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Preface 
 
Dear Participants, 
 
Confronted with the ever-increasing complexity of technical processes and the growing demands on their 
efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and 
new methods of systems operation. The factors likely to affect the design of the smart systems of the future will 
doubtless include the following: 

• As computational costs decrease, it will be possible to apply more complex algorithms, even in real 
time. These algorithms will take into account system nonlinearities or provide online optimisation of the 
system’s performance. 

• New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” 
technical systems and processes, in environmental systems or medical and bioengineering applications. 

• The boundaries between software and hardware design are being eroded. New design methods will 
include co-design of software and hardware and even of sensor and actuator components. 

• Automation will not only replace human operators but will assist, support and supervise humans so 
that their work is safe and even more effective. 

• Networked systems or swarms will be crucial, requiring improvement of the communication within 
them and study of how their behaviour can be made globally consistent. 

• The issues of security and safety, not only during the operation of systems but also in the course of 
their design, will continue to increase in importance. 

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at 
the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these 
challenges, cooperating closely on innovative methods in the two disciplines of computer science and 
automation. 

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the 
colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also 
deepened between the countries from the East. Today, the objective of the colloquium is still to bring 
researchers together. They come from the eastern and western member states of the European Union, and, 
indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets 
Automation” are addressed by this colloquium at the Technische Universität Ilmenau. 
All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, 
information science, cybernetics, communication technology and systems engineering – for all of these and their 
applications (ranging from biological systems to heavy engineering), the issues are being covered.  
Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as 
they do, a most interesting colloquium programme of an interdisciplinary nature. 
I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your 
research, to address new concepts and to meet colleagues in Ilmenau. 
 
 
 
 
 
Professor Peter Scharff     Professor Christoph Ament  
Rector, TU Ilmenau             Head of Organisation 
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Output Coupling by Dynamic Output Feedback  
 
 

INTRODUCTION 
 

 
In this paper, the synchronization of predefined control variables of a linear, time 
invariant multivariable system by means of dynamic output feedback is considered. 
 
Many control applications require the synchronization or coupling of two or more control 
variables. Examples for this kind of problem are the speed synchronization of different 
electrical drives within a production line also called ‘electronic gear’ or the slip prevention 
between the different wheels of a car. The classical approach to solve this problem is the 
use of additional PI compensators to correct the divergences between the coupled 
control variables. This simple approach is often sufficient to accomplish the goals of 
stability and asymptotic synchronization of the closed-loop. However, this approach does 
not result in an exact dynamic synchronization and asymptotic synchronization is only 
achieved for piecewise constant reference inputs or disturbances. 
 
Previous works [1,2] offer two different ways to tackle the problem of the synchronization 
of multiple outputs in state space. These methods solve the problem of synchronizing a 
given set of control variables by assigning a suitable eigenstructure to the closed-loop by 
means of state feedback. Since generally not all states are available for measurement, 
the implementation of these approaches relies on the use of observers to supply the 
missing degrees of freedom. 
 
For that purpose also dynamic output feedback of appropriate order can be used where 
the states of the compensator supply the missing degrees of freedom for the design. 
Moreover, dynamic output feedback establishes the possibility to design PI-like 
compensators or to account for additional constraints as to the structure of the 
compensator. However, the problem of eigenvalue assignment by structurally constraint 
controllers generally has no analytic solution and therefore demands numerical methods 
to solve the underlying non-linear system of equations [3]. What’s more, the problem of 
synchronization leads to some special restrictions in the eigenstructure of the closed-
loop that have to be taken into account. In the following a new approach for the design of 
structurally constraint dynamic output feedback controllers is presented which not only 
allows arbitrary eigenvalue assignment but also assures the synchronization of some 
predefined output variables. 
 
 

STATEMENT OF THE PROBLEM AND PRELIMINARY RESULTS 
 

Consider a linear, time-invariant system of order  which is supposed to be completely 
controllable and observable. 

n
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The number of inputs and outputs is denoted by p and q , respectively. In what follows, 
for system (1) the dynamic output feedback 
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of order r  is used to place the rn + poles of the resulting closed loop system 
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at a predefined set },,{ 1 rn+=Λ λλ L of real or conjugate complex values. Simultaneously 
the solution  of (3) must be such, that )(txs pl <  linear coupling conditions 
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are met, where the superscript ‘ t ’ denotes the transpose of a matrix. Obviously, we can 
always assume that the l coupling conditions are linear independent and thus the ( )ql ×  
coupling matrix  has rank l . tT2

 
Before proceeding further with the description of a new approach which numerically 
solves the aforementioned design problem, some useful results from the corresponding 
literature [3,4] are summarized shortly. 
  
It is easy to verify that the closed loop system (3) can also be written in terms of a 
constant output feedback 
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According to (6) the constant output feedback matrix  contains all free parameters of 
the original dynamic output feedback (2). Now from the eigenvalue/eigenvector equation 
of the closed loop system (5) 

K

 
( ) 0=⋅+− ii vBKCAIλ  

 
can be deduced the important relation 
 

iii pBAIv ⋅−−= −1)(λ          (7) 
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where  is the right eigenvector to the closed loop eigenvalue iv iλ  and 
 

ii vKCp ⋅=           (8) 
 
is a so called parameter vector (see [3,4]). In case of complete state feedback, e.g. 

