

## PROCCEDINGS

| 10 - 13 September 2007

# FACULTY OF COMPUTER SCIENCE AND AUTOMATION



## **COMPUTER SCIENCE MEETS AUTOMATION**

## **VOLUME I**

- **Session 1 Systems Engineering and Intelligent Systems**
- Session 2 Advances in Control Theory and Control Engineering
- Session 3 Optimisation and Management of Complex Systems and Networked Systems
- **Session 4 Intelligent Vehicles and Mobile Systems**
- **Session 5 Robotics and Motion Systems**



## Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der deutschen Nationalbiografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

## ISBN 978-3-939473-17-6

### Impressum

| Herausgeber:                     | Der Rektor der Technischen Universität Ilmenau<br>UnivProf. Dr. rer. nat. habil. Peter Scharff                                                                                                  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Redaktion:                       | Referat Marketing und Studentische Angelegenheiten<br>Kongressorganisation<br>Andrea Schneider<br>Tel.: +49 3677 69-2520<br>Fax: +49 3677 69-1743<br>e-mail: kongressorganisation@tu-ilmenau.de |
| Redaktionsschluss:               | Juli 2007                                                                                                                                                                                       |
| Verlag:                          | Ge                                                                                                                                                                                              |
|                                  | Technische Universität Ilmenau/Universitätsbibliothek<br>Universitätsverlag Ilmenau<br>Postfach 10 05 65<br>98684 Ilmenau<br>www.tu-ilmenau.de/universitaetsverlag                              |
| Herstellung und<br>Auslieferung: | Verlagshaus Monsenstein und Vannerdat OHG<br>Am Hawerkamp 31<br>48155 Münster<br>www.mv-verlag.de                                                                                               |
| Layout Cover:                    | www.cey-x.de                                                                                                                                                                                    |
| Bezugsmöglichkeiten:             | Universitätsbibliothek der TU Ilmenau<br>Tel.: +49 3677 69-4615<br>Fax: +49 3677 69-4602                                                                                                        |

## © Technische Universität Ilmenau (Thür.) 2007

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt. Mit Ausnahme der gesetzlich zugelassenen Fälle ist eine Verwertung ohne Einwilligung der Redaktion strafbar.

## Preface

Dear Participants,

Confronted with the ever-increasing complexity of technical processes and the growing demands on their efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and new methods of systems operation. The factors likely to affect the design of the smart systems of the future will doubtless include the following:

- As computational costs decrease, it will be possible to apply more complex algorithms, even in real time. These algorithms will take into account system nonlinearities or provide online optimisation of the system's performance.
- New fields of application will be addressed. Interest is now being expressed, beyond that in "classical" technical systems and processes, in environmental systems or medical and bioengineering applications.
- The boundaries between software and hardware design are being eroded. New design methods will include co-design of software and hardware and even of sensor and actuator components.
- Automation will not only replace human operators but will assist, support and supervise humans so that their work is safe and even more effective.
- Networked systems or swarms will be crucial, requiring improvement of the communication within them and study of how their behaviour can be made globally consistent.
- The issues of security and safety, not only during the operation of systems but also in the course of their design, will continue to increase in importance.

The title "Computer Science meets Automation", borne by the 52<sup>nd</sup> International Scientific Colloquium (IWK) at the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these challenges, cooperating closely on innovative methods in the two disciplines of computer science and automation.

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also deepened between the countries from the East. Today, the objective of the colloquium is still to bring researchers together. They come from the eastern and western member states of the European Union, and, indeed, from all over the world. All who wish to share their ideas on the points where "Computer Science meets Automation" are addressed by this colloquium at the Technische Universität Ilmenau.

All the University's Faculties have joined forces to ensure that nothing is left out. Control engineering, information science, cybernetics, communication technology and systems engineering – for all of these and their applications (ranging from biological systems to heavy engineering), the issues are being covered.

Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as they do, a most interesting colloquium programme of an interdisciplinary nature.

I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your research, to address new concepts and to meet colleagues in Ilmenau.

