: A Comparison.	345
St. Kümmerling, N. Döring, A. Friedemann, M. Kratz, D. Westermann Demand-Side-Management in Privathaushalten – Der eBox-Ansatz	351
4 Intelligent Vehicles and Mobile Systems	
A. P. Aguiar, R. Ghabchelloo, A. Pascoal, C. Silvestre , F. Vanni Coordinated Path following of Multiple Marine Vehicles: Theoretical Issues and Practical Constraints	359
R. Engel, J. Kalwa Robust Relative Positioning of Multiple Underwater Vehicles	365
M. Jacobi, T. Pfützenreuter, T. Glotzbach, M. Schneider	371
A 3D Simulation and Visualisation Environment for Unmanned Vehicles in Underwater Scenarios	
	377
in Underwater Scenarios M. Schneider, M. Eichhorn, T. Glotzbach, P. Otto A High-Level Simulator for heterogeneous marine vehicle teams under real	377 383

M. A. Arredondo, A. Cormack SeeTrack: Situation Awareness Tool for Heterogeneous Vehicles	
J. C. Ferreira, P. B. Maia, A. Lucia, A. I. Zapaniotis Virtual Prototyping of an Innovative Urban Vehicle	401
A. Wenzel, A. Gehr, T. Glotzbach, F. Müller Superfour-in: An all-terrain wheelchair with monitoring possibilities to enhance the life quality of people with walking disability	407
Th. Krause, P. Protzel Verteiltes, dynamisches Antriebssystem zur Steuerung eines Luftschiffes	413
T. Behrmann, M. Lemmel Vehicle with pure electric hybrid energy storage system	419
Ch. Schröter, M. Höchemer, HM. Groß A Particle Filter for the Dynamic Window Approach to Mobile Robot Control	425
M. Schenderlein, K. Debes, A. Koenig, HM. Groß Appearance-based Visual Localisation in Outdoor Environments with an Omnidirectional Camera	431
G. Al Zeer, A. Nabout, B. Tibken	437
Hindernisvermeidung für Mobile Roboter mittels Ausweichecken	
Hindernisvermeidung für Mobile Roboter mittels Ausweichecken	445
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß 	445 451
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters St. Müller, A. Scheidig, A. Ober, HM. Groß 	
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters St. Müller, A. Scheidig, A. Ober, HM. Groß Making Mobile Robots Smarter by Probabilistic User Modeling and Tracking A. Swerdlow, T. Machmer, K. Kroschel, A. Laubenheimer, S. Richter 	451
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters St. Müller, A. Scheidig, A. Ober, HM. Groß Making Mobile Robots Smarter by Probabilistic User Modeling and Tracking A. Swerdlow, T. Machmer, K. Kroschel, A. Laubenheimer, S. Richter Opto-acoustical Scene Analysis for a Humanoid Robot A. Ahranovich, S. Karpovich, K. Zimmermann 	451 457

V. Lysenko, W. Mintchenya, K. Zimmermann Minimization of the number of actuators in legged robots using biological objects	483
J. Kroneis, T. Gastauer, S. Liu, B. Sauer Flexible modeling and vibration analysis of a parallel robot with numerical and analytical methods for the purpose of active vibration damping	489
A. Amthor, T. Hausotte, G. Jäger, P. Li Friction Modeling on Nanometerscale and Experimental Verification	495
Paper submitted after copy deadline	
2 Advances in Control Theory and Control Engineering	
V. Piwek, B. Kuhfuss, S. Allers Feed drivers – Synchronized Motion is leading to a process optimization	503

A. Balkovoy, V. Cacenkin, G. Slivinskaia

Statical and dynamical accuracy of direct drive servo systems

ROBOTICS AND MOTION SYSTEMS

The modern direct drive servo systems based on brushless AC motors (BLACM) have been gaining popularity owing to their high torque to current ratio, high efficiency and robustness. The high stiffness of mechanical coupling and high resolution of digital control and measuring systems, allow the considering of BLACM direct drive servo systems as continuous systems. In these systems, the BLACM may be considered as double integrator. The position closed loop with this actuator may be designed with proportional-integral-differential (PID) controller or with a state-space controller. So, the comparison of various control structures with PID control and state-space control render the interest.

