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Preface 
 
Dear Participants, 
 
Confronted with the ever-increasing complexity of technical processes and the growing demands on their 
efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and 
new methods of systems operation. The factors likely to affect the design of the smart systems of the future will 
doubtless include the following: 

• As computational costs decrease, it will be possible to apply more complex algorithms, even in real 
time. These algorithms will take into account system nonlinearities or provide online optimisation of the 
system’s performance. 

• New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” 
technical systems and processes, in environmental systems or medical and bioengineering applications. 

• The boundaries between software and hardware design are being eroded. New design methods will 
include co-design of software and hardware and even of sensor and actuator components. 

• Automation will not only replace human operators but will assist, support and supervise humans so 
that their work is safe and even more effective. 

• Networked systems or swarms will be crucial, requiring improvement of the communication within 
them and study of how their behaviour can be made globally consistent. 

• The issues of security and safety, not only during the operation of systems but also in the course of 
their design, will continue to increase in importance. 

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at 
the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these 
challenges, cooperating closely on innovative methods in the two disciplines of computer science and 
automation. 

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the 
colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also 
deepened between the countries from the East. Today, the objective of the colloquium is still to bring 
researchers together. They come from the eastern and western member states of the European Union, and, 
indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets 
Automation” are addressed by this colloquium at the Technische Universität Ilmenau. 
All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, 
information science, cybernetics, communication technology and systems engineering – for all of these and their 
applications (ranging from biological systems to heavy engineering), the issues are being covered.  
Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as 
they do, a most interesting colloquium programme of an interdisciplinary nature. 
I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your 
research, to address new concepts and to meet colleagues in Ilmenau. 
 
 
 
 
 
Professor Peter Scharff     Professor Christoph Ament  
Rector, TU Ilmenau             Head of Organisation 
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Modifying Bellman’s dynamic programming  to the solution 
of discrete multi-criteria optimization problems under 
fuzziness in long – term planning 
 
 

ABSTRACT 
 
For optimal planning of the long-term development of large scale, complex systems we 
need suitable methods regarding the dynamic, multi-criteria and uncertain characters of 
optimization problems. In this paper we propose a method for solving multi-objective 
discrete optimization problems under fuzziness in long-term planning based on the 
Discrete Dynamic Programming (DDP) of Bellman. This modified method has been 
called Fuzzy Discrete Dynamic Pareto-Programming (FDDPP). 

 
INTRODUCTION 

 
Long-term planning problems always have dynamic character. They require the 
optimization of a developing system over a finite period time horizon. Nevertheless, with 
respect to large scale, complex systems they usually have multiple criteria and their data 
are often uncertain. The planning processes can be represented by multistage models 
(graph models) and optimized by the method of dynamic programming of Bellman. But 
the multi-objective optimization problem under fuzziness requires modifications of this 
method. 
In this paper, we present briefly the method of dynamic programming of Bellman first. 
Then, we discuss the modifications to apply the method of Bellman for multi-criteria 
optimization problems under fuzziness. 
 

THE DYNAMIC PROGRAMMING OF BELLMAN 

(1) Basic model of the multistage decision process 
The whole process can be represented in a multistage model (Fig. 1). The order of the 
stages is determined at the beginning. The outgoing state of a stage t is the entry state 
of the next stage t+1. Thereby the system state can be controlled through the 
transformation of a state into another. Within a stage the system state is considered 
unchanged. The optimization problem of the multistage decision process can be 
described as follows:  
 t  -  Stage, t=1(1)T 
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 xt  -  State vector of the system in stage t, xt ∈ X t    
  ut  -  Decision/Control  vector in stage t, ut∈ U t  
 qt -  The cost for stage t, qt = qt (xt , ut )   
  xt = xt (xt-1 , ut ) -  The transformation between stages.  

Figure 1. Multistage model  

The problem is now to find a sequence of decisions/controls (u1*, u2*,..., uT*) that 

optimizes the criterion/return function ∑
=

=
T

1t

tqq subject to the constraints xt ∈ X  and 

 ut∈ Ut. The sequence of controls is called the optimal policy. 

(2) Bellman's principle of optimality 

The Bellman's principle of optimality was formulated as follows [1]: "An optimal policy 
has the property that whatever the initial state and initial decision are, the remaining 
decisions must constitute an optimal policy with regard to the state resulting from the first 
decision". Using Bellman's principle of optimality, a general solution schema can be 
indicated through recursive substitution. Dependently on the direction in which the 
system will run during the recursion the forward solution (from the first to the last stage) 
and backward solution (from the last to the first stage) are to be distinguished. The 
dynamic programming in this paper bases on the backward solution principle. The 
conditions of the dynamic optimization procedure are as follows: Sequence of stages, 
separable criteria and restrictions, monotony of the return function. 

