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Abstract

The present cumulative work consists of six articles linked by the topic ”Identifi-

cation and Analysis of Patterns in DNA sequences, the Genetic Code and Tran-

scriptional Gene Regulation”. We have applied a binary coding, to efficiently find

patterns within nucleotide sequences. In the first and second part of my work

one single bit to encode all four nucleotides is used. The three possibilities of

a one - bit coding are: keto (G,U) - amino (A,C) bases, strong (G,C) - weak

(A,U) bases, and purines (G,A) - pyrimidines (C,U). We found out that the

best pattern could be observed using the purine - pyrimidine coding. Apply-

ing this coding we have succeeded in finding a new representation of the genetic

code which has been published under the title ”A New Classification Scheme of

the Genetic Code” in ”Journal of Molecular Biology” and ”A Purine-Pyrimidine

Classification Scheme of the Genetic Code” in ”BIOForum Europe”. This new

representation enables to reduce the common table of the genetic code from 64 to

32 fields maintaining the same information content. It turned out that all known

and even new patterns of the genetic code can easily be recognized in this new

scheme. Furthermore, our new representation allows us for speculations about

the origin and evolution of the translation machinery and the genetic code. Thus,

we found a possible explanation for the contemporary codon - amino acid assign-

ment and wide support for an early doublet code. Those explanations have been

published in ”Journal of Bioinformatics and Computational Biology” under the

title ”The New Classification Scheme of the Genetic Code, its Early Evolution,

and tRNA Usage”. Assuming to find these purine - pyrimidine patterns at the
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DNA level itself, we examined DNA binding sites for the occurrence of binary

patterns. A comprehensive statistic about the largest class of restriction enzymes

(type II) has shown a very distinctive purine - pyrimidine pattern. Moreover,

we have observed a higher G+C content for the protein binding sequences. For

both observations we have provided and discussed several explanations published

under the title ”Common Patterns in Type II Restriction Enzyme Binding Sites”

in ”Nucleic Acid Research”. The identified patterns may help to understand how

a protein finds its binding site.

In the last part of my work two submitted articles about the analysis of Boolean

functions are presented. Boolean functions are used for the description and analy-

sis of complex dynamic processes and make it easier to find binary patterns within

biochemical interaction networks. It is well known that not all functions are nec-

essary to describe biologically relevant gene interaction networks. In the article

entitled ”Boolean Networks with Biologically Relevant Rules Show Ordered Be-

havior”, submitted to ”BioSystems”, we have shown, that the class of required

Boolean functions can strongly be restricted. Furthermore, we calculated the

exact number of hierarchically canalizing functions which are known to be bio-

logically relevant. In our work ”The Decomposition Tree for Analysis of Boolean

Functions” submitted to ”Journal of Complexity”, we introduced an efficient data

structure for the classification and analysis of Boolean functions. This permits

the recognition of biologically relevant Boolean functions in polynomial time.
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Zusammenfassung

Die vorliegende kumulative Arbeit besteht aus 6 Artikel, die durch das Thema

”Identifikation und Analyse von Mustern in DNA Sequenzen, im genetischen Code

und in der transkriptionellen Genregulation” verbunden sind.

Im ersten und zweiten Teil meiner Arbeit wurde eine binäre Kodierung ange-

wandt, um effizient Muster in Nukleotidsequenzen finden zu können. Die Kodierung

aller 4 Basen durch ein einzelnes Bit stellte sich als die Einfachste heraus. Es

gibt die folgenden Möglichkeiten einer Einzelbitkodierung: Keto (G,U) - Amino

(A,C) Basen, Starke (G,C) - Schwache (A,U) Basen und Purine (G,A) - Pyrim-

idine (C,U). Beim Test aller drei Möglichkeiten erkannten wir, dass bei einer

Purin/Pyrimidin Kodierung der Basen die signifikantesten Muster entstanden.

Mittels der binären Kodierung (Purine (1) - Pyrimidine (0)) gelang es uns eine

neue Darstellung des genetischen Codes zu finden und unter dem Titel ”A New

Classification Scheme of the Genetic Code” in ”Journal of Molecular Evolution”,

sowie unter dem Titel ”A Purine-Pyrimidine Classification Scheme of the Ge-

netic Code” in ”BIOForum Europe” zu veröffentlichen. Diese neue Darstellung

erlaubte uns eine Reduzierung des bekannten Schemas von bisher 64 auf 32 Felder,

bei gleichbleibendem Informationsgehalt. Es stellte sich heraus, dass alle bereits

bekannten Muster des genetischen Codes leicht zu erkennen sind und sogar noch

weitere hinzukommen. Weiterhin lässt das neue Schema Spekulationen über

die Entstehung und Entwicklung der heutigen Translationsmaschinerie und des

genetischen Codes zu. Wir fanden eine mögliche Erklärung der heutigen tRNA

- Aminosäure Zuordnung und breite Unterstützung für einen früheren Doublet
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Code. Dies konnten wir in ”Journal of Bioinformatics and Computational Biol-

ogy” unter dem Titel ”The New Classification Scheme of the Genetic Code, its

Early Evolution, and tRNA Usage” veröffentlichen. Annahmen, dass die Purin -

Pyrimidin Kodierung auch Muster auf höherer DNA Ebene zeigen würde, waren

richtig. In einer Analyse der DNA Bindemotive untersuchten wir das Vorkommen

binärer Muster. Eine umfassende Statistik über die größte Klasse von Restriktion-

senzymen ergab tatsächlich ein sehr ausgeprägtes und einfaches Purin-Pyrimidin

Muster und einen erhöhten G+C Gehalt. Für beide Beobachtungen fanden wir

mehrere Erklärungen, welche ausführlich in dem Artikel ”Common Patterns in

Type II Restriction Enzyme Binding Sites” veröffentlicht in ”Nucleic Acid Re-

search” diskutiert wurden. Die gefundenen Muster könnten beispielsweise die

Bindung des Proteins unterstützen und das Finden der Bindestelle erleichtern.

Im letzten Teil meiner Arbeit werden zwei eingereichte Artikel zur Analyse

Boolescher Funktionen vorgestellt. Boolesche Funktionen lassen die Beschreibung

und Analyse komplizierter dynamischer Prozesse zu und erleichtern damit das

Finden übergeordneter binärer Muster in biochemischen Interaktionsnetzwerken.

Es ist bekannt, dass nicht alle Funktionen nötig sind, um biologisch relevante

Geninteraktionsnetzwerke zu beschreiben. Im Artikel mit dem Titel ”Boolean

Networks with Biologically Relevant Rules Show Ordered Behavior”, eingereicht

in ”BioSystems” konnten wir durch Analyse gemessener Daten zeigen, dass sich

die Klasse benötigter Boolescher Funktionen stark einschränken lässt. Weiter-

hin gelang uns die Berechnung der exakten Anzahl hierarchisch kanalisierender

Funktionen, welche oft in realen Geninteraktionsnetzwerken vorkommen. In der

Arbeit ”The Decomposition Tree for Analysis of Boolean Functions”, eingereicht

in ”Journal of Complexity”, stellen wir eine effiziente Datenstruktur zur Klassi-

fizierung und Analyse Boolescher Funktionen vor. Diese erlaubt uns die Erken-

nung biologisch relevanter Funktionsklassen in Polynomialzeit.
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Introduction

There are 10 kinds of people in the world -

those who understand binary numbers,

and those who don’t. Binary humor.

Since the discovery of the DNA a huge amount of biological data has been pro-

duced by molecular biologists, comprising data from genome sequencing, mRNA

expression and different protein structures. Most of them are not yet analyzed.

To handle these large datasets, new algorithms and methods are needed. The

new scientific discipline bioinformatics is required to solve the actual problems of

molecular biology, by applying ”informatics” techniques (Lucombe et al., 2001).

Translating biological information into a digital form allows for the analysis of

DNA sequences, the prediction of protein structures and the simulation of macro-

molecular or metabolic dynamics.

One of the most important tasks in bioinformatics is the identification of

smaller and larger patterns, to classify and reduce the biological data and even

more important, to explain the principles behind the biological information. Motif

discovery in sequential data has widespread applications (Rigoutsos and Floratos,

1998) in predicting the location and structure of genes (Zhang, 2002), in search-

ing for DNA binding sites (Stormo, 2000), in the discovery of drug targets (Hoag,

2006) and in understanding the mechanisms of alternative splicing (Hiller et al.,

2005).

Pattern recognition is a scientific field which aim is to classify data based on

either a priori knowledge or on statistical information extracted from the patterns.
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Usually the patterns are groups of experiments, measurements or observations,

defining a set of points in an appropriated multidimensional space.

Pattern recognition is not only restricted to bioinformatics, it can also be

applied in nearly all fields of science. Other important application areas are

image analysis, character recognition, speech analysis, person identification and

industrial inspection.

In biology, patterns can be found on every level, ranging from patterns in

behavioral biology (top level), down to patterns in molecular genetics (bottom

level). At the DNA strand itself patterns can be seen in a ”bottom up” or ”top

down” approach. This means that there are different levels for analyzing DNA

patterns. One can either start from the bottom e.g. patterns in the reading frame

itself, and end at the highest level e.g. patterns in DNA packing and chromosomal

structure (Allen et al., 2006) or vice versa.

The focus of my PhD thesis is the identification and analysis of patterns at

different levels within molecular biology, including the organization and evolution

of the genetic code, the analysis of short specific DNA binding sequences and

the interpretation of important patterns within the dynamics of gene interaction

networks. In the first two parts I concentrate on finding patterns using a ”bottom-

up” approach. Whereas the first chapter of my work deals with the identification

and analysis of patterns in the genetic code.

The information concerning heredity, structural and functional features of all

living things is stored in deoxyribonucleic acid (DNA). The DNA molecule is a

long polymer1, composed of four different nucleotides: adenine (A), guanine (G),

cytosine (C) and thymine (T). This four letters or nucleotide bases are enough to

code and carry out the whole genetic information in bacteria, as well as in human.

Unlike DNA, RNA (ribonucleic acid) is almost always a single-stranded molecule

and has a much shorter chain of nucleotides, where the base thymine is replaced

by uracil (U).

1The DNA of the longest human chromosome is comparable with the distance between Ham-

burg and Bremen (100 km long) (Calladine et al., 2006).
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The genetic information from DNA, through messenger RNA, is translated

into amino acid sequences of proteins, according to the rules, known as the genetic

code. In 1959 Nirenberg began a series of elegant experiments, adding an artificial

form of poly-uracil RNA in a cell of E.coli. He extracted the radioactively labeled

phenylalanine in the resulting protein. This is known to be the first step in the

discovery of the genetic code.

During translation a triplet of nucleotides (known as codon) translates into

a single amino acid. The AUG codon encodes the amino acid methionine and

indicates the start of the translation. Whereas the triplets UAA, UAG, and

UGA stand for a STOP signal of the translation. Table 1 shows the standard

genetic code.

Table 1. Table of the standard genetic code. The yellow regions indicate family codons, where

the encoded amino acid is independent of the third codon position.

For biologists and life scientists one of the most fascinating questions is: Is

there an underlying principle for this redundant codon - amino acid assignment

(Crick, 1968; Knight, 1999; Di Giulio, 2005)? Many tried to discover such princi-
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ples and there are already some patterns known e.g.: the special role of the middle

base in codons (Taylor and Coates, 1989; Woese et al., 2000; Knight, 1999; Cop-

ley et al., 2005) or the family codon distribution in the genetic code (Lagerkvist,

1978; Halitsky, 2003).

Many different representations have been published, all of them try to find

a logical organization of the code. Bashford and Jarvis (2000) presented the

genetic code as ”...low order polynomials of the 6 coordinates in the 64-dimensional

codon weight space”. Using the ”Leibniz Number” Morimoto (2002) described

the genetic code as a cube-shaped periodic table. Reflecting the periodicity in

amino acids and symmetrical order, with respected to the xy-plane it allows a

partial explanation for some deviations of non-standard genetic codes and for some

predictions about potential candidates of non-standard codons to be discovered

in the future.

There are also many mathematical models that encode the bases in a binary

manner. Based on the coding A=00, G=01, U=10, C=11, Jimènez et al. (1996)

defined a codon with six binary variables, where the binary code is equivalent to

a Boolean hypercube. Stambuk (2000) showed the ”universal metric characteris-

tics of the genetic code” on a square with the four bases as vertices, encodes as:

A=11, G=10, U=00, C=01. Karasev and Stefanov (2001) proposed a model of

topological protein coding, using another binary coding: A=11, G=01, U=10,

C=00. The Gray code of He et al. (2004) is based on: A=01, G=11, U=10

and C=00, and Sànchez et al. (2004) proposed the Hasse diagram of the ge-

netic code, which relies on the correspondence between the codon order and the

biochemical properties of amino acids. The Hasse diagram is equivalent to a

sixth-dimensional Boolean hypercube with vertices representing the codons, gen-

eralizing other Boolean models by using two dual Boolean lattice in the coding.

Interestingly, in this structure the hydrophobicity and hydrophilicity of amino

acids are reflected by using the Hamming distance between the binary represen-

tation of the codons.
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The basic principle of the enumerated mathematical models is the binary cod-

ing of a single base. Because of the 4 bases in DNA (RNA) two bits are needed to

encode a single nucleotide. Claude E. Shannon (1948) first introduced the word

bit2, which is the minimal unit of information. Generally, one bit is the quantity

of information required to distinguish two mutually exclusive states. The binary

approach in biology also yields useful results in gene expression analysis (Walker

et al., 1999), in transgenic binary expression systems to study embryogenesis (No-

ramly et al., 2005), and ”... the simple binary- switch nature of asymmetry vari-

ation” in phylogenetic analysis offers an attractive focus for comparative studies

on evolutionary biology (Palmer, 2004).

The aim of the second part of my PhD thesis is to find a common sequence

motif in a collection of restriction enzyme recognition sequences, to understand

the mechanism of the specific protein - DNA binding. A restriction enzyme (or

restriction endonuclease) is an enzyme that cuts double-stranded DNA. Restric-

tion enzymes were first discovered in the late 1960s by Arber and Linn (1969).

They isolated two types of enzymes that were responsible for phage growth re-

striction3 in E. coli. Nowadays restriction enzymes are one of the most important

tools in biotechnology, because they cut DNA at short specific sites, rather than

at random sites along the length of the DNA molecule. Based on the composition

of subunits, cofactor requirements, site specificity and mechanism of recognition

and cleaving, they are classified into four types. Enzymes of type I, II and III

are parts of restriction-modification systems. They additionally contain methyl-

transferases, adding methyl groups to cytosine or adenine in the host DNA, to

prevent cleaving own DNA (Roberts et al., 2003). The restriction enzymes of type

II cleave the DNA within or close to their recognition site and does not require

ATP hydrolysis, that makes the type II restriction enzymes the most used en-

zymes. The orthodox type II REases are homodimers, that recognize palindromic

sequences of 4-8 bp. A palindromic sequence is a sequence that reads the same on

the complementary strand. In Table 2 five type II restriction enzymes with their

2A bit stands for a binary digit (or binary unit).
3The term restriction comes from this observation.
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palindromic sequences are demonstrated. Although the recognition sequences are

diverse they show very similar purine - pyrimidine patterns.

Restriction Source Recognition Purine(1)-pyrimidine(0)

Enzyme Sequence∗ pattern

AluI Arthrobacter luteus AG↓CT 1100

HaeIII Haemophilus aegyptius GG↓CC 1100

BamHI Bacillus amyloliquefaciens G↓GA TCC 111000

HindIII Haemophilus influenzae A↓AG CTT 111000

EcoRI Escherichia coli G↓AA TTC 111000

Table 2. Examples of type II restriction enzymes, taken from Kimballs Biology Pages.
∗ The arrow ↓ indicates the cleave position of a restriction enzyme.

The third part of my work deals with the pattern analysis of transcriptional

gene regulation. A big challenge in the postgenomic era is to understand the

cellular phenomena arising from the interaction of genes and proteins (Hastly et

al., 2002). Based on signaling pathways, Monod and Jacob (1961) predicted the

fundamental processes of the cell: differentiation and protein regulation. After

this prediction many mathematical models appeared, describing the gene regula-

tion. But the simulation of networks on many interacting genes is too complex for

making qualitatively high and comprehensive predictions. The Boolean approach

of Kauffman (1969) can be used to study simplified gene regulatory networks,

consisting of nodes which are genes or proteins and directed connections, repre-

senting the interactions between them. In the Kauffman (1969) model a gene can

either be ’on’ or ’off’, and for the description of the gene interactions he used

Boolean rules4.

The larger the number of genes, the more difficult the Boolean rules involved

in the gene regulation. Given six genes, there are already 226
or over 18 trillions

different rules to activate a seventh gene. Kauffman (1993) suggested that gene

4A Boolean function allows to combine information from two or more bits, using binary

logical operations: ∧ (AND), ∨ (OR) and the unary operation NOT.

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/R/RestrictionEnzymes.html
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regulatory rules must have special patterns, that are responsible for the stable

dynamical behavior of cellular regulatory networks, and at the same time restrict

the number of appropriated Boolean rules. He extracted an important subclass

of Boolean functions, named canalyzing functions. A canalyzing function is a

Boolean function, which has at least one input, such that for at least one input

value, the output value is fixed (Kauffman et al., 2003). Simulating the ordered

and chaotic dynamical behavior of a Boolean model, Szallasi and Liang (1998)

discovered the class of hierarchically canalyzing functions, which are a natural ex-

tension of canalyzing functions. In hierarchically canalyzing functions the inputs

are canalyzing in a hierarchical manner. Harris et al. (2002) compiled a set of

transcriptional regulatory rules, which were observed in experiments. Analyzing

the patterns in these Boolean rules, Kauffman et al. (2003) found out, that nearly

all of them belong to hierarchically canalyzing functions. From this observations it

follows that a simple principle has to underlay the natural occurring gene interac-

tion rules, which support the stability and robustness of gene regulatory networks.

In part three of my work we tried to validate this hypothesis.
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New Classification Scheme of the

Genetic Code

The paper of Wilhelm and Nikolajewa (2004a) provides the first version of the new

classification scheme of the genetic code, based on a binary purine - pyrimidine

representation of a codon. In the second paper of Wilhelm and Nikolajewa (2004b)

the final and optimal form of the new classification scheme is presented, where

the column order of the new scheme is fixed. In the third paper Nikolajewa et

al. (2006) the tRNA anticodon usage pattern is examined, which is related to the

codon-reverse codon symmetry in the genetic code. Moreover, we proposed a new

hypothesis about the evolution of translation, which we called ”reverse recognition

conjecture”.
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Thomas Wilhelm, Svetlana Nikolajewa
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Abstract. Since the early days of the discovery of

the genetic code nonrandom patterns have been

searched for in the code in the hope of providing

information about its origin and early evolution.

Here we present a new classification scheme of the

genetic code that is based on a binary representation

of the purines and pyrimidines. This scheme reveals

known patterns more clearly than the common one,

for instance, the classification of strong, mixed, and

weak codons as well as the ordering of codon fami-

lies. Furthermore, new patterns have been found that

have not been described before: Nearly all quantita-

tive amino acid properties, such as Woese’s polarity

and the specific volume, show a perfect correlation to

Lagerkvist’s codon–anticodon binding strength. Our

new scheme leads to new ideas about the evolution of

the genetic code. It is hypothesized that it started with

a binary doublet code and developed via a quaternary

doublet code into the contemporary triplet code.

Furthermore, arguments are presented against sug-

gestions that a ‘‘simpler’’ code, where only the mid-

base was informational, was at the origin of the

genetic code.

Key words: Genetic code — Origin of life — Dou-

blet code — Pattern — Amino acid properties

Introduction

Crick (1968) introduced the notion that the genetic

code is simply the result of pure chance or a ‘‘frozen

accident’’ and that it therefore does not need any

further evolutionary explanation. Later, this view was

questioned. Although certain knowledge of the origin

and early stages of life is not likely to be obtained,

there are some hints of possible evolutionary sce-

narios of the genetic code. One direction of research

(the ‘‘top-down approach’’ [Szathmary 1999]) ana-

lyzes patterns in the contemporary code (Knight and

Landweber 1998; Szathmary 1999) and tries to infer

appropriate chemical and selective forces. The bot-

tom-up approach, on the other hand, is rooted in

biochemistry and aims at constructing plausible sce-

narios for the origin of coding (Topal and Fresco

1976; Maizels and Weiner 1987; Szathmary 1993).

It has been appreciated for a long time that the

genetic code assigns similar amino acids to similar

codons (Sonneborn 1965; Woese 1965; Zuckerkandl

and Pauling 1965; Crick 1968). Two different ratio-

nales have been presented: first, mutation (Sonneborn

1965; Zuckerkandl and Pauling 1965) and translation

(Woese 1967; Haig and Hurst 1991; Freeland and

Hurst 1998) error minimization (or both (Ardell and

Sella 2002)) and, second, the tendency of similar

amino acids to directly interact with similar RNA

sequences (Woese et al. 1966; Yarus 1998, 2000).