From the example of the drive system with PID controller, it may be shown that direct drive servo system with BLACM has the astaticism of the third order and brings the acceptable transients. The structure of such system is in Fig. 1 represented.

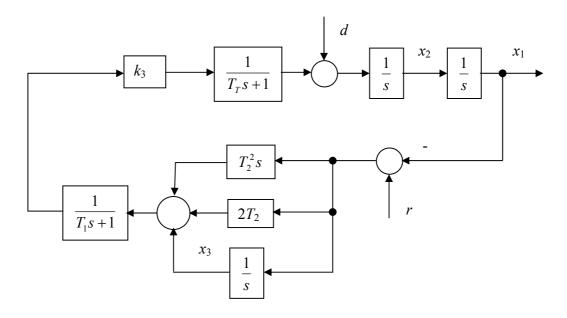


Fig. 1. The drive system with PID controller

The first-order link with time-constant T_T represents the non-ideal conversion of BLACM currents in the current stiff inverter (CSI) into the motor torque and the first-order link with time-constant T_1 represents the lag-effect in digital controller [1]. The transfer function of the "ideal" controller is designed with "critical" damping in numerator that makes the design of controller parameters sufficient easier [2]:

$$G_C(s) = k_3(\frac{1}{s} + 2T_2 + T_2^2 s) = \frac{k_3(1 + 2T_2 s + T_2^2 s^2)}{s}$$
(1)

The closed loop transfer functions from command and from disturbance of the system in Fig. 1 are:

$$G_{CLr}(s) = \frac{k_3(1+2T_2s+T_2^2s^2)}{T_1T_Ts^5 + (T_1+T_T)s^4 + s^3 + k_3T_2^2s^2 + 2k_3T_2s + k_3}$$
(2)

$$G_{CLd}(s) = \frac{s(1 + (T_1 + T_T)s + T_1T_Ts^2)}{T_1T_Ts^5 + (T_1 + T_T)s^4 + s^3 + k_3T_2^2s^2 + 2k_3T_2s + k_3}$$
(3)

The error of the system is:

$$e(s) = (1 - G_{CLr}(s))r(s) - G_{CLd}(s)d(s).$$
(4)

Now, the errors coefficients from command and from disturbance may be calculated [1]:

$$C_{r}(k) = \frac{d^{k}}{ds^{k}} (1 - G_{CLr}(s))|_{s=0}; C_{d}(k) = -\frac{d^{k}}{ds^{k}} G_{CLd}(s)|_{s=0}; k = 0, 1, 2, \dots$$
(5)

As a result, the errors coefficients are:

$$C_r(0) = 0; \ C_r(1) = 0; \ C_r(2) = 0; \ C_r(3) = \frac{6}{k_3}; \ C_d(0) = 0; \ C_d(1) = -\frac{1}{k_3}.$$
 (6)

So, in the servo system with BLACM and PID-controller, the astaticism from command of the third order may be achieved.

The controller parameters are selected with "critical" damping in numerator. In this case, the time constant T_2 of the controller may be calculated from the index of oscillation and base frequency $\omega_0 = \sqrt[3]{k_3}$:

$$T_2 = \frac{2}{\omega_0} \sqrt{\frac{M^2 - M\sqrt{M^2 - 1}}{M^2 - 1}} \,. \tag{7}$$

Usually, index of oscillation is M=1,2...1,5 in dependence of stability of system parameters [3].