, this nonzero parameter vector IC = 0≠ip  can almost arbitrarily be chosen. Otherwise 
it is subject to non-obvious constraints. In any case, substituting (7) into (8) yields 
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and for  this results in the condition 0≠ip
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If (10) is solved by a suitable choice of , K iλ  is an eigenvalue of the closed loop system 
(5) and therefore minimizing the cost function 
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with respect to  yields a solution K *K  to the pole placement problem provided 
 In (1) .0)( * =KJ iH  denotes the conjugate complex of . iH

 
 

OUTPUT COUPLING BY CONSTANT OUTPUT FEEDBACK 
 
First of all, the coupling condition (4) needs to be adapted to the new output equation in 
(5), where according to (6) the new output matrix  has C r  additional columns due to the 
compensator states. Since these additional outputs are not involved in the coupling, the 
matrix  needs to be expanded with a zero matrix of dimension tT2 ( )rl ×  
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Now, substituting the Laplace transform of (5) in (12) leads to a new expression for the 
coupling conditions 
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~~ FFF = . After applying a modal transformation to (13) (see [2]) it becomes 
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where  and  represent the right and left eigenvectors of the closed-loop system (5), iv t

iw
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respectively. Obviously, with 
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equation (14) can be split into two parts 
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The set of equations (16) represent the output- and input-coupling conditions for the 
constant output feedback system (5) and are formally equivalent to the coupling 
equations presented in [2] for the case of full state feedback, where it is shown that just 
the output-coupling conditions are relevant for the calculation of the controller . K
 
Therefore, substituting (7) into (16) the output-coupling condition reads 
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and thus the parameter vector  must be contained in the null space ip
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of ( )iG λ~  to generate via (7) an eigenvector  that is compliant with the output-coupling 
condition (16). According to [5], the eigenvectors  constructed in this way span the 

- invariant subspace in the kernel of 

iv
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),( BA CT t

2
~  which in the sequel is assumed to have 

dimension . So, any arbitrary m mipi ,,1,0~ K=≠  results in an admissible parameter 
vector 
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and the remaining mrn −+  input-coupling conditions in (16) yield 
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from which a nonsingular prefilter 1

~F  can be calculated [2]. This 1
~F  makes the 

corresponding mrn −+  eigenvalues of the closed loop system (5) uncontrollable from 
the input . Therefore, what remains is the calculation of the constant output feedback 
matrix  in the feedback law 

1w
K

 
11
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for the system  such that the closed loop has the ),,( CBA rn +  predefined eigenvalues 
from the set . This can be achieved by numerical minimization of (11) where for the 
first m  eigenvalues the additional constraints (19) must be taken into consideration. With 
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respect to (9) this results in 
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NUMERICAL EXAMPLE 

 
The dynamics of a DC motor are described by the following equations 
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where  represents the moment of inertia,  the motor constant,  the speed 
proportional damping,  the resistance, 

J mc d
R L  the inductance ,  the input voltage, i  the 

motor current, 

u

ϕ  the mechanical angle and 
dt
dϕω =  the mechanical angular speed. 

Consider two independent motors “A” and “B” with ,1,05,0,1 ====== BmAmBABA ccLLRR  
 but different moments of inertia 0== BA dd 1,0=AJ  and 025,0=BJ  [1] (units are 

ignored). Their state equations can be summarized as follows 
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where  is the n -dimensional state vector and the 

measured variables are . The two uncoupled drives have their 

eigenvalues at 

[ ]t

BBBAAAs iix ωϕωϕ=

][ t

BAAsy ϕωϕ=

{ }t
s i1010i45,261000 ±−±−=Λ  and they shall be shifted to 

 
{ t12108i615i25204 −−−±−±−−=Λ }       (25) 

 
by means of a dynamic output feedback of order 2. Simultaneously the angles Aϕ  and 

Bϕ  of the two motors must be synchronized. Thus the coupling matrix is set to 
. Following the guidelines given in [5] for the calculation of the ( )-

invariant subspace of  it is found that the dimension of this subspace is 
[ 1012 −=tT ] BA,

s
tCT2 3=m . 

Hence three eigenvectors can be found which are compliant with the output-coupling 
conditions (16) and these eigenvectors have been chosen to be  and . Then 
from (18) the corresponding null spaces 

4−=λv i2520±−=λv

iN~  can be easily calculated and after 
performing a minimization of the cost function (22) with the predefined set of closed-loop 
eigenvalues (25) the following constant output feedback matrix K is found 
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⎝

⎛

−
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=

753,7042,11964,14717,15865,343
637,11753,6772,241,1435,156
452,0368,1599,0428,3660,2
167,0390,0513,0513,0525,2

K     (26) 

 
from which the system matrices ( )dddd DCBA ,,,  of the dynamic controller (2) can be 
extracted according to (6). Finally, with the help of (20) the prefilter 
 

[ ] 3
1 10178,311550,353299,14575,3~ −⋅−−−−= tF    (27) 

 
can be calculated and the transfer function of the closed-loop system then reads 
 

.

10027,11032,71009,21018,31086,21057,15282104
10027,110348,41024,710974,51046,24100

10027,11032,71009,21018,31086,21057,15282104
10027,110348,41024,710974,51046,24100
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  (28) 

 
Obviously the outputs 1 and 3 or Aϕ  and Bϕ  share the same transfer function 

)(
)()(

1

/
/ sw

ssG BA
BA

ϕ
ϕ =  and thus are perfectly synchronized. Moreover, since 

dt
d A

A
ϕω =  or 

)()( sss AA ϕω ⋅= , the second output )(sAω  has the transfer function 

)(
)(

)()(
1
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sssG

AA

A
ϕω

ϕ
⋅=

⋅
= . 
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