Landweber and coworkers found further evidence to

support both hypotheses. Extending previous work

(Haig and Hurst 1991; Freeland and Hurst 1998) by

quantifying amino acid similarity, these authors were

able to show that ‘‘the canonical code is at or very

close to a global optimum for error minimization’’Correspondence to: Thomas Wilhelm; email: wilhelm@imb-jena.de

J Mol Evol (2004) 59:598–605
DOI: 10.1007/s00239-004-2650-7
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(Freeland et al. 2000). Based on the earlier work of

Yarus (cf. Yarus 1998, 2000), by doing a statistical

analysis of RNA aptamers (nucleic acid molecules

selected to bind specific ligands), they concluded that

there is ‘‘the strongest support for an intrinsic affinity

between any amino acid and its codons’’ (Knight and

Landweber 1998). It has also been proposed that in-

stead of the actual codons, some derivatives of them,

such as the anticodons (Dunnill 1966; Jungck 1978)

or codon–anticodon duplexes (Alberti 1997), were the

original amino acid binding motifs. It could also be

that the original amino acid recognition took place at

the tRNA acceptor stem (Hopfield 1978) or that the

specificity of aminoacylation is determined by the

interaction of the tRNA synthetase with its tRNA

(Weiner and Maizels 1987). Szathmary (1999) pro-

posed that amino acid RNA allocation took place

even before the appearance of tRNA. He also gave a

possible evolutionary scenario for the development of

an anticodon hairpin to a longer structure with an

operational code at the acceptor stem.

Several patterns of the genetic code have been

identified, which can be illustrated within the classical

scheme.

The Common Scheme of the Genetic Code

The common scheme of the genetic code (Alberts

et al. 2002) contains 43 = 64 codons, a three-

dimensional matrix where each dimension represents

one of the three positions in the triplet code (Fig. 1).

Viewed this way, some patterns emerge: The first

codon position seems to be correlated with amino

acid biosynthetic pathways (Wong 1975; Taylor and

Coates 1989) and with their evolution as evaluated by

synthetic ‘‘primordial soup’’ experiments (Eigen

1977; Schwemmler 1994). The second position is

correlated with the hydropathic properties of the

amino acids (Crick 1968; Wolfenden et al. 1979;

Taylor and Coates 1989), and the degeneracy of the

third position could be related to the molecular

weight or size of the amino acids (Hasegawa and

Miyata 1980; Taylor and Coates 1989).

Lagerkvist (1978, 1981) divided the common

illustration scheme (Fig. 1) into a left part (contain-

ing the first and second columns, i.e., U and C in the

second position of the codon, respectively) and a

right part (the third and fourth columns, i.e., A and

G in the second position). He observed that codon

families (the amino acid of a codon family is uniquely

determined by the first two nucleotides of a codon; cf.

shaded regions in Fig. 1) have a much higher prob-

ability to appear in the left part. Furthermore, he

found that ‘‘strong’’ codons (the first two nucleotides

in the codon are G and/or C) always represent codon

families, while ‘‘weak’’ codons (A and/or U as the

first two nucleotides) never do so. ‘‘Mixed’’ codons in

the right part of the scheme never represent codon

families, whereas mixed codons in the left part always

stand for a codon family. Lagerkvist (1978) specu-

lated ‘‘that interactions between mixed codons and

their anticodons are stronger in the left half of the

codon square.’’

However, most amino acid properties show no

clear pattern in the common scheme of the genetic

code. Instead Jungck (1978) used 15 different quan-

titative measures of amino acid properties such as

polarity and molecular volume to demonstrate that

these properties are generally more closely correlated

with anticodon than with codon dinucleoside mono-

phosphate properties. This supports the hypothesis

that the relationship between amino acids and their

anticodon dinucleosides was the basis for the origin

of the genetic code.

In this article we follow the ‘‘top-down approach’’

toward understanding the organization of the genetic

code. We are thereby led to propose a new classifi-

cation scheme for the code that helps us to identify

new patterns which in turn suggest new speculations

about its origin.

Results

A New Classification Scheme of the Genetic Code

Figure 2 shows our new scheme for presenting the

genetic code. It is based on a binary classification of

nucleic acid bases. The two components of all nucleic

acids, purines and pyrimidines, are denoted 1 and 0,

respectively. The eight rows in Fig. 2 represent the

23 = 8 possible combinations of three binary digits.

Since there are two purines (A, G) and two pyrimi-

dines (U, C) for each row, there again exist eight

possibilities.

Our first observation is that four (and not eight)

columns are sufficient to place all 20 amino acids, as

well as the termination codons. Each row contains

exactly four different amino acids (including the ter-

mination codon). In the standard code, exceptions

are the second row, with two leucines, and the AU*

start codon in the fourth row. Note that here are also

the deviations from the standard code. Interestingly,

the yeast mitochondrial code shows no exception:

Each row contains exactly four different entries in

four different columns. In this respect the yeast

mitochondrial code is the most regular one. The fact

that in our scheme four columns are sufficient reflects

the well-known fact that if the third position is

important (in exactly half of our table this is not the

case), then it is only decisive if there is either a purine

(1) or a pyrimidine (0) (Fitch and Upper 1987), i.e.,

the third position is analyzed in a binary manner
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(Taylor and Coates 1989). This has been explained by

Crick’s (1996) wobble hypothesis, wherein the first

two nucleotides of the codon pair with their antico-

don bases according to Watson–Crick rules, but the

third base pairs according to the wobble rules, which

say that G can also pair with U, for instance. The

third codon position is exclusively analyzed in a

binary manner in the mitochondrial codes of yeast,

vertebrates, invertebrates, coelenterates, and flat-

worms, as well as in the codes of mold, protozoa, and

mycoplasma/spiroplasma; for the other codes there

are a few exceptions (cf. Elzanowski and Ostell 2000).

Note that these few exceptions always have a purine

at the third position of the codon (e.g., AUA [Ile] and

AUG [Met] in the standard code).

Our scheme provides some support for the

‘‘adaptive genetic code’’ hypothesis (Freeland 2002),

which states that the code has evolved to minimize

the deleterious effects of mutation and translation

error (Haig and Hurst 1991; Freeland and Hurst

1998). The purine–pyrimidine binary coding scheme,

shown in Fig. 2, exhibits a much greater regularity

than a binary coding according to the base pairs

(A,U—1; G,C—0). This corresponds to the known

fact that transition mutations (e.g., purine A vs.

purine G) occur more frequently than transversion

mutations (e.g., purine A vs. purimidine U).

A second observation concerns the order of the

columns. In the first column the first two positions

are G and C. These always pair with their anticodon

base via three hydrogen bonds, i.e., the first two bases

together always guarantee six hydrogen bonds. For

that reason Lagerkvist (1978) called them strong co-

dons. In the second and third columns, the first two

bases guarantee five bonds (mixed codons), and in the

fourth column just four bonds (weak codons). This

pattern corresponds very well to the importance of

the third base in the triplet codon: If the first bases

are G and/or C (first column), the third base is never

important, and in the second and third columns, the

third base is important in exactly half the cases (if

there is a purine in the second position—lower half of

the table). In the fourth column the third base is al-

ways necessary for the determination of the correct

amino acid. In Fig. 2, the order of codon families is

illustrated by the shaded regions. It seems that for the

first column, the first two bases alone guarantee suf-

ficient stability in the codon–anticodon pairing to

ensure the correct choice of the amino acid. In the

case of mixed codons (second and third columns) a

codon family is guaranteed if there is a pyrimidine in

the second position. Going beyond Lagerkvist’s

counting of hydrogen bonds, others have provided

some quantitative information about nucleotide

binding strengths (Ornstein and Fresco 1983).

A third observation refers to two perfect symme-

tries in our scheme. The first is the codon–anticodon

symmetry: The thick horizontal line in Fig. 2 marks

the symmetry axis. For instance, codonCCC (Pro; first

column, first row) has the anticodon GGG (Gly; first

column, last row), and codon ACG (Thr; third col-

umn, fourth row) has the anticodon UGC (Cys; third

column, fifth row). The second perfect symmetry is the

point symmetry corresponding to Halitsky’s (2003)

family–nonfamily symmetry operation (‘‘E–M bifur-

cation’’), indicated by the point in the center of Fig. 2.

Halitsky observed that all 32 ‘‘family codons’’ CC*,

CU*, UC* GC*, GU*, AC*, CG*, and GG* can be

mapped into the 32 ‘‘nonfamily codons’’ UU*, AU*,

CA*, UG*, UA*, GA*, AG*, and AA* by exchanging

the two amino bases A and Cwith one another and the

two keto bases U and G with one another. For in-

stance, the family codon GUA (Val) is mapped into

the nonfamily codon UGC (Cys). Thus, this point

symmetry underlies the family–nonfamily symmetry

in our scheme (shaded vs. unshaded regions).

A fourth observation concerns the deviations of

nonstandard genetic codes. As can be seen in Fig. 2,

nearly all deviations occur in codons with a purine at

the third position. The only exception is the yeast

mitochondrial code, in which CU* does not code for

Leu but, rather, for Thr.

Our fifth observation refers to the number of dif-

ferent tRNAs. The mammalian mitochondrial gen-

omes contain one gene for each tRNA, with the

exceptions of tRNA Leu and tRNA Ser for which

two genes are present. Our new classification scheme

for these mitochondrial codes (slight modification of

Fig. 2) makes this number obviously: eight tRNAs

Fig. 1. The common presentation of the standard (‘‘universal’’)
genetic code. All deviations from this code (Elzanowski and Ostell
2000) are thought to be the result of later mutations (Osawa et al.
1992; Knight and Landweber 2000b; Knight et al. 2001). Shaded
regions show codon families.
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for the eight codon families plus 14 tRNAs for the

remaining 14 fields (the two termination codons need

no tRNA).

Our sixth observation shows hitherto unknown

regularities of amino acid properties. Jungck (1978)

collected 15 different measures of amino acid prop-

erties, as well as 3 measures for dinucleoside mono-

phosphates. For all of these 18 measures we arranged

a table with eight rows and four columns corre-

sponding to the scheme in Fig. 2. For AU(G/A) we

took the Met values (e.g., vertebrate mitochondrial

code); for UA(G/A), the Tyr values (mitochondrial

flatworm code). Then we analyzed all row and col-

umn sums. The row sums show a strong monoto-

nicity just for the three dinucleoside monophosphate

measures and for the hydropohobicity measure of

Levitt (1976). However, amazingly, the column sums

of nearly all measures are perfectly correlated with

the corresponding codon–anticodon binding strength

as defined by Lagerkvist (1978, 1981), in the follow-

ing simply denoted codon strength. This is demon-

strated in Table 1. For this table we averaged the

column sums of the second and third columns, giving

one ‘‘mixed codons’’ column. As can be seen in Ta-

ble 1 there are just two exceptions. In the polarity

measure of Zimmerman et al. (1968), the deviation is

very weak, and in contradiction to all other measures,

here the values for the amino acids vary by orders of

magnitude. A problem only arises for the three

hydrophobicity measures: The two monotonic mea-

sures ‘‘Levitt’’ and ‘‘BullBreese’’ are anticorrelated,

and the ‘‘Jones’’ measure is not monotonic. The an-

ticorrelation was found by Jungck (1978), but he did

not comment on this.

The fact that the order of the second and third

columns is not fixed is also underlined by individual

consideration of the two mixed codon columns, in-

stead of the averaging done in Table 1. In about half

of the cases the order of the second and third columns

should be exchanged to guarantee the strong mono-

tonicity of the amino acid measures as a function of

the column number.

The strong correlation between amino acid prop-

erties and codon strength implies that the first and

second position together, and not one of them alone,

must have been important for the amino acid–codon

assignment in the evolution of the genetic code.

Evolution of the Genetic Code

What do the observed patterns tell us about the

evolution of the genetic code? The so-called biosyn-

Fig. 2. A new classification scheme of the standard genetic code
based on a binary representation of purines (1) and pyrimidines (0).
The third base is given in parentheses. When there are differences
between the standard code and any other code, the number of
deviations from the standard code is indicated. This comparison is
based on 16 nonstandard codes (Elzanowski and Ostell 2000). For
instance, in the UG(G/A) field, 0/9 indicates that UGG encodes for
Trp in all codes, but UGA is not the termination codon in 9 of the
16 nonstandard codes: In 8 different mitochondrial codes UGA
encodes Trp, and in the euplotid nuclear code it represents Cys. It is

interesting that at least in some bacteria the 21st amino acid, sel-
enocysteine, can also be encoded by UGA (Osawa et al. 1992;
Thanbichler and Böck 2002). Another example is the CU(G/A)
field. In the yeast mitochondrion CUG and CUA encode Thr; in
the alternative yeast nuclear code, CUG represents Ser. Shaded
region show codon families. The point in the center indicates the
perfect point symmetry in this scheme, according to Halitsky’s
(2003) family–nonfamily symmetry operation. The thick horizontal
line marks the symmetry axis for codon–anticodon symmetry.
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thetic theory assumes that the genetic code evolved

from a simpler form that encoded fewer amino acids

(Crick 1968). A special version of this theory has been

given by Wong (1975), who proposes that the genetic

code coevolved with the invention of biosynthetic

pathways for new amino acids. Although it has been

shown that his analyses rest on wrong assumptions

(Ronneberg et al. 2000), it is generally accepted that

one can discriminate evolutionarily old and new

amino acids (Alberts et al. 2002). Of course it could

be that the binding allocation between nucleic acid

molecules (RNAs or even PNAs [Knight and Land-

weber 2000b]) and amino acids did not start until all

20 amino acids were available, but it seems simpler to

assume that as soon as there were amino acids and

nucleic acids available, produced abiotically, both

began to bind to each other. It now seems clear that

‘‘the code probably underwent a process of expansion

from relatively few amino acids to the modern com-

plement of 20’’ (Knight and Landweber 2000b).

Does our scheme yield some hints as to the evo-

lution of the code? We already noted that the third

nucleotide is nearly always (two exceptions in the

standard code) analyzed just in a binary manner.

Taking this for granted, we can reduce our original

8 · 8 scheme to an 8 · 4 scheme (shown in Fig. 2).

Looking at this scheme, we observe high redundancy

for each second row. Therefore, it is tempting to

speculate that there was a period during code evolu-

tion when the third position was not needed at all.

Assuming this, we can cancel each second row and

are left with a pure doublet code that encodes 4 ·

4 = 16 amino acids (or 15 plus a termination codon).

Perhaps, then, a doublet code preceded the triplet

code, as has already been speculated (Jukes 1973;

Hayes 1998).

Conceivably, codon expansion from doublet to

triplet could have arisen before this or, possibly, not

until all 16 amino acids were encoded. If one assumes

the latter, then it is interesting to postulate for each

doublet the corresponding old amino acid. Met

(Wong 1975), Trp, Gln, Asn (Knight and Landweber

2000b), and Tyr (Alberts et al. 2002) seem to be

newer amino acids. As mentioned above, Szathmary

(1999) proposed an evolutionary mechanism of

tRNA formation. In principle, this mechanism could

also work starting with doublets instead of triplets. It

should be possible to gain experimental evidence for a

doublet code by studying amino acid–nucleic acid

doublet binding in the same way as has been done for

triplets. Knight and Landweber (2000a) showed that

Arg triplet codons alone significantly associate with

arginine binding sites. Perhaps the doublets show a

higher specificity.

However, by proposing a doublet code one faces

the frameshifting problem. It seems unthinkable that

a sudden transition from a two-letter to a three-letter

frame ever occurred. Instead, one can imagine a

Table 1. Correlation of codon strength and amino acid properties

Measure Strong codons Mixed codons Weak codons

Dinucleoside monophosphates

Hydrophilicity

Weber & Lacey (1978) 1.686 1.434 1.235

Barzilay et al. (1973) 2.72 2.26 2.26

Hydrophobicity (Garel et al. 1973) 2.556 3.413 3.982

Amino acids

Molec. weight (handbook value) 907 1065.6 1217.5

Molec. volume (Grantham 1974) 381 637.5 906

Refractivity (Jones 1975) 83.86 140.03 186.51

Alpha pK1 (Zimmermann et al. 1968) 16.96 17.11 17.43

Bulkiness (Zimmermann et al. 1968) 93.22 124.345 143.54

Specific volume (McMeekin et al. 1964) 5.26 5.37 5.8

Polarity

Zimmerman et al. (1968) 107.16 109.58 58.14

Woese et al. (1967) 61.2 59.15 51

Grantham (1974) 71.2 67 56.3

Hydrophobicity

Jones (1975) 9.18 8.385 16.93

Levitt (1976) )2.2 1.6 8.8

Bull & Breese (1974) 3880 )165 )6790

Hydrophilicity (Weber & Lacey 1978) 7.02 6.585 5.59

Partition coefficient (Garel et al. 1973) 1.88 5.58 7.6

Sequence frequency (Jungck 1971) 4280 3522 2966

Note. Averaged values (per column, in our scheme of Fig. 2) of quantified dinucleoside monophosphate properties (codon and anticodon

values give the same average, because of the codon–anticodon symmetry) and amino acid properties for strong, mixed, and weak codons.

Each row represents one of the measures published by Jungck (1978).
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gradual evolution with an ancient three-letter reading

frame where just the first two letters have been ana-

lyzed by an ancient translation machinery. However,

one then wonders about such inefficient use of coding

space. Perhaps the ancient translation machinery,

simply for stereochemical reasons, could not analyze

a two-letter frame. In this context it is also interesting

to note that even our contemporary code is somehow

‘‘inefficient’’: Already a quaternary doublet code can

encode 16 amino acids (or 15 plus a termination co-

don). For just four (or five) further amino acids a

third letter is necessary. Of course, this inefficiency

has the advantage of robustness enhancing redun-

dancy.

Szathmary (1992, 2003) proposed a model which

yields the result that two different base pairs represent

an optimal compromise between the overall copying

fidelity and the overall reproduction rate (metabolic

efficiency). He assumed that the genetic code was

developed before evolution invented proofreading.

For higher copying fidelity (due to proofreading,

etc.), the model predicts that three different base pairs

are better than just two. It is tempting to speculate

that in the earliest phases of biological evolution with

the lowest copying fidelity, just one base pair could

have worked as well. (The copying fidelity is always

highest for just one base pair. Nevertheless, Szath-

mary’s simple model gives no one-base pair optimum,

but a more detailed model for the metabolic efficiency

could do so.) So, perhaps, nucleic acid–amino acid

mapping started with a binary code. This is in

accordance with earlier speculations that the first

genetic material contained only a single base-pairing

unit (Crick 1968; Orgel 1968). An important argu-

ment in this context is the chemical instability of

cytosine, so that it may be difficult to establish a ge-

netic system with G–C base pairing (Levy and Miller

1998). Wächtershäuser (1988) proposed an all-purine

precursor of nucleic acids. However, for the sake of

self-replication it is more obvious to assume a two-

letter code that can give rise to complementary base

pairing. Jimenez-Sanchez (1995) argued for an early

(binary) A–U coding. Recently, a ribozyme com-

posed of only two different nucleotides has been

found by in vitro evolution that contained the

pyrimidine uracil and the purine 2,6-diaminopurine

(Reader and Joyce 2002). Note that uracil is the

biosynthetic precursor of the pyrimidines cytosine

and thymine (the corresponding precursor of the

purines adenine and guanine is hypoxanthine).

Of course, a binary encoding also would be the

most aesthetic version from a purely mathematical

point of view. A binary triplet code would represent

just one column in our scheme (Fig. 2). Given the

high redundancy between the rows, it is unlikely that

this ever happened. However, an even simpler coding,

a binary doublet code, seems conceivable. It is

tempting to speculate which four amino acids, one

per two consecutive rows, were the first encoded ones.

In the first two rows (two pyrimidines, i.e., 00) Ser

seems to be the oldest amino acid, and in the third

and fourth rows (10), Ala (Wong 1975). On the other

hand, the 01 rows obviously contain no really old

amino acid, while the 11 rows contain more than one:

Gly, Asp, and Glu (Wong 1975).

One could speculate that the termination marker

was important from the very beginning and resulted

in coding by the 01 binary doublet. It has been noted

that the five amino acids coded by G** (Ala, Val, Gly,

Asp, Glu) are all at or near the head of the amino

acid synthesis pathways (Taylor and Coates 1989)

and also the most abundantly formed ones in abiotic

synthesis experiments (Miller 1953, 1987). Further-

more, it has been shown recently by extensive statis-

tical analyses that the frequencies of all five G**

amino acids are significantly higher in evolutionary

conserved residues, and it has been concluded that

‘‘these amino acids may have been the first intro-

duced into the genetic code’’ (Brooks and Fresco

2002, 2003; Brooks et al. 2002). This is also consistent

with physicochemical arguments proposing that the

first sense codons had the form G** (Eigen and

Schuster 1978). However, Gly is biochemically built

from Ser, so Ser can be assumed to be prior. It could

be that in the beginning of nucleic acid–amino acid

assignment, Asp and Glu competed for the 11 dou-

blet. Of course, code transfer from one amino acid to

another one might also have occurred (Wong 1975).

Another scenario consistent with a binary doublet

code has been given by Fitch’s ‘‘ambiguity reduction’’

hypothesis (Fitch and Upper 1987). It states that

early in evolution there was an ambiguity in the

charging of amino acids to anticodon acceptors: In

the first step just *pyrimidine* codons (*0*), coding

for hydrophobic amino acids, and *purine* codons

(*1*), coding for hydrophilic amino acids, have been

distinguished (binary singulet code). In the second

step the more refined binary doublet code (00*, 01*,

10*, 11*) evolved.

The idea that the doublet code was just the second

state in the evolution of the genetic code, and that this

evolution started with just the midbase as coding, has

been worked out by others, who termed it the ‘‘sim-

plet’’ code (McClendon 1986; Schwemmler 1994).