In Sherte

Professor Peter Scharff Rector, TU Ilmenau

"L. Ummt

Professor Christoph Ament Head of Organisation

**Table of Contents** 

## CONTENTS

| 1 Systems Engineering and Intelligent Systems                                                                                                                  | Page |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| A. Yu. Nedelina, W. Fengler<br>DIPLAN: Distributed Planner for Decision Support Systems                                                                        | 3    |
| O. Sokolov, M. Wagenknecht, U. Gocht<br>Multiagent Intelligent Diagnostics of Arising Faults                                                                   | 9    |
| V. Nissen<br>Management Applications of Fuzzy Conrol                                                                                                           | 15   |
| O. G. Rudenko, A. A. Bessonov, P. Otto<br>A Method for Information Coding in CMAC Networks                                                                     | 21   |
| Ye. Bodyanskiy, P. Otto, I. Pliss, N. Teslenko<br>Nonlinear process identification and modeling using general<br>regression neuro-fuzzy network                | 27   |
| Ye. Bodyanskiy, Ye. Gorshkov, V. Kolodyazhniy , P. Otto<br>Evolving Network Based on Double Neo-Fuzzy Neurons                                                  | 35   |
| Ch. Wachten, Ch. Ament, C. Müller, H. Reinecke<br>Modeling of a Laser Tracker System with Galvanometer Scanner                                                 | 41   |
| K. Lüttkopf, M. Abel, B. Eylert<br>Statistics of the truck activity on German Motorways                                                                        | 47   |
| K. Meissner, H. Hensel<br>A 3D process information display to visualize complex process<br>conditions in the process industry                                  | 53   |
| FF. Steege, C. Martin, HM. Groß<br>Recent Advances in the Estimation of Pointing Poses on Monocular<br>Images for Human-Robot Interaction                      | 59   |
| A. González, H. Fernlund, J. Ekblad<br>After Action Review by Comparison – an Approach to Automatically<br>Evaluating Trainee Performance in Training Exercise | 65   |
| R. Suzuki, N. Fujiki, Y. Taru, N. Kobayashi, E. P. Hofer<br>Internal Model Control for Assistive Devices in Rehabilitation Technology                          | 71   |
| D. Sommer, M. Golz<br>Feature Reduction for Microsleep Detection                                                                                               | 77   |

| F. Müller, A. Wenzel, J. Wernstedt<br>A new strategy for on-line Monitoring and Competence Assignment to<br>Driver and Vehicle                                           | 83  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| V. Borikov<br>Linear Parameter-Oriented Model of Microplasma Process in<br>Electrolyte Solutions                                                                         | 89  |
| A. Avshalumov, G. Filaretov<br>Detection and Analysis of Impulse Point Sequences on<br>Correlated Disturbance Phone                                                      | 95  |
| H. Salzwedel<br>Complex Systems Design Automation in the Presence of Bounded<br>and Statistical Uncertainties                                                            | 101 |
| G. J. Nalepa, I. Wojnicki<br>Filling the Semantic Gaps in Systems Engineering                                                                                            | 107 |
| R. Knauf<br>Compiling Experience into Knowledge                                                                                                                          | 113 |
| R. Knauf, S. Tsuruta, Y. Sakurai<br>Toward Knowledge Engineering with Didactic Knowledge                                                                                 | 119 |
| 2 Advances in Control Theory and Control Engineering                                                                                                                     |     |
| U. Konigorski, A. López<br>Output Coupling by Dynamic Output Feedback                                                                                                    | 129 |
| H. Toossian Shandiz, A. Hajipoor<br>Chaos in the Fractional Order Chua System and its Control                                                                            | 135 |
| O. Katernoga, V. Popov, A. Potapovich, G. Davydau<br>Methods for Stability Analysis of Nonlinear Control Systems with Time<br>Delay for Application in Automatic Devices | 141 |
| J. Zimmermann, O. Sawodny<br>Modelling and Control of a X-Y-Fine-Positioning Table                                                                                       | 145 |
| A. Winkler, J. Suchý<br>Position Based Force Control of an Industrial Manipulator                                                                                        | 151 |
| E. Arnold, J. Neupert, O. Sawodny, K. Schneider<br>Trajectory Tracking for Boom Cranes Based on Nonlinear Control<br>and Optimal Trajectory Generation                   | 157 |

