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1. Introduction 
 

 

 

 

Optics is one of the oldest branches of physics. For a long time its focus laid on imaging 

systems, but during the last century this changed. With the investigation of new materials 

optics found its way into signal transfer and processing. Fibre-optic cables revolutionized 

telecommunications. One of the most recently introduced fields of research is optics in 

artificial materials, nano-structures with optimized properties. Analogue to the advances in 

semiconductor physics, which have allowed us to tailor the conducting properties of certain 

materials and thereby initiated the transistor revolution in electronics, artificial materials now 

allow to tailor as well the propagation of light.  

One example of artificial materials are so called meta materials, sub-wavelength structures, 

where e.g. refraction and diffraction can be varied to a large extent [Pendry03]. Photonic crystals 

are another prominent example. They are periodic structures, where light propagation may be 

strongly affected and even controlled [Notomi00, Freymanna03]. Waveguide arrays are simpler but 

also promising candidates, where light propagation can be considerably modified compared 

with that in bulk materials. Planar or one-dimensional waveguide arrays are periodic in one 

transverse direction and translational invariant with respect to the direction of propagation 

while two-dimensional arrays are periodically modulated in both transverse directions. The gap 

between photonic crystals and waveguide arrays is bridged by photonic crystal fibres, which 

are periodic in transverse direction. Hence, some of the effects investigated in waveguide 

arrays can likewise be observed in photonic crystal fibres.  

Currently linear and nonlinear dynamics in discrete or periodic optical systems as waveguide 

arrays are subject of active research. Due to the periodic nature of these systems many 
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similarities with quantum-mechanics or solid state physics are found, what is often reflected in 

the terminology for their description. Particles in periodic potentials as electrons in crystalline 

solids or custom-made semiconductor superlattices, Bose-Einstein condensates in optical 

lattices as well as photons in periodic refractive index structures have energies confined to 

bands in momentum space, which may be separated by gaps [Bloch28]. The periodicity of these 

systems leads to new and exciting effects.  

If the light inside the array is well confined to the waveguides and the evolution of the light is 

restricted to the energy transfer between the evanescent tails (tight binding) we speak of a 

discrete system. Discrete diffraction and refraction in homogeneous arrays were demonstrated 

to deviate considerably from that in bulk materials [Somekh73, Eisenberg98, Pertsch02]. Experiments 

mainly have been performed in one-dimensional polymer or semiconductor arrays and in 

photonic lattices in photorefractive crystals. Recently first experimental observations on two 

dimensional discrete optical systems have been reported [Pertsch04, Fleischer03]. 

After the investigation of homogeneous arrays, inhomogeneous structures started to attract 

attention. First investigations of inhomogeneous waveguide arrays disclosed that the optical 

field performs photonic Bloch-oscillations across the array if an additional transverse force is 

produced by a transverse linear refractive index gradient [Pertsch99, Morandotti99].  

Hence the waveguide array itself can be regarded as an artificial, tailor-made material with 

new, peculiar properties. In particular it is worthwhile to study how arrays perform as basic 

materials of waveguide optics.  

The aim of this work is to investigate theoretically as well as experimentally the propagation of 

waves in inhomogeneous waveguide arrays. To this end the propagation in two different types 

of waveguides arrays, either with a local inhomogeneity or with a superimposed transverse 

refractive index gradient, is analysed. 

In chapter 1 an introduction into the topics, discussed in this work is presented. The basic 

equations to describe propagation inside a waveguide array are Maxwell’s equations. They are 

introduced in chapter 2, where also the eigenvalue problem for waveguide arrays is derived.  

In chapter 3 the localization and reflection of light at inhomogeneities or more precisely defects 

and interfaces in waveguide arrays are investigated. Where light spreads in homogeneous 

arrays, it is reflected  [Morandotti03] or trapped [Peschel99] by inhomogeneities. Defect modes can 

have new and exciting properties as it is demonstrated for photonic crystal fibres. In these 

structures single mode operation is obtained in a huge wavelength domain [Birkls97], extremely 

small [Russel03] or large [Knight98] effective mode areas are achieved and almost arbitrary values of 

the group velocity dispersion [Mogilevtsev98] can be reached. In this work basic features of defect 
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and interface modes in waveguide arrays are investigated where the existence of various types 

of guided modes is predicted by means of a coupled mode theory and experimentally 

confirmed in polymer waveguide arrays. To this end a single waveguide and its spacing to 

adjacent waveguides was varied with respect to the otherwise homogeneous array. The 

existence of four different types of bound states is predicted and experimental examples for 

each of them are given. Furthermore, an optical switch based on an electro-optically 

controllable defect is theoretically investigated as an example for an application of defect 

modes. For this purpose a lithium niobate waveguide array is analyzed, where an electric field 

is induced by electrodes and changes the refractive index for a transversely localized area that 

contains two waveguides. By applying different voltages to the electrodes the light propagation 

inside the array can be strongly influenced and switching or beam steering can be realized. 

Interfaces are induced into waveguide arrays by an abrupt change of the waveguides effective 

index and spacing. The conditions for the existence of interface modes, which are not known 

from conventional bulk media, are calculated analytically. Furthermore, the reflection and 

transmission coefficients of interfaces are determined. 

The topic of chapter 4 is photonic Zener tunnelling. Zener tunnelling was originally predicted 

for an electron moving in a periodic potential with a superimposed constant electric field. Since 

many decades particle dynamics in periodic potentials or lattices has been an exciting subject 

of research in various branches of physics. It is known that in this environment the particle's 

energy is confined to bands in momentum space, which may be separated by gaps. On the basis 

of Bloch’s theory [Bloch28] Zener predicted in 1934 [Zener34] that for this scenario electron wave 

packets do not delocalize but undergo periodic oscillations (Bloch oscillations). Zener argued 

that Bloch oscillations do not persist forever, but are damped by e.g. interband transitions, an 

effect, which is now called Zener tunnelling.  

In spite of the early prediction of Bloch oscillations their unambiguous experimental 

verification failed for many decades. The reason was that these oscillations to appear require 

the coherence of wave functions, usually destroyed by particle-particle scattering in bulk 

semiconductors. In 1960 Wannier [Wannier60] proved that Bloch oscillations are evoked by the 

superposition of spatially localized states with equally spaced discrete energy levels (Wannier-

Stark ladder - WSL), thus paving the way for spectroscopic measurements. However, only the 

invention of semiconductor superlattices (SLs) [Esaki70] led to the observation of electronic 

WSLs [Mendez88] and Bloch oscillations [Feldmann92]. Moreover, accounting for the fact that these 

fundamental effects require only a Bloch particle/wave (coherent wave in a lattice) exposed to 

a linear potential they have been proven in other physical settings as e.g. ultra-cold atoms in 
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accelerated optical lattices [Dahan96], photons in photonic lattices [Pertsch99a, Morandotti99], i.e. 

dielectric waveguide arrays, or superlattices [Sapienza03, Agarwal04], i.e. multilayer stacks (or 1D 

photonic crystals) with coupled cavities.  

Zener breakdown of Bloch oscillations is expected to happen when the energy difference 

imposed on a period of the periodic lattice by the linear potential reaches the order of the gap 

between the bands. It sets a tight upper frequency limit to THz radiation generated by Bloch-

oscillations. In view of applications the control of this breakdown is even more relevant, 

because in contrast to ideal Bloch oscillations it induces a DC current of particles. Examples 

are the electrical breakdown in dielectrics [Zener34] or in Zener diodes (see [Esaki74] and 

references therein), electrical conduction along nanotubes [Bourlon04] and through SLs [Sibille98], 

pair tunnelling through Josephson junctions [Ithier05] and spin tunnelling in molecular magnets 

[Paulsen95]. In some experiments the different time constants of the decay of Bloch oscillations 

and spectral broadening of the resonances were attributed to Zener tunnelling [Sibille98]. 

However, despite of the impressive progress of spectral transmission measurements in biased 

semiconductor SLs [Rosam01], it remains difficult to distinguish Zener tunnelling from the 

unavoidable dephasing, which also limits the lifetime of Bloch oscillations performed by e.g. 

electrons or cold atoms.  