However, in this hypothesis both old amino acids Ser

(UC*) and Ala (GC*), as well as Asp (GA*) and Glu

(GA*), cannot be discriminated. We therefore suggest

that the first two positions were equally important

from the very beginning. Although our suggestion

also does not allow discrimination between the related

amino acids Asp and Glu, it nevertheless allows dis-

crimination between the functionally divergent amino

acids Ser and Ala. A further argument for the evolu-

tionary importance of the first two nucleotides is the
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strong correlation observed between codon strength

and the amino acid properties.

Conclusion

Taylor and Coates (1989) stated that ‘‘many parts of

the patterns (of the genetic code) have been seen by

others but ... it is the synthesis that adds up to the

most interesting ... new insights.’’ In this spirit, we

note that in the work presented here different patterns

appear more clearly than in the common scheme of

the genetic code. An example is Lagerkvist’s (1978)

observation that all strong codons represent codon

families, while weak codons do not. Mixed codons

represent codon families in half of the cases. Our

presentation of the code also highlights new patterns,

which were not seen before. As summarized in Ta-

ble 1, nearly all measures of the amino acid proper-

ties correlate strongly with the codon strengths.

Furthermore, there is perfect codon–anticodon sym-

metry as well as point symmetry corresponding to

the family–nonfamily symmetry operation (Halitsky

2003) in our scheme.

With regard to evolution, we hypothesize that

codon assignments started from a binary doublet

code (e.g., hypoxanthin and uracil) and developed

later to a quaternary doublet code (A, G, C, U);

thereafter, expansion to a triplet code took place.

Although the third position is needed for correct

amino acid recognition, until now it has nearly al-

ways been analyzed in a binary manner. The con-

clusion that code evolution must have started with

doublets and not with a single letter is also underlined

by the correlation observed here between the prop-

erties of amino acids and the strengths of their co-

dons.
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A Purine-Pyrimidine Classification Scheme 
of the Genetic Code

Although containing the same information, our new classification scheme of

the genetic code is simpler than the common representation as a three-

dimensional matrix: it contains just 32 instead of 64 fields. Moreover, it shows

known patterns in the code more clearly than the common scheme. Above all,

with the help of our new scheme we could identify new patterns never seen 

before. This gives rise to some speculations about the origin and early 

evolution of the genetic code. We hypothesize that coding started in a binary

doublet manner and developed via a quaternary doublet code to our 

contemporary quaternary triplet code. Most interestingly, it may be possible 

to discover traces of the old binary coding in present-day genomes.

third base) in the plane figure, each of
the 16 boxes is again divided into four
fields, giving together 64 entries (Fig.1). 

For a long time one assumed that the
genetic code is universal for all life forms
on earth. Today there are at least 16
slightly deviating different codes known
(www.ncbi.nlm.nih.gov/Taxonomy/Utils/w
printgc.cgi). However, it is generally be-
lieved that all these deviations are later
descendants of the earlier standard code.
Not surprisingly, non-standard codes are
only found in small genomes, nearly all of
them in mitochondria known to have by
far the smallest genomes.

Since the early days of the discovery of
the genetic code non-random patterns
have been searched in the code for pro-
viding information about its origin and
early evolution. In 1965 Nirenberg fin-
ished his famous project of deciphering
the code. At that time most scientists be-
lieved that the code is the result of pure
chance and hence does not need any fur-
ther evolutionary explanation. Crick [1]
formulated the corresponding “frozen ac-
cident” hypothesis which was widely ac-
cepted for many years. However, today it
is assumed that at least some hints of pos-
sible evolutionary scenarios can be found
in our contemporary code. The top-down
approach, which we are following here,
analyzes patterns in the code and tries to
infer appropriate chemical and selective
forces. The bottom-up approach, on the
other hand, is rooted in biochemistry and
aims at constructing plausible scenarios
for the origin of coding. 

It has been appreciated for a long time
that the genetic code assigns similar amino
acids to similar codons. Two different ratio-
nales have been presented: first, mutation
and translation error minimization [2], and
second, similar amino acids tend to directly
interact with similar RNA sequences [3]. It
was stated that “the canonical code is at or
very close to a global optimum for error
minimization” [4]. It has also been pro-
posed that instead of the actual codons,
some of their derivatives, such as the anti-
codons or codon-anticodon duplexes were
the original amino acid binding motifs. It is
also possible that the original amino acid
recognition took place at the tRNA accep-
tor stem. Szathmary [5] proposed that
amino acid-RNA allocation took place even

Thomas Wilhelm, Svetlana Nikolajewa

The genetic code specifies how the infor-
mation contained in the nucleic acids
DNA and RNA is translated into the cor-
rect sequence of amino acids building
the highly specific proteins. Up to the
three termination codons UGA, UA(G/A)
(standard code), each nucleotide triplet
stands for exactly one amino acid, the
methionin codon AUG is also the start
codon. The genetic code is comma-free
and non-overlapping. It is usually repre-
sented as a three-dimensional matrix in
which the four rows stand for the first
base and the four columns for the second
base. To show the third dimension (the

BIOforum Europe 06/2004, pp 46–49, GIT VERLAG GmbH & Co. KG, Darmstadt, www.gitverlag.com/go/bioint
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before the appearance of tRNA. He also
gave a possible evolutionary scenario for
the development of an anticodon hairpin to
a longer structure with an operational code
at the acceptor stem. 

However, the first codon position
seems to be correlated with amino acid
biosynthetic pathways and to their evolu-
tion as evaluated by synthetic “primor-
dial soup” experiments. The second posi-
tion is correlated with the hydropathic
properties of the amino acids, and the
degeneracy of the third position could be
related to the molecular weight or size of
the amino acids [6]. Lagerkvist [7] ob-
served that codon families (the amino
acid of a codon family is uniquely deter-
mined by the first two nucleotides of a
codon) have a much higher probability to
appear in the left part of the common il-
lustration scheme (cf. Fig. 1). He also
found that “strong” codons (the first two
nucleotides in the codon are G and/or C)
always represent codon families, while
“weak” codons (A and/or U as the first
two nucleotides) never do so. “Mixed”
codons in the right part of the scheme
never represent codon families, whereas
mixed codons in the left part always
stand for a codon family. 

The New Classification Scheme 
of the Genetic Code

Most amino acid properties show no
clear pattern in the common scheme of

the genetic code. Recently we proposed a
new classification scheme [8 and
www.imb-jena.de/~sweta/genetic_code],
based on a binary purine(1)-pyrimi-
dine(0) coding (Fig. 2). It shows known
regularities more clearly than the com-
mon scheme and it even highlights some
new patterns. 

There are three possible variants of a
binary coding scheme for the genetic
code: One could group the bases (i) ac-
cording to base-pairs (A,U = 1, G,C = 0),
(ii) according to keto- and aminobases
(G,U = 1, A,C = 0), and (iii) according to
purines and pyrimidines (A,G = 1, C,U =
0). In such a simplified code eight differ-
ent binary triplets exist: 000, 001, ..., 111.
Each of these binary triplets represents
eight different codons, e.g. in our coding
scheme 000 stands for CCC, CCU, ...,
UUU. The purine-pyrimidine coding is su-
perior to the other two variants, because
it is the only one that allows the genetic
code to be represented using just four
columns (Fig. 2). The reason for this vast
simplification in our scheme is that for
the third position in each triplet it only
matters if it is a purine or a pyrimidine. 

Given the primary purine-pyrimidine
coding, we have again two different pos-
sibilities to sort the first two bases per
row: one can use either of the remaining
two binary codings, according to base-
pairs or according to keto- and
aminobases as a sort criterion inside the
rows. We have chosen the base-pairs for
sorting inside rows, because only this re-
veals the following regularities of the ge-
netic code: (i) All codon families group
together, i.e. they are not scattered
allover the table. (ii) More importantly,
the codon strength classification directly
corresponds to the columns in our
scheme (cf. Fig. 2). Thus, in the first col-
umn the first two bases complementary
pair with 6 hydrogen bonds, in the sec-

Fig. 2: The purine(1)-pyrimidine(0) classification scheme of the standard genetic code. The third base
is given in parenthesis. If there are differences between the standard code and any other code, the
number of deviations from the standard code is indicated. For instance, in the UG(G/A) field, 0/9 in-
dicates that UGG encodes for Trp in all codes, but UGA is not the termination codon in 9 of the 16
non-standard codes. In some bacteria the 21st amino acid, selenocysteine, can also be encoded by
UGA. Shaded regions show codon families. The point in the center indicates the perfect point sym-
metry corresponding to Halitsky’s family – nonfamily symmetry operation [9]. The thick horizontal
line marks the symmetry axis for codon-anticodon symmetry.

Fig. 1: The common representation of the standard genetic code (mRNA triplets in the mRNA read-
ing direction (5'_3')). Shaded regions show codon families.
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ond and third column with 5, and in the
fourth column with just 4 hydrogen
bonds. For all these reasons our classifi-
cation scheme of the genetic code is su-
perior to all similiar ones.

Our new scheme shows some fasci-
nating regularities. We can, for instance,
better understand the number of differ-
ent tRNAs in some organisms. In the sim-
plest case one should expect one tRNA
per coding field in our scheme. Exactly
this happens in the case of vertebrate
mitochondria. It is known that animal
mitochondria contain exactly 22 differ-
ent tRNAs. In vertebrate mitochondria
UA1 and AG1 are stop codons. Thus
there are exactly 22 fields for amino
acids left: the 8 codon families plus 14
remaining fields. Interestingly, the 22 tR-
NAs in animal mitochondria correspond
1:1 to these 22 fields.

The amino acids of the nine "strong
groups" (mutually evolutionary conserved,
based on the alignment score matrix
PAM250, cf. http://bioinfolab.unl.edu/em-
lab/documents/clustalx_doc/clustalw.txt)
very closely group together in our scheme,
more closely than in the standard scheme.
That means neighboring amino acids in
our schme have a higher probability to be
aligned to each other in genome compar-
isons than neighboring amino acids in the
standard scheme.

Our new scheme also led us to detect
hitherto unknown regularities of amino
acid properties in the genetic code.
Jungck [10] collected 15 different mea-
sures of amino acid properties. For all of
these we arranged a table with 8 rows
and 4 columns corresponding to our
scheme. Amazingly, the column sums of
nearly all measures are perfectly corre-
lated to the corresponding codon-anti-
codon binding strength. For instance, the
first column harbours more polar amino
acids, the last column less polar ones and
the mixed codon fields are in between.
Similarly, the bulkiness and the specific
volume increases continuously from the
first to the last column.

Evolution of the Genetic Code

The observed regularities inspire to
some speculations about the early evolu-
tion of the genetic code. Thus the strong
correlation between amino acid proper-
ties and codon strength implies that the
first two positions together (and not the
second position alone as speculated by
others) must have been important for the
amino acid – codon assignment in the
early evolution of the code. It therefore
also could be that just the first two nu-
cleotides of a codon (or anticodon) show
specific binding affinity to the corre-

sponding amino acid (maybe important
in the process of the code formation). 

Nowadays one assumes that "the code
probably underwent a process of expan-
sion from relatively few amino acids to the
modern complement of 20" [11]. Can we
find some hints in our scheme indicating
coding of less than 20 amino acids in an-
cient times? Indeed, there is a high redun-
dancy for each second row. This gives rise
to the speculation that in the early days of
code evolution just the first two bases of
the triplet were coding. The reading
frame, however, arguably always com-
prised three letters. In any way, a quater-
nary doublet can encode at most 16 amino
acids, or 15 plus one termination codon
(some bacteria exist that do not possess
any stop codon). In this context it is inter-
esting to note that Asn, Gln, Met, Trp, and
Tyr seem to be newer amino acids.

Since the discovery of the genetic code it
is speculated that the first genetic material
contained only a single base-pairing unit
[1]. Recently, for the first time a ribozyme
was found composed of only one purine
and one pyrimidine [12]. Assuming a bi-
nary doublet code, it is tempting to specu-
late which four amino acids, one per two
consecutive rows, were the first encoded
ones. In the first two rows Ser seems to be
the oldest amino acid, and in the third and
fourth row Ala. The 01-rows obviously con-
tain no really old amino acid while the 11-
rows contain more than one: Gly, Asp, Glu.
However, Gly is biochemically built from
Ser, so Ser can be assumed as prior. It
could be that in the beginning of nucleic
acid – amino acid assignment Asp and Glu
competed for the 11-doublet. Of course,
code transfer from one amino acid to an-
other might also have occurred. 

Conclusions

We have found a concise scheme for the
genetic code that is superior to similar
schemes for different reasons. It shows
nice patterns and symmetries and even
so far unknown regularities in the code.
We are now studying the fascinating
question whether we still can find traces
of doublet coding or even binary coding
in contemporary genomes.
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We present a new classification scheme of the genetic code. In contrast to the standard
form it clearly shows five codon symmetries: codon-anticodon, codon-reverse codon, and
sense-antisense symmetry, as well as symmetries with respect to purine-pyrimidine (A
vs. G, U vs. C) and keto-aminobase (G vs. U, A vs. C) exchanges. We study the number
of tRNA genes of 16 archaea, 81 bacteria and 7 eucaryotes to analyze whether these
symmetries are reflected in corresponding tRNA usage patterns. Two features are es-
pecially striking: reverse stop codons do not have their own tRNAs (just one exception
in human), and A** anticodons are significantly suppressed. Our classification scheme
of the genetic code and the identified tRNA usage patterns support recent speculations
about the early evolution of the genetic code. In particular, pre-tRNAs might have had
the ability to bind their codons in two directions to the corresponding codons.

Keywords: Genetic code; evolution; tRNA

1. Introduction

The genetic code specifies how the information contained in the nucleic acids is

translated into the correct sequence of amino acids. It is usually represented as

shown in Figure 1. Since the early days of the discovery of the genetic code pat-

terns have been searched for gaining insights into its origin and early evolution8.

It is known that the genetic code assigns similar amino acids to similar codons.

Two different rationales have been presented: first, mutation and translation error

minimization3,10, and second, similar amino acids tend to directly interact with

similar RNA sequences42. It has also been stated that instead of the actual codons,

∗This work has been supported by the Bundesministerium für Bildung und Forschung Grant
0312704E.
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First Second base Third

base U C A G base

U

UUU Phe UCU Ser UAU Tyr UGU Cys U

UUC Phe UCC Ser UAC Tyr UGC Cys C

UUA Leu UCA Ser UAA Stop UGA Stop A

UUG Leu UCG Ser UAG Stop UGG Trp A

C

CUU Leu CCU Pro CAU His CGU Arg U

CUC Leu CCC Pro CAC His CGC Arg C

CUA Leu CCA Pro CAA Gln CGA Arg A

CUG Leu CCG Pro CAG Gln CGG Arg A

A

AUU Ile ACU Thr AAU Asn AGU Ser U

AUC Ile ACC Thr AAC Asn AGC Ser C

AUA Ile ACA Thr AAA Lys AGA Arg A

AUG Met ACG Thr AAG Lys AGG Arg A

G

GUU Val GCU Ala GAU Asp GGU Gly U

GUC Val GCC Ala GAC Asp GGC Gly C

GUA Val GCA Ala GAA Glu GGA Gly A

GUG Val GCG Ala GAG Glu GGG Gly A

Fig. 1. The common representation of the standard genetic code (codon families are shaded).

some of their derivatives, such as the anticodons9,14 or codon-anticodon duplexes2

were the original amino acid binding motifs. Recently, a new mechanism has been

proposed for the association of amino acids with their codons and the origin of

the genetic code6. It could explain two other long-known regularities of the ge-

netic code. The first codon position seems to be correlated with amino acid biosyn-

thetic pathways and to their evolution as evaluated by synthetic “primordial soup”

experiments32,39. The second position is correlated with the hydropathic properties

of the amino acids. Codons with U as the second base code for the most hydropho-

bic amino acids and those having A as the second base are associated with the most

hydrophilic amino acids32. Lagerkvist16,17 observed that codon families (the amino

acid of a codon family is determined by the first two nucleotides of a codon alone)

have a much higher probability to appear in the left part of the common illustration

(Fig. 1).

Recently, it was found that special purine - pyrimidine patterns of DNA binding

sites facilitate recognition by restriction enzymes21. Here we show that also the

genetic code is largely determined by purine - pyrimidine coding.

The following section introduces a new classification scheme of the genetic code

based on the purine - pyrimidine coding, which demonstrates different codon sym-

metries that do not appear in the standard scheme. Section 3 presents an analysis

of tRNA frequencies in 104 species (tRNA usage patterns), corresponding to the

five symmetries in the new scheme. For each codon the number of genes coding
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Strong Mixed Mixed Weak

6 hydrogen bonds 5 hydrogen bonds 5 hydrogen bonds 4 hydrogen bonds

000
Pro CC (C/U) Ser UC (C/U) Leu CU (C/U) Phe UU (C/U)

Proline Serine Leucine Phenylalanine

001
Pro CC (A/G) Ser UC (A/G) Leu CU (A/G) Leu UU (A/G)

Proline Serine Leucine Leucine

100
Ala GC (C/U) Thr AC (C/U) Val GU (C/U) Ile AU (C/U)

Alanine Threonine Valine Isoleucine

101
Ala GC (A/G) Thr AC (A/G) Val GU (A/G) Ile/Met AU (A/G)

Alanine Threonine Valine Isoleucine/Methionine

010
Arg CG (C/U) Cys UG (C/U) His CA (C/U) Tyr UA (C/U)

Arginine Cysteine Histidine Tyrosine

011
Arg CG (A/G) Stop/Trp UG (A/G) Gln CA (A/G) Stop UA (A/G)

Arginine Tryptophan Glutamine

110
Gly GG (C/U) Ser AG (C/U) Asp GA (C/U) Asn AA (C/U)

Glycine Serine Aspartic acid Asparagine

111
Gly GG (A/G) Arg AG (A/G) Glu GA (A/G) Lys AA (A/G)

Glycine Arginine Glutamic acid Lysine

Fig. 2. The purine(1)-pyrimidine(0) classification scheme of the genetic code. The third base is
given in parenthesis. Shaded regions show codon families. The dashed horizontal line marks the
symmetry axis for codon-anticodon symmetry and the dashed vertical line the mirror symmetry
of purine (G ↔ A)-pyrimidine (C ↔ U) exchange. The point in the center indicates the point
symmetry corresponding to keto-aminobase exchanges (G↔ U, A ↔ C).

for the tRNA with the complimentary anticodon (according to the Watson-Crick

base paring) is counted. Note that this analysis differs from the codon adaptation

index12,28, which additionally takes cytoplasmic tRNA concentration into account.

The most striking features of tRNA usage allow us to extend our earlier speculations

concerning the evolution of the genetic code37.

2. The New Classification Scheme of the Genetic Code

In contrast to the common representation of the genetic code our scheme is based

on a binary encoding of the four bases A, G, U, C. There are three possibilities of

a binary base coding41, according to:

(i) weak-strong bases (A,U = 1; G,C = 0),

(ii) keto- and aminobases (G,U = 1; A,C = 0), and

(iii) purines and pyrimidines (A,G = 1; C,U = 0).

In such a simplified code eight different binary triplets exist: 000, 001, ..., 111.

Each of these binary triplets represents eight different codons, e.g. in our purine-

pyrimidine coding scheme 000 stands for CCC, CCU, ..., UUU. The purine-

pyrimidine coding is superior to the other two variants, because it is the only one
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a) b)

Fig. 3. The codon - reverse codon pattern (a) and the sense - antisense codon pattern (b) in the
purine - pyrimidine scheme of the genetic code. For instance, codon GAU is reverse to the codon
UAG and codon CGU is the antisense codon of ACG. The codon symmetries are indicated by
arrows.

that allows the genetic code to be represented using just four columns (Fig. 2). The

reason for this vast simplification in our scheme is that for the third codon position

it only matters if it is a purine or a pyrimidine. Interestingly, the only two excep-

tions are the start (AUG) and stop (UGA) codons. Given the purine-pyrimidine

coding, there are two possibilities to sort the first two bases per row: one can use

either of the remaining two binary codings, according to the weak and strong bases

or according to keto- and aminobases, as a sort criterion inside the rows. We have

chosen the weak-strong splitting to sort rows, because only this reveals the following

regularities of the genetic code. First, all codon families group together, i.e. they are

not scattered all-over the table. Secondly, the codon strength classification directly

corresponds to the columns in our scheme (Fig. 2). Thus, in the first column the

first two bases complementary pair with 6 hydrogen bonds (strong codons), in the

second and third column with 5 (mixed codons), and in the fourth column with just

4 hydrogen bonds (weak codons).

In addition to its simplicity the new scheme uniquely shows 5 codon symmetries

(Fig. 2 and 3) that are not obvious in other representations of the genetic code.

Figure 2 reveals that the recently proposed family-nonfamily symmetry operation13,

exchanging the amino bases (A ↔ C) and the keto bases (G ↔ T), corresponds

to the point symmetry in our scheme. Moreover, the horizontal mirror symmetry

corresponds to the codon-anticodon symmetry (weak (A ↔ U) and strong base (G

↔ C) exchanges) and the vertical mirror symmetry represents the purine-pyrimidine

exchange symmetry (G ↔ A, C ↔ U). Figure 3a shows the symmetric codon-

reverse codon pattern and Figure 3b the sense-antisense codon pattern. Note that

the last four patterns cannot be seen in the usual presentation of the genetic code

(Fig. 1).