| K. Shaposh<br>The methoo<br>magnetic fi        | nikov, V. Astakhov<br>I of ortogonal projections in problems of the stationary<br>eld computation                                            | 165 |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| J. Naumenk<br>The compu<br>bounded co          | o<br>ting of sinusoidal magnetic fields in presence of the surface with<br>onductivity                                                       | 167 |
| K. Bayramk<br>The methoo<br>stationary f       | ulov, V. Astakhov<br>I of the boundary equations in problems of computing static and<br>ields on the topological graph                       | 169 |
| T. Kochube<br>The compu-<br>using the Ir       | y, V. Astakhov<br>tation of magnetic field in the presence of ideal conductors<br>ntegral-differential equation of the first kind            | 171 |
| M. Schneide<br>U. Stark, J.<br>Artificial ne   | er, U. Lehmann, J. Krone, P. Langbein, Ch. Ament, P. Otto,<br>Schrickel<br>ural network for product-accompanied analysis and control         | 173 |
| I. Jawish<br>The Improv<br>Fuzzy Logic         | ement of Traveling Responses of a Subway Train using<br>Techniques                                                                           | 179 |
| Y. Gu, H. Su<br>An Approac<br>Neural Netv      | ı, J. Chu<br>ch for Transforming Nonlinear System Modeled by the Feedforward<br>vorks to Discrete Uncertain Linear System                    | 185 |
| 3 Opt<br>and                                   | imisation and Management of Complex Systems<br>Networked Systems                                                                             |     |
| R. Franke, J<br>Advanced r                     | . Doppelhammer<br>nodel based control in the Industrial IT System 800xA                                                                      | 193 |
| H. Gerbrach<br>An efficient                    | nt, P. Li, W. Hong<br>optimization approach to optimal control of large-scale processes                                                      | 199 |
| T. N. Pham,<br>Modifying t<br>multi-criteri    | B. Wutke<br>he Bellman's dynamic programming to the solution of the discrete<br>a optimization problem under fuzziness in long-term planning | 205 |
| S. Ritter, P.<br>Optimale Pl<br>liberalisierte | Bretschneider<br>anung und Betriebsführung der Energieversorgung im<br>en Energiemarkt                                                       | 211 |
| P. Bretschne<br>Intelligente                   | eider, D. Westermann<br>Energiesysteme: Chancen und Potentiale von IuK-Technologien                                                          | 217 |

| Z. Lu, Y. Zhong, Yu. Wu, J. Wu<br>WSReMS: A Novel WSDM-based System Resource Management Scheme                                                               | 223 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| M. Heit, E. Jennenchen, V. Kruglyak, D. Westermann<br>Simulation des Strommarktes unter Verwendung von Petrinetzen                                           | 229 |
| O. Sauer, M. Ebel<br>Engineering of production monitoring & control systems                                                                                  | 237 |
| C. Behn, K. Zimmermann<br>Biologically inspired Locomotion Systems and Adaptive Control                                                                      | 245 |
| J. W. Vervoorst, T. Kopfstedt<br>Mission Planning for UAV Swarms                                                                                             | 251 |
| M. Kaufmann, G. Bretthauer<br>Development and composition of control logic networks for<br>distributed mechatronic systems in a heterogeneous architecture   | 257 |
| T. Kopfstedt, J. W. Vervoorst<br>Formation Control for Groups of Mobile Robots Using a Hierarchical<br>Controller Structure                                  | 263 |
| M. Abel, Th. Lohfelder<br>Simulation of the Communication Behaviour of the German Toll System                                                                | 269 |
| P. Hilgers, Ch. Ament<br>Control in Digital Sensor-Actuator-Networks                                                                                         | 275 |
| C. Saul, A. Mitschele-Thiel, A. Diab, M. Abd rabou Kalil<br>A Survey of MAC Protocols in Wireless Sensor Networks                                            | 281 |
| T. Rossbach, M. Götze, A. Schreiber, M. Eifart, W. Kattanek<br>Wireless Sensor Networks at their Limits – Design Considerations<br>and Prototype Experiments | 287 |
| Y. Zhong, J. Ma<br>Ring Domain-Based Key Management in Wireless Sensor Network                                                                               | 293 |
| V. Nissen<br>Automatic Forecast Model Selection in SAP Business Information<br>Warehouse under Noise Conditions                                              | 299 |
| M. Kühn, F. Richter, H. Salzwedel<br>Process simulation for significant efficiency gains in clinical departments –<br>practical example of a cancer clinic   | 305 |