Unlike electrons photons may overcome this limit, because photon-photon interactions caused 

by optical nonlinearities can be neglected for common intensity levels. This has been proven 

by the observation of Zener tunnelling in spectral and time-resolved transmission 

measurements in photonic SLs composed of a Bragg mirror with chains of embedded defects 

of linearly varying resonance frequency [Ghulinyan05]. In this experiment it was attempted to 

create an identical environment for photons as electrons encounter in semiconductor SLs. Both 

enhanced transmission peaks and damped Bloch oscillations due to Zener tunnelling have been 

observed. But optics can even do better in really providing a laboratory for a direct visual 

observation of Bloch oscillations and Zener tunnelling. This has been verified in recent 

experiments on photonic Bloch oscillations [Pertsch99a, Morandotti99] in waveguide arrays. There 

the lattice was formed by an array of evanescently coupled waveguides, where the external 

potential was mimicked by a linear variation of the effective indices of the modes. This can be 

achieved by either applying a temperature gradient across a thermo-optic material [Pertsch99a] or 

by changing the waveguide geometry [Morandotti99]. The major difference to the common SL 

setup is that the temporal dynamics of the photons is mapped onto the spatial evolution of light 

along the propagation direction. Thus instead of having to resolve fast temporal oscillations 

and transmission spectra one can easily follow the path of light down the array.  
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In this work the first direct visual observation of Zener tunnelling and the associated decay of 

Bloch oscillations are presented. To this end light is fed into the waveguide array and its 

propagation along the sample is visualized by monitoring the optical fluorescence above of the 

array. By simultaneously heating and cooling the opposite array sides the required transverse 

index gradient, which stimulated Bloch oscillations, is achieved by the thermo-optic effect in 

polymer waveguide arrays. For an increasing index gradient a comprehensive picture of the 

coherent tunnelling phenomena to higher order bands, viz. Zener tunnelling, associated with 

the decay of Bloch oscillations is directly observed.  

Furthermore, the first demonstration of Bloch oscillations and Zener tunnelling in a two 

dimensional lattice is presented. For this purpose a two-dimensional grating and an index 

gradient are optically induced in a photorefractive crystal [Efremidis02, Fleischer03, Neshev03]. The 

propagation of a light beam in the resulting structure is investigated by measuring the intensity 

distribution at the output facet of the crystal. In accordance with detailed numerical 

simulations, the measurements give clear evidence of 2D Bloch Oscillations and Zener 

tunnelling. Moreover the motion of the light beams was also detected directly in Fourier space. 

The measurements demonstrate the motion of a light beam through the first Brillouin zone 

corresponding to Bloch oscillations in real space for he first time. Additionally they provide 

important information about the tunnelling process into higher order bands. 
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2. Basic equations 
 

 

 

 

Starting from Maxwell’s equations the basic equations to describe light propagation in periodic 

systems are introduced. The evolution of the electric field is described by the wave equation. 

Furthermore, the eigenvalue problem is derived for a planar waveguide array. Its solution 

provides the characteristic information of a periodic system as the band structure and Bloch 

modes. The general results of this chapter provide the basis for more detailed investigations in 

the following chapters of this work. 

 

2.1. Maxwell’s equations and the wave equation 

Maxwell’s equations are the basis for the description of the propagation of light. In a dielectric 

medium, in which there are no free electric charges or currents, they can be written in Fourier 

space for monochromatic fields as 

  (1) 
( , ) ( , ), ( , ) ( , ),

( , ) 0, ( , ) 0.
i i∇ × ω = ω ω ∇ × ω = − ω ω

∇ ⋅ ω = ∇ ⋅ ω =
E r B r H r D r

D r H r

( , )ωE r  and  are the electric and magnetic fields, ( , )ωH r ( , )ωD r is the dielectric displacement  

and  the magnetic induction at a fixed frequency ω. The influence of the material and 

thus the relation between the different electric as well as the different magnetic variables is 

described for non magnetic materials by the equations 

( , )ωB r

 0

0

( , ) ( , ) ( , ),
( , ) ( , ).

ω = ε ω + ω
ω = μ ω

D r E r P r
B r H r

 (2) 
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0ε  is the dielectric constant,  the magnetic permeability of vacuum and 0μ ( , )ωP r  the 

polarization. Because we investigate linear waveguide arrays, no nonlinear contributions exist 

and we can express the polarization as [ ]0 0( , ) ( , ) ( , ) ( , ) 1 ( , )ω = ε ω ω = ε ω − ωP r χ r E r ε r E r , 

where  is the susceptibility and ( , )ωχ r ( , )ωε r  the dielectric function. Since waveguide optics 

usually deals with non-magnetic materials no magnetization is assumed and the magnetic 

permeability is always identical to that of vacuum 0μ . In general the variables in Fourier space 

are connected to the variables in real space by a Fourier transformation. Because we investigate 

monochromatic fields at a fixed frequency ω, the electro-magnetic fields can be written in the 

following form 

 { }ˆ ( , ) Re ( , ) i tt e− ω= ωV r V r . (3) 

Inserting eq. (2) in eq. (1) and eliminating ( , )ωB r  and ( , )ωD r  gives us a set of equations for 

the electric and magnetic fields 

  (4) 
[ ]

0 0( , ) ( , ), ( , ) ( , ) ( , ),
( , ) ( , ) 0, ( , ) 0.

i i∇ × ω = ωμ ω ∇ × ω = − ωε ω ω

∇ ⋅ ε ω ω = ∇ ⋅ ω =

E r H r H r ε r E r
r E r H r

From this set of equations the wave equation is derived by taking the curl of the first of these 

four equations and then inserting . In the following( , )∇ × ωH r ( , )∇ ⋅ ωE r  is expressed through  

 ( , )( , ) ( , )
( , )

∇ ω
∇ ⋅ ω = − ω

ω
ε rE r E r
ε r

 (5) 

and we obtain 

 [ ]{
2

2( , ) ( , ) ( , ) ln ( , ) ( , ) 0
c
ω

Δ ω + ω ω + ∇ ∇ ω ω =E r ε r E r ε r E r } . (6) 

Here 0 01/c = ε μ  is the vacuum speed of light and Δ the Laplacian operator 

 2

2

2

2

2

2

zyx ∂
∂

+
∂
∂

+
∂
∂

=Δ . (7) 

The wave equation (6) describes the propagation of the electric field .  can be 

calculated from  with the help of Maxwell’s equations. 

( , )ωE r ( , )ωH r

( , )ωE r

 

2.2. Eigenvalue problem and band structure 

In this section the eigenvalue equation is derived for a one-dimensional waveguide array (see 

Fig. 1), which is homogeneous in the propagation direction z, periodic in x and finite in y.  
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Fig. 1. Schematic representation of a polymer waveguide array with typical 

values of the geometry.

In the following we only consider monochromatic fields and thus omit the frequency ω in the 

corresponding arguments. We insert stationary propagating fields 

 ( ) ( , ) i zx y e β= 0E r E  (8) 

into eq. (6) and obtain 

 [ ]
2

2
02( , ) ( , ) ( , ) ( ) ln ( , ) ( , ) 0t t tx y x y x y i x y x y

c
ω⎡ ⎤−β + Δ + + ∇ + β ∇ =⎣ ⎦ 0 0 zE ε E u ε E . (9) 

t x∇ = ∂ + ∂x yu u y
2
y and 2

t xΔ = ∂ + ∂  are the transverse Nabla and Laplace operator and β the 

longitudinal wave number. ux, uy and uz are the unit vectors in x-, y- and z-direction. The first 

term of this equation includes the evolution during propagation and diffraction, while the 

influence of the periodic modulation of ε(x,y) is given by the second term.  The last term mixes 

between the different vector components of the electric field E(r). In this equation the 

transverse components decouple from the z-component and an equation for ( , )t x yE , which 

contains the x- and y-components of the electric field only, can be determined as 

 [ ]{
2

2
2[ ] ( , ) ( , ) ( , ) ln ( , ) ( , ) 0t t t t t tx y x y x y x y x y

c
ω

−β + Δ + + ∇ ∇ =E ε E ε E } . (10) 

For periodicity in x-direction the dielectric function ( , ) ( , )x y x d= +ε ε y  and 

ln ( , ) ln ( , )x y x d= +ε ε y

m

 can be expanded into Fourier series 

 ( , ) ( ) and ln ( , ) ( )igmx igmx
m

m m

x y y e x y y
∞ ∞

=−∞ =−∞

= ∑ε ε ε l e= ∑ , (11) 

with g being the absolute value of the normalized grating vector g=ux2π/d. The transverse 

electric field vector is expanded into plane waves and thus can be written as 
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 ( , ) ( , ) ikx
t tx y k y e

+∞

−∞

= ∫E E dk , (12) 

with the transverse wave number k. For reasons of simplicity, we distinguish the quantities in 

real and Fourier space only by their arguments. The eigenvalue problem for the eigenvalue 

β2 can be derived. Therefore eqs. (11) and (12) are inserted into eq. (10) and  

 

