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Preface 
 
Dear Participants, 
 
Confronted with the ever-increasing complexity of technical processes and the growing demands on their 
efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and 
new methods of systems operation. The factors likely to affect the design of the smart systems of the future will 
doubtless include the following: 

• As computational costs decrease, it will be possible to apply more complex algorithms, even in real 
time. These algorithms will take into account system nonlinearities or provide online optimisation of the 
system’s performance. 

• New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” 
technical systems and processes, in environmental systems or medical and bioengineering applications. 

• The boundaries between software and hardware design are being eroded. New design methods will 
include co-design of software and hardware and even of sensor and actuator components. 

• Automation will not only replace human operators but will assist, support and supervise humans so 
that their work is safe and even more effective. 

• Networked systems or swarms will be crucial, requiring improvement of the communication within 
them and study of how their behaviour can be made globally consistent. 

• The issues of security and safety, not only during the operation of systems but also in the course of 
their design, will continue to increase in importance. 

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at 
the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these 
challenges, cooperating closely on innovative methods in the two disciplines of computer science and 
automation. 

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the 
colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also 
deepened between the countries from the East. Today, the objective of the colloquium is still to bring 
researchers together. They come from the eastern and western member states of the European Union, and, 
indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets 
Automation” are addressed by this colloquium at the Technische Universität Ilmenau. 
All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, 
information science, cybernetics, communication technology and systems engineering – for all of these and their 
applications (ranging from biological systems to heavy engineering), the issues are being covered.  
Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as 
they do, a most interesting colloquium programme of an interdisciplinary nature. 
I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your 
research, to address new concepts and to meet colleagues in Ilmenau. 
 
 
 
 
 
Professor Peter Scharff     Professor Christoph Ament  
Rector, TU Ilmenau             Head of Organisation 
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Statical and dynamical accuracy of direct drive 
servo systems 
 
 

ROBOTICS AND MOTION SYSTEMS 
 

The modern direct drive servo systems based on brushless AC motors (BLACM) have 

been gaining popularity owing to their high torque to current ratio, high efficiency and 

robustness. The high stiffness of mechanical coupling and high resolution of digital control and 

measuring systems, allow the considering of BLACM direct drive servo systems as continuous 

systems. In these systems, the BLACM may be considered as double integrator. The position 

closed loop with this actuator may be designed with proportional-integral-differential (PID) 

controller or with a state-space controller. So, the comparison of various control structures with 

PID control and state-space control render the interest. 

From the example of the drive system with PID controller, it may be shown that direct 

drive servo system with BLACM has the astaticism of the third order and brings the acceptable 

transients. The structure of such system is in Fig. 1 represented.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The drive system with PID controller 
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The first-order link with time-constant TT represents the non-ideal conversion of BLACM 

currents in the current stiff inverter (CSI) into the motor torque and the first-order link with time-

constant T1 represents the lag-effect in digital controller [1]. The transfer function of the "ideal" 

controller is designed with "critical" damping in numerator that makes the design of controller 

parameters sufficient easier [2]: 
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The closed loop transfer functions from command and from disturbance of the system in Fig. 1 

are: 
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The error of the system is: 
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Now, the errors coefficients from command and from disturbance may be calculated [1]: 
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As a result, the errors coefficients are: 
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So, in the servo system with BLACM and PID-controller, the astaticism from command of the 

third order may be achieved. 

The controller parameters are selected with "critical" damping in numerator. In this case, 

the time constant T2 of the controller may be calculated from the index of oscillation and base 

frequency ω0 = 3
3k : 
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Usually, index of oscillation is M=1,2…1,5 in dependence of stability of system parameters [3]. 

The simplest structure of system with state-space control is in Fig. 2 represented. The 

closed loop transfer functions of the system in Fig. 2 are: 
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Fig. 2. The drive system with state-space controller 

the error of the system is: 
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In accordance with (5), in the servo system Fig 2, the astaticism from command of the first order 

may be achieved: 
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The further development of the system with state-space control is the structure where the 

full-order observer is added (Fig. 3).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The drive system with full-order observer 

For the state-space control, the velocity from observer is used. The closed loop transfer 

functions of the system in Fig. 3 are: 
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Using (4) and (5), the errors coefficients may be calculated: 
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So, the steady-state errors of the system in Fig 3 are approximately the same as in system from 

Fig. 2. 