| D. Westermann, M. Kratz, St. Kümmerling, P. Meyer<br>Architektur eines Simulators für Energie-, Informations- und Kommunikations-<br>technologien                                                  | 311 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| P. Moreno, D. Westermann, P. Müller, F. Büchner<br>Einsatzoptimierung von dezentralen netzgekoppelten Stromerzeugungs-<br>anlagen (DEA) in Verteilnetzen durch Erhöhung des Automatisierungsgrades | 317 |
| M. Heit, S. Rozhenko, M. Kryvenka, D. Westermann<br>Mathematische Bewertung von Engpass-Situationen in Transportnetzen<br>elektrischer Energie mittels lastflussbasierter Auktion                  | 331 |
| M. Lemmel, M. Schnatmeyer<br>RFID-Technology in Warehouse Logistics                                                                                                                                | 339 |
| V. Krugljak, M. Heit, D. Westermann<br>Approaches for modelling power market: A Comparison.                                                                                                        | 345 |
| St. Kümmerling, N. Döring, A. Friedemann, M. Kratz, D. Westermann<br>Demand-Side-Management in Privathaushalten – Der eBox-Ansatz                                                                  | 351 |
| 4 Intelligent Vehicles and Mobile Systems                                                                                                                                                          |     |
| A. P. Aguiar, R. Ghabchelloo, A. Pascoal, C. Silvestre , F. Vanni<br>Coordinated Path following of Multiple Marine Vehicles: Theoretical<br>Issues and Practical Constraints                       | 359 |
| R. Engel, J. Kalwa<br>Robust Relative Positioning of Multiple Underwater Vehicles                                                                                                                  | 365 |
| M. Jacobi, T. Pfützenreuter, T. Glotzbach, M. Schneider<br>A 3D Simulation and Visualisation Environment for Unmanned Vehicles<br>in Underwater Scenarios                                          | 371 |
| M. Schneider, M. Eichhorn, T. Glotzbach, P. Otto<br>A High-Level Simulator for heterogeneous marine vehicle teams under real<br>constraints                                                        | 377 |
| A. Zangrilli, A. Picini<br>Unmanned Marine Vehicles working in cooperation: market trends<br>and technological requirements                                                                        | 383 |
| T. Glotzbach, P. Otto, M. Schneider, M. Marinov<br>A Concept for Team-Orientated Mission Planning and Formal Language<br>Verification for Heterogeneous Unmanned Vehicles                          | 389 |

| M. A. Arredondo, A. Cormack<br>SeeTrack: Situation Awareness Tool for Heterogeneous Vehicles                                                                                          | 395 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| J. C. Ferreira, P. B. Maia, A. Lucia, A. I. Zapaniotis<br>Virtual Prototyping of an Innovative Urban Vehicle                                                                          | 401 |
| A. Wenzel, A. Gehr, T. Glotzbach, F. Müller<br>Superfour-in: An all-terrain wheelchair with monitoring possibilities to<br>enhance the life quality of people with walking disability | 407 |
| Th. Krause, P. Protzel<br>Verteiltes, dynamisches Antriebssystem zur Steuerung eines Luftschiffes                                                                                     | 413 |
| T. Behrmann, M. Lemmel<br>Vehicle with pure electric hybrid energy storage system                                                                                                     | 419 |
| Ch. Schröter, M. Höchemer, HM. Groß<br>A Particle Filter for the Dynamic Window Approach to Mobile Robot Control                                                                      | 425 |
| M. Schenderlein, K. Debes, A. Koenig, HM. Groß<br>Appearance-based Visual Localisation in Outdoor Environments with an<br>Omnidirectional Camera                                      | 431 |
| G. Al Zeer, A. Nabout, B. Tibken<br>Hindernisvermeidung für Mobile Roboter mittels Ausweichecken                                                                                      | 437 |
| 5 Robotics and Motion Systems                                                                                                                                                         |     |
| Ch. Schröter, HM. Groß<br>Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters                                                                                         | 445 |
| St. Müller, A. Scheidig, A. Ober, HM. Groß<br>Making Mobile Robots Smarter by Probabilistic User Modeling and Tracking                                                                | 451 |
| A. Swerdlow, T. Machmer, K. Kroschel, A. Laubenheimer, S. Richter<br>Opto-acoustical Scene Analysis for a Humanoid Robot                                                              | 457 |
| A. Ahranovich, S. Karpovich, K. Zimmermann<br>Multicoordinate Positioning System Design and Simulation                                                                                | 463 |
| A. Balkovoy, V. Cacenkin, G. Slivinskaia<br>Statical and dynamical accuracy of direct drive servo systems                                                                             | 469 |
| Y. Litvinov, S. Karpovich, A. Ahranovich<br>The 6-DOF Spatial Parallel Mechanism Control System Computer Simulation                                                                   | 477 |