2 2
2 2

2 2( ) ( , ) ( , )

( , ) ( , )

t m t
m

ikx
x y x m m y

m

k k y k mg y
y

ik igmE k mg y E k mg y e dk
y y

+∞

−∞

⎧ ∂ ω
− β + + + −⎨ ∂ ε⎩

⎫⎡ ⎤⎡ ⎤ ⎛ ⎞∂ ∂ ⎪+ + − + − ⎬⎢ ⎥⎜ ⎟⎢ ⎥∂ ∂⎣ ⎦ ⎝ ⎠ ⎪⎣ ⎦ ⎭

∑∫

∑

E ε E

u u l l 0=

 (13) 

follows after substituting  for terms containing ek k igm′ = + xp( ( ) )i k mg x+  and renaming k′  

into k. Ex and Ey are the x- and y-component of Et. Because this equation must hold for all 

values of k, the integrand itself must be zero. Then the eigenvalue problem can be written for 

 as 0/ 2 / 2g k g− ≤ ≤

 , (14) 
0

2
0 0 0 0 0 0

0

(k , )
( ) ( , ) ( , ) ( , ) with ( , ) (k , )

(k , )

t

t t t t

t

g y
k k y k y k y k y y

g y

⎛ ⎞
⎜ ⎟+⎜ ⎟
⎜β = =
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎝ ⎠

E
M E

E
E E E ⎟

where  is the eigensolution to the eigenvalue  and  an operator, which 

follows from eq. 

0( , )t k yE 2
0( )kβ 0( , )k yM

(13). Each  is connected only to Fourier components at k0( , )t k yE 0+mg with 

. Therefore the corresponding solution in real space, which we denote as m−∞ < < +∞

0, ( , )t k x yE , can be written as a product of an x-periodic contribution 
0 0
( , ) ( , )k kx y x d= +Ψ Ψ y  

and a phase term  0ik xe

 ( ) 0

0 0, , 0( , ) , ( , )ik x ik ximgx
t k t m k

m

0x y k mg y e e x y−= − =∑E E Ψ e . (15) 

This conclusion is known as Bloch theorem with k0 being the Bloch vector of the Bloch wave 

0, ( , )t k x yE . 

In the following we examine the dependence of the propagation constant β on the Bloch vector 

k0. For each k0 a discrete number of solutions β can be calculated. We distinguish these 

solutions by their indices n. All solutions βn with the same index n are accounted to one so-

called band. Therefore n is called band index. The relation between the transverse wave 

number k0 and the longitudinal wave number β (drawn in the β-k0-plane) is called band 
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structure or diffraction relation. The areas of the band structure, where no propagation 

constants β exist for any value of k0, are called band gaps. Obviously the band structure has to 

be periodic in k0  with a period of g. Therefore it is sufficient to examine only one period of the 

band structure. We use the interval , which is called first Brillouin zone. As 

the band structure is symmetric around k

0/ 2 / 2g k g− ≤ ≤

0=0, it will be investigated only for  in 

the following. To calculate the band structure powerful tools are available, which are not 

discussed here. For our calculations the program MIT Photonic-Bands has been used (for 

information on MIT Photonic-Bands see 

00 /k g≤ ≤ 2

[Johnson01]). The full set of solutions includes a discrete 

set of modes, which can be localized inside the guides (waveguide modes) or inside the 

cladding (cladding modes). However, if the cladding is sufficiently thick, the bands of the 

cladding modes move closer together and can be approximated by a continuum of modes, as it 

appears for a bulk material of the same refractive index as the cladding. Furthermore we have 

to distinguish between modes with a main component of the electric field which is x-polarized 

and those, with a y-polarized main component.  

An example of a band structure for mainly x-polarized modes is given in Fig. 2, where the first 

three waveguide bands and the continuum of the cladding modes are shown. We found that for 

our structures the bands of the corresponding y-polarized modes look very similar and are 

almost indistinguishable from the bands of the mainly x-polarized modes, if plotted together in 

the same diagram.   

 

Fig. 2 Band structure of a waveguide array as depicted in Fig. 1. The 

refractive index for the substrate is ns=1.4570, for the waveguide nCo=1.5615 

and for the cladding nCl=1.5595 at a wavelength of λ=488nm. Already the 

second band dips into the continuum of cladding modes. 
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The band structure determines the propagation of light inside the corresponding waveguide 

array. The first derivative δβn /δk0  describes the effective propagation direction of light inside 

the respective band n for each value of k0 .Light inside the first band travels straight along the 

waveguides at the extrema k0=0 and k0=g/2 and has a maximum transverse slope at the 

inflection point in between. The second derivative δ2β/δk0
2 and thus the curvature gives 

information about the diffraction properties. Positive δ2β/δk0
2 correspond to anormal 

diffraction and negative δ2β/δk0
2 to normal diffraction. Light in the first band experiences 

normal diffraction in the centre of the Brillouin zone (e.g. k0=0) and anormal diffraction at its 

edges.  

The modal fields of the three waveguide bands for the Bloch vector k0=0 are depicted in Fig. 3 

inside one unit cell of the corresponding structure (see Fig. 1). 

The mode of the first band is centred inside the unit cell. Due to the weak guiding in x-

direction only a weak modulation of the field appears in x. In contrast to this, maxima of the 

mode of the second band are centred in the low index region and a minimum appears inside the 

waveguide. While the modal fields in the first two bands are symmetric in x with respect to the 

centre of the waveguides, the modal field of the third band is anti-symmetric with respect to the 

to the waveguides centre.  

 

Fig. 3 Modal fields of the first three waveguide bands for the Bloch vector 

k0=0.  

The eigenvalue problem for two dimensional waveguide arrays with rectangular symmetry can 

be derived analogous to the one-dimensional case. The y-dependence of the dielectric function 

is then periodic as well. Thus it has to be developed into a Fourier-series too and the single 

summation in eq. (13) has to be replaced by a double summation. As a result the Bloch 

theorem is expanded into both transverse directions. An example of a two-dimensional square 

lattice and the corresponding band structure is given in chapter 5. 
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3. Defects and interfaces in waveguide arrays 
 

 

 

 

The subject of this chapter is the investigation of local defects and interfaces in otherwise 

homogeneous waveguide arrays. The propagation of light in homogeneous waveguide arrays 

has been demonstrated to deviate considerably from the propagation in bulk materials [Somekh73, 

Pertsch02]. Experimental observations of discrete diffraction and refraction have been performed 

in polymer waveguide arrays. A natural arising question is how the propagation of light in such 

arrays is influenced by local defects or interfaces. Defects can be created by locally changing 

the width of the waveguides or their spacing. Interfaces can be introduced by an abrupt change 

of these quantities.  

Here the formation of localized states at defects consisting of a single waveguide is calculated 

based on a coupled mode theory. Defects are shown to be either attractive or repulsive. The 

results are verified in experiments in polymer waveguide arrays. Furthermore theoretical 

investigations on an electro-optical switch in a LiNbO3-array are presented as an example for 

an application of the defect modes. In the last part of this chapter, the existence of bound states 

at interfaces is analyzed and the transmission and reflection coefficients for Bloch waves are 

calculated  

 

3.1. Coupled mode theory 

As all investigations in this chapter are based on one-dimensional waveguide arrays consisting 

of weakly coupled single-mode waveguides, a coupled mode theory [Börner90] or tight binding 

approximation can be used for the theoretical analysis. Then the field evolution inside the array 
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is described by the superposition of the evolution of the modal fields of the single waveguides, 

while the interaction between the waveguides is included by the coupling between the 

evanescent tails of the modal fields. In the theoretical model the influence of neighbouring 

waveguides on each waveguide is described by a weak perturbation. The field evolution along 

the n-th waveguide is given by 

 
{ }
{ }

ˆ ( , ) Re ( , ) ( , , ) ,

ˆ ( , ) Re ( , ) ( , , ) ,

i t
n n n

i t
n n n

t a z x y e

t b z x y e

− ω

− ω

= ω ω

= ω ω

E r e

H r h
 (16) 

with the mode structures en(x,y,ω) and hn(x,y,ω) and the z-dependent amplitudes an(z,ω) and 

bn(z,ω). Without any perturbation the amplitudes evolve harmonically in z 

 with the propagation constant β( , ) (0, ) exp[ ( ) ] (0, ) exp[ ( ) ]+ −ω = ω β ω + ω − β ωn n n n na z a i z a i z n(ω) 

and the amplitudes of the forward and backward propagating waves +
na  and . To simplify 

following equations we normalize the modal fields e

−
na

n(x,y,ω) and hn(x,y,ω) 

 *
0

1 Re [ ( , , ) ( , , )]
2 n nx y x y dxdy

+∞ +∞

−∞ −∞

⎧ ⎫
Pω × ω =⎨

⎩ ⎭
∫ ∫ ze h u ⎬

ni

. (17) 

P0 is the normalization power for all modes and uz the unit vector in z-direction.  denotes 

the complex conjugate of .  