In our recently presented new classification scheme of the genetic code37 there

was one ambiguity left concerning the amino acid arrangement: the order of the



New Classification Scheme of the Genetic Code 30

December 9, 2005 12:54 WSPC/INSTRUCTION FILE jbcb1

The New Classification Scheme of the Genetic Code, its Early Evolution, and tRNA Usage 5

second and third column was arbitrary. We now present four reasons for choosing

the column order (mixed codons) as shown in Fig.2:

(i) The codon-reverse codon symmetry, and

(ii) the sense-antisense symmetry are revealed only by the chosen order.

(iii) In each quadrant of the scheme the second position of the corresponding triplets

is the same.

(iv) Strongly conserved groups of amino acids34 are subsets of exactly one quadrant,

e.g. the amino acids M, I, L, V belong to the upper right block in the table. The

other conserved strong groups belonging to one block are MILF, STA, NEQK,

NHQK, NDEQ, HY. The only exceptions are QHRK (R (Arg) is in another

quadrant) and FYW (in three quadrants). In other words, reverse codon pairs

tend to code for evolutionary similar amino acids, and each quadrant is enriched

for amino acids with similar biochemical properties.

The new scheme of the genetic code has now its optimal form (Fig. 2). It shows five

different triplet symmetries, including two additional symmetries that could not be

seen in our first version of the scheme37.

3. Patterns of tRNA usage

We studied tRNA usage of 16 archaea, 81 bacteria and 7 eucaryotes, using all in-

formation from the public database Genomic tRNA Compilation29. Different tables

corresponding to the identified codon symmetries were composed, each containing

all codons together with their symmetric codons. Table 1 shows the tRNA usage of

all organisms, corresponding to the codon-reverse codon symmetry. Rows are sorted

by the number of tRNA genes for a given anticodon (highest priority archaea, second

priority bacteria).

The order in Table 1 shows best the following main observations. The first

interesting pattern of tRNA usage refers to reverse STOP codons.a Of course, no

species has a tRNA with an anticodon complementary to any termination codon.

Intriguingly, there is also no tRNA with an anticodon for a reverse STOP codon.

The only exception is H. sapiens with one tRNAAsn with the anticodon ATT. The

lack of specific tRNAs does not imply that no tRNA exists which can recognize

reverse STOP codons. For instance, using base pairing allowed by Crick’s wobble

rules7, tRNA with the GTT anticodon can recognize the reverse STOP codon

AAT.

The second striking pattern in tRNA usage is the significant suppression of

tRNAs with A at the first anticodon position (Tab. 1). A** anticodons are fully

excluded in archaea. In bacteria and eucaryotes there are some exceptions, but it

can be observed that AY* anticodons do not apear in any species.

atRNA genes specifically recognizing initiation codon (Met) are significantly overrepresented.
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Table 1. Codon-reverse codon pairs and the corresponding number of tRNA genes.

Amino acid Codon Anticodon Number of tRNA genes
pairs pairs pairs archaea(16) bacteria(81) eucaryotes(7)

Cys TGT ACA 0 0 0
Phe TTT AAA 0 0 0
Tyr TAT ATA 0 0 1
Ser TCT AGA 0 0 28
Ile ATA TAT 0 5 16
Asp ↔ Stop GAT ↔ TAG ATC ↔ CTA 0 ↔ 0 0 ↔ 0 0 ↔ 0
Ser ↔ Stop AGT ↔ TGA ACT ↔ TCA 0 ↔ 0 0 ↔ 0 0 ↔ 0
Asn ↔ Stop AAT ↔ TAA ATT ↔ TTA 0 ↔ 0 0 ↔ 0 1↔ 0
Val ↔ Leu GTT ↔ TTG AAC ↔ CAA 0 ↔ 12 0 ↔ 93 18 ↔ 29
Ala ↔ Ser GCT ↔ TCG AGC ↔ CGA 0 ↔ 12 1 ↔ 64 36 ↔ 13
Gly ↔ Trp GGT ↔ TGG ACC ↔ CCA 0 ↔ 14 0 ↔ 111 0 ↔ 19
Pro ↔ Ser CCT ↔ TCC AGG ↔ GGA 0 ↔ 16 0 ↔ 99 16 ↔ 1
Ile ↔ Leu ATT ↔ TTA AAT ↔ TAA 0 ↔ 16 0 ↔ 107 16 ↔ 21
His ↔ Tyr CAT ↔ TAC ATG ↔ GTA 0 ↔ 16 0 ↔ 118 0 ↔ 55
Thr ↔ Ser ACT ↔ TCA AGT ↔ TGA 0 ↔ 16 1 ↔ 114 18 ↔ 21
Leu ↔ Phe CTT ↔ TTC AAG ↔ GAA 0 ↔ 16 8 ↔ 113 20 ↔ 25
Arg ↔ Cys CGT ↔ TGC ACG ↔ GCA 0 ↔ 16 114 ↔104 18 ↔ 46
Ala GCG CGC 12 28 15
Glu GAG CTC 12 30 19
Gly GGG CCC 12 46 13
Arg CGC GCG 14 12 0
Val GTG CAC 14 31 18
Glu ↔ Lys GAA ↔ AAG TTC ↔ CTT 14 ↔ 12 122 ↔ 59 21 ↔ 29
Pro CCC GGG 15 66 0
Thr ACA TGT 15 115 19
Val ↔ Leu GTC ↔ CTG GAC ↔ CAG 15 ↔ 12 92 ↔ 76 0 ↔ 10
Leu CTC GAG 16 90 2
His CAC GTG 16 106 16
Lys AAA TTT 16 120 25
Arg AGA TCT 16 121 21
Ala ↔ Pro GCC ↔ CCG GGC ↔ CGG 16 ↔ 12 73↔ 49 0 ↔ 11
Gly ↔ Arg GGA↔ AGG TCC ↔ CCT 16 ↔ 12 113 ↔ 81 18 ↔ 14

Ala ↔ Thr GCA ↔ ACG TGC ↔ CGT 16 ↔ 12 118 ↔ 66 17 ↔ 18
Asp ↔ Gln GAC ↔ CAG GTC ↔ CTG 16 ↔ 13 121 ↔ 43 21 ↔ 26
Ser ↔ Arg AGC ↔ CGA GCT ↔ TCG 16 ↔ 14 105 ↔ 30 21 ↔ 20
Pro ↔ Thr CCA ↔ ACC TGG ↔ GGT 16 ↔ 15 109 ↔ 107 29 ↔ 0
Asn ↔ Gln AAC ↔ CAA GTT ↔ TTG 16 ↔ 17 132 ↔ 115 41 ↔ 23
Gly ↔ Arg GGC ↔ CGG GCC ↔ CCG 17 ↔ 11 116 ↔ 74 23 ↔ 8
Ile ↔ Leu ATC ↔ CTA GAT ↔ TAG 17 ↔ 17 106 ↔ 107 1 ↔ 12
Met ↔ Val ATG ↔ GTA CAT ↔ TAC 45 ↔ 16 285 ↔ 118 33 ↔ 12

Another observation concerning tRNA usage is the significant suppression of

A*A self-reverse codons. In no archaea and in no bacteria any tRNA has such

an anticodon. In archaea the anticodon TAT is the only one without own tRNAs

that is not a STOP anticodon or an A** anticodon. Interestingly, this is the only

anticodon which according to Crick’s wobble rules7 allows recognition of a STOP

codon (TAG).
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4. The reverse recognition conjecture

In this section we present a hypothesis that consistently explains the observed sup-

pression of anticodons for reverse STOP codons. We conjecture that the observed

tRNA usage patterns reflect important features of the ancient translation machin-

ery. Maybe, in the early days of translation, pre-tRNAs were able to recognize

codons in both directions (Fig. 4). In order to guarantee termination (i.e., to avoid

incorrect elongation) the reverse stop codons had (and have) no own tRNA.

In agreement with others6,24,40, we hypothesized in our previous work that the

contemporary triplet code developed from an ancient doublet code37. However, in

order to avoid the frameshift problem one has to assume a triplet reading frame

also in doublet coding times37. In agreement, the triplet reading frame was recently

substantiated because unpaired RNA loops with 7 and 8 nucleotides are the most

stable ones40. Nevertheless, one still wonders about such an information wasting,

where the third base would not carry any information at all. We speculate that

in the early days of translation pre-tRNAs could fit in two opposite directions to

the corresponding mRNA (Fig. 4). This would resolve the wasting problem: if a

codon could be recognized in both directions all bases would carry information,

although in a given codon-anticodon pairing only two bases are analyzed. Three

different facts support our speculation. First, ancient pre-tRNAs presumably only

consisted of the anticodon loop, lacking the D- and T-loops27. Such pre-tRNAs

would have been (almost) symmetrical and could thus bind in two directions. If the

reverse recognition model is correct, the resulting polypeptide should be relatively

independent of the pre-tRNA binding direction. This is supported by the special

role of the central triplet base38,40. It is well-known that the second base has the

strongest interaction with the bases of 16S RNA (the universally conserved and

essential bases A1492, A1493, and G53022,30). Moreover, the middle base of the

anticodon has particularly strong interactions with the correct aminoacyl-tRNA

synthetase during amino acid attachment20. The second base is exceptional also in

another respect: it is correlated to the main physical property of amino acids, the

hydrophobicity32. The third fact supporting our “reverse recognition conjecture”

is the above observation that reverse codon pairs generally encode evolutionary

similar amino acids34. We suppose that this observation is a relict from old “reverse

recognition times”, where the reverse recognition should have a minimal effect on

the resulting polypeptide.

It was speculated that the translation machinery of the last universal common

ancestor (LUCA) is most similar to that of archaea35, so we expect that tRNA

usage patterns in archaea reflect ancient translation. What could be the reason for

the forbidden A** anticodon-tRNAs? Three different explanations can be given.

First, sometimes A (and the simple derivative inosine I) at the third codon posi-

tion misleadingly pair with the first anticodon position23. In order to prevent such a

mistranslation A** anticodon-tRNAs could have been forbidden. A second possible

explanation is the strong preference of G (instead of A) at the first anticodon po-
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Fig. 4. Possible ancient codon-anticodon recognition with doublet coding and reverse pairing. The
figure shows schematically the binding of the same pre-tRNA in normal and reverse direction to
two different (reverse) codons. The proximity of the anticodon ’fingers’ to the codon represents
the accuracy by which the respective nucleotides are recognized11.

sition in order to recognize the corresponding pyrimidines. In the recently proposed

evolution of wobble rules35 G (at the first anticodon position) always recognizes

U and C, in all discussed evolution stages. A** anticodons, in contrast, could not

recognize any base in the early stages35. This would also be in agreement with

earlier speculations about a binary coding scheme with just one purine and one

pyrimidine26,37. Interestingly, Table 1 reveals that nearly all 16 G** anticodons

have corresponding tRNAs in all species. The third explanation is based on an ob-

servation concerning initiation codons. Translation in eukaryotes can be initiated

from codons other than AUG. A well documented case (including direct protein

sequencing) is the GUG start of a ribosomal P2A protein of the fungus Candida

albicans1. Other examples can be found in the NCBI taxonomy database4,36. In-

terestingly, all 9 different initiation codons have U at the second position (AUG

(standard), AUA, AUU, AUC, GUG, GUA, UUG, UUA, CUG). Maybe, in

earlier times *U* codons generally could initiate translation, starting with *A*

anticodons. We speculate that the forbidden A** anticodons should protect the

transcript against wrong translation initiation which would lead to a frameshift.

Moreover, we note that the three termination codons in the standard ge-

netic code all have a purine at the second position. The alternative termination

codons in non-standard codes are also *R* codons (AGA and AGG in vertebrate

mitochondria4,36). Maybe, in “binary coding times”37 *Y* codons could initiate

translation, whereas *R* codons could terminate translation. This additionally

supports our speculations of possible reverse codon recognition. Up to now the

possibility of reverse recognition provides the only explanation that consistently in-

tegrates all of our observations. This model might be used as a plausible framework

onto which research into translation evolution may be devised.
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5. Discussion

We presented a new classification scheme of the genetic code. It has now its

optimal form, no ambiguities in codon order are left. The scheme clearly shows

all five different codon symmetries. We also studied the occurrence of tRNA genes

in archaea, bacteria and eukaryotic species. tRNA usage, ordered according to the

codon-reverse codon symmetry, shows three interesting facts:

(i) some reverse codons are significantly underrepresented, most strikingly, there

are no specific tRNAs for reverse STOP codons;

(ii) A** anticodons are significantly repressed, G** anticodons are significantly

utilized, and

(iii) A*A self-reverse anticodons are totally excluded in archaea and bacteria.

This led us to extend our earlier speculations on doublet coding37. We conjecture

that in earlier times codon recognition could also have been carried out in the reverse

direction with first recognizing the second base (Fig. 4). Our hypothesis is related to

the recently proposed evolution scheme of the genetic code, where it was suggested

that “. . . triplet codons gradually evolved from two types of ambiguous doublet

codons, those in which the first two bases of each three-base window were read

(’prefix’ codons) and those in which the last two bases of each window were read

(’suffix’ codons).40” In contrast to this model our reverse recognition conjecture

implies a parallel-stranded duplex structure of the two relevant codon-anticodon

base pairs. Although such parallel structures are difficult to find in natural nucleic

acids they have been observed in DNA5 and mRNA33, and a corresponding crystal

structure has been reported31. However, because RNA is unstable and difficult to

synthesize, it was proposed that the first genetic material used a simpler backbone

than ribose15. For such molecules the pairing strand direction is probably not as

constraint as in DNA or RNA.

Of course, all discussed tRNA usage patterns depend on the completeness of

the known tRNAs. If a significant number of tRNAs is still unknown, this might

modify these patterns. However, the fact that tRNAs are systematically searched

by robust computer algorithms18,19,25 makes it very unlikely that such a significant

number of tRNAs will be found in the future.
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Common Patterns in Type II

Restriction Enzyme Binding Sites

The article of Nikolajewa et al. (2005) provides the statistical analysis of nucleotide

patterns in restriction enzyme binding sites of type II, according to all possible

binary coding schemes. The significant patterns are discussed in detail.
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ABSTRACT

Restriction enzymes are among the best studied

examples of DNA binding proteins. In order to find

general patterns in DNA recognition sites, which may

reflect important properties of protein–DNA interac-

tion, we analyse the binding sites of all known type II

restriction endonucleases. We find a significantly

enhanced GC content and discuss three explanations
for this phenomenon. Moreover, we study patterns

of nucleotide order in recognition sites. Our analysis

reveals a striking accumulation of adjacent purines

(R) or pyrimidines (Y). We discuss three possible

reasons: RR/YY dinucleotides are characterized by

(i) stronger H-bond donor and acceptor clusters,

(ii) specific geometrical properties and (iii) a low

stacking energy. These features make RR/YY steps
particularly accessible for specific protein–DNA inter-

actions. Finally, we show that the recognition sites

of type II restriction enzymes are underrepresented

in host genomes and in phage genomes.

INTRODUCTION

Protein–DNA interactions play a fundamental role in cell
biology. For instance, the highly specific interactions between
transcription factors and DNA are essential for proper gene
expression regulation (1). The ‘immune system’ of bacteria and
archaea relies on restriction endonucleases (REases) recogniz-
ing short sequences in foreign DNA with remarkable specifi-
city and cleaving the target on both strands (2–4). REases are
indispensable tools in molecular biology and biotechnology
(5–7) and have been studied intensively because of their extra-
ordinary importance for gene analysis and cloning work. In
addition, they are important model systems for studying the
general question of highly specific protein–nucleic acid inter-
actions (2). REases also serve as examples for investigating
structure–function relationships and for understanding the

evolution of functionally similar enzymes with dissimilar
sequences (3).

Based on subunit composition, cofactor requirements,
site specificity and mode of action REases have been classified
into four types (8). Enzymes of types I, II and III are parts of
restriction–modification (RM) systems, which additionally
contain methyltransferases (MTases) adding methyl groups to
cytosine or adenine in the host DNA. Type IV REases have no
cognate MTases; they recognize and cleave sequences with
already modified bases (9) and show only weak specificity (8).
RM systems occur ubiquitously among bacteria and archaea
(10–12). Their principal biological function is the protection
of host DNA against foreign DNA, such as phages and con-
jugative plasmids (13). Other possible functions are to increase
diversity by promoting recombination (13,14) and to act as
selfish elements (15,16).

Here we study the recognition sequences of all known type II
REases. The main criterion for classifying a restriction enzyme
as type II is that it cleaves specifically within or close to its
recognition site and does not require ATP hydrolysis. The ortho-
dox type II REase is a homodimer recognizing a palindromic
sequence of 4–8 bp. The possible advantage of symmetric
recognition sites has already been discussed by the discoverers
of restriction enzymes (17). They argued economically that it
is ‘much cheaper to specify two identical subunits each capable
of recognizing’ the half of the symmetrical sequence than to
specify ‘a larger protein capable of recognizing the entire
sequence’. This may explain the overwhelming majority of
palindromic recognition sequences. However, there are other
subtypes too—for instance, type IIA REases that recognize
asymmetric sequences (8). Recently, the first example of a
type II enzyme (MspI) where a monomer and not a dimer
binds to a palindromic DNA sequence (18) has been found.

Much has been written about the evolution of REases. When
elaborating on this topic Chinen et al. (19) wondered ‘Why are
these recognition sequences so diverse?’ Here we show that
these sequences are not as diverse as may appear at first sight.
Typical patterns can be identified when focusing on purines
and pyrimidines. This is apparent from Table 1, which shows
the recognition sequences of all restriction enzymes with
known three-dimensional structure.
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MATERIALS AND METHODS

All restriction enzyme binding sites were taken from REBASE
[last update March 3, 2005 (10)]. Almost all (98%) known
REase recognition sequences belong to type II enzymes. We
separated the type II binding sites into symmetric and asym-
metric sequences, with just 0.96% belonging to the latter class.

The statistical analysis of sequence patterns is based on
counting the frequency of all possible substrings up to a length
of 4 bp in the symmetric and asymmetric binding sequences
(see Supplementary Table S2). In addition to counting sub-
strings of the actual nucleotide sequence, we also counted
substrings according to two different binary coding schemes:
purine–pyrimidine coding and ketobase–aminobase coding.
For the substring analyses of symmetric sequences we con-
sider only the first half of each sequence (the second half is
redundant).

Using a binomial distribution, we calculated P-values that
quantify the probability of finding the respective subsequence
in a randomized set of binding sites at least as often as in the
original binding sites. The P-values take account of the rel-
ative abundance of each letter (A, G, R, N etc.) in the binding
sites (see Supplementary Table S1).

Analysis of dinucleotide H-bond donor and
acceptor clusters

We selected B-DNA crystal structures from PDB (20) with
X-ray diffraction resolution <1.5 s. Only structures with

Watson–Crick base-pairing, without mismatches and without
additional ligands were taken into account. The selected PDB
entries are 1D8G, 1D8X, 1D23, 1D49, 1EN3, 1EN8, 1ENN,
232D and 295D. The first and last nucleotides in each
sequence were omitted from the analysis.

We calculated the average distance between two canonical
(22) H-bond donors (and between two acceptors, respect-
ively), each one belonging to one of two adjacent bases.
Donor and acceptor pairs must be oriented towards the
major or minor groove; pairs with one partner on the major
and one partner on the minor groove were omitted. The DNA
backbone was not considered for this analysis. Reported dis-
tances are averages for the nine selected crystal structures
(see Supplementary Table S3). For each dinucleotide base
pair we summed all corresponding reciprocal distance values
and thus obtained a quantitative measure for H-bond donor and
acceptor clusters of each dinucleotide base pair in the major or
minor groove (see Supplementary Table S3). The resulting
value integrates the number of acceptors/donors and their
distance. Simply counting the number of donor and acceptor
pairs gives similar results.

Analysis of DNA geometry and flexibility

We analysed four different datasets for the dinucleotide para-
meters roll, tilt and twist, and three datasets for shift, slide
and rise (see Supplementary Table S4). Olson et al. (23) ana-
lysed the flexibility in all these six parameters deduced from
protein–DNA and pure DNA crystal complexes (yielding two
datasets: OlsDNA and OlsProt-DNA). Scipioni et al. (24)
deduced the flexibility in roll, tilt and twist from scanning
force microscopy images (dataset Scip). Recently (25), all six
parameters were calculated from an extensive analysis of
structural databases (dataset Per). These authors also found an
excellent agreement between database analysis and corres-
ponding molecular dynamics simulations.

RESULTS

Currently, a total of 3726 different REases from 281 bacterial
and 26 archaeal genomes are known (REBASE, last update
March 3, 2005). The class type II alone comprises 3654 dif-
ferent REases, recognizing 257 different binding sites (the
remainder are isoschizomers). Among these are 176 symmet-
ric sequences (mostly recognized by homodimers) and 81
asymmetric sequences. We statistically analysed all type II
binding sites and additionally the small datasets of type I,
type III and homing endonucleases.