(3) Application of the Discrete Dynamic Programming (DDP) to the planning task 

The DDP method of Bellman is special appropriate for discrete dynamic optimization 
problems if the space and the time are modeled in graph models. The planning 
processes for large scale and continuous developing systems are represented by 
discrete graph models with a finite number of the discrete time stages, nodes and edges. 
Each node is a variant. In every stage several variants (nodes) can exist. The edges 
connect nodes in each stage. With this graph model, where the states are nodes and the 
controls are edges, the DDP method of Bellman can be applied effectively: Starting with 
the first node, the principle of the recursive optimization is carried out until the entry node 
is reached in the first stage. 

The special feature of this planning task is that the optimal decision function, the stage 
transformation and the stage cost are given as discrete values. As far as that is 
concerned, the tabular calculation for the determination of the optimal functions is 
applied [6]. 

1  t T  

x 0  x 1  x t -2  x t - 1  

t - 1

x t  x T -1  x T  

u 0  u t - 1  u t  u T  
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MODIFYING BELLMAN’S DYNAMIC PROGRAMMING  TO THE SOLUTION OF 
THE  MULTI-CRITERIA OPTIMIZATION PROBLEM 

 
The DDP method of Bellman is usually used for optimizing the problems of single-
criterion; however the main characteristics of the real-world planning problems have 
multiple criteria. For solving the multistage multi-objective discrete optimization problem 
the method of DDP must be expanded. The Pareto-principle can be applied in this case. 
If each edge of the graph model is a vector of goal quantities, the method is carried out 
also in stages at which all goal quantities of the edges outgoing from a node are 
compared with each other according to the half order principle during the selection of an 
optimal alternative. Thus, all pareto-optimal trajectories of the compromise set are found 
in the solution field. The modifying method is called as Discrete Dynamic Pareto-
Programming (DDPP). The following example demonstrates the procedure at the DDPP. 
Given is a graph model including 3 stages and 3 variants (Fig. 2). The value of every 
edge corresponds to the state of the node to which this edge directs. Each node is a 
state vector including 2 components (Q1, Q2), which correspond to 2 different objective 
functions.  

Varian t 

1  

2 

3  

 1 2  3  
S tage 

 
Figure 2. Example for Discrete Dynamic Pareto-Programming 

Step 1: Starting at the last stage, the following edges are chosen:  
- 1-1, 2-1 and 3-1 with Q1=150 and Q2=100 
- 1-3, 2-3 and 3-3 with Q1=100 and Q2=150. 

Step 2: In the next stage the following edges are chosen: 
- 1-1-1  and 3-1-1 with  Q1 = 110 + 150 = 260 and Q2 = 140 + 100 = 240 
- 1-3-3  and 2-3-3 with Q1 = 90 + 100 = 190 and Q2 = 170 + 150 = 320 
- 2-2-1 with Q1 = 120 + 150 = 270 and Q2 = 150 + 100 = 250 
- 3-1-3 with Q1 = 110 + 100= 210 and Q2 = 140 + 150 = 290 

Step 3: In the first stage the following optimal trajectories are determined: 
- 1-2-3-3 with Q1 = 100 + 190= 290 and Q2 = 90 + 320 =  410 
- 1-3-1-1 with Q1 = 100 + 260= 360 and Q2 = 80 + 240 = 320 

Unlike the DDP, as result the DDPP in general supplies several optimal trajectories. 
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MODIFYING BELLMAN’S DYNAMIC PROGRAMMING  TO THE SOLUTION OF 
OPTIMIZATION PROBLEMS IN A FUZZY ENVIRONMENT 

 
In the planning, the data will play an important role. Nevertheless, the data in the real 
world are often uncertain. In most cases, necessary data must be estimated in part or be 
approximated, or it is required to forecast future values. In order to give an optimal 
solution for the practical problems, this uncertainty of the data must be considered. 
Suppose the values of the states are not merely exact real numbers but fuzzy numbers, 
the use of the conventional Bellman's principle for the DDPP with fuzzy model requires a 
modification of the procedure. 

(1) The stage transformation 
For the stage transformation the extension principle of Zadeh [2] was applied. The 
extension principle may be used for the arithmetic operations, making it possible to 
handle fuzzy numbers. Let Ai ∈ Xi be some fuzzy sets and f : X1 x ... x Xn → Y be some 
(nonfuzzy) function, y = f(x1,...,xn). Then, due to the extension principle, the fuzzy set 
B∈Y induced by the fuzzy set A1, ,,,, An through f  is 

 
⎪⎩

⎪
⎨
⎧ =∃

= =

otherwise                               0,    

 )x,...,f(xy  if   )),(x),...,(xmin(Sup
(y) nnA1A

)x...,f(xyB
n1

n1
1μμ

μ       (1)     

(2) Selection the better edge 
For the definition of the "better" edge in the graph model the ranking procedure of Chen 
[3] was used.   
The common concept of almost all ranking procedures consists in calculation a 
membership value for every alternative. It is valid for 2 alternatives ai and aj ∈A: 
 ai f  aj     ⇔    μC(i) > μC(j) (2) 
The method of Chen is to find the total utility or ordering value of each fuzzy number Ai 
using the concept of maximizing set and minimizing set:  

 [ ](i))-  (1  (i)
2
1  (i) G

C
M
C

T
C μμμ +=  (3a) 

where  (u))(u),min( Sup  (i) Mi
Uu

M
C μμμ

∈
=   

k

M U Inf-  U Sup
U Inf- u  (u) ⎥

⎦

⎤
⎢
⎣

⎡
=μ  (3b) 

and  (u))(u),min( Sup  (i) Gi
Uu

G
C μμμ

∈
=   

k

G U Inf-  U Sup
u-  U Sup (u) ⎥

⎦

⎤
⎢
⎣

⎡
=μ  (3c) 

The value of k can be varied to suit the application. For example: The case k=2 is risk-
prone, the case k=1/2 is risk-averse. 