*
nh

nh

In the following we want to derive the dynamics of the fields, which is determined by coupling 

between adjacent waveguides. Therefore we describe the evolution of the amplitudes by a 

perturbation theory and derive a coupled mode description via the well known reciprocity 

theorem. Because we assume monochromatic fields the frequency ω is omitted in the 

arguments and all considerations are performed in frequency space. 

The field vectors for each waveguide have to obey Maxwell’s equations, where we now 

introduce a perturbation polarization Πn(r):  

  (18) 0 0(a) ( ) ( ) 0, (c) ( ) ( ) ( ) ( ),
(b) ( ) ( ) 0, (d) ( ) 0.

n n n n n

n n n

i i∇ × − ωμ = ∇ × + ωε ε = − ω
∇ ⋅ ε = ∇ ⋅ =

E r H r H r r E r Π r
r E r H r

εn(r) contains the refractive index distribution of the considered waveguide. As we investigate 

isotropic materials, it is a scalar. We assume, that in the unperturbed waveguide Πn(r)=0 only a 

forward propagating wave En,u(r)=en(x,y)exp(iβnz) is excited. The field of the perturbed 

waveguide can be written as En,p(r)=an(z)en(x,y) for Πn(r)=Pn(r). The perturbation should be 

weak, so that the original shape of the modes of the waveguides is preserved. Then the 

evolution of the field during the propagation can be described by a z-dependent amplitude 
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an(z). The fields of the unperturbed as well as of the perturbed system have to fulfil the 

corresponding Maxwell’s equations (18). We multiply Hn,u
* with eq. (18) (a) and En,p with the 

conjugate complex of eq. (18) (b). Then we subtract the latter one from the first and obtain  

 , (19) * *
, , 0 , , 0 ,[ ]n p n u n p n u n n p n ui i∇⋅ × = ωμ − ωε εE H H H E E*

,

where * indicates the complex conjugate. For simplicity reasons the arguments are not written 

here. In the same way we proceed with En,u
* and eq. (18) (b) and Hn,p and [eq. (18) (a)]*. We 

subtract the result from eq. (19) and obtain 

 . (20) * * *
, , , , ,[ ]n p n u n u n p n u ni∇ ⋅ × + × = ωE H E H E P

Next we integrate this equation over the entire transverse plane (x and y)  

 * * *
, , , , ,n p n u n u n p n u nz

dxdy i dxdy
z

+∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞

∂⎧ ⎫⎡ ⎤× + × = ω⎨ ⎬⎣ ⎦∂⎩ ⎭∫ ∫ ∫ ∫E H E H E P . (21) 

Only the z-component of the divergence and thus the transverse components of the field 

vectors contribute to the left part of this equation.  

If we examine two modes of the same waveguide instead of the unperturbed and perturbed 

fields, the orthogonality relation follows from eq. (21)

 *
,1 ,2[ ( , , ) ( , , )] 0n nx y x y dxdy

+∞ +∞

−∞ −∞

ω × ω∫ ∫ ze h u = , (22) 

which states, that without a perturbation no coupling takes place between modes of the same 

waveguide, e.g. between the fundamental modes of different polarization. 

We insert our ansatz for the fields of the unperturbed and perturbed system in eq. (21). 

Futhermore we consider only forward propagating waves +=na an , since we assume Pn does 

not efficiently couple modes of different propagation directions. As we deal with arrays, which 

are homogeneous in propagation direction, this is always fulfilled. Then we obtain for the n-th 

waveguide  

 *

0

( ) ( , ) ( )dxdy
4n n n n
ii a z x y

z P

+∞ +∞

−∞ −∞

∂ ω⎡ ⎤− β =⎢ ⎥∂⎣ ⎦ ∫ ∫ e P r . (23) 

Since in this work linear systems are investigated, only linear contributions to the polarization 

are considered. Then the polarization can be split up into two parts Pn(r)=Pn,l(r)+Pn,c(r). Pn,l(r) 

is the polarisation due to ‘local perturbations’ caused by deviations of the dielectric function of 

the waveguide Δεn(x,y) from the original solution assumed for the unperturbed waveguide. 

Pn,c(r) contains the influence of coupling to other waveguides. The first contributions to the 

polarisation Pn,l(r) reads as 
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 , 0( ) ( , ) ( , ) ( )n l n n nx y x y a zε ε= ΔP r e . (24) 

Inserting eq. (24) in eq. (23), we obtain an equation for a disturbed single waveguide 

 ( ) 0n n ni a
z

∂⎡ ⎤ z+ β + α =⎢ ⎥∂⎣ ⎦
, (25) 

with αn being the detuning coefficient  

 *
0

0

( , ) ( , ) ( , )
4n n n nx y x y x y dxd

P

+∞ +∞

−∞ −∞

ω
α = ε Δε∫ ∫ e e y . (26) 

Consequently, a change of the considered waveguide itself, e.g. in the shape of the cross 

section or the refractive index, leads to an additional contribution to the propagation constant 

of the mode of the perturbed waveguide. 

Next we have a look at the coupling between different guides. Since we investigate arrays, 

each waveguide is surrounded by two other waveguides, one to its left and one to its right. The 

interaction takes place by energy exchange via the overlap of the evanescent tails of the modes 

of the different guides.  

We complete our mathematical model of the polarization by describing its second part Pn,c(r), 

which contains the influence of all other waveguides on the field in the waveguide under 

consideration. The contribution of the additional waveguides to the polarization read as 

  , 0 ' '
' 1

( , ) ( , ) ( ) ( , )
N

n c n n n
n

x y x y a z
=

= ε Δε∑P x ye . (27) 

Δεn(x,y) is the deviation of the dielectric function from the unperturbed system for the n-th 

waveguide. an’(z) and en’(x,y) are the amplitude and modal field of the n’-th waveguide. 

Inserting eq. (27) in eq. (23) we obtain a differential equation for the modal amplitude of the n-

th waveguide  

 , ' '
' 1
'

( ) ( ) 0
N

n n n n n n
n
n n

i a z c a
z =

≠

∂⎡ ⎤+ β + α + =⎢ ⎥∂⎣ ⎦
∑ z . (28) 

cn,n’ is the coupling coefficient for the waveguides n and n’ and is given by 

 *0
, ' '

0

( , ) ( , ) ( , ) .
4n n n n nc x y x y x

P

+∞ +∞

−∞ −∞

ε ω
= Δε∫ ∫ e e y dxdy   (29) 

The term n’=n gives an additional contribution to the propagation constant  

 *0

0

( , ) ( , ) ( , ) .
4n n n nx y x y x y dxdy

P

+∞ +∞

−∞ −∞

ε ω
α = Δε∫ ∫ e e  (30) 
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This small correction is combined to one variable with the propagation constant βn to nβ . 

Furthermore we assume in the following only the coupling coefficients between adjacent 

waveguides to supply substantial contributions and thus all others can be neglected. Then the 

resulting coupled mode equations become 

 , 1 1 , 1 1( ) ( ) ( ) 0n n n n n n n n ni a z c a z c a
z − − + +

∂⎡ ⎤+ β + α + + =⎢ ⎥∂⎣ ⎦
z

0

. (31) 

These equations describe the evolution of the modal amplitude an(z) of the n-th waveguide in a 

one-dimensional linear waveguide array, where nearest neighbour interaction is assumed only.  

 

3.2. Homogeneous waveguide arrays 

Before discussing inhomogeneous waveguide arrays, fundamental effects in homogeneous 

arrays are introduced in this section [Pertsch02]. For homogeneous arrays all coupling and 

propagation constants have the same value nandn ac c= β = β . Then eq. (31) reads as 

 ( )0 1 1 0n a n ni a c a a
z − +

∂⎛ ⎞+ β + + =⎜ ⎟∂⎝ ⎠
. (32) 

Eigensolutions of this equation are plane waves or Bloch modes of the form  

 i z i n
na ae β + κ= , (33) 

where κ is the normalized Bloch vector or the phase difference between adjacent guides 

corresponding to a tilt of the beam. In comparison to the Bloch waves introduced in the last 

chapter (cp. eq. (15)), for a coupled mode theory the continuous periodical contribution 

( , ) ( , )x y x d= +Ψ Ψ y  is replaced by a constant amplitude a. The normalized Bloch vector κ is 

obtained from the Bloch vector k by normalization to 1/d, with d being the lattice period. 