High GC content in DNA binding sites

Our first observation is the significantly enhanced GC content
in all type II binding sites: 68% GC and 32% AT. Ambiguous
letters (N, R, Y, K and M) were not taken into account (for the
complete statistics of base compositions of type II binding
sites, see Supplementary Table S1). In contrast, the mean
GC content of the host genomes as well as that of the bac-
teriophages is on average �50%. The GC content of the bind-
ing sites thus deviates significantly from this genome-wide
average (P < 10�300). We argue that this significantly
enhanced GC content reflects biological functionality of the
binding sites. Three different facts could play a role in this

Table 1. All type II restriction enzymes with known three-dimensional

structure and their cognate DNA recognition sequences [PDB, (20)]

Enzyme Source Recognition
sequencea

Purine (1)–
pyrimidine (0)
pattern

MspI Moraxella species CCGG 0011
FokI Flavobacterium

okeanokoites
GGATG 11101

EcoRII Escherichia coli CCWGG 00W11
EcoRI E.coli GAATTC 111000
BamHI Bacillus

amyloliquefaciens
GGATCC 111000

HindIII Haemophilus influenzae AAGCTT 111000
BglII Bacillus globigii AGATCT 111000
BstYI Bacillus

stearothermophilus
RGATCY 111000

EcoRV E.coli GATATC 110100
Cfr10I Citrobacter freundii RCCGGY 100110
NaeI Nocardia

aerocolonigenes
GCCGGC 100110

NgoMIV Neisseria gonorrhoeae GCCGGC 100110
HincII H.influenzae Rc GTYRAC 100110
Bse634I Bacillus species 634 RCCGGY 100110
MunI Mycoplasma species CAATTG 011001
PvuII Proteus vulgaris CAGCTG 011001
BsoBI B.stearothermophilus CYCGRG 000111
EcoO109I E.coli RGGNCCY 111N000
BglI B.globigii GCCNNNNNGGC 100NNNNN110

The corresponding purine (1)–pyrimidine (0) coding shows that 11/00 is a
common pattern in all binding sites.
aRecognition sequence representations use the standard abbreviations (21) to
represent ambiguity. R = G or A; K = G or T; S = G or C; B = not A (C or G or
T); D = not C (A or G or T); Y = C or T; M = A or C; W = A or T; H = not G (A
or C or T); V = not T (A or C or G) and N = A or C or G or T.
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context. (i) In order to protect themselves, hosts have to
methylate the specific binding sites in their own genomes.
This happens by methylation of either adenine or cytosine.
There are two different methylation sites in cytosine [yield-
ing N4-methylcytosine (m4) and C5-methylcytosine (m5)],
but only one methylation site in adenine [yielding N6-
methyladenine (m6)] (26). All the known results of methyla-
tion sensitivity experiments are collected in REBASE (10).
We have counted all m4, m5 and m6 methylations that reliably
prevent DNA cutting and found 146, 1350 and 524 methyla-
tions, respectively. Evolution may therefore have favoured
cytosines (over adenines) in RM binding sites. (ii) GC-rich
sequences are more stable than AT-rich sequences because of
the better stacking interactions. Furthermore, G and C always
form three H-bonds in complementary base-pairing and there-
fore have a higher binding strength than A and T, which pair
with two H-bonds. MTases and endonucleases (like other
DNA binding proteins) recognize sequences on a bound dou-
ble strand better than those on open DNA without H-bonds
between the two strands at the ‘open’ site. However, the third
fact seems to be the most relevant reason for the high GC
content. (iii) One A–T base pair allows for five canonical
H-bonds between the bases and the recognizing amino acids,
whereas the G–C base pair allows for up to six H-bonds (22),
which may be beneficial for protein binding. Generally, type II
restriction enzymes exhaust the hydrogen bonding potential
of their recognition sequence. In contrast, homing endo-
nucleases do not fully exhaust the hydrogen bonding potential.
In support of this notion, the mean GC content in homing

enzyme binding sites is only 46% (see Supplementary
Table S8).

As a generalization one might hypothesize that an enhanced
GC content may be an important property of protein binding
DNA sequences whenever high specificity is needed. It was
found that GC-rich DNA sequences have a higher CAP-
binding affinity than AT-rich sites (27) (CAP—Escherichia
coli catabolite gene activator protein).

Enhanced occurrence of RR/YY dinucleotides in
DNA binding sites

We separated the type II enzyme recognition sequences into
symmetric and asymmetric sequences. In the case of the
former we analysed only the first half of the sequence. For
these two subsets we counted the occurrence of subsequences
up to size 4 and calculated the corresponding P-values (see
Materials and Methods and Supplementary Table S2). The
most abundant dinucleotides are GG and CC. However,
owing to the high GC content (which affects the P-value)
the most significant dinucleotide is GA (P < 10�69 in the sym-
metric dataset). Other substrings, such as CTG (P < 10�57 in
the symmetric dataset) are similarly significant. A much
clearer picture is obtained by considering substrings according
to the two different binary coding schemes: purine–pyrimidine
coding and ketobase–aminobase coding. Table 2 shows that the
two dinucleotides RR and YY are the most significant patterns
in the large symmetric dataset. In the much smaller asymmet-
ric set, RRR, YYY and YYYY are even more significant, but

Table 2. Purine–pyrimidine and ketobase–aminobase patterns in type II restriction enzyme recognition sequences

Pattern Symmetrical recognition sequences Asymmetrical recognition sequences
Purine (1)–pyrimidine (0) Keto (1)–amino (0) Purine (1)–pyrimidine (0) Keto (1)–amino (0)
Frequency P-value Frequency P-value Frequency P-value Frequency P-value

00 1758 6.6E�63 1097 0.61 529 5.1E�12 294 1
01 817 1 1060 1 214 1 379 0.59
10 903 1 1278 0.01 348 0.98 524 2.0E�15
11 1743 1.7E�29 1389 0.01 501 4.7E�14 380 0.69

000 348 5.5E�08 78 1 288 1.5E�24 62 1
001 328 1.8E�08 250 9.3E�06 81 1 160 0.07
010 89 1 250 9.3E�06 79 1 210 1.0E�08
011 165 0.99 302 3.3E�10 102 0.99 129 0.92
100 269 0.04 194 0.41 140 0.79 142 0.52
101 105 1 117 1 104 0.99 156 0.16
110 264 0.00 271 1.8E�05 193 1.0E�05 210 3.1E�08
111 310 8.3E�13 132 1 231 1.5E�15 128 0.95

0000 150 3.2E�27 14 1
0001 3 0.59 2 0.92 24 0.99 31 0.99
0010 26 0.99 91 3.4E�08
0011 1 0.94 3 0.42 47 0.74 53 0.36
0100 4 0.36 1 0.98 32 0.99 31 0.99
0101 9 1 34 0.99
0110 1 0.90 35 0.92 81 2.4E�05
0111 5 0.01 39 0.90 27 0.99
1000 8 0.01 1 0.98 78 0.00 14 1
1001 18 1 83 8.2E�06
1010 1 0.94 2 0.68 36 0.99 89 2.3E�07
1011 7 0.01 5 0.01 45 0.73 44 0.86
1100 3 0.54 4 0.21 82 2.7E�05 24 0.99
1101 2 0.74 2 0.41 52 0.34 109 2.0E�13
1110 88 1.4E�07 91 1.2E�07
1111 2 0.20 94 2.3E�10 20 1

In the pur–pyr coding 1 stands for purine (A, G, R) and 0 for pyrimidine (T, C, S), and in the keto-amino coding 1 stands for a ketobase (G, T, K) and 0 for an aminobase
(A, C, M).
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RR and YY also stand out. In addition, Table 2 shows that
there is no comparably significant ketobase–aminobase
pattern. Thus, purine–pyrimidine classification seems to be
biologically more important than the ketobase–aminobase
categorization. This is also underlined by the fact that
among all type II recognition sites the number of Rs and
Ys (ambiguous binding sites) is about a factor of 26 higher
than the number of Ks and Ms (Supplementary Table S1).
REases sometimes allow for some degree of ambiguity, as
long as the required purine–pyrimidine pattern is ensured.

The high statistical significance of two and more consec-
utive purines (or pyrimidines) in type II enzyme binding sites
points to biological relevance. We present evidence for three
mechanisms that are potentially responsible for the observed
enrichment of this pattern.

(i) H-bond donor and acceptor clusters. RR/YY steps provide
on average stronger H-bond donor (example in Figure 1) and
acceptor clusters than other dinucleotides (see Materials and
Methods and Supplementary Table S3). Close proximity of
acceptor pairs (or donor pairs) on the DNA allows for the
establishment of bifurcated H-bonds, which are stronger than
canonical single donor–single acceptor interactions. This
feature of RR/YY steps potentially facilitates the recognition
by and binding of interacting proteins (28). Supplementary
Table S3 shows that the average cluster strength of RR/YY
steps is higher than that of all other steps. The only (very weak)
exception are acceptor clusters in the minor groove, resulting
from low strength of the GG/CC step. However, this is coun-
terbalanced by the strong acceptor cluster in the major groove
and the donor clusters in the major and minor groove of the
GG/CC step. Figure 1 shows an example of a single amino acid
(of EcoRI) that potentially interacts with three consecutive
purines (GAA) and establishes a bifurcated H-bond.

However, there is growing evidence that specific protein–
DNA binding is accomplished not only by specific chemical
contacts, but also by suitable geometrical arrangement of the

DNA and by its propensity to adopt a deformed conformation
facilitating the protein binding (29). The following points (ii
and iii) show that both properties are better fulfilled by two
adjacent purines (or pyrimidines) than by other dinucleotides.

(ii) Geometrical arrangement. RR/YY steps allow for a
special geometrical arrangement of the DNA (see Materials
and Methods and Supplementary Table S4). RR/YY steps are
characterized by (a) minimal slide values, without exception;
(b) strong tilt in the negative direction [dataset Per deviates
somewhat, but ‘tilt is a parameter very sensitive to the choice
of calculation method’ (30) and, thus, the consistency of the
other three datasets seems remarkable]; and (c) a positive roll
in all datasets, which implies positive bending towards the
major groove (25). The only exception is the AA/TT step in
the Scip dataset. However, AA/TT is by far the least significant
dinucleotide of all RR/YY steps (Supplementary Table S2).

(iii) Stacking energy. RR/YY steps have a low stacking
energy (25) and seem therefore well suited to the often neces-
sary conformational changes during specific protein binding
(23,31). Moreover, the stacking energy of all RR/YY steps is
anticorrelated with the statistical significance of the RR/YY
subsequences (Supplementary Tables S2 and S4). AA/TT has
the highest stacking energy and the lowest significance,
whereas GA/TC has the lowest stacking energy and the highest
significance.

Probably, all three possible reasons for an enhanced fre-
quency of RR/YY steps in type II REase binding sites together
play a role in the corresponding specific DNA recognition.

In asymmetric binding sequences longer chains of purines
or pyrimidines, such as RRR, YYY and YYYY, are even more
significant than RR/YY steps. This could indicate that such
substrings are preferred in binding sites. Some dinucleotide
parameters, such as stacking energy, more or less add up in
longer sequences. On the other hand, a negative correlation
between motions at a given base pair step and neighbouring
steps was found for most helical coordinates (32).

Binding sites are underrepresented in host and
phage genomes

The typical features of type II restriction enzyme binding
sites, high GC content and overrepresentation of RR/YY
steps, could also be linked to the frequency of these sites in
the host and/or phage genomes. To address this question we
analysed the genome of E.coli K12 and the known genomes of
its phages (33). All four bases are almost equally abundant in
both the E.coli genome and the genomes of its phages. Based
on this information we can estimate the expected frequency of
any given sequence in a randomized genome. Enrichments
of sequences are quantified as the ratio of observed versus
expected frequency. In addition we calculated weighted ratios,
taking into account the number of different enzymes recog-
nizing the same sequence (Supplementary Table S5).

Three findings arise from this analysis: (i) most binding sites
are underrepresented in both the host and the phage genomes
(possible explanations are that phages try to escape REases
and that hosts minimize the methylation effort); (ii) under-
(over)representation in host and phage genomes is correlated;
and (iii) under(over)representation is correlated with GC con-
tent and RR/YY frequency (most underrepresented sequences
contain only GC and always contain RR/YY steps). This

Figure 1. Example of an interaction between an H-bond donor cluster (resulting
from two adjacent purines AA) and an H-bond acceptor (bifurcated hydrogen
bond). The figure shows binding of residue Asn141 from EcoRI to the DNA
subsequence 50-D(GAA)-30 (only one strand shown). Green lines indicate
potential hydrogen donor–acceptor pairs; distances are in angstroms. The struc-
ture is according to PDB entry 1CKQ. Note the bending towards the major
groove, which reduces the distances between the H-bond donors of the two
adenines.
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correlation again underlines the biological importance of
these two features.

DISCUSSION

We presented a statistical analysis of all known DNA recog-
nition sites of type II restriction enzymes. This collection
comprises by far the largest group of reliably known specific
protein binding sites on DNA. There is hardly any sequence
similarity among restriction enzymes (34). REases often use
uncommon DNA binding motifs (35), but sometimes also
typical structures already known from transcription factors,
such as FokI and NaeI, which both use a helix–turn–helix
motif. The typical features of type II REase binding sites
such as high GC content and many RR/YY steps may also
be relevant for other DNA recognition sequences. We have
also analysed all known binding sites of type I and type III
restriction enzymes and of homing endonucleases (Supple-
mentary Tables S6–S8). However, we found no statistically
significant motifs, which is probably due to the small number
of sequences of these types. Homing endonucleases are known
to bind less specifically (10,36). This lack of specificity could
be another explanation for the lack of statistically significant
patterns among this class of binding sites. Table 3 shows
examples of other DNA binding proteins along with their
recognition sequences. Nearly all of them contain RR/YY
steps. The average GC content of these sequences is 54%.

We presented three different possible explanations for the
amplified occurrence of two neighboured purines (or pyrimi-
dines) in the recognition sites. One argument is that these give
stronger H-bond donor and acceptor clusters than any other
adjacent base pair and therefore facilitate hydrogen bonds to
amino acids. For instance, EcoRV (binding GATATC) estab-
lishes multiple contacts to the first 2 bp and the last 2 bp, but
none to the middle 2 bp (60).

Evolutionary relatedness of REases recognizing similar
sequences would be a completely different explanation for
our observed patterns. Although only a few REase crystal
structures have been solved so far, it became clear from
additional bioinformatics studies that REases belong to at
least four unrelated and structurally distinct superfamilies:
PD-(D/E)XK, PLD, HNH and GIY-YIG (34). The largest one
[PD-(D/E)XK] comprises the two major classes a (EcoRI-
like) and b (EcoRV-like) (2). Enzymes belonging to the
same superfamily sometimes also have similar recognition
sequences. For instance, Eco29kI, NgoMIII and MraI, which
are related to the GIY-YIG superfamily, all bind to CCGCGG
(61). HpyI (CATG), NlaIII (CATG), SphI (GCATGC), NspHI
(RCATGY), NspI (RCATGY), MboII (GAAGA) and KpnI
(GGTACC) belong to the HNH superfamily (62), and SsoII
(CCNGG), EcoRII (CCWGG), NgoMIV (GCCGGC), PspGI
(CCWGG) and Cfr10I (RCCGGY) to the EcoRI branch (63).
It has already been argued that these enzymes diverged early in
evolution, presumably from a type IIP enzyme that recognized

Table 3. Examples of gene regulatory proteins that recognize specific short DNA sequences

DNA binding protein Recognition sequence (or consensus motif) Purine (1)–pyrimidine (0) pattern References

p53 RRRCW2GYYYRRRCW2GYYY 1110W210001110W21000 (38)
MADS box CCW6GG 00W611 (39)
ERSE CCAATN9CCACG 00110N900101 (40)
Ski oncoprotein GTCTAGAC 10001110 (41)
GAL4 CGGN5TN5CCG 011N50N5001 (42)
GAL4 in vitro WGGN10–12CCG W11N10–12001 (42)
nkx-2.5 CWTTAATTN 0W001100N (43)
Bicoid TCTAATCCC 000110000 (44)
AP-2 GCCCCAGGC 100001110 (45)
Stat5-RE TTCN3GAA 000N3111 (46)
GRE AGAACAN3TGTTCT 111101N3010000 (46)
SRF CCW2AW3GG 00W21W311 (47)
MCM1 CCYW3N2GG 000W3N211 (47)
NFkB GGGACTTTCC 111100000 (48)
pur repressor ANGCAANCGNTTNCNT 1N1011N01N00N0N0 (49)
YY1 GGCCATCTTG 1100100001 (50)
NF-1/CTF-1 TGGN6GCCAA 011N610011 (51)
PPAR AGGAAACTGGA 11111100111 (52)
NFAT ATTGGAAA 10011111 (53)
CREA GCGGAGACCCCAG 1011111000011 (54)
C/EBP CCAAT 00110 (55)
PacC GCCARG 100111 (56)
TTK finger1 GAT 110 (57)
TTK finger2 AGG 111 (57)
Zif finger1 GCG 101 (57)
Zif finger2 TGG 011 (57)
GLI finger4 TTGGG 00111 (57)
GLI finger5 GACC 1100 (57)
E.coli sigma factors

(binding in �35 region)
(58–60)

s70 (primary) CTTGA 00011
s32 (heat shock) CTTGAA 000111
s60 (nitr. reg. gene) CTGGNA 0011N1
s54 (nit. ox. stress) TTGG CACG 0011 0101
s28 (exter. stress) CTAAA 00111
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CCxGG or xCCGGx (63). We are not aware of any systematic
study of recognition sequence similarity versus membership in
superfamilies. However, it is conceivable that sequence sim-
ilarity (or the corresponding purine–pyrimidine pattern) is
evolutionarily conserved. Some positive correlation between
amino acid similarity and recognition sequence similarity of
restriction enzymes has already been found (64). However,
REases are extremely divergent and mostly structurally and
evolutionarily unclassified (34). Even related enzymes binding
to similar DNA sequences may differ much in the details of
protein–DNA interaction. Comparing the cocrystal structures
of the related enzymes BamHI and EcoRI, it has been inferred
that none of the interactions could have been anticipated from
the other structure (65). Lukacs and Aggarwal (66) studied the
structures of two related enzyme pairs BglII (AGATCT) ver-
sus BamHI (GGATCC) and MunI (CAATTG) versus EcoRI
(GAATTC), which both differ in only the outer base of the
binding site. For the first pair they found ‘surprising diversity’
in how the common base pairs are recognized, whereas the
enzymes of the second pair recognize their common inner and
middle base pairs in a nearly identical manner.

The problem of recognition and binding of a protein to its
specific DNA sequence is far from being solved. Heitman and
Model (35) substituted amino acids in the binding domain of
EcoRI such that some of the original 12 hydrogen bonds con-
tacting the base pairs of the recognition sequence could not
be established by the mutant. This change did not affect the
binding specificity of EcoRI, but only its enzymatic activity.
It was concluded that the hydrogen bonds revealed by the
crystal structure are insufficient to fully account for substrate
recognition, and additional amino acids must contact the
DNA to help discern the substrate (35). The authors argued
that protein–DNA interactions can be influenced by sequence-
dependent variation of the structure of the DNA backbone
[originally suggested by Dickerson (67)], and that the EcoRI
enzyme could recognize its cognate sequence because it
adopts its unusual bound conformation more readily than
other DNA sequences. It was concluded that even with a
detailed cocrystal structure it is exceedingly difficult to deter-
mine which interactions contribute to sequence-specific DNA
recognition (35). Moreover, it has been found that protein
binding to DNA is modulated by sequence context outside
the recognition site (68) and that different endonucleases
have different context preferences (69).

Our work suggests that sometimes only the purine–
pyrimidine pattern matters for recognition by a certain bio-
molecule. Note that R and Y are most frequent among the
ambiguous letters in restriction enzyme binding sites. In such
cases the exact base would be irrelevant as long as it is a purine
(or pyrimidine). Several such examples are already known.
For instance, during translation the third base of the codon
is nearly always analysed in this binary manner (in the yeast
mitochondrial code this is always the case) (70). Another
example is the sequential contact model for EcoRI, proposing
that during the transition from DNA binding to DNA scission,
the contacts to the pyrimidines could either precede or follow
the purine contacts observed in the crystal structure (35). It is
known that a change in just 1 bp of the cognate site can reduce
the ratio kcat/Km for DNA cleavage by a factor of >106 (71).
Thus, a transition exchange might generally have a less dra-
matic effect than a transversion exchange. Such a smaller

effect of a transition exchange could also be observed in
corresponding pausing experiments (72), which might be
important for protein engineering.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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Pattern Analysis of Gene

Regulatory Rules

The first paper of Nikolajewa et al. provides a minimal formula representation

and the exact number of hierarchically canalyzing functions. We have also shown

that the naturally occurring rules belong to two simple subclasses of hierarchi-

cally canalyzing functions, that support the stable dynamical behavior of gene

regulatory networks. In the second paper Friedel et al. the new data structure

Decomposition Tree is presented. It is useful for the classification and analysis of

Boolean functions.
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Boolean Networks with biologically relevant

rules show ordered behavior ?
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Abstract

It was found recently that natural gene regulatory systems are governed by hierar-
chically canalyzing functions (HCFs), a special subclass of Boolean functions. Here
we study the HCF class in detail. We present a new minimal logical expression for
all HCFs. Based on this formula, we calculate the cardinality of the HCF class.
Moreover, we define HCF subclasses and calculate their cardinality as well. Using
the well-known critical connectivity condition 2Kcp(1 − p) = 1, we discuss order-
chaos transitions of Boolean networks (BNs) regulated by functions of given HCF
subclasses. Finally, analysing real gene regulatory rules we show that nearly all of
the biologically relevant functions belong to the simplest HCF subclasses. This re-
striction is important for reverse engineering of transcription regulatory networks
and for ensemble approach studies in systems biology. It is shown that Boolean
networks with functions belonging to the biologically realized HCF subclasses show
ordered behavior.