| V. Lysenko, W. Mintchenya, K. Zimmermann<br>Minimization of the number of actuators in legged robots using<br>biological objects                                                               | 483 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| J. Kroneis, T. Gastauer, S. Liu, B. Sauer<br>Flexible modeling and vibration analysis of a parallel robot with<br>numerical and analytical methods for the purpose of active vibration damping | 489 |
| A. Amthor, T. Hausotte, G. Jäger, P. Li<br>Friction Modeling on Nanometerscale and Experimental Verification                                                                                   | 495 |
| Paper submitted after copy deadline                                                                                                                                                            |     |
| 2 Advances in Control Theory and Control Engineering                                                                                                                                           |     |
| V. Piwek, B. Kuhfuss, S. Allers<br>Feed drivers – Synchronized Motion is leading to a process optimization                                                                                     | 503 |

S. Müller / A. Scheidig / A. Ober / H.-M. Gross

## Making Mobile Robots Smarter by Probabilistic User Modeling and Tracking

#### Abstract

This paper considers the problem of tracking and modeling users of a mobile service robot. In order to adapt the behavior of an interacting robot to the user's preferences, the system has to know about the people in its surrounding and to model their properties. To that purpose, a consistent probabilistic model is introduced here, which is realizing the tracking process and storing the information.

### 1 Introduction

The weak acceptance of a robot actively offering services is a hard problem. People are not willing to interact with a stupid computer. One way to increase the rate of interactions is to make the robot smarter by selecting a behaviour more appropriate to the specific person. One essential step on that way, is to model the state of a user properly. In particular, the robot has to know where people are in its surrounding and what are their objectives. The task of people tracking typically is done using different sensors which are integrated in a probabilistic model, e.g. a particle or kalman filter. In former work [3] we developed a probabilistic multi-cue people tracker, which successfully runs on our shopping robot SCITOS. Besides the presence of possible users, further information like their gender, age and if they are in a hurry or willing to interact are necessary for an adequate reaction of the robot. Therefore, the simple model of people's positions has been improved by modeling different people and their properties. Because many of these properties can not be observed continuously, it is necessary to remember and recognize people, which typically is done by analyzing face images [5] or by a color model of a person. In our model both methods are used as cues for identification, which is done implicitly in the model. Based on a knowledge base like that, the robot can infere various facts about its situation for an intelligent action selection.

On a mobile robot there are different sensory systems gathering information about the robots environment (see fig. 1). A probabilistic model is the central place where all the



Figure 1: Layers of our systems architechture: (left) sensors providing raw data, (middle) preprocessing modules extracting information, (right) short time aggregation of information for model update



Figure 2: Bayesian network of the probabilistic model: **x** position of hypothesis n,  $\Delta t$  time difference for representing movement trajectories, **a** appearance vector (face and color) of person k, D is the person in dialog with the robot, I need to interact

data are merged together. Our robot HOROS, a Pioneer platform based interacting robot, is equipped with some range sensors like a laser and sonars, two cameras yielding a panorama image and frontal images, and a pair of microphones for sound analysis mounted at the head.

In the following section the architechture of our system is described in more detail, before the probabilistic user model is explained. At the end of the paper some ongoing experiments are shown which are made for learning a classification of people's movement trajectories.

#### 2 System Architecture

The environment recognition system of HOROS is based on a couple of sensors providing raw data as ranges, visual inputs, and a stereo audio signal. Based on these, different preprocessing modules are extracting information on people hypotheses in the surrounding of the robot. A brief overview on these modules is given below. After single observations of possible people's positions  $\mathbf{x}$ , person's color profile and facial features  $\mathbf{a}$  or their gender Gare extracted, they are aggregated in the accumulation layer. Similar to the human brain here the different modalities are combined with their sensory context. Thus, observations on the appearance of a person are combined with a position, bearing only position estimation from color detection are combined with distance measurements in the local occupancy map. Further, an extracted color pattern or an appearance vector from face analysis is assigned to a position and gender estimation from face analysis as well as from sound analysis are associated to an appearance  $\mathbf{a}$  and a position. As a last source of information there are model internal observations. E.g. the need of a person to interact with the robot can be estimated from the movement trajectory (see below) and the person standing in front of the robot is supposed to be that user who is in dialog with the robot. In addition to the improved quality of observations by combining them, the accumulation layer compensates the asynchronously occuring observations using a time slicing mechanism. In each time slice all the observations are accumulated before one update at the model is done.