Inserting this ansatz into eq. (32) we find β to be entirely defined by κ giving the so-called 

diffraction relation or band structure (Fig. 4) 

 ( )0 2 cosacβ = β + κ .  (34) 

In contrast to bulk media the range of propagation constants β of freely propagating waves is 

limited. Its width depends on the coupling constant ca and its position is defined by the wave 

number of the individual guides β0. While the exact solution of the eigenvalue problem (see 

2.2) provides also higher order bands, they are neglected in this approximation and do not 

appear as a solution of the coupled mode equations, where we obtain only a single band. 

Outside this band only waves exist, which decay exponentially in transverse direction. As a 
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consequence of the coupled mode approximation the shape of the diffraction relation for the 

band is sinusoidal.  

 

 

Fig. 4. Diffraction relation (band structure) of Bloch waves in a homogeneous 

waveguide array. 

The propagation inside a homogeneous array can be calculated analytically [Jones65, Yellin95]. To 

this end the propagation is described in Fourier space using the discrete Fourier transform  

 1( , ) ( ) , ( ) ( , )
2

+π
− κ κ

−π

κ = =
π ∑ ∫i n i n

n n
n

a z a z e a z a z e dκ κ

= a

,  (35) 

which relates the modal amplitudes to the amplitudes of discrete plane waves. The evolution of 

an arbitrary excitation  in Fourier space is described by 

, where β(κ) is given by the diffraction relation 

( , 0)κ =a z

( , ) ( , 0) exp[ ( ) ]κ = κ = β κa z a z i z (34). 

Transforming the amplitudes at a propagation distance z back into the spatial domain, we 

obtain the general solution of the diffracted field an(z) for an arbitrary initial distribution an(0) 

 ,  (36) 0
, ,( ) ( ) (0) with J (2 )

∞
β −

−
=−∞

= ∑ i z n m
n n m n n m n m

m

a z G z a e G i c z

with Gn,m being the Green’s function of an array and Jn-m the Bessel function of the first kind. 

The propagation inside an array is depicted in Fig. 5. The picture on the left hand side shows 

the discrete diffraction pattern, as it appears if a single waveguide of the array is excited. In 

contrast to diffraction in a bulk medium the two main intensity maxima are located at the edges 

of the diffraction pattern instead of the centre. However, this changes as the excitation becomes 

broader. If several guides are excited by a Gaussian-like beam, also the envelope of the 

diffraction pattern is Gaussian, as is appears in a homogeneous medium too (see Fig. 5). 
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Fig. 5 Diffraction for excitation of a single waveguide (left) and with a broad 

beam (centre) and propagation without diffraction at κ=π/2 (right). 

The reason for this dependence on the width of the excitation can be explained with help of the 

band structure. A small excitation corresponds in Fourier space to a broad distribution. Thus all 

components with all possible transverse wave vectors κ exist, most of them propagating with 

high transverse velocities as indicated by the position of the intensity maxima. In contrast to 

that, at broad excitation only κ close to the centre of the Brillouin zone corresponding to small 

transverse velocities are excited. 

Another interesting case is the propagation of a broad beam with a transverse wave number of 

κ=π/2, where the beam propagates almost without diffraction (see Fig. 5 right). As it can be 

seen from the band structure, the curvature of the diffraction relation is zero for this κ and thus 

up to second order no diffraction occurs. 

 

3.3. Localized states at defect waveguides 

The aim of this section is to investigate theoretically and experimentally basic features of 

defect modes in waveguide arrays. Areas of existence for different types of modes are 

predicted and experimentally confirmed. 

 

3.3.1 Theory 

The existence of bound states at a single defect waveguide in an otherwise homogeneous 

waveguide array is investigated. Only symmetric defects are considered, where the propagation 

constant and the coupling constant of the guide change. This can be achieved by varying the 

width of the corresponding guide or its spacing to neighbouring guides (see Fig. 6).  
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Fig. 6. Schematic representation of a waveguide array with a defect consisting 

of a single guide with changed width and spacing to its neighbours. 

The propagation in such an array with a defect at n=0 is described by the following set of 

coupled mode equations: 

 

( )

( )

0 0 1 1

0 1 0 2

0 1 1

0 : 0,

1: 0,

2 : 0.

d

d a

n a n n

n i a c a a
z

n i a c a c a
z

n i a c a a
z

−

± ±

− +

∂⎛ ⎞= + β + δβ + +⎜ ⎟∂⎝ ⎠
∂⎛ ⎞= ± + β + + =⎜ ⎟∂⎝ ⎠
∂⎛ ⎞≥ + β + + =⎜ ⎟∂⎝ ⎠

=

 (37) 

cd is the modified coupling constant for the defect and δβ is the change of the propagation 

constant of the defect. Any mode bound to a defect must have the form 

( ) ( )dexpn na z A i z= β   (38) 

with constant amplitudes An. To determine whether the defect can indeed carry a guided mode 

we have to perform some mathematics. Because exponentially decaying tails are required, the 

field shapes are described by  

1
1 for 2,n

nA A nγ −
±± = ≥  (39) 

where  

1γ <  (40) 

holds. Inserting the ansatz (38) and (39) into eq. (37) we immediately obtain the propagation 

constant of guided modes as a continuation of the diffraction relation (34) as 

0
1

d ac ⎛
β = β + γ +⎜ γ⎝ ⎠

⎞
⎟

1

.  (41) 

Because we restrict ourselves to symmetric defects respective guided modes must be either 

symmetric or antisymmetric. For an antisymmetric mode ( 1A A+ −= − ) the field amplitude at 

guide n=0 must vanish (A0=0) for symmetry reasons. Hence all changes induced by the defect 
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in eq. (37) have no effect and the defect itself becomes invisible for antisymmetric modes. 

Consequently no field is bound and no guided mode with odd symmetry exists. Therefore only 

symmetric modes have to be considered. Assuming 1A A 1+ −=  and inserting eqs. (38), (39) and 

(41) into eq. (37) we end up with an eigenvalue problem for the transverse decay rate of the 

field structure γ as 

2 2
1 2

2 2
d

a a a

c
c c c

⎛ ⎞ ⎛ ⎞δβ δβ 1= ± +⎜ ⎟ ⎜ ⎟γ ⎝ ⎠ ⎝ ⎠
−

)

)

. (42) 

If  holds; γ is positive and fulfils inequality ( )2/ 1 /(2d a ac c cδβ> − (40), i.e., 0<γ<1. The 

respective guided mode is called “unstaggered” because it possesses a flat phase (see Fig. 7 

(a)). Following eq. (41) its propagation constant lies above the band of Bloch states of the 

homogenous array. However, γ can also be negative if the condition  is 

fulfilled giving rise to the formation of a staggered mode with a phase difference π between 

adjacent waveguides (see 

( )2/ 1 /(2d a ac c cδβ> +

Fig. 7 (b)). In contrast to guided modes in conventional materials the 

wave number of the respective guided mode is below those of the continuous states in the 

homogenous array.  
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Fig. 7. Field of (a) an unstaggered and (b) a staggered mode at a defect guide. 

In the parameter space defined by cd/ca and δβ/ca we can find areas without guided modes, 

with single mode waveguiding, either a staggered or an unstaggered mode, or domains with 

both types of modes coexisting (see Fig. 8). 
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Fig. 8. Regions of existence for symmetric staggered and unstaggered modes 

in the (cd/ca)2-δβ/ca-plane. 

To a certain extent waveguiding in conventional materials is reproduced. For instance we find 

an unstaggered mode, if only the refractive index of the defect guide is increased compared to 

the homogeneous array: δβ>0. However, contrary to waveguiding in homogeneous media a 

localized state also appears in form of a staggered mode, if the wave number of the central 

guide is decreased: δβ<0.  

To understand the peculiarities of waveguide arrays it is useful to assume that the defect itself 

forms its own tiny array with an individual band structure extending between the boundaries 

0 2 dcβ + δβ ±  (see Fig. 9). As soon as this “defect band” extends further than that of the 

homogeneous array, a localized state can be formed. The respective wave number β  must be 

contained in the “defect band” but missed in the band of the homogeneous
d

 array.  

This simple picture also explains that if the coupling around the defect is increased cd>ca we 

find both staggered and unstaggered modes to appear (see Fig. 9 (c)) on both sides of the band 

of the homogeneous array. In contrast to that, no guidance is observed for a decreased coupling 

cd<ca. In this case all wave numbers of the defect band are phase matched to waves of the 

homogenous array (see Fig. 9 (d)). 
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Fig. 9. Diffraction relation of Bloch modes and the formation of defect modes. 