Key words: Boolean Network, canalyzing function, hierarchically canalyzing
function, nested canalyzing function

1 Introduction

One of the outstanding problems in contemporary systems biology is the un-
derstanding of the multifariously interwoven networks underlying cellular reg-
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ulation. Boolean networks (BNs) (Kauffman, 1969, 1993) play a prominent role
to elucidate and simulate cellular regulatory systems. In these simple models
the nodes (for instance genes) are either on or off. Consider, for example, a
BN representing a gene regulatory system comprising three genes, with the
wiring diagram and the corresponding Boolean updating rules:

gene 1

gene 2

gene 3

xt+1
1 = x̄t

1 ∧ xt
2 ∧ x̄t

3

xt+1
2 = x̄t

1 ∧ x̄t
2 ∧ xt

3

xt+1
3 = x̄t

1 ∧ x̄t
2 ∧ x̄t

3

The BN can also be defined by a truth table or a state space flow diagram,
mapping each possible input state to the corresponding output state:

xt
1 xt

2 xt
3 xt+1

1 xt+1
2 xt+1

3

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 0 0 0

1 0 0 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

000001

010 100

011

101110111

This system has one attractor of
length 4.

Up to now BNs represent the only class of dynamical models which led to non-
trivial results about cellular organization on a large scale (Szallasi and Liang,
1998). Accordingly, many authors study BNs (Albert and Barabasi, 2000;
Bornholdt and Sneppen, 2000; Glass and Hill, 1998; Huang, 2001; Stauffer,
1987; Lähdesmäki et al., 2003; Huang et al., 2005; Shmulevich et al., 2005),
others try to evaluate in detail the inexactness due to such an abstract ap-
proach (Buchler et al., 2003; Setty et al., 2003).

It was speculated that real genetic networks do not use all Boolean rules with
the same probability (Kauffman, 1993; Shmulevich et al., 2003; Gat-Viks and
Shamir, 2003). Harris et al. (2002) collected the updating rules of 139 differ-
ent real genes. A corresponding analysis confirmed earlier speculations: it was
shown that nearly all of these rules belong to the class of canalyzing functions

2
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(CFs) (Kauffman, 1993), also denoted as canalizing functions (Shmulevich et
al., 2004) or forcing functions (Stauffer, 1987). A Boolean function is canalyz-
ing if already one input alone can determine the output. The other inputs play
a role only if this canalyzing input takes its non-canalyzing value (Kauffman,
1993). Moreover, the cardinality of the CF class was calculated (Just et al.,
2004). A later analysis of Harris’ data revealed that 133 of the 139 rules belong
to a special subclass of CFs: to hierarchically canalyzing functions (HCFs),
also known as nested canalyzing functions (Kauffman et al., 2003), a class first
introduced some years ago by Szallasi and Liang (1998).

Section 2 deals with HCFs in general. We present the minimal logical ex-
pression for HCFs. Based on this result we calculate the number of HCFs.
Moreover, we define subclasses of HCFs and calculate their cardinality as well.
Based on the well-known critical connectivity formula 2Kcp(1− p) = 1 (Der-
rida and Pomeau, 1986), the order-chaos transitions are discussed for BNs
regulated by functions of a given HCF subclass. Section 3 discusses biological
applications. Analyzing Harris’ data (Harris et al., 2002) we show that 128 of
the 133 hierarchically canalyzing gene regulatory rules belong to the two sim-
plest HCF subclasses. It is shown that BNs with functions of these biologically
relevant subclasses show ordered behavior.

2 Hierarchically Canalyzing Functions (HCF)

Some years ago the idea of CFs was extended to hierarchically canalyzing
functions (Szallasi and Liang, 1998). In HCFs all inputs are canalyzing in a
hierarchical manner: if the first input takes on its non-canalyzing value, a sec-
ond input is canalyzing for the remaining states. If the second input takes on
the non-canalyzing value, a third input is canalyzing, etc. HCFs represent an
important subclass of CFs. It was shown that HCFs enhance order even more
than simple CFs (Szallasi and Liang, 1998; Kauffman et al., 2004). Studying
the transcriptional regulation of real genes, it was found that just 6 of 139 are
not HCFs (Kauffman et al., 2003). Thus, in genetic regulatory networks there
seems to be a very strong tendency towards HCFs. In the following we give
a formal definition of HCFs and present the corresponding minimal logical
formula representation. Moreover, we calculate the exact number of hierarchi-
cally canalyzing functions (depending on the number of inputs), define HCF
subclasses and calculate their cardinality as well.
Let k denote the number of inputs of a Boolean function f(x) = f(x1, . . . , xk)
and Bk the set of all Boolean functions on k variables. The symbol σ stands
for a possible negation of Boolean variables, so xσ can be x or x̄. The input xi is
called essential if f(x1, . . . , xi−1, 0, xi+1, . . . , xk) 6= f(x1, . . . , xi−1, 1, xi+1, . . . , xk).

Definition 1 (Hierarchically Canalyzing Function) Let f be a canalyz-

3
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ing function with canalyzing input xi and canalyzing input value ai. If the
function g(x1, . . . , xi−1, xi+1, . . . , xk)=f(x1, . . . , xi−1, āi, xi+1, . . . , xk) on k − 1
inputs is canalyzing, then the function f(x) is a 2-times canalyzing function.
A Boolean function f on k essential inputs is called hierarchically canalyz-
ing if f(x) is k-times canalyzing with the canalyzing inputs x1, . . . , xk and the
canalyzing input values a1, . . . , ak.

2.1 Minimal formula representation of a Hierarchically Canalyzing Function

A Boolean function f(x) on k essential inputs is a hierarchically canalyzing
function if and only if f(x) can be written with k different inputs and k − 1
binary operations ∧ or ∨, where the operation priority is ordered from left to
right (� ∈ {∧,∨}):

fi(x1, x2, . . . , xk) = xi1
σi1 � (xi2

σi2 � (. . .� (xik−1

σik−1 � xik
σik ))...). (1)

This can constructively be proven as follows: let f(x1, x2, . . . , xk) be a hierar-
chically canalyzing function with the first canalyzing input x1, then there
exists a function f2 = g(x2, . . . , xk) such that f can be written as f =
x1

σ1 � f2(x2, x3, . . . , xk), � ∈ {∧,∨}. From the HCF definition it follows that
function f2 ∈ B

k−1 is canalyzing again. Repeating this procedure k times leads
to the minimal logical formula (1).

Example 2 TGF-β is a gene regulated by a HCF. The transforming growth
factor-β controls growth differentiation and apoptosis of cells. It is regulated
by five transcription factors (Harris et al., 2002): the negative regulator SnoN,
the receptor proteons Smad2/4 and Smad3/4, histone deacetylases HDAC, and
the nuclear transcriptional corepressor N-CoR. The gene updating rule can
be defined by a binary string (11111111000000001111111111101111) or the
minimal logical formula TGF (t+1) = Smad2/4(t) ∧ (not SnoN (t) ∨ Smad3/4(t)

∨not N − CoR(t) ∨ not HDAC/Sin3(t)).

2.2 Number of Hierarchically Canalyzing Functions

Szallasi and Liang (1998) numerically calculated the number of HCFs up to
k = 5 inputs. Here we present the exact formula for arbitrary k. The number
of hierarchically canalyzing functions is

N = 2 + 2k +
k∑

i=2

(
k

i

)
ai2

i+1, (2)

4
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with a2 = 1
a3 = 1 +

(
3
2

)
a2

a4 = 1 +
(

4
2

)
a2 +

(
4
3

)
a3

. . .
ak = 1 +

∑k−1
j=2

(
k

j

)
aj.

This number is deduced by counting all different HCF representations (1) for
a given number of inputs k. For each k two constant functions (0,0,...,0 and
1,1,...,1) and 2k functions that depend on just one input exist (first two sum-
mands in (2)). Each summand in (2) counts the number of functions with i
essential inputs, ai denotes the number of different parenthesis patterns (Ta-
ble 1), separating ∧ and ∨− operators. For each parenthesis pattern, there are
two possibilities of operator assignments: starting with ∧ or with ∨.

i parenthesis pattern operator assignments ai

2 (x1 � x2) x1 ∨ x2; x1 ∧ x2 1 a2 = 1

3 x1 � x2 � x3 x1 ∨ x2 ∨ x3; x1 ∧ x2 ∧ x3 1 a3 = 1 +
(
3
2

)
a2

(x1 � x2) � x3 (x1 ∨ x2) ∧ x3; (x1 ∧ x2) ∨ x3

x1 � (x2 � x3) x1 ∨ (x2 ∧ x3); x1 ∧ (x2 ∨ x3)
(
3
2

)

x2 � (x1 � x3) x2 ∨ (x1 ∧ x3); x2 ∧ (x1 ∨ x3)

4 x1 � x2 � x3 � x4 . . . 1

(x1 � x2) � x3 � x4 . . .
(
4
2

)
a4 = 1 +

(
4
2

)
a2 +

(
4
3

)
a3

. . . . . .

x1 � (x2 � (x3 � x4)) . . .
(
4
3

)

i . . . . . . . . . ai = 1 +
∑i−1

j=2

(
i

j

)
aj

Table 1
Number of different possibilities to set parentheses (ai)in minimal logical expressions
of HCFs with i essential inputs.

The number of different σ patterns (negations of inputs) is 2i. Therefore, the
number of different HCFs on i essential inputs is ai ∗ 2 ∗ 2i.

2.3 Subclasses of Hierarchically Canalyzing Functions

The definition of HCF subclasses Sk
l is based on the minimal formula represen-

tation of a HCF (1), containing k essential inputs and k− 1 logical operations
in a fixed order. These operations can be encoded by a binary number of length
k − 1, where 1 and 0 correspond to OR and AND, respectively. For example,
the operations of function x̄1∧ (x2 ∨ (x̄3 ∧x4)) are encoded by 010 (or decimal
l = 3), thus this function belongs to the class S4

3 .

Definition 3 (Sk
l : subclasses of HCFs ) Let lb be the binary representa-

tion of the decimal number l: lb = l0l1 . . . lk−2 codes for the operations order

5
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in the minimal logical HCF formula (1). All hierarchically canalyzing func-
tions fi(x1, . . . , xk) = xi1

σi1 �1 (xi2
σi2 �2 (. . . (xik−1

σik−1 �k−1 xik
σik ))...), where

�j is ∧, if lj−1 = 0, or �j is ∨, if lj−1 = 1 with the same operation order
lb = l0l1 . . . lk−2 belong to the Sk

l class.

Based on the different operator patterns the class of HCFs on k inputs can
be divided into 2k−1 subclasses: Sk

0 , Sk
1 , . . . , Sk

2k−1−1. The class Sk
0 contains

all rules xσ1
1 ∧ xσ2

2 ∧ . . . ∧ xσk

k . In class Sk
1 the last operation is ∨ and all other

operations are ∧, for instance xσk

k ∧ x
σk−1

k−1 ∧ . . . ∧ (xσ2
2 ∨ xσ1

1 ). Functions with
only ∨ belong to the class Sk

2k−1−1.

Appendix A shows an example of all subclasses of HCFs on k = 4 inputs. In
appendix B a procedure to calculate the cardinality of the HCF subclasses Sk

l

is given.

2.4 Order and chaos of Boolean Networks with Sk
l functions (Sk

l networks)

The phase transition between the ordered and chaotic regimes can be defined
with help of the average sensitivity

S̄ = 2Kp(1− p), (3)

where K is the average connectivity of the BN and p is the probability of
choosing 1 rather than 0 for the transition function output values (Derrida
and Pomeau, 1986; Shmulevich et al., 2005). For S̄ < 1 the network is in the
ordered regime, for S̄ > 1 the network shows chaotic behavior. The number of
ones of a given Sk

l function is 2l+1 ( proof is given in appendix C). Therefore,
p = 2l+1

2k . A BN where each node is regulated by a Sk
l function (Sk

l network)
has the average sensitivity:

S̄(k, l) = 2k
2l + 1

2k
(1−

2l + 1

2k
). (4)

Figure 1a shows S̄(k, l) and figure 1b S̄(k) for some given l.

6
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a)

b)

Fig. 1. Sensitivity of Sk
l networks. a) S̄(k, l). The cut between S̄(k, l) and S̄ = 1

defines the order - chaos transition. b) S̄(k) for l = 0, 1, 2, 3, 4

Sk
0 networks are always stable, because S̄ < 1 for arbitrary k. Generally, for Sk

l

networks intervals of chaotic behavior exist (Table 2). Interestingly, for many
l (for instance l = 1, 3) ordered behavior is shown for small and large k and
chaotic behavior for medium k.

7
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l chaos order

0 and 2k−1 − 1 − k ≥ 2

1 and 2k−1 − 2 3 ≤ k ≤ 4 k = 2, k ≥ 5

2 and 2k−1 − 3 3 ≤ k ≤ 5 k ≥ 6

3 and 2k−1 − 4 4 ≤ k ≤ 6 k = 3, k ≥ 7

. . .

2k−2 − 2 and 2k−2 + 1 k ≥ 4 k = 3

2k−2 − 1 and 2k−2 k ≥ 3 −

Table 2
Ordered and chaotic regimes for Sk

l networks.

3 Biological Importance of Hierarchically Canalyzing Functions

Analyzing natural gene regulatory rules it was first found that all of them
belong to the class of canalyzing functions (Harris et al., 2002). Later it was
shown that 133 of the 139 analyzed functions are also hierarchically cana-
lyzing (Kauffman et al., 2003). We translated all these 133 HCFs into the
corresponding minimal logical expressions and found that nearly all belong to
two special subclasses: Sk

0 66, 39% and Sk
1 29, 41%.

Based on the average sensitivity (4) it can be shown that BNs, which are made
up of 2/3 Sk

0 and 1/3 Sk
1 rules, show always ordered behavior. The maximum

sensitivity (worst case), deduced from (4), for Sk
0 and Sk

1 is S̄max(k = 2, 0) = 3
4

and S̄max(k = 3, 1) = 45
32

, respectively. The biological realistic combination of
them leads to 2

3
∗ 3

4
+ 1

3
∗ 45

32
= 31

32
< 1. Thus, a BN with this fraction of functions

is stable even in the most critical case of two inputs for all Sk
0 functions and

three inputs for all Sk
1 functions.

HCFs can most easily be realized by gene regulatory systems. Here only one
single operator (∧ or ∨) per transcription factor exists, no additional inter-
mediate TFs are needed. In contrast, non-canalyzing functions seem to be
unfavorable for the design of gene regulatory systems. Consider, for instance,
the simplest non-canalyzing function x1 XOR x2 (Table 3): the result is false, if
both inputs have the same value. The implementation of XOR needs intermedi-
ate transcription factors, which implies synchronization problems (Buchler et
al., 2003). The XOR-gate cannot be implemented by the minimal formula (1).

The specific ∧, ∨ pattern in the minimal expression of a given HCF provides
interesting information about the output control. In the simplest cases all
operations are the same. If the minimal logical expression contains only AND
(Sk

0 ), then all (transcription) factors have the same importance and cannot
be replaced by other factors. In the ’only OR case’ (Sk

2k−1−1) the factors are

8
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inputs 1st step 2nd step

x1 x2 x1 ∧ x̄2 x̄1 ∧ x2 (x1 ∧ x̄2) ∨ (x̄1 ∧ x2) = x1 XOR x2

0 0 0 0 0

0 1 0 1 1

1 0 1 0 1

1 1 0 0 0

Table 3
Implementation of XOR based on AND and OR gates.

independent from each other, each factor alone can determine the output.
Generally, the number of ANDs and ORs and their position in the minimal
expression (1) provide information about (gene) regulation: the number of
∨ and ∧ corresponds to the number and size of factor groups, respectively,
that determine the output independently of each other (four such groups in
example 2).

4 Discussion

We presented a minimal logical expression for Boolean functions of the bi-
ologically important HCF class. Based on this result the exact number of
HCFs was calculated. Moreover we defined meaningful subclasses of HCFs,
calculated their cardinality as well, and discussed the stability of Sk

l networks.
Analyzing biological data on gene regulation we found that nearly all genes
are regulated by functions of the two simplest subclasses of HCFs: Sk

0 and Sk
1 .

This is important for corresponding ensemble approach studies (Kauffman,
2004a,b; Kauffman et al., 2004) and for reverse engineering of gene regulatory
networks (Akutsu et al., 2000, 1999; D’haeseleer et al., 2000; Yeung et al.,
2003). The smaller the number of possible functions, the fewer data is needed
for reverse engineering. Table 4 demonstrates that Sk

0 and Sk
1 comprise just a

small subset of all HCFs.

We have also shown that Boolean networks with functions belonging to the
biologically observed subclasses (Harris et al., 2002) are always stable. This
corresponds to a resently found numerical result (Rämö et al. , 2005). The
minimal logical expression of HCFs has different additional advantages for
the analysis of gene regulation and beyond. Membership in the HCF class
can be proven in polynomial time for any Boolean function, thus for these
functions the famous minimization problem (important for chip design, for in-
stance) is solved. For genes regulated by HCFs the minimal expression helps
to quantify the importance of the different transcription factors. Moreover,
groups of TFs that operate together can easily be identified. These combined

9
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k Sk
0 Sk

1 HCF CF Total

1 0 0 4 4 4

2 4 4 14 14 16

3 8 24 96 120 256

4 16 96 1050 3514 65536

5 32 320 15036 1292276 4294967296

Table 4
The number of Boolean functions on k inputs in different biologically meaningful
subclasses in comparison to the total number of Boolean functions (22k

).

operations could be proven by clustering of corresponding mRNA expression
data.

Acknowledgment. We thank S. Harris for providing us the data on gene
regulation.
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APPENDIX B. The number of functions in HCF subclasses Sk
l (k essential

inputs).
The number of different functions in the Sk

0 (and Sk
2k−1−1) class is easily

counted: each negation just shifts the only 1 (or 0). Because there are 2k

negations (each input can be negated or not), there are 2k different Sk
0 (and

Sk
2k−1−1) functions. There are

(
k

2

)
possibilities to choose the two inputs which

are combined by ∨. Therefore, the cardinality of the Sk
1 class is

(
k

2

)
2k. The

determination of the number of exchange possibilities for an arbitrary HCF
subclass is based on the corresponding operator pattern given by the minimal
logical expression. The pattern is divided into blocks of equal operations (the
order of operations is fixed). Then the number of exchanges leading to different
functions is calculated for each block. Finally, these numbers are multiplied.
The procedure to calculate the number of different functions of a given Sk

l

class is:

Input: k is the number of essential inputs; lb = l0l1 . . . lk−2, (li ∈ {0, 1}) denotes
the subclass.
Output: N is the number of elements in the Sk

l class.

PROCEDURE N(k,lb);
N := 2k;

k̂ := k;
nop := 2;
i := k − 3;
repeat

if li+1 = li then nop := nop + 1
else

N := N ∗
(

k̂

nop

)
;

k̂ := k̂ − nop;
nop := 1;

i := i− 1;
until (i < 0)
return N ;

END;

12
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APPENDIX C. The number of true points of any function of the Sk
l class is

2l + 1.
The binary representation lb = l0l1 . . . lk−2 of the decimal number l = l02

k−2 +
l12

k−3 + . . . + lk−22
0 codes for the order of the k− 1 operations. If the first bit

l0 = 1 (first operator is ∨), the first input is canalyzing to 1, which implies
2k

2
ones in the truth table. Generally, each li = 1 yields 2k

2i+1 ones in the
truth table. Because the last input is always canalyzing to 1 we have one
additional 1 in the truth table output. Summing the total number of ones
leads to l0

2k

2
+ l1

2k

22 + . . . + lk−2
2k

2k−1 + 1 = 2l + 1.

13
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Boolean Functions ?
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Abstract

We present a new data structure for analyses of Boolean functions, called Decom-
position Tree (DT), and demonstrate different applications. In each node of the DT
appropriate bit string decomposition fragments are combined by a logical operator.
The DT has 2n nodes in worst case, what implies exponential complexity for prob-
lems where the whole tree has to be considered. However, it is important to note
that many problems are simpler. We show that these can be handled in an efficient
way using the DT. Nevertheless, many problems are of exponential complexity and
cannot be made simpler, for instance the calculation of prime implicants. Using our
general DT structure, for this important task we present the fastest known exact
algorithm which we are aware of (lower time complexity than the Quine-McCluskey
algorithm).

Key words: Boolean functions, Decomposition Tree, monotonic function, linear
function, canalyzing function, symmetry, prime implicant, logic minimization
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1 Introduction

Boolean functions (BFs) have widespread applications in nearly all fields
of science and engineering. The Reduced Ordered Binary Decision Diagram
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(ROBDD) is probably the most powerful data structures known so far for the
manipulation of large logic functions [4]. It provides a compact representation
of Boolean expressions, and there are efficient algorithms for performing all
kinds of logical operations on ROBDDs [1]. However, the ROBDD construc-
tion itself is based on the equivalence of bit-strings.

In this paper we present a new data structure for BFs, called Decomposition
Tree (DT). This tree provides a unified approach to tackle many different
BF problems. We take as input format the truth table, represented by a bit
string of length 2k, for a given function with k variables. In all our calcu-
lations appropriate bit string decomposition fragments are combined by a
logical operator (in each node of the DT). The application of different opera-
tors allows us to classify a given function into different subclasses. For many
problems only functions of a particular subclass are needed. In molecular biol-
ogy, for instance, gene regulatory networks are simulated with canalyzing [15]
and hierarchically canalyzing Boolean functions [26]. Such functions have also
been used to study such diverse problems as decision structures in social sys-
tems [17], the convergence behavior of nonlinear filters [27], or artificial life
[16]. Monotonic functions play a special role in game theory, computational
learning, harmonic analysis and signal processing. Nonlinear functions are es-
sential for cryptographic transformations [12,23]. Functions with unate prop-
erties are used in the design of conventional cryptosystems [12] and functions
with special symmetry characteristics are important for circuit restructuring
[13].