Knowing all the aggregated observations, which are represented as a joint probability, the probabilistic model is updated. In fig. 2 the Bayesian network is shown. Here, besides the shaded circles, representing observed variables, the non shaded circles contain discrete hidden variables for the component n in a mixture of Gaussians for the position  $\mathbf{x}$  and the id k of the known people. The user properties are represented as conditional probabilities  $p(\mathbf{a}|k)$  for the appearance, which is modelled as a Gaussian, p(G|k) for the Bernoulli distributed gender, and p(I|k) for the also Bernoulli distributed property of need for interaction with the robot. In order to decide who is the person, which is currently in dialog with the robot, p(k|D) is representing a discrete distribution over the person ids k. There is one k standing for a non person or nobody, such that it is possible to express that nobody is in dialog, as well as that a position hypothesis n belongs to a non human object.

On each time step, the model is updated in three steps. In order to realize a Bayesian state estimation, similar to a Bayes-filter, first we have to perform a motion update. Here the positions are propagated according to the history which is represented by  $\Delta t$  and a motion model of the robot. Further the property of being dialog user p(k|D) and the need for interaction p(I|k) are diffused in order to allow a change over time. Second step is to infere the hidden and the unobserved variables given the current observations from accumulation layer. From that step we get a new prior distribution for the third step, which is a MAP estimation of the distribution parameters given the new observation and the prior model from last time step. Following this update regime, the model always contains the complete knowledge about people in the surrounding of the robot, but also the knowledge on absent people inspected before. With the current model the robot can easily infere e.g. the position of the dialog user by evaluation of  $p(\mathbf{x}|D = 1)$  or the gender of a person trying to interact by infering p(G|I = 1, D = 0). Du to the simple structure of the Bayesian network, it is easy to introduce further variables for user properties. All it takes is a source of information producing observations on this variable. Due to the ability of our face analysis system to estimate the age of a person, we would easily be able to add a variable A and a conditional probability p(A|k) to represent the age of a user.

#### 3 Recognition subsystems

As mentioned above, there are different preprocessing modules generating observations on the various state variables. A first module is consuming the laser scans, while classifying the segments of the scan as a pair of legs. Using a simple collection of criteria explained in [1], segments with a limited variance in distance and a defined size are classified as possible legs. If there are two legs within a distance of less than 0.5m a Gaussian hypothesis for a position **x** observation is generated and sent to the accumulation layer. The laser scan and the noisy sonar measurements furthermore are integrated into an occupancy gridmap representing the local environment of the robot. This map is used by the accumulation layer to query the distance of objects observed in a known direction, as the skin color detections in the panorama image. Using a multi-instances particle filter [6] which is tracking the skin colored regions in the image, there are Gaussian hypotheses for directions of people which are limited in their distance by a map lookup.

To get a feature for disinguishing people, a color pattern is taken from the panorama image by determining the average UV value (luminance independent parts of YUV color space) and the variance of that pixels of three regions on the upper part of the body of people in the image. These are the first components  $a_1, \ldots, a_{12}$  of the appearance vector. To find these regions, a parametric contour and skincolor model is fitted into the panorama image using a Monte-Carlo gradient descent. Following the list of modules in fig. 1, the next is the face detection and analysis. Here for detection the well known Viola and Jones detector [4] is used. For analyzing the face then an Active Appearance Model is used, which is tracking the frontal face while delivering parameters for position shape and texture of the face. The parameters for shape and texture are used as further components of the **a** vector. Furthermore, the direction of the face and the distance from local map are used to generate a Gaussian position hypothesis. By classifying the appearance parameters it is possible to classify the gender of the person tracked, which is used to generate a  $p(G, \mathbf{x}, \mathbf{a})$  observation. A further sensor based cue is the sound analysis. Here sound source localization is utilized to get a hint for the direction of a speaker, before a speech detection and a gender classification is done [2]. The classification is based on Mel Frequency Cepstral Coefficients and on the fundamental frequency of the speaker. Also using a lookup of the distance the result of that module is a probability of the gender and a given position.