(a) Diffraction relation of Bloch-waves (longitudinal vs. transverse wave 

number) in a homogeneous waveguide array (propagation constant of 

unperturbed waveguide: β0, coupling constant ca). In the shaded regions only 

evanescent waves exist. (b) Shift of the band structure and formation of a 

staggered mode (wave number βd) around a defect with a wave number 

reduced by δβ. (c) Expansion of the band structure and formation of staggered 

and unstaggered modes around a defect with increased coupling (cd>ca) (d) 

Compression of the band structure around a defect with reduced coupling 

(cd<ca). 

While this simple picture provides a very intuitive description for the existence of defect 

modes, it cannot give quantitative information. In particular, the picture fails for simultaneous 

variation of wave number δβ and coupling cd of the defect. The main reason is the lack of a 

continuous density of states in the “defect array”. If the number of waveguides in the “defect 

array” would be infinitely large the above mentioned method to determine guided defect modes 

would become exact. 

 

3.3.2 Experiment 

We are now going to compare the theoretical predictions with experimental results. To this end 

waveguide arrays consisting of 101 waveguides were fabricated of an inorganic-organic hybrid 

polymer [Houbertz03] (nco=1.547 @ 633nm) on thermally oxidized silicon wafers (nsub=1.457 @ 
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633nm) with a polymer cladding (ncl=1.544 @ 633nm) (see Fig. 10). The samples were 

fabricated by UV lithography [Streppel02] on 4 inch wafers leading to propagation lengths up to 

7cm. All waveguides have the same height of 3.5μm. Waveguide widths between 2.5 and 

4.5μm provide low loss single mode wave-guiding (<0.04dB/cm @ 633 nm) and a waveguide 

spacing between 4 and 5μm ensures an efficient evanescent coupling of the nearest 

neighbouring guides.  

 

 
 

Fig. 10 Cross section of a polymer waveguide array with a defect. The defect 

is introduced by reducing the waveguide spacing compared with the 

homogenous array. 

Keeping in mind that the properties of a mode guided by the defect depend solely on the two 

parameters δβ /ca and cd/ca we fabricated samples to test defects belonging to the four distinct 

areas in the parameter plane (see Fig. 8). To introduce defect guides we varied width and 

spacing of the corresponding waveguide. Where a modification of the waveguide spacing 

solely influences the coupling between the neighbouring waveguides, a variation of the width 

of a guide does not only change the wave number of the defect but alters the coupling as well. 

Compared to the deliberately induced perturbations conventional fabrication tolerances are 

much smaller and originate almost exclusively from a variation of the waveguide layer 

thickness due to the spin coating process. The spatial scale of resulting inhomogeneities is 

comparable with the width of the wafer. Hence, our structures are mainly subject to a constant 

drift of parameters. Comparing samples originating from different parts of the wafer we found 

the strength of the coupling to change by approximately 5%. Within one sample no transverse 

variations of the array parameters could be observed. 

A single waveguide excitation was implemented by focusing a HeNe laser beam on the 

entrance facet with a microscope objective. The light emitted from the end faced was detected 

by a CCD-camera. 

First we checked the existence of an unstaggered mode by creating a single guide with 

increased width of 3.5µm compared with 3µm in the homogeneous part of the array. As a 
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consequence the propagation constant of the defect guide is increased (δβ/ca=2). But 

additionally the coupling is slightly decreased cd/ca=0.8 (see cross 1 in Fig. 8). Similar to 

conventional waveguiding light concentrates around the region of higher effective index and 

the modal fields have a flat phase (see Fig. 11 (a)). 

 

 

Fig. 11. Intensity of an unstaggered and a staggered mode for a dominant 

change of the propagation constant of the defect. (a) Field distribution of an 

unstaggered defect mode for δβ/ca=2.0 and cd/ca=0.8 (cross 1 in Fig. 8), solid 

line: theory, dots: experiment. (b) Field distribution of a staggered defect 

mode for δβ/ca =−1.4 and cd/ca =1.1 (cross 2 in fig. 4), solid line: theory, dots: 

experiment. 

Next we investigated deviations from classical waveguiding mechanisms. Hence we looked for 

a staggered mode by decreasing the width of the defect waveguide (3µm compared with 3.5µm 

in the remaining array). Again the resulting decrease of the propagation constant of the defect 

(δβ/ca=-1.4) is accompanied by a small increase of the coupling constant (cd/ca=1.1, see cross 

2 in Fig. 8). In fact we also observed a guided mode (see Fig. 11 (b)), whose shape differs 

considerably from that of an unstaggered one. Because fields in adjacent guides are π out of 

phase, the intensity of a staggered mode becomes zero between the waveguides due to 

destructive interference of respective modal fields. Hence, in contrast to the unstaggered mode, 

which is bound by total internal reflection, the guiding mechanism of the staggered state relies 

on Bragg reflection on the periodic structure of the array.  

In case of a dominant change of the coupling constant cd, two different regions occur in the 

δβ/ca-(cd/ca)² -plane. For an increase of the defect coupling cd>ca both, unstaggered and 

staggered modes exist. A nearly exclusive increase of the coupling constant cd was 

experimentally achieved by decreasing the spacing between the centre waveguide and its 

neighbours (spacing: 4µm compared with 5µm in the rest of the array). The corresponding 

parameters are cd/ca=1.4 and δβ /ca=-0.3 (see cross 3 in Fig. 8). An input beam centred on a 
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single waveguide always excites both modes. At the end facet of the array an interference 

pattern is observed depending on the actual phase difference between the two bound states. 

Since both modes have different propagation constants their phase relation changes on 

propagation. More important, already the initial phase difference depends on the point of 

excitation. If the exciting beam is shifted from the defect guide (n=0) towards its neighbour 

(n=±1) the phase difference between the staggered and unstaggered modes changes by π. 

Hence, by varying the waveguide of excitation we can switch between destructive and 

constructive interference in e.g. the defect guide at the output facet (compare Fig. 12).  

 

 

Fig. 12. Interference pattern of a staggered and an unstaggered defect mode 

for dominant change of the coupling constant (δβ/ca =-0.3 and cd/ca=1.4, cross 

3 in Fig. 8) of the defect at a propagation distance of 59,95mm. Dots: 

experiment, lines: theory, dashed line: position of the excitation. (b) Intensity 

distribution for an excitation of the defect waveguide. (a) and (c) Intensity 

distribution for an excitation of the left and right nearest neighbour waveguide 

of the defect. Insets: schematic diagrams of the modal amplitude of the 

unstaggered and staggered mode, the superposition of both modal fields 

produces the actual interference pattern. 

Because the phase of the staggered mode alternates whereas that of the unstaggered one 

remains flat a constructive interference of both modes on the defect site is accompanied by 

destructive interference in the neighbouring site and vice versa. Hence we either observe a 

maximum in guide n=0 or n=±1. Even if the initial excitation is asymmetric with respect to the 

defect guide we never observe an asymmetric guided field at the output. Hence, as predicted no 

asymmetric mode exists, although the defect is multimode. 

The analytical theory predicts that there are no bound states if the coupling constant of the 

defect waveguide is decreased (cd<ca - cross 4 in Fig. 8). This is somehow contra intuitive. 

Because the defect tends to be isolated due to the reduced coupling one would even expect 
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improved guiding properties. Again the simplified model of the local band around the defect 

helps to explain the effect (see Fig. 9 (d)). A decrease of the coupling constant results in a band 

shrinkage. Hence all states of the defect band are phase matched to those of the homogenous 

array. Light from the defect predominantly couples into Bloch modes of the middle of the 

band, which have a high transverse velocity. Hence, the excitation will leave a defect with 

reduced coupling very quickly as demonstrated in the experiment (see Fig. 13 (a) and (b)). In 

contrast to an excitation in the homogenous array, where parts of the field also propagate 

straight (see Fig. 13 (c) and (d)), the defect repels the light causing a dark region around it. 
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Fig. 13 Diffraction pattern for an excitation of a repulsive defect ((a) theory, 

(b) experiment) with reduced coupling (cd/ca =0.5, δβ/ca=0, cross 4 in Fig. 8 

and in a homogeneous array ((c) theory, (d) experiment). 