The simplest structure of system with state-space control is in Fig. 2 represented. The closed loop transfer functions of the system in Fig. 2 are:

$$G_{CLr}(s) = \frac{x_1(s)}{r(s)} = \frac{l_1}{s^2 + l_2 s + l_1}; \quad G_{CLd}(s) = \frac{x_1(s)}{r(s)} = \frac{1}{s^2 + l_2 s + l_1};$$
(8)

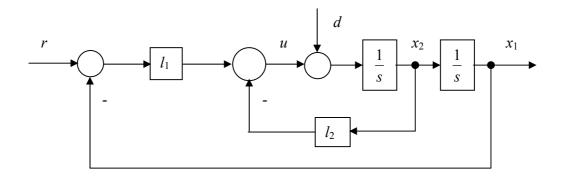


Fig. 2. The drive system with state-space controller

the error of the system is:

$$e_r(s) = \frac{s^2 + l_2 s}{s^2 + l_2 s + l_1}.$$
(9)

In accordance with (5), in the servo system Fig 2, the astaticism from command of the first order may be achieved:

$$C_r(0) = 0; C_r(1) = \frac{1}{l_1 l_2}; C_d(0) = -\frac{1}{l_1}.$$
 (10)

The further development of the system with state-space control is the structure where the full-order observer is added (Fig. 3).

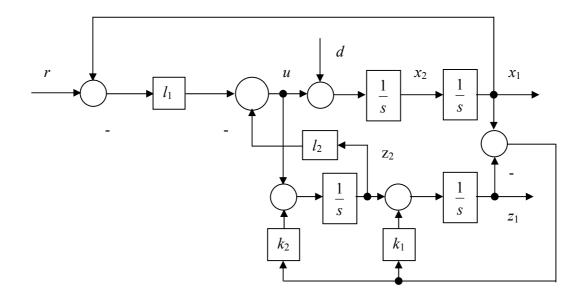


Fig. 3. The drive system with full-order observer

For the state-space control, the velocity from observer is used. The closed loop transfer functions of the system in Fig. 3 are:

$$G_{CLr}(s) = \frac{(s^2 + k_1 s + k_2)l_1}{s^4 + (k_1 + l_2)s^3 + (k_1 l_2 + k_2 + l_1)s^2 + (k_1 l_1 + k_2 l_2)s + k_2 l_1};$$

$$G_{CLd}(s) = \frac{s^2 + (k_1 + l_2)s + k_1 l_2 + k_2}{s^4 + (k_1 + l_2)s^3 + (k_1 l_2 + k_2 + l_1)s^2 + (k_1 l_1 + k_2 l_2)s + k_2 l_1}.$$
(11)

Using (4) and (5), the errors coefficients may be calculated:

$$C_r(0) = 0; \ C_r(1) = \frac{1}{l_1 l_2}; \ C_d(0) = -\frac{1}{l_1} - \frac{k_1 l_2}{k_2 l_1}.$$
(12)

So, the steady-state errors of the system in Fig 3 are approximately the same as in system from Fig. 2.

It is expected that similar to PID controller, the definite advantages may be obtained from the system with state-space controller and state-space errors observer. The structure of such a system is in Fig. 4 depicted. The state-space errors are from the outputs of observer acquired.

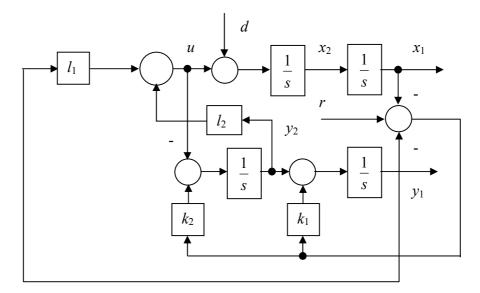


Fig. 4. The system with state-space controller and state-space errors observer The closed loop transfer functions of the system in Fig. 4 are:

$$G_{CLr}(s) = \frac{(k_1l_1 + k_2l_2)s + k_2l_1}{s^4 + (k_1 + l_2)s^3 + (k_1l_2 + k_2 + l_1)s^2 + (k_1l_1 + k_2l_2)s + k_2l_1};$$

$$G_{CLd}(s) = \frac{s^2 + (k_1 + l_2)s + k_1l_2 + k_2 + l_1}{s^4 + (k_1 + l_2)s^3 + (k_1l_2 + k_2 + l_1)s^2 + (k_1l_1 + k_2l_2)s + k_2l_1}.$$
(13)