In contrast to the other variables, the observations for D and I do not result from external sensoric inputs. For updating these parts of the model, information from the model itself is used. The property of being the user who is in dialog with the robot, is estimated from the users position (similar to our shopping assistant SCITOS [3]). Thus each person standing in or approaching the region in front of the robot is supposed to be in dialog with the robot. The need for interaction also is only extracted from the movement trajectory of people. For generating observation distributions, first for each object  $i \in \{1, ..., n\}$  in the model the movement trajectory  $p(\mathbf{x}, \Delta t | n = i)$  is infered. Then using a heuristic measurement model  $p(D|\mathbf{x}, \Delta t)$  and  $p(I|\mathbf{x}, \Delta t)$  is used to infere the current distribution of D and I. Together with the current position  $p(\mathbf{x}|\Delta t = 0, n = i)$  a new observation for updating the model is composed.

#### 4 Experiments and Results

Because it is difficult to quantify such a probabilistic model, experiments have been done for single parts of the model separately. To evaluate the accuracy of the position tracking system (fig. 2 left), a simple experiment with a given reference from a top view camera has been done. By comparing the tracking hypotheses to the reference, we got a distance error below 0.5m. Fig. 3 shows some exemplary trajectories taken during the experiments. The sold line is the estimated path and the dotted one is the reference. The shape of graphs suggest that the movement trajectories are quite specific for people who are interested in an interaction (graphs a and b) and those who are not (graphs c and d). For evaluating the abilities of the model to estimate I currently a complex experimental session has been accomplished. The robot there was running an information terminal application, while capturing the movement tajectories of the people in its surrounding. After a person completed its interaction or when a person only passed the robot, a questionnaire has been filled during an interview. By asking, if people are in a hurry or not and if they had an intention to use the information terminal, we intend to create an empiric measurement model  $p(I|\mathbf{x}, \Delta t)$ . First findings on the labeled trajectories are disillusioning. There are many factors of influence, which are not included in the model yet. Thus for increasing the reliability of an empiric model, the



Figure 3: Exemplary trajectories of people moving in the surrounding of the robot, robot standing at (0,0) facing upwards, solid line: estimated path, dashed line: top down reference

specifics of the environment have to be taken into account. Depending on the position of doors and other points of interest in the room, the model will be suitable only for a fixed position. Therefore, higher effort will be necessary on encoding the trajectories for the small number of train data (157 non interacting people, 53 interactions at three different locations) to allow a satisfying generalization.

#### 5 Conclusion

In this paper an overview of our probabilisic user model is given. We could show that tracking of positions works well, but evaluation of the model parts for user identification and estimation of user properties based on trajectories are still in progress.

#### References

- K. O. Arras, Ó. M. Mozos, and W. Burgard. Using boosted features for the detection of people in 2d range data. In Proc. of 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 2007.
- [2] R. Brueckmann, A. Scheidig, C. Martin, and H.-M. Gross. Integration of a sound source detection into a probabilistic-based multimodal approach for person detection and tracking. In *Proc. Autonome Mobile Systeme (AMS 2005)*, pages 131–137. Springer, 2005.
- [3] S Müller, H.-M. Gross, A. Scheidig, and H.-J. Boehme. Are you still following me? In Proc. of the 3rd European Conference on Mobile Robots (ECMR2007), 2007.
- [4] P. Viola and M. Jones. Fast and robust classication using asymmetric adaboost and a detector cascade. In NIPS 2001, pages 1311–1318, 2001.
- [5] Böhme H.-J Gross H.-M. Wilhelm, T. Classification of face images for gender, age, facial expression, and identity. In Artificial Neural Networks: Biological Inspirations - ICANN 2005, LNCS 3696, volume I, pages 569–574, 2005.
- [6] T. Wilhelm, H.-J. Boehme, and H.-M. Gross. A multi-modal system for tracking and analyzing faces on a mobile robot. In *Robotics and Autonomous Systems*, volume 48, pages 31–40, 2004.

Dipl.-Inf. Steffen Müller, Dr.-Ing. Andrea Scheidig, Antje Ober,

Prof. Dr. Horst-Michael Gross

Ilmenau Technical University, Neuroinformatics and Cognitive Robotics Lab, POB 10 05

65, 98684 Ilmenau