 

3.3.3 Bound states at the edges of waveguide arrays  

Besides the bound states at the induced defects, we often found localized states at the edges of 

the arrays. They appear when the outermost waveguide or its neighbour is excited. An example 

of a measured intensity distribution is given in Fig. 14. Clearly a localized state bound to 

mainly three waveguides exists. Moving the excitation between the two outermost guides we 

found the intensity distribution varying, which indicates the existence of more then one 

localized state. 
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Fig. 14 Measured intensity profile of a bound state at the right edge of a 

waveguide array.  

To understand the origin of these modes we again perform some analytics. We investigate the 

simple case that only the outermost waveguide and the coupling constant to its neighbour vary 

from the homogeneous array. The coupled mode equations for this problem are 

  

( )

0 0 1

0 1 0 2

0 1 1

0 : 0,

1: 0,

1: 0,

d

d a

n a n n

n i a c a
z

n i a c a c a
z

n i a c a a
z − +

∂⎛ ⎞= + β + δβ + =⎜ ⎟∂⎝ ⎠
∂⎛ ⎞= + β + + =⎜ ⎟∂⎝ ⎠
∂⎛ ⎞> + β + +⎜ ⎟∂⎝ ⎠

=

 (43) 

with n=0 being the index of the outermost waveguide. Analogous to section 3.3.1 we calculate 

bound states an(z)= Anexp(iβdz) with An=γAn-1 for n>1 with |γ|>1. We find that an unstaggered 

state exists if (cd/ca)2<1-δβ/ca. Additionally a staggered mode appears for  (cd/ca)2<-1-δβ/ca, 

which makes the defect multimode. Consequently, modes can exist already if only one 

waveguide is different from the homogeneous array, but no modes exist at the edge of a 

completely homogeneous array. From this result we can follow that in our case some variation 

of the waveguides close to the edges of the array must exist. If a localized state exists for one 

perturbed waveguide also for more than one perturbed guide localized states can exist.  

To find out what happen at the edges our arrays we examined them under a microscope. As 

expected the guides at the edges are strongly deformed (see Fig. 15), but the situation is much 

more complicated than assumed in our simple analytical model. 
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Fig. 15 Strongly deformed waveguides at the edges of the waveguide arrays. 

The spacing between the two or three outermost waveguides becomes effectively reduced as 

the waveguides are tilted towards each other. Additionally due to a strong deformation of the 

guides a large change of the propagation constant has to be expected. Even if for this complex 

structure no analytical description is possible, it is quite sure that the strong deformation causes 

the observed localized states.   

 

3.4. LiNbO2 optical switch 

In the previous section basic features of a single defect were investigated. The aim of this 

section is to evaluate possibilities for an application of defects for optical switching. To this 

end an electro-optical controllable defect in a waveguide array is theoretically investigated as 

an example. Therefore, a homogeneous waveguide array of titanium in-diffused waveguides in 

lithium niobate (Ti:LiNbO3) is assumed. A defect is electro-optically induced by electrodes on 

top of the array. For the following calculations an array consisting of 81 waveguides in a z-cut 

LiNbO3-substrate is considered. To take into account the influence of electrodes with an 

applied voltage onto the array, BPM-simulations are performed. The creation of a symmetric 

single defect as investigated in the last section is not possible in this configuration. To produce 

a change in the refractive index the electric field has to be oriented vertical to the surface, as 

only in this case the largest electro optic coefficient r33 is used. This leads to a structure where 

at minimum two waveguides are influenced by the electro-optic effect. Fig. 16 shows an 

example of the structures that are under investigation in this work. 

 

13μm10μm V

8μm

13μm10μm V

8μm

 

Fig. 16 Schematic representation of cross section of electro-optical controlled 

defect. 
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Two different possibilities for switching or signal processing are investigated. The first one is 

based on bound states or defect modes while the second one is based on the reflection of a 

tilted beam. However, the aim of this work is not to present a true device but to perform a 

proof of principle.  

 

3.4.1 Analytical investigations 

Before designing a device in this section more general analytical examinations are made, which 

give basic information about the investigated structure. The existence of bound states and the 

reflection and transmission coefficients are estimated by using a coupled mode theory. For the 

analytical calculations we assume only two waveguides to be perturbed by the field of the 

electrodes. Furthermore the coupling constant is assumed to be fixed, which is only an 

approximation. The perturbations for the two waveguides can be different, as it is the case for 

the structure shown in Fig. 16. Then the coupled mode equations read as 
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 (44) 

with the perturbations δβ0 and δβ1.  

 

A) Bound states 

For bound states the z-dependence of the amplitudes is described by 

  (45) ,di z
n na A e β=

with constant amplitudes An. To the left and right of the defect guide the amplitude has to 

decay exponentially, what can be described by the ansatz 

 1

1

1: ,
0 : ,

n n

n n

n A A
n A A

−

+

> = γ
< = γ

 (46) 

with |γ|<1. Inserting eqs.(45) and (46) into the coupled mode equations (44) we obtain 

 
2

0 0 0
2

1 1
2 2a a ac c c

1 1⎛ ⎞δβ + δβ δβ + δβ δβ δβ
= ± −⎜ ⎟γ ⎝ ⎠

1 + . (47) 
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From the condition |γ|<1 a relation between δβ0/ca and δβ1/ca can be calculated, which is 

visualized in Fig. 17. For all different areas of the 0 1/ ac / acδβ − δβ -plane an example of the 

solutions for the parameter marked by the crosses is depicted.  
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Fig. 17. Top: Regions of existence for different types of modes in the δβ0/ca- 

δβ1/ca-plane. Crosses mark parameter for examples. Bottom: Modes 

corresponding to parameters marked in the parameter plane. 

We distinguish between different modes by means of their symmetry properties. For points 4 

and 6 in the parameter plane the defect is symmetric, as the perturbations δβ0 and δβ1 have the 

same value. In this case we classify the modes as unstaggered (4a), staggered (6b), twisted 

unstaggered (4b) and twisted staggered (6a) [Darmanyan98]. If the defect itself is asymmetric, also 

the modes become asymmetric. However, we can still distinguish unstaggered asymmetric (1, 

3a and 5a) and staggered asymmetric modes (2,3b and 5b). Only in those areas of the 

parameter plane, where points 1 and 2 are located, the defect is single mode; otherwise always 

two modes exist. 
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B) Reflection and transmission 

The coefficients for the reflection and transmission of Bloch waves at the defect are calculated. 

For this purpose we make an ansatz  

 0

1

0 : ,
0 : ,
1: ,

1: ,

i n i n
n

i n
n

n a e e
n a
n a

n a e

κ − κ

κ

< = + ρ
=
=

> = τ

 (48) 

with ,i z
n na a e β=  τ being the transmission coefficient and ρ the reflection coefficient for the 

corresponding Bloch wave. β has to fulfil the dispersion relation β=β0+2cacosκ . Eq. (48) is 

inserted into the coupled mode equations (44). From the result, the transmission can be 

calculated as 
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and the reflection as 

 [ ]{ }2
0 1 1i ie e b b− κ κρ = − + τ − − k . (50) 

Fig. 18 shows the reflection in dependence of the transverse wave number κ of a defect for 

different values of the perturbations δβ0 and δβ1.  
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Fig. 18. Reflection coefficient of Bloch waves at a defect consisting of two 

perturbed waveguides. (a) Symmetric defect δβ1=δβ2=δβ with parameters 

δβ=0.5 (solid), 1.5 (dashed), 2 (dots), 3 (dash dot) and 4 (dash dot dot). (b) 

Asymmetric defect with δβ0=0.5 and δβ1=0.5 (solid), 1 (dashed), 2 (dots), 

3 (dash dot) and 4 (dash dot dot). 
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In Fig. 18 (a) symmetric defects δβ0=δβ1 are considered. For weak perturbation the reflection 

approaches zero for one specific value of κ. The value of this κ  becomes smaller for stronger 

perturbation until it vanishes for (β0+δβ0)/ca=2. Fig. 18 (b) displays the reflection for different 

asymmetric defects. Here mainly the minimum of the reflection changes, as it grows with an 

increasing perturbation.  