The errors coefficients are:

$$C_r(0) = 0; \ C_r(1) = 0; \ C_r(2) = \frac{2}{k_2} + \frac{2(k_2 + k_1 l_2)}{k_2 l_1}; \ C_d(0) = -\frac{1}{k_2} - \frac{k_2 + k_1 l_2}{k_2 l_1}.$$
(14)

So, in the servo system from Fig 4, the astaticism from command is the second order but the steady state errors due to acceleration or load are remaining.

The further development of the system properties is the compensation of the constant disturbance. The simplest model of the constant disturbance is the "slow" disturbance in compare to system and observer transients. The model of such "constant" value is the output of integrator with zero random initial condition [4]:

$$\frac{\mathrm{d}d}{\mathrm{d}t} = 0;$$

$$d(0) = d_0,$$
(15)

where *d* is the disturbance; d_0 is the scalar random disturbance.

The equations for system variables are:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} u; \ x_1 = C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$
(16)

In equations (15), the controlled states are x_1 and x_2 . The disturbance x_3 is uncontrolled. All the parameters are observable. So, the closed loop controller and observer may be designed. The structure of the system with state-space controller, state-space errors observer and disturbance model is in Fig. 5 depicted.

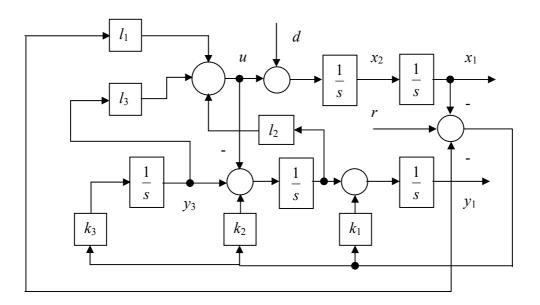


Fig. 5. The system with state-space controller, state-space errors observer and disturbance model The disturbance compensation means $l_3 = 1$. The closed loop transfer functions of the system in Fig. 5 are:

$$G_{CLr}(s) = \frac{(k_1l_1 + k_2l_2 + k_3)s^2 + (k_2l_1 + k_3l_2)s + k_3l_1}{s^5 + (k_1 + l_2)s^4 + (k_1l_2 + k_2 + l_1)s^3 + (k_1l_1 + k_2l_2 + k_3)s^2 + (k_2l_1 + k_3l_2)s + k_3l_1};$$

$$G_{CLd}(s) = \frac{s(s^2 + (k_1 + l_2)s + k_1l_2 + k_2 + l_1)}{s^5 + (k_1 + l_2)s^4 + (k_1l_2 + k_2 + l_1)s^3 + (k_1l_1 + k_2l_2 + k_3)s^2 + (k_2l_1 + k_3l_2)s + k_3l_1}.$$
(17)

The errors coefficients are:

$$C_{r}(0) = 0; C_{r}(1) = 0; C_{r}(2) = 0; C_{r}(3) = \frac{6}{k_{3}} + \frac{6(k_{2} + k_{1}l_{2})}{k_{3}l_{1}};$$

$$C_{d}(0) = 0; C_{d}(1) = -\frac{1}{k_{3}} - \frac{k_{2} + k_{1}l_{2}}{k_{3}l_{1}}.$$
(18)

The astaticism of the system has third order from reference and first order from disturbance.