Each Boolean function can be represented by its disjunctive normal form
(DNF). A lot of BF research is devoted to minimal DNFs [9,28–31]. The
generation of prime implicants (PIs) of a given function is an important first
step to calculate its minimal DNF. Early interest in PIs [22] was mainly
inspired by this problem. Meanwhile different other applications have been
found. PIs are used for alternative representations of Boolean expressions in
various problems of artificial intelligence [24], to implement Assumption-Based
Truth Maintenance, to characterize diagnoses, to compile formulas for Tran-
scranial Magnetic Stimulation and to implement circumscription [14,16]. PIs
play a role in expert system development to find all irredundant rules from
a given rule system and in Electronic Design Automation [11]. We show that
one can simply generate all PIs of a given BF by using our Decomposition Tree
and the AND-operator for the manipulation of the appropriate bit-strings.

In the first part of the paper (section 2) we introduce the Decomposition
Tree. In the following application part (section 3) we first demonstrate our
approach to tackle the subclass classification problem (section 3.1). In section
3.2 we present an efficient recursive algorithm to compute prime implicants.
It is shown that our PI algorithm has a lower time complexity than the well-
known algorithm of Quine and McCluskey [10,19,22] which also uses the truth

2
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table input format. In Section 3.3 we demonstrate how the DT can be used
to construct the ROBDD of a given BF.

2 Decomposition Tree

Let f : {0, 1}k → {0, 1} be a Boolean function on k variables. The Decompo-
sition Tree is based on the Decomposition Set.

Definition 1 (Di-decomposition) Di-decomposition of function f in input
xi is a segmentation of f into two functions f i

0 and f i
1, which are defined by

the positive and negative values of the input xi:

Di :
f i

0 = f(x1, . . . , xi−1, 0, xi+1 . . . , xk)

f i
1 = f(x1, . . . , xi−1, 1, xi+1, . . . , xk)

(1)

The bit string representations of f i
0,f

i
1 are called decomposition fragments of

the Di-decomposition.

The previous definition can be generalized to decompositions in more inputs.

Definition 2 (DiDj-decomposition) Given the Di- and Dj-decompositions,
i < j ∈ {1, . . . k}, the DiDj-decomposition is a combination of the Di and Dj

decompositions:

DiDj :

f ij
00 = f(x1, .,

i
0, .,

j

0, ., xk)

f ij
01 = f(x1, .,

i
0, .,

j

1, ., xk)

f ij
10 = f(x1, .,

i
1, .,

j

0, ., xk)

f ij
11 = f(x1, .,

i
1, .,

j

1, ., xk)

(2)

The decomposition can be extended to an arbitrary input combination of size
l ≤ k : Di1Di2 . . . Dil, i1 < i2 < . . . < il ∈ {1, . . . , k}. It has 2l bit string frag-
ments of length 2k−l. The Decomposition Set D contains 2k possible decom-
positions: {D0, D1, D2, . . . , Dk, D1D2, . . . , D1D2D3 . . . Dk}, where D0 ≡ f .

Definition 3 (Decomposition Tree) The Decomposition Tree (DT) is an
ordered tree of all possible decompositions from the set D, where duplicate
decompositions are eliminated. The root D0 of the DT is the function f .

Example 4 General Decomposition Tree for k = 4.

3
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f = D0

D1

D1D2

D1D2D3

D1D2D3D4

D1D2D4

D1D3

D1D3D4

D1D4

D2

D2D3

D2D3D4

D2D4

D3

D3D4

D4

To detect a special pattern in a given Boolean function (e.g. membership in
the subclass of monotonic functions or prime implicants) we combine all de-
composition fragments with a special Boolean operation. The operator can be
any logical operation, for instance AND, OR, XOR etc. The result of applying
this operator over the decomposition fragments is a Boolean function, which
we call operator-combination (�-combination).

Definition 5 (�-combination) Without loss of generality, given a decom-
position D1D2 . . .Dl of function f . The �-combination is a Boolean function
g : {0, 1}k−l → {0, 1} defined by applying the �-operator over the decomposi-
tion fragments:

g(xl+1, .., xk) = f 12...l
00...0 � f 12...l

00...1 � . . .� f 12...l
11...1

︸ ︷︷ ︸

2l

. (3)

This can also be written as:

f(0, 0, . . . , 0, xl+1, . . . , xk)

� f(0, 0, . . . , 1, xl+1, . . . , xk)

. . .

� f(1, 1, . . . , 1, xl+1, . . . , xk)

= g(xl+1, . . . , xk)

(4)

We use as input format of a function the truth table of length 2k for k variables.

Example 6 We decompose the function x1x̄2∨x̄2x3 with the bit string 01001100
(truth table). The decomposition tree is:

4
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D0 : f = 01001100

D1 :
f 1

0 = 0100
f 1

1 = 1100

D1D2 :

f 12
00 = 01

f 12
01 = 00

f 12
10 = 11

f 12
11 = 00

D1D2D3 : (01001100)T

D1D3 :

f 13
00 = 00

f 13
01 = 10

f 13
10 = 10

f 13
11 = 10

D2 :
f 2

0 = 0111
f 2

1 = 0000

D2D3 :

f 23
00 = 01

f 23
01 = 11

f 23
10 = 00

f 23
11 = 00

D3 :
f 3

0 = 0010
f 3

1 = 1010

Different properties of this function can simply be detected with the decomposi-
tion tree: the function has two positive unates in x1 and x3, because fragments
f 1

0 ≤ f 1
1 and f 3

0 ≤ f 3
1 . Moreover, fragment f 2

1 ≡ 0, thus the function is can-
alyzing (forcing) from 1 to 0 in input x2, what means that it has the special
representation f = x̄2 ∧ h(x1, x3), with h(x1, x3) = x1 ∨ x3.

Generally, depending on the problem (the pattern which is searched for in a
given BF), one mostly does not need to consider the whole tree (2n nodes).
For instance, for prime implicant calculation the tree can be cut if the ∧−
combination gives the constant function g = 0 (see 3.2). Even more, each
node of the DT can always be calculated independently of the other nodes. It
follows that many problems can be solved in polynomial time. For instance,
the special class x̃1x̃3 of implicants of a given BF with k = 4 can be detected
by only considering the node D2D4 (see 3.2). Another example are quadratic
Boolean functions where only DiDj nodes have to be considered.

3 Applications

3.1 Classification of Boolean Functions

There are five characteristic classes of BFs [9]: 0(1)-preserving, self-dual, monotonic
and linear functions. The first three ones can simply be detected from the truth
table. However, it is more difficult to decide whether a given BF belongs to
one of the last two classes. In the following we show how the classification
problem can be solved with the DT for these two and other classes of BFs.

5
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3.1.1 Monotonic Boolean function

Definition 7 Let a = (a1, . . . , ak) and b = (b1, . . . , bk) be different k-element
binary vectors. One says that a precedes b, denoted as a ≺ b, if ai ≤ bi for
1 ≤ i ≤ k. A Boolean function f(x1, . . . , xk) is called monotonic if for any
two vectors a and b such that a ≺ b, the relation f(a) ≤ f(b) holds.

Detection: If the first and last decomposition fragment of each node in the DT
combined by the ≤-operator always gives the 1-constant function, than f is
said to be monotonic.

Application: Monotonic functions are used in game theory, computational
learning theory, harmonic analysis, and signal processing [7,18,27,33]. This
is one of the characteristic classes [9].

3.1.2 Linear Boolean function

Definition 8 The Boolean function on k inputs is said to be linear, if it can
be represented as f(x1, x2, . . . , xk) = a0⊕ a1x1⊕ . . .⊕ akxk, where ai ∈ {0, 1}.

Detection: If the decomposition fragments of the nodes in the first level of
the DT combined by the ⊕-operator always give constant functions, then f
is said to be a linear function: If the ⊕-combination of Di is the 0-constant
function, then f(x1, ., 0, ., xk) = f(x1, ., 1, ., xk) (tautology in xi) and therefore
coefficient ai = 0. If the ⊕-combination of Di is the 1-constant function,
then f(x1, ., 0, ., xk) = f̄(x1, ., 1, ., xk) and can be written as f(x1, ., xk) =
xi ⊕ g(x1, .xi−1, xi+1, xk), because x̄if(x1, ., 1, ., xk) ∧ xif̄(x1, ., 1, ., xk) = xi ⊕
f(x1, ., 1, ., xk).

Application: Linear functions are needed in cryptography for nonlinearity cri-
teria for cryptographic transformations [12,23]. This is one of the characteristic
classes [9].

3.1.3 Positive (negative) unate

Definition 9 A positive unate in xi function is a monotonic increasing func-
tion of xi. A negative unate in xi function is a monotonic decreasing function
of xi. Unate (positive or negative) is a function which is unate in all variables.

Detection: If the ≤ (≥)- combination of Di is 1-constant, then xi is posi-
tive (negative) unate. If this holds for all i, then f is unate. The function of
example 6 is unate in all variables.

6
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Application: If f is positive unate in xi, then f(x) = xif(x1, ., 1, .xk)∨f(x1, ., 0, .xk).
This is used by the Unate Recursive Paradigm and it is important for the de-
sign of conventional cryptosystems [5,6,20,25].

3.1.4 Symmetry

Definition 10 If a Boolean function does not change when any possible pair
of variables is exchanged, it is said to be a totally symmetric function. If
a function does not change when any possible pair of a subset of inputs is
exchanged, it is said to be a partially symmetric function.

Detection: A function is totally symmetric if all decompositions of the first
level are the same. For example, the totally symmetric function 01101000
(x1x̄2x̄3 ∧ x̄1x̄2x3 ∧ x̄1x2x̄3) gives the same decompositions:

D1 :
0110

1000
, D2 :

0110

1000
, D3 :

0110

1000
.

If not all but just some of the first level decompositions are the same, then it
is a partially symmetric function. Other types of symmetry can be detected
by a comparison of decompositions corresponding to nodes of higher levels.

Application: Symmetric functions can be synthesized with fewer logic ele-
ments, thus they play an important role in logic synthesis and functional
verification. They are used for efficient circuit restructuring [3,8,13]. Detec-
tion of symmetries is the topic of some recent papers [2,21].

3.1.5 Canalyzing Boolean function

Definition 11 A Boolean function f on k variables is said to be a canalyzing
function if ∃a, b ∈ {0, 1} and ∃i ∈ {1, . . . , k} so that ∀x1, . . . , xi−1,
xi+1, . . . , xk

f(x1, x2, . . . , xi−1, a, xi+1, . . . , xk) = b.

Detection: If it exists i, such that the fragment f i
a of a node in the first level of

the DT is a b-constant function, then f is canalyzing. For instance, the function
of example 6 is canalyzing. The structure of the DT proposes to extent the
canalyzing concept to combinations of inputs. For instance, in example 6 the
combination x̄2x3 canalyzes from 1 to 1.

Application: Canalyzing functions have simplified logic expressions of the form
f(x) = x̃i � g(x1, ., xi−1, xi+1, ., xk), where g ∈ {0, 1}k−1, � ∈ {∨,∧}. There

7
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are many applications in genetic network modeling [15], artificial life [16],
nonlinear digital filter design [27], and sociology [17].

3.1.6 Quadratic Boolean function

Definition 12 Function f is quadratic if the degree of the highest order term
in the algebraic normal form is ≤ 2 [23].

Detection: Linear terms in the algebraic normal form can be detected if the
corresponding ⊕-combination in Di is a constant function (cf. detection of
linear functions) and quadratic terms can be obtained if the ⊕-combination
in DiDj is a constant function: if the ⊕-combination in DiDj is 1-constant,
then f(x1, . . . , xk) = x̃ix̃j ⊕ g(x1, ., xi−1, xi+1, ., xj−1, xj+1, ., xk), where g does
not depend on xi and xj.

Application: Cryptography [23].

3.2 Computation of Prime Implicants

An important step for logic minimization of a given Boolean function is the
detection of the corresponding prime implicants. All implicants and prime
implicants can be detected with the help of the ∧-combination for each node
in the DT.

Definition 13 An implicant of a function f is a product term p with 1 ≤
l ≤ k literals x̃i1 x̃i2 . . . x̃il , where x̃i ∈ {x̄i, xi} and i1 < . . . < il ∈ {1, . . . , k},
which is fully covered by f , so that p ≤ f . An implicant p of f is called prime,
if it is not fully covered by any other implicant of f , i.e. p 6≤ q, for any other
implicant q of f .

Each implicant of a given function can be derived from true points of the ∧-
combination, which we call ∧-patterns.

Example 14 ∧-combinations for f(x1, x2, x3)=11011100

D1D2

f 12
00 = 11

∧ f 12
01 = 01

∧ f 12
10 = 11

∧ f 12
11 = 00

g(x3) = 00

D1D3 :

10
∧ 11
∧ 10
∧ 10

g(x2) = 10

(5)

D1D2 has no ∧- pattern because its ∧−combination g(x3) is 0- constant. D2D3

and D1D2D3 have no ∧- pattern as well. D1D3 has the ∧- pattern in x2 = 0.

8
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We will show that this true point of the ∧- combination leads to the implicant
x̄2.

Lemma 15 (∧ - patterns imply implicants) If the ∧−combination of
Di1Di2 . . .Dil-decomposition has the ∧ - pattern in point (al+1, . . . , ak), then
function f contains the implicant p = x

al+1

il+1
. . . xak

ik
.

PROOF. Without loss of generality, given the D1-decomposition of func-
tion f with a ∧ -pattern in point (a2, . . . , ak). We show that the product
term p(x2, . . . , xk) =

∧k
i=2 xai

i is an implicant of f . From the ∧ - combination
f(1, a2, . . . , ak) = f(0, a2, . . . , ak) = 1 or 1 = p(a2, . . . , ak) ≤ f(x1, a2, . . . , ak) =
x1f(1, a2, . . . , ak) ∨ x̄1f(0, a2, . . . , ak) = x1 ∨ x̄1 = 1, it follows p ≤ f for all
points, that means by definition 13 p is an implicant of function f . For any
decomposition in 1 ≤ l ≤ k inputs, using Shannon Expansion 2l times, it can
be shown that p is an implicant of f .

Lemma 16 (False points of the ∧-combination) Given a decomposition
Di1Di2 . . .Dil and function g on k− l inputs as corresponding ∧-combination.
If g(al+1, . . . , ak) = 0 then product term p = x

al+1

il+1
. . . xak

ik
is no implicant of f.

Lemma 17 (Termination condition) If there is no ∧- pattern in a given
decomposition Di1Di2 . . .Dil, then no product term of a subset of {x̃il+1

, x̃il+2
,

. . . , x̃ik} is an implicant of f.

Each decomposition Di1Di2 . . . Dil ∈ D, i1 < . . . < il ∈ {1 . . . k} corresponds
to a class of implicants: x̃il+1

x̃il+2
. . . x̃ik , where il+1 < . . . < ik ∈ {1 . . . k} \

{i1, . . . , il}. It follows that the Decomposition Tree implies an Implicant Tree,
which is shown for k = 4 in the next example.

Example 18 General Implicant Tree for k = 4

x̃1x̃2x̃3x̃4

−x̃2x̃3x̃4

−− x̃3x̃4

−−−x̃4

−−−−

−− x̃3−

−x̃2 − x̃4

−x̃2 −−

−x̃2x̃3 −

x̃1 − x̃3x̃4

x̃1 −−x̃4

x̃1 −−−

x̃1 − x̃3 −

x̃1x̃2 − x̃4

x̃1x̃2 −−

x̃1x̃2x̃3−

For the prime implicants the following special checking condition is needed.

Lemma 19 (Prime implicant checking condition)

9
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If ∃(a1, . . . , ak) ∈ {0, 1}k so that f(a1, a2, . . . , ak) = 1 and the k equations are
fulfilled:

f(ā1, a2, . . . , ak) = 0
f(a1, ā2, . . . , ak) = 0

. . .
f(a1, a2, . . . , āk) = 0,

(6)

then a product term p = xa1

1 xa2

2 . . . xak

k is a prime implicant of f .

3.2.1 Prime Implicants Computation Algorithm

Generally, in level l of the DT one has to do the operator-combination of
2l fragments of length 2k−l for each node (cf. Example 2). Considering ∧-
combinations, we can reduce this to a comparison of two fragments of length
2k−l by decomposing the bit string of the ∧- combination instead that of the
input fragments (of level l − 1). This leads to a significant reduction in time
complexity, which is based on the following lemma:

Lemma 20 Without loss of generality, given a Boolean function f ∈ {0, 1}k

and its ∧- combination g ∈ {0, 1}k−1. If p is an implicant / prime implicant
of function g, then p is also an implicant / prime implicant of f .

PROOF. p ≤ g = f(0, x2, ., xk) ∧ f(1, x2, ., xk) ≤ f.

Lemma 20 is used in each node of the DT, so we do not need all 2l comparisons,
but only 2 in each node. The following short recursive algorithm computes the
prime implicants of a given Boolean function f :

Algorithm A1. PRIME IMPLICANT COMPUTATION
INPUT : BF f(x1, . . . , xk) as a bit string S of length 2k

OUTPUT : the set of all PIs for f
{

PROCEDURE GetPrimeImplicants(Dc)
{

ChildDc := ∅;
for all s ∈ Dc do
{

if s 6= {0...0} then
{

ChildDc := ChildDc ∪ ∧-combinations(Decompositions(s));
PI := PI∪ TranslateToPI(s, ChildDc);

}
}
Dc := ChildDc;

10
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if Dc 6= ∅ then GetPrimeImplicants(Dc);
}

PI := ∅;
Dc := ∧- combinations(Decompositions(S));
GetPrimeImplicants(Dc);
return PI;

}

The function Decompositions(s) builds and returns a set of all possible decom-
positions of a given function s according to the considered level of the DT. Set
Dc contains all ∧- combinations. Function TranslateToPI(s, ChildDc) proofs
each ∧- pattern of s (true point of ∧−combination) according to lemma 19
with help of ChildDc. ChildDc contains all child ∧- combinations for the
considered level. If the ∧-pattern corresponds to a prime implicant, then it
is translated into the corresponding logical expression (lemma 15). Our al-
gorithms are implemented in C++ and are available from the authors upon
request.

3.2.2 Time complexity

We make a conservative runtime estimation depending on the number of true
points T (f) =

∑2k
−1

i=0 fi of a given function f . Because of the ∧-combination,
the number of true points that have to be analyzed in each node can be at
most half of the number of true points of its parent node. For each of the true
points (at most T (f)

2i for a node in level i) one has to do k− i prime implicant
checking operations (with the true points of the corresponding ∧-combinations
of the child level). The maximal number of operations per node can be figured
out as follows:

kT (f)

(k−1)T (f)
2

(k−2)T (f)
22

(k−3)T (f)
23

. . .

T (f)
2k−1

. . .

. . .

(k−3)T (f)
23

(k−2)T (f)
22

(k−1)T (f)
2

(k−2)T (f)
22

(k−3)T (f)
23

. . .

. . . (k−1)T (f)
2

11
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The time complexity

k−1∑

i=0

(k − i)
T (f)

2i

(

k

k − i

)

= T (f)
k−1∑

i=0

(

k

i

)

k − i

2i
≤ 2k(1 +

1

2
)kk = O(3kk).

Therefore the time complexity for the whole prime implicant algorithm is
O(3kk). This is less than the time complexity needed by the the well-known
algorithm of Quine and McCluskey for the true table input, which has a run-
time of O(N log 3 log2 N) = O(3kk2) (N = 2k) [30,32]. Of course, heuristics,
such as ESPRESSO [25] are faster, but our approach is the fastest exact al-
gorithm for prime implicant calculation which we are aware of.

3.2.3 Space complexity

For traversing the DT it is not necessary to store all nodes. Since our prime
implicant algorithm has to store only two successive levels of the tree, the algo-
rithm needs maxi{2

k−i
(

k
i

)

} bits for Dc, what can be improved to O(2k log 3/k1/2)

(cf. [30], page 102).

3.2.4 Example

Given the function 0100111101101001 (k = 4). The DT with the correspond-
ing ∧ - combinations is shown in fig. 1. In the first level one obtains the ∧-
combination set Dc = {g1, g2, g3, g4}. During calculation of the first level we
can mark all ∧- patterns of function f which are covered by ∧- patterns of the
functions in level one. This results in just one ∧- pattern at position 10 of f
that is not covered by any pattern of level 1. Therefore, we obtain the prime
implicant x1x̄2x3x̄4. The ∧- pattern of g1 contains all possible implicants of
the type x̃2x̃3x̃4. Since we have three ∧- patterns in this function (positions
1, 4 and 7 ) we get the following three different implicants: x2x3x4, x2x̄3x̄4

and x̄2x̄3x4. Combination g2 leads to the implicant x̄1x̄3x4. From g3 we get
the implicants x̄1x2x̄4 and x̄1x2x4, and from g4 : x̄1x2x̄3 and x̄1x2x3. In the
next step we delete level 0 and calculate level 2 from the DT. By decomposing
function g1 we get the following ∧- combinations: g5, g6 and g7 (0-constant).
We do not need to decompose function g2, because it only contains one ∧-
pattern which cannot lead to any new ∧- pattern. The ∧- combinations g1

and g2 produce no ∧-pattern sets and therefore do not give any additional
implicants. The decomposition of function g3, which represents implicants of
class x̃1x̃2, contains one ∧- pattern, that is the implicant x̄1x2.