Fuzzy numbers with triangular, trapezoidal shaped membership functions are often used 
in the practice. Suppose the values of states are fuzzy numbers Ai with triangular 
membership functions, each having three vertices, with coordinates (ci, 0), (ai, hi), (di, 0) 
as in Figure 3. In details, if the fuzzy number Ai has the membership function: 
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Figure 3. Ranking fuzzy numbers with triangular membership functions 

When k=1, i=1,2,...,n,  h = Inf hi, umin = Inf S, umax = Sup S, S =U
n

1i
iS

=

, Si = {u | μAi(u) > 0} 

we obtain the total utility of each fuzzy number Ai as follows: 

 ⎥
⎦

⎤
−+−

−+⎢
⎣

⎡
−−

=
)c h(a )u (uh

c-  u
  

h
1 

)d h(a -)u (uh
u-  d

2
h.h

 (i)
iiminmaxi

imax

iiiminmaxi

miniiT
Cμ             (5)  

If the values of states are fuzzy numbers Ai with trapezoidal membership functions, each 
having once vertex (bi, hi) more, bi>ai. When k=1, we obtain the total utility of each fuzzy 
number Ai as follows: 

 ⎥
⎦

⎤
−+−

−+⎢
⎣

⎡
−−

=
)c h(a )u (uh

c-  u
  

h
1 

)d h(b -)u (uh
u-  d

2
h.h

 (i)
iiminmaxi

imax

iiiminmaxi

miniiT
Cμ          (6) 

)i(T
Cμ  is a measure to compare the fuzzy numbers, which describe the values of states 

in graph model. 
So the dynamic discrete optimization problem under fuzziness is solved mathematical 
cleanly. With this modification the DDPP has been expanded once more and is called as 
Fuzzy Discrete Dynamic Pareto-Programming (FDDPP). 
 

APPLICATION OF FDDPP - METHOD  
 
The above-mentioned FDDPP-method was applied to the decision support system 
DSPES (Decision Support System for Planning of Energy Supply) [4]. DSPES is a 
system for long-term energy supply planning in the commune/region. The planning 
problem is modeled as multi-criteria, multistage evolution problems in decomposed 
systems with global resource constraints. The hierarchical decision-making system 
consists of 2 layers. The subordinate layer  consisting of several levels is responsible for 
the optimal resource distribution. It is supposed, the large scale system here a city or a 
region is decomposed into (indirect) coupled subsystems through the restriction of the 
global resources, available for the overall system in each (time) stage. Since the system 
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is considered unchanged within a stage, the problem of the resource distribution is a 
static optimization problem under fuzziness due to the approximation and the forecast of 
data. The solution method of this problem [5] is not a subject of this paper. The results of 
the static optimization problem are fuzzy numbers with triangular membership functions. 
The above layer (the strategic layer)  determines the optimal developing trajectory of the 
chronological evolution of the  energy support for the overall system about the long-term 
planning horizon consisting of several stages. Each subsystem is represented by a 
discrete graph model consisting of nodes and edges at which the state of every node 
was supplied from the subordinate layer, (in form of a triangular fuzzy number). From 
these local graph models of the subsystems, a global graph model for the overall system 
is formed. Using the FDDPP-method the optimal trajectory in the global graph model is 
determined. Through a mapping of the optimal trajectory in the global graph model the 
optimal trajectories of the local graph models are determined. 
DSPES was tested with 2 projects successfully [4]. The first project was for a city with 16 
thousand of people, 60 technologies to supply energy for 9 different demands. The 
second project was for a city with 186 thousand of people, 301 technologies to supply 
energy for 22 different demands. Both these projects have time horizon of 20 years 
consisting of 4 stages, 4 global resource constraints and 3 criteria (the consumption of 
primary energy, total costs and emission of pollutants) to optimize. 
 

CONCLUSION 
 
In the long-term planning of real large scale and continuous developing systems the 
consideration regarding different criteria is very necessary. Simultaneously, with these 
complex systems the appearance of uncertain data is not avoidable. This paper 
proposed the method of Fuzzy Discrete Dynamic Pareto-Programming (FDDPP) by 
modifying the Discrete Dynamic Programming (DDP) of Bellman for solving the multi-
criteria discrete optimization problem under fuzziness. The proposed method has 
several improvements and was applied to a decision support system successfully. 
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