The analysis of steady-state errors has shown the advantage of two structures: with PID controller and with state-space controller, state-space errors observer and disturbance model. The PID controller needs the digital differentiation that usually has noise due to discretisation. Also, the precision of the system depends from sampling period. In the drive system with observer, there is no differentiation and the precision of integration has weak dependence from sampling period. But the sampling period has to be small because of observer has to be "faster" as observed system.

The another criterion of the servo system selection is the quality of transients. The parameters of system with PID controller may be first evaluated using (7) for selected base frequency and index of oscillation. In the servo system with observer, the synthesis of controller parameters may be done independent.

For the structure in Fig. 5, the simple method of controller parameters selection is the use of modal control method [4]. The characteristic polynomial of controller is:

$$D_r(s) = s(s^2 + l_2 s + l_1) = 0.$$
⁽¹⁹⁾

Here, the zero root is the result of non-controlled disturbance x_3 . Let the desirable characteristic polynomial of the plant as:

$$s(s^2 + 2\zeta_p \omega_p s + \omega_p^2). \tag{20}$$

From (19), (20) and the gain $l_3 = 1$ (selected to give perfect disturbance cancellation) following the equations:

$$l_1 = \omega_p^2; l_2 = 2\zeta_p \omega_p. \tag{21}$$

The characteristic polynomial of observer is:

$$D_{ob}(s) = s^3 + k_1 s^2 + k_2 s + k_3,$$
(22)

The method of observer parameters selection is again the use of modal control method. The desired characteristic polynomial is:

$$(s+a_{o})(s^{2}+2\zeta_{o}\omega_{o}s+\omega_{o}^{2}) = s^{3} + (2\zeta_{o}\omega_{o}+a_{o})s^{2} + (2\zeta_{o}\omega_{o}a_{o}+\omega_{o}^{2})s + \omega_{o}^{2}a_{o}.$$
 (23)

The coefficients of observer are calculated as:

$$k_{1} = 2\zeta_{o}\omega_{o} + a_{o}; k_{2} = 2\zeta_{o}\omega_{o}a_{o} + \omega_{o}^{2}; k_{3} = \omega_{o}^{2}a_{o}.$$
⁽²⁴⁾

The frequencies ω_p , ω_o depend of bandwidth of drive system and observer. The self-oscillation frequency of observer ω_o has to be higher as self-oscillation frequency of plant ω_p . The coefficients ζ_p , ζ_o determine the oscillations of transients. The coefficient a_o assign the speed of transients.

The further comparison of statical and dynamical errors of direct drive servo systems with BLACM demonstrates the advantages of system with PID controller and system with error state space observer. The PID controller is more sensitive to sampling frequency and error state space observer inserts the additional lag effect. The analytical research and simulation of the servo systems dynamical errors show the negative action of "small" time constants of PID-control and relative slow dynamics of system observer on servo system transients. For dynamics improvement of such systems, the "small" time constants of PID-control have to be reduced and the processing speed of the error state observer has to be enhanced. Some simulations and real systems dynamics validating these resume. The further research of control structures and controller and observer parameters has to be done in accordance with obtained here conclusions. The final choice has to be done after research of real systems.

References:

- [1] Цыпкин Я.З. Основы теории автоматических систем. М.: "Наука", 1977.
- [2] Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. М.: Наука, 1972.
- [3] Иващенко Н.Н. Автоматическое регулирование. Теория и элементы систем. Учебник для вузов. Изд. 4-е, перераб. и доп. М.: Машиностроение, 1978. М.: Машиностроение, 1978.
- [4] Квакернаак Х., Сиван Р. Линейные оптимальные системы управления. М.: Мир, 1977.

Authors:

PhD Alexander Balkovoy PhD Victor Cacenkin Dipl. Math. Galina Slivinskaia Department of Electric Drive, Moscow Power Engineering Institute (TU), Krasnokazarmennaya 14, 111250, Moscow, Russia Phone: (495) 673-0285 Fax: (495) 673-1348 E-mail: balk@aep.mpei.ac.ru