Again we can mark all ∧-patterns of the parent level that are covered by ∧-
patterns of the child level. It follows that all implicants found in g1 and g2 are
prime implicants. The implicants of the functions g3 and g4 are fully covered
by the implicant x̄1x2 and are therefore not prime.

12
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0100111101101001

01001111
∧01101001

g1 = 01001001

0100
∧1001

g5 = 0000

0110
∧0001

g6 = 0000

0010
∧1001

g7 = 0000

01000110
∧11111001

g2 = 01000000

01110110
∧00111001

g3 = 00110000

0100
∧0100

g8 = 0100

00110110
∧10111001

g4 = 00110000

Fig. 1. Decomposition Tree of function 0100111101101001

Summarizing, function f yields the prime implicants x1x̄2x3x̄4, x2x3x4, x2x̄3x̄4,
x̄2x̄3x4, x̄1x̄3x4, x̄1x2.

3.3 ROBDD construction

The DT can be used to construct the corresponding ROBDD of a given BF:
At each decomposition node (starting at the highest level) one has to compare
the corresponding decomposition fragments for equivalence. If an equivalence
is found the corresponding edge in the ROBDD is constructed, and the DT
can be bound appropriately.

3.4 Summary

Table 3.4 summarizes all discussed applications of the Decomposition Tree.

13
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Type of pattern Detection by the DT
Implicant ∧- combination
Prime implicant ∧- combination (Algorithm A1)
Clause ∨-combination
Prime clauses ∨-combination (analog to Algorithm A1)
Monotonic function ≤-combinations
Linear function ⊕-combinations of the Di

Positive (negative) unate ≤ (≥)- combination of the Di

Quadratic function ⊕-combination of the Di, DiDj

Symmetry All decompositions of the first level are the
same.

Canalyzing function fragment f i
a ≡ b

ROBDD equivalence of decomposition fragments

4 Conclusion

We presented a new data structure called the Decomposition Tree that pro-
vides a unified approach for different analyses of Boolean functions. By de-
composing bit strings and combining them by different operators one can clas-
sify each given function, construct the corresponding ROBDD, and efficiently
compute its prime implicants. The necessary decomposition and operator-
combinations can be done in a highly parallel manner, because each node can
be computed independently from all other nodes. The DT may also be used for
logic minimization: after the fast classification of the function one can apply
the appropriate special minimization algorithm. Because the DT represents
the most general decomposition of a given Boolean function, we also expect
different other possible applications.
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[17] J. Klüver and J. Schmidt, “Topology, Metric and Dynamics of Social Systems,”
Journal of Artificial Societies and Social Simulation, vol. 2, 1999.

[18] K. Makino, and T. Ibaraki, “The maximum latency and identification of positive
Boolean functions,” SIAM J. Comput., vol. 26, no. 5, pp. 1363-1383, 1997.

[19] E. J. McCluskey, “Minimization of Boolean functions,” Bell System Technical

Journal, vol. 35, pp. 1417-1444, 1956.

[20] P. C. McGeer, J. V. Sanghavi, R. K. Brayton, A. L. Sangiovanni-Vincentelli,”
“Espresso-Signature: A New Exact Minimizer for Logic Functions, DAC, pp.
618-624, 1993.

[21] J. Mohnke and S. Malik, “Permutation and phase independent Boolean
comparison,” Integration, vol. 16, pp. 102-129, 1993.

15



Pattern Analysis of Gene Regulatory Rules 78

[22] J. O. W. Quine, “The Problem of Simplifying Truth Functions,” American

Math. Monthly, vol. 59, pp. 521-531, 1952.

[23] B. Preneel, R. Govaerts and J. Vandewalle, Cryptographic properties of

quadratic Boolean functions, In Abstracts of the 1st International Conference
on Finite Fields and Applications, 1991.

[24] R. Reiter, J. De Kleer. Foundations of Assumption-based Truth Maintenance

Systems: Preliminary Report, AAAI-87, Seattle, Washington, pp. 183-189, 1987.

[25] R. Rudell, Espresso software program. Computer Science Dept., University of
California, Berkeley, 1985.

[26] Z. Szallasi and S. Liang, “Modeling the Normal and Neoplastic Cell Cycle
With Realistic Boolean Genetic Networks: Their Application for Understanding
Carcinogenesis and Assessing Therapeutic Strategies,” In Pacific Symp. on

Biocomputing, vol. 3, pp. 66-76 1998.
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Discussion

In this PhD thesis we have presented a collection of six articles divided into three

sections. All three sections deal with binary patterns on different microbiological

level.

In the first two sections we used one single bit to encode all four nucleotide

bases. In contrast to more complicated models, proposed by Bashford and Jarvis

(2000); Karasev and Stefanov (2001); Morimoto (2002); He et al. (2004), and

Sànchez et al. (2004), which are based on different two bit codings, our new

scheme of the genetic code shows the same information content using only one bit.

Applying the purine (1) - pyrimidine (0) coding for codons we found a new form

of the genetic code shown in Table 3. This new classification scheme consists of 8

rows numbered from 000 up to 111, due to the 23 = 8 binary representations for all

possible codons. The column order is defined by the number of hydrogen bonds in

the first two codon bases. With help of our new scheme we can explain the small

number of different tRNA genes in mitochondria. We have shown that deviations

from the standard genetic code are confined to specific regions. Although we

reduced the number of fields from 64 to 32, our new classification scheme still

highlights known regularities in amino acid - codon assignments more clearly than

the common scheme and it even reveals new patterns. Thus, it becomes clear that

most amino acid properties are strongly correlated to the corresponding codon-

anticodon binding strength (Wilhelm and Nikolajewa, 2004a). Additionally, all

five possible codon symmetries can easily be seen in one table (Tab. 3): Halitsky

(2003) point symmetry, codon - anticodon, purine - pyrimidine, sense - antisense
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and codon - reverse codon symmetry.

Table 3. The new classification scheme of the genetic code. Each field stands for two codons,

where the third bases are given in parentheses. For instance CC(C/U) means that the two

codons CCC and CCU encode for Proline. The red arrows indicate pairs of codon - reverse

codons, where a reverse codon of any codon XYZ is defined as ZYX.

As shown in our paper (Nikolajewa et al., 2006) the codon - reverse codon

symmetry plays an important role and provides new insights into the evolution

of the genetic code. The codon - reverse codon patterns are indicated by red

arrows in Table 3 and divide our new scheme into four blocks of equal arrow

patterns. All strongly evolutionary conserved groups of amino acids (Thompson

et al., 1994) are subsets of exactly one codon - reverse codon block. Interestingly

all 16 self reverse codons of the genetic code (out of 64) correspond to 15 different

amino acids (out of 20). This means that those codons themselves could nearly

cover all of the 20 amino acids. Based on the codon - reverse codon symmetry we

examined the number of tRNA genes for each anticodon and its reverse anticodon.

It is known that STOP codons do not have their own tRNA. We observed, that

also the reverse STOP codons do not have own tRNA.

The new scheme of the genetic code and the tRNA usage pattern allow for
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speculations about the origin and evolution of the genetic code.

Figure 1. Pre-tRNA with anticodon UAC could recognize codon AUN and its reverse codon

NUA.

Is the genetic code really the result of pure chance or a ”frozen accident”

(Crick, 1968)? In a huge amount of literature (Patel, 2005; Copley et al., 2005;

Wu et al., 2005) it is suggested and also following from our reduced scheme that

the genetic code had a doublet precursor. If there was a doublet code, how was the

genetic information translated? As already Crick (1968) noted, it is very unlikely

that there was a doublet reading frame in doublet coding times, because during

transition to a triplet reading frame all encoded protein information would be

lost. But if there was always a triplet reading frame (Landweber, 2002) also in

doublet coding times the information of each third codon base would be wasted.

Could nature allow a wasting of 33 % of the RNA information? We think no,

and provide a new hypothesis that would solve this problem. We assume that a

pre-tRNA had no direction and allowed binding of pre-RNA in both directions

(Fig. 1,2).
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Figure 2. Two different pre-tRNAs with anticodon UAC and its reverse anticodon CAU

could recognize the same codon AUG.

One problem with this hypothesis is the given direction in contemporary RNA.

But in the paper of Knight and Landweber (2000) PNA5 is suggested to be the

ancestor of RNA, which had no direction. The concept of the rotating pre-tRNA

would also provide a possible solution for the reading frame ”problem”. In

this hypothesis one codon would code for two amino acids (Fig. 1,2), therefore

pre-mRNA could lead to many different proteins. To ensure that the proteins

have similar properties, we have to assume that a codon and its reverse codon

must code either for the same or similar amino acids. Interestingly, this is still

the case in the contemporary code (Nikolajewa et al., 2006) and it is also known

that the middle base defines important biochemical properties of the amino acid

(Knight, 1999). The novel hypothesis could completely change our today’s under-

standing about the origin and evolution of life. The possibility to use two similar

amino acids for each codon (Fig. 2) and thus having a large number of similar

5PNA is peptide nucleic acid, ”...in which the backbone is polymeric N-(2-aminoethyl)glycine

(AEG) and the N-acetic acids of the bases are linked via amide bonds” (Knight and Landweber,

2000).
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proteins would increase the evolutionary variability enormously. One could still

go on and ask whether a single letter code exists before an ancient doublet code.

This code could have the contemporary four bases but also their ancestors, which

were maybe purine and pyrimidine.

The significant patterns within the genetic code lead us to assume that there

are also conserved binary patterns on higher DNA level. Specific Protein DNA

binding motifs are often short DNA sequences which are in most cases longer

than one single codon. The best studied DNA binding motifs are recognition

sequences of restriction enzymes (RE). In our studies we divided them into two

subsets of asymmetrical and symmetrical binding sites. Then all dinucleotides,

threenucleotides and tetranucleotides were binary translated, according to the

three binary coding schemes. Making a comprehensive statistic over all one-bit

codings we identified a significant overrepresentation of strings of purines(R) (or

pyrimidines(Y)). In the symmetrical set the most significant dinucleotides are RR

(or 11) and YY (or 00), and in the asymmetric set RRR, YYY and YYYY are

even more significant, but RR and YY also stand out.

Figure 3. The nucleotide composition of type II recognition sequences.

Moreover, we detected a significant predominance of G and C over A and T (Fig.
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3). For each of the observations we discussed three possible explanations in our

paper (Nikolajewa et al., 2006). The high G+C content can be explained by (i) a

higher number of methylations (Tab. 4), (ii) the stability of the GC base pairing,

and (iii) the higher number of bifurcated H-bonds between GC base pairs and

residues of the recognizing amino acids.

N4-methylcytosine 5-methylcytosine 6-methyladenosine

146 1352 524

Table 4. The number of methylations, that reliably prevent DNA cutting of type II

restriction enzymes, taken from REBASE (Roberts et al., 2005).

The three possible reasons for the significant nucleotide patterns of the two

adjacent purines (in complementary strand pyrimidines) are (i) stronger H-bond

donor and acceptor clusters, (ii) a special geometrical arrangement in the DNA

structure, and (iii) most important, a lower stacking energy, that allows for confor-

mational changes during the specific protein-DNA binding. All of the explanations

refer to changes in DNA geometry and flexibility which probably helps the protein

to find its target site and facilitates the DNA binding.

In the last years a large number of articles about DNA - protein interactions

has been appeared. But the process of how DNA binding proteins find their

recognition sequences is still a mystery. From the last in vivo measurements of

reaction characteristics it is clear that simple diffusion can not explain the extra

rapid association rate constant (Halford and Marko, 2004). The rapid mechanism

of protein-DNA association can only mathematically be explained by facilitated
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diffusion. The model of facilitated diffusion includes protein sliding and hopping

with an optimal sliding range of 100 base pairs (Halford and Marko, 2004). Single

molecule experiments on plasmid rings (Gowers and Halford, 2003) confirmed

the fact that proteins can jump, to find their target. If this model is true, then

an interesting question that could be investigated in further work would be: Is

there a significant global DNA pattern that is responsible for the hopping and

sliding? The genome-wide pattern would probably lead to a new understanding

of ”non-coding” DNA sequences. First steps to find global DNA patterns have

already been done. Recently, Allen et al. (2006) found a long-range pattern in

microbial genomes and Yagil (2006) has shown that long DNA tracts, as well as

promoter regions are composed of only two of the four bases (what he named

”binary DNA”).

The genetic information not only consists of statical patterns stored in DNA.

It also comprises dynamical patterns of interacting genes. To understand the logic

behind gene regulatory networks, we investigated binary patterns of the gene

interaction rules. Recent publication have shown that there are special classes of

gene regulatory rules. Analyzing the patterns of naturally observed rules (Harris

et al., 2002), Kauffman found out that canalyzing functions are biological relevant.

In a canalyzing function an input xi exists, so that a value a (xi = a) can determine

the output b of function f(x), independent of the other inputs. It is simple to

show that a canalyzing input xi can be factored out (Tab. 5).

a → b logical formula of canalyzing function f(x)

0 → 0 f(x) = xi ∧ f̂(x1, . . . , xi−1, xi+1, . . . , xn)

0 → 1 f(x) = x̄i ∧ f̂(x1, . . . , xi−1, xi+1, . . . , xn)

1 → 0 f(x) = x̄i ∨ f̂(x1, . . . , xi−1, xi+1, . . . , xn)

1 → 1 f(x) = xi ∨ f̂(x1, . . . , xi−1, xi+1, . . . , xn)

Table 5. Pattern in the formula representation of a canalyzing function.

In general, the formula for any canalyzing input xi can be written as

f(x1, x2, . . . , xn) = xσ
1 � f̂(x1 . . . , xi−1, xi+1 . . . , xn),
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where � can either be the binary operation AND or OR, and σ = 0 stands for

the unary negation of xi (xσ=1
i = x̄i).

But the number of all possible canalyzing functions is still too large to model

gene networks with always stable dynamical behavior. The pattern within the

logical representation of a canalyzing function led us to restrict this class into

subclasses, where all inputs can be factored out one by one:

f(x1, x2, .., xn) = xi1 � (xi2 � (..(..� xin)..)), i1 6= i2 6= .. 6= in ∈ {1, 2, .., n} (1)

Reviewing the literature on Boolean networks, we found a description of this class

given by Szallasi and Liang (1998), who named functions of this class hierarchically

canalyzing functions (HCF). They reported that genetic networks, containing only

functions of this class, show always a stable dynamical behavior. Szallasi and

Liang (1998) have numerically estimated the number of HCFs for small input

degrees (k = 2, 3, 4). Analyzing the properties of HCFs, we have calculated the

exact number of all possible functions for arbitrary input number k.

To proof the belonging of naturally observed rules to the hierarchically cana-

lyzing class, we contacted Mr.Harris, who promised us to provide his data (Harris

et al., 2002). Waiting for this data we unfortunately explained our idea on the

”Finnish Signal Processing Symposium”, in Tampere, Finland, on May 2003.

Some months later (December 2003), Kauffman et al. (2003) published a pa-

per, introducing the hierarchically canalyzing functions and renaming them into

”Nested canalyzing functions”. They showed that all rules from Harris et al.

(2002) data set belong to nested canalyzing functions (or HCFs). After the publi-

cation of Kauffman et al. (2003) we received the data from Mr. Harris. Analyzing

this data we observed that the rules are much more simpler than those of HCFs.

Based on the representation of a hierarchically canalyzing function and according

to the operation pattern in formula (1), we divided the HCFs into 2k subclasses,

which we named Sk
0 , Sk

1 , . . .. We found out that only two of the 2k subclasses are

biologically relevant for classifying Harris et al. (2002) functions. All rules were

contained in the first two subclasses (Sk
0 and Sk

1 ). The first class Sk
0 consists of
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rules where only AND operations are used in the formula (1), whereas the second

class has only AND operations except for the last operation, which is OR. Inves-

tigating the stability of networks, only made up of these rules, we demonstrated

that ”Boolean Networks with biologically relevant rules show ordered behavior”.

Moreover, the larger the number of genes in a regulatory system that are controlled

by rules from the Sk
0 and Sk

1 classes, the more stable the dynamical behavior of

the whole system.

Figure 4. To find a minimal logical formula of a Boolean function is known to be

NP-complete (Umans et al., 2005). Interestingly, for a hierarchically canalyzing function the

minimal logical representation and also its recognition can be done in polynomial time.

To efficiently identify binary patterns in a bit-string representation of a

Boolean function, we have developed a binary tree structure, called Decomposi-

tion Tree (DT). The structure is based on a bit-string decomposition and substring

comparison for each input combination. The Decomposition Tree can be applied

to any Boolean function to classify it into important Boolean classes (i.e. linear,

monotone, . . . ). We used this tree structure to recognize canalyzing and hierar-

chically canalyzing functions. It also calculates the minimal formula for HCFs in

polynomial time. Moreover this structure allows us to find other Boolean patterns

i.e. unates, prime implicants and clauses.
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We have demonstrated that the two simple classes Sk
0 and Sk

1 support the

stable dynamical behavior of cellular processes. One can still wonder, if the sim-

ple logical organization (Fig. 4) of these rules really reflect the reality of gene

interaction or if it is just an artifact. Maybe the simple rules only derived from

the way of thinking during the experiments (Ioannidis, 2005). In contrast to the

genetic code and the restriction enzyme binding sites, there is a lack of data for

the analysis of gene regulatory rules. To confirm our results about the simple

structure of naturally occurring gene regulatory rules, it is necessary to analyze

additional datasets. Our restriction of biological relevant rules into the defined

subclasses and our ”Decomposition Tree” provide powerful tools for further anal-

ysis of binary patterns within the gene regulation.

In this work I presented basic patterns of genetic information which lead

to a deeper understanding of genetic organization in living things. I was able to

show that simple binary patterns are very important and widespread in biological

structures. In the genetic code I found the most interesting pattern of my PhD

thesis that allows the interpretation of many facts and observations, which are

collected since the discovery of the genetic code.
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1. Swetlana Nikolajewa, Maik Friedel, Andreas Beyer, and Thomas Wilhelm,

Purine-Pyrimidine patterns in the genetic code and in restriction enzyme

recognition sequences, MCCMB’05, Moscow, Juli 19, 2005.

2. Swetlana Nikolajewa, and Thomas Wilhelm, A new classification scheme of

the genetic code, Jena, Workshop JCB, Dezember, 3, 2004.

3. Swetlana Nikolajewa, Maik Friedel, Andreas Beyer, and Thomas Wilhelm,

New classification scheme of the genetic code, its early evolution, and tRNA

usage, Jena, Workshop JCB, März, 31, 2006.

4. Thomas Wilhelm, Swetlana Nikolajewa, Maik Friedel, Andreas Beyer, and

Jens Hollunder, Common patterns in type II restriction enzyme binding

sites, ELSO’05, Dresden, September, 6, 2005.

5. Thomas Wilhelm, Andreas Beyer, Swetlana Nikolajewa, Jens Hollunder,

Regina Brockmann, Maik Friedel, Johannes Wollbold, Tommi Aho. Pat-

terns in biological networks. NiSIS 2005. European Symposium on Nature-

inspired Smart Information Systems, Albufeira, Portugal Final Programme

& Proceedings, October 4 - 5, 2005,



100

Poster

1. Wilhelm T., Nikolajewa S., Beyer A., Friedel M., and Hollunder J., Common

patterns in type II restriction enzyme binding sites, ELSO Meeting Poster

Abstracts, Dresden, September, 6, 2005, Abstract.

2. Wilhelm T. and Nikolajewa S., A new classification scheme of the genetic

code, 5th International conference on Systems Biology, Poster: Heidelberg,

October 9-13, 2004.

3. Nikolajewa S. and Wilhelm T., Purine-Pyrimidine patterns in the genetic

code and in protein-DNA binding sitesclassification scheme reveals new pat-

terns in the genetic code, German Conference on Bioinformatics, Poster,

Hamburg, October 5-7, 2005.

4. Nikolajewa S. and Wilhelm T., The Purine-Pyrimidine classification scheme

reveals new patterns in the genetic code, Foundations of Systems Biology in

Engineering, Poster, Santa Barbara, August 7-10, 2005.

5. Nikolajewa S., Beyer A., Friedel M., Hollunder J., and Wilhelm T., Common

patterns in type II restriction enzyme binding sites, ECCB/JBI Computa-

tional Biology, Poster, Madrid, September 28 - Oktober 1, 2005. Abstract

6. Nikolajewa S., Friedel M., Beyer A., and Wilhelm T., New classification

scheme of the genetic code, and early evolution of translation, VAAM-

Jahrestagung 2006, Jena 19.-22.März 2006.

http://www.elso.org/index1.php?id=abstrlist2005&lid=39
http://www.eccb05.org/PostersDetail.php?postersPage=34&PHPSESSID=c8a554f39885c06d5ddf4b256b2fe26e&poster_id=102&PHPSESSID= c8a554f39885c06d5ddf4b256b2fe26e


101

Erklärung
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gewesen wäre. Mein Dank geht dabei in erster Linie an meine Mitautoren Dr.

Thomas Wilhelm und Maik Friedel. Ich danke meinem Freund Maik für die
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