It is expected that similar to PID controller, the definite advantages may be obtained from 

the system with state-space controller and state-space errors observer. The structure of such a 

system is in Fig. 4 depicted. The state-space errors are from the outputs of observer acquired.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The system with state-space controller and state-space errors observer 

The closed loop transfer functions of the system in Fig. 4 are: 
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The errors coefficients are: 
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So, in the servo system from Fig 4, the astaticism from command is the second order but the 

steady state errors due to acceleration or load are remaining. 
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The further development of the system properties is the compensation of the constant 

disturbance. The simplest model of the constant disturbance is the "slow" disturbance in compare 

to system and observer transients. The model of such "constant" value is the output of integrator 

with zero random initial condition [4]: 

,dd

;
t
d

0(0)

0
d
d

=

=
 (15) 

where d is the disturbance; d0 is the scalar random disturbance. 

The equations for system variables are: 
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In equations (15), the controlled states are x1 and x2. The disturbance x3 is uncontrolled. All the 

parameters are observable. So, the closed loop controller and observer may be designed. The 

structure of the system with state-space controller, state-space errors observer and disturbance 

model is in Fig. 5 depicted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The system with state-space controller, state-space errors observer and disturbance model 

The disturbance compensation means l3 = 1. The closed loop transfer functions of the 

system in Fig. 5 are: 
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The errors coefficients are: 
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The astaticism of the system has third order from reference and first order from 

disturbance. 

The analysis of steady-state errors has shown the advantage of two structures: with PID 

controller and with state-space controller, state-space errors observer and disturbance model. The 

PID controller needs the digital differentiation that usually has noise due to discretisation. Also, 

the precision of the system depends from sampling period. In the drive system with observer, 

there is no differentiation and the precision of integration has weak dependence from sampling 

period. But the sampling period has to be small because of observer has to be "faster" as 

observed system. 

The another criterion of the servo system selection is the quality of transients. The 

parameters of system with PID controller may be first evaluated using (7) for selected base 

frequency and index of oscillation. In the servo system with observer, the synthesis of controller 

parameters may be done independent. 

For the structure in Fig. 5, the simple method of controller parameters selection is the use 

of modal control method [4]. The characteristic polynomial of controller is: 

.0)()( 12
2 =++= lslsssDr  (19) 

Here, the zero root is the result of non-controlled disturbance x3. Let the desirable characteristic 

polynomial of the plant as: 
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From (19), (20) and the gain 13 =l  (selected to give perfect disturbance cancellation) following 

the equations: 

.ll ppp ωζ=ω= 2 ; 2
2

1  (21) 

The characteristic polynomial of observer is: 
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The method of observer parameters selection is again the use of modal control method. The 

desired characteristic polynomial is: 

.asasasssas ooooooooooooo
222322 )2()2()2)(( ω+ω+ωζ++ωζ+=ω+ωζ++  (23) 

The coefficients of observer are calculated as: 

.akakak ooooooooo
2

3
2

21  ;2 ;2 ω=ω+ωζ=+ωζ=  (24) 

The frequencies ωр, ωo depend of bandwidth of drive system and observer. The self-oscillation 

frequency of observer ωo has to be higher as self-oscillation frequency of plant ωp. The 

coefficients ζр, ζo determine the oscillations of transients. The coefficient ao assign the speed of 

transients. 

The further comparison of statical and dynamical errors of direct drive servo systems 

with BLACM demonstrates the advantages of system with PID controller and system with error 

state space observer. The PID controller is more sensitive to sampling frequency and error state 

space observer inserts the additional lag effect. The analytical research and simulation of the 

servo systems dynamical errors show the negative action of "small" time constants of PID-

control and relative slow dynamics of system observer on servo system transients. For dynamics 

improvement of such systems, the "small" time constants of PID-control have to be reduced and 

the processing speed of the error state observer has to be enhanced. Some simulations and real 

systems dynamics validating these resume. The further research of control structures and 

controller and observer parameters has to be done in accordance with obtained here conclusions. 

The final choice has to be done after research of real systems. 
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