 

3.4.2 BPM-simulations 

Having made some simple analytical investigation in the last section, now examples for a 

device which makes use of the discussed effects are given. To model the propagation inside the 

array with a defect under realistic conditions numerical simulations (beam propagation method 

- BPM) are used. To derive the basic equation for a BPM we introduce two approximations 

into the wave equation (7), which are the scalar and the paraxial approximation. We assume an 

x-polarized electric field and propagation in z-direction. For small refractive index variations 

we can approximate the electric field as ( ) ( , , )exp( )u x y z i z≈ βxE r u  with a slowly varying 

amplitude u(x,y,z) and a fast oscillating phase term. Because u z∂ ∂ << β , second z-derivatives 

of u(x,y,z) can be neglected. Furthermore we neglect derivatives of the refractive index 

distribution, because ( , ) ( , )x y x∇ε << ε y . The dielectric function is expressed in terms of the 

refractive index ε(x,y)=n2+2nΔn(x,y), where the average refractive index n is defined by 

β=nω/c. Δn(x,y) includes deviations from the average refractive index n. Then we obtain the 

so-called scalar wave equation, which reads as 

2 2

2 22 2 ( , ) ( ,i n x y u x
z x y c

⎡ ⎤∂ ∂ ∂ ω
β + + + Δ β =⎢ ∂ ∂ ∂⎣ ⎦

, ) 0y z⎥ . (51) 

This simplified equation is the basis for the BPM simulations, where it is solved numerically 

[Roey81].  

The diffusion profile of the waveguides as well as the influence of the electrodes is included in 

the simulations. The investigated setup has a geometry as shown in Fig. 16 with one strongly 

and one weakly perturbed guide. The advantage of this structure is, that it is possible to create 

single mode defects. 

The parameters for the fabrication process are assumed for the BPM simulations as follows: 

thickness if Ti-layer 0.98μm, width of Ti-strips 7.0 μm, vertical diffusion depth 5.78 μm, 

horizontal diffusion depth 4.5 μm. All waveguide arrays were designed for a wavelength of 

1.55μm and transverse magnetic (TM) polarization. Furthermore, we used typical process 
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parameter, as they can be found in [Strake88, Crank75, Hocker77]. The calculation of the electric field 

of the electrodes is based on [Jin91]. Values for the electro-optic coefficients are taken from the 

literature [Karthe91].  

Two different excitations are investigated for the same array, the excitation of the defect guide 

itself and the excitation inside the homogeneous part of the arrays with a broad tilted beam. 

While in the first configuration the array can be used as an on-off-switch in the second 

configuration it can be used as a branch with a controllable ratio of the power in the two 

outputs. As for both investigations exactly the same technical parameters are used, in case of 

an experimental verification the same sample could be used for the investigation of the bound 

state and the reflection. For the single waveguide excitation light is coupled into the guide 

underneath one of the electrodes. If no voltage is applied the light diffracts (see Fig. 19 (a)) and 

only a small part remains in the excited guide. If a voltage is applied a defect guide is formed 

and the light establishes a bound state (see Fig. 19 (b)). 

 

Fig. 19 Simulation of propagation inside the waveguide array with a 

controllable defect. (a) Voltage 0V, discrete diffraction. (b) 30V, localized 

state. 

The transmission of the defect guide in dependence of the voltage is displayed in Fig. 20. 

Effectively an on-off switch is formed, with the output being the defect guide. 
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Fig. 20. Transmission of a switch based on a controllable defect in 

dependence of the applied voltage.  

For another investigation the excitation of several waveguides with a tilted broad beam is 

assumed. While the investigations of the first demonstrated system are focused on an on-off-

switch, this system acts as a controllable Y-branch, where the ratio of the two output beams can 

be changed by the applied voltage. 

 

Fig. 21 Propagation of a broad beam with a transverse wavanumber of π/2 and 

its reflection and transmission at a defect for (a) 0V, (b) 20V and (c) 30V. 

For this system the angle of the incident beam is chosen so, that the beam propagates at the 

angle that provides the lowest diffraction, which is the case if the phase difference between 

adjacent guides is π/2. In the investigated system the excitation is located 120μm away from 

the defect at an angle of 0.737°. While the beam propagates, it hits the defect and is partly 

reflected and transmitted (see Fig. 21). Thereby the strength of reflection can be controlled by 

the applied voltage. For complete reflection an even stronger defect would be necessary. The 

maximal voltage is limited by the breakdown voltage in air, which is already reached at 30V. 
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The results are resumed in Fig. 22 in form of a curve for the transmission and reflection in 

dependence of the voltage.  

 

 

Fig. 22. Transmission (solid line) and reflection (dashed line) of a broad beam 

at an electro-optically controllable defect in dependence of the applied 

voltage. 

Even if no complete reflection into the second output is possible, the system still provides the 

possibility to change the ratio between the intensity of the two outputs in a range between 20 

and 80% for both outputs. 

 

3.5. Interfaces in waveguide arrays 

In this section the propagation of light waves in waveguide arrays with an abrupt change of the 

parameters of the array is theoretically analyzed. In the following we will refer to these abrupt 

changes as interfaces. Analogue to the previous sections the analytical investigations are based 

on a coupled mode theory. Then an interface can be described by a change of the coupling 

constant and the effective index, as it is schematically depicted in Fig. 23. 

 

 

 

 

 

36



0 1 2 3-1-2-3

δβ

cl

δβ δβ δβ
cl cl cr cr cr

0 1 2 3-1-2-3

δβ

cl

δβ δβ δβ
cl cl cr cr cr

 

Fig. 23 Schematic representation of an interface in a waveguide array, which 

is induced by a change of the coupling constant and the effective index of the 

guides. 

The coupled mode equations for this problem read as 
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 (52) 

cl and cr are the coupling constants to the left and right of the interface. δβ is the change in the 

propagation constant for the waveguides of the right hand side of the array. 

 

3.5.1 Bound states at interfaces  

Analogue to the calculations on defect modes in section 3.3, we will now investigate if 

localized states can be found also at interfaces. If these modes exist, they must have the form 

 ii z
n na A e β=  (53) 

and decay exponentially to the right and left of the interface. Because the right and left part of 

the array have now different parameters, also the decay factors must be different for the right 

and left tail. We make the ansatz 
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where  

 1 and 1lγ rγ< <  (55) 

must hold. Inserting eq. (54) into the coupled mode equations (52) we obtain for the 

propagation constant of the interface mode  
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γl and γr can be calculated in dependence on the parameters of the array as 
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To determine, if localized states at interfaces exist, we have to find out if these equations can 

be fulfilled simultaneously with the condition (55). Indeed this is the case for 
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We draw the solution of this condition for the normalized parameters cr/cl and δβ/cl (see Fig. 

24). Modes can exist for cr/cl<1 only and the interface is always single mode. Depending on 

the sign of δβ the bound state can be either staggered or unstaggered. 

δβ/cl

cr/cl

Unstaggered
modes

Staggered
modes

No localized states

No 
localized
states

δβ/cl

cr/cl

Unstaggered
modes

Staggered
modes

No localized states

No 
localized
states

 

Fig. 24 Areas of existence for staggered or unstaggered localized states at 

interfaces.  

As one expects the propagation constant of the unstaggered and staggered mode lie above and 

below the bands of the two parts of the array, respectively. Fig. 25 shows examples for an 

unstaggered and a staggered mode. 
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(a) (b)(a) (b)

 

Fig. 25 Fields of the modes for an interface with parameters (a) δβ/cl=1.5 and 

cr/cl=0.4 for the unstaggered mode and (b) δβ/cl=-1.5 and cr/cl=0.4 for the 

staggered mode. 

The tails of the modes adopt the form of the Bloch modes, which lie closest towards them 

concerning their propagation constant. This determines the shape of the bound state, which has 

to be unstaggered, if it lies above the bands and staggered below. One would expect that the 

upper (lower) edges of the bands of both parts of the array have to lie close together in order to 

allow an unstaggered (staggered) mode to form. The upper (lower) edge of both bands match 

exactly along the straight line cr/cl=1−δβ/cl (cr/cl=1+δβ/cl) and indeed, the existence area of the 

modes for positive (negative) δβ is located around this line. However, for large absolute values 

of  δβ the existence area extends far away from these lines.  

While this picture gives an idea where to search for bound stated, it does not explain why they 

exist. To find the reason, we again use the simple picture of different bands belonging to the 

different parts of the array. For the left and right part we can determine the extension of the 

bands as β0−2cl≤β≤ β0+2cl and β0+δβ−2cr≤β≤ β0+δβ+2cr, respectively. For the waveguide n=0 

the coupling constants to the right and left neighbour have different values. If we imagine a 

complete array constructed of such guides, we obtain a double-periodic array with a band 

which extends between β0+δβ−cr−cl and β0+δβ+cr+cl. As an approximation to our system we 

assign this band to the guide n=0. To obtain bound states this band has to include propagation 

constants β, which lie outside the bands of the homogeneous parts of the array. In the following 

we examine the case δβ>0, which leads to and unstaggered mode. Compared to the band for 

n<0 the bands for n=0 and n>0 are shifted upwards by δβ. Furthermore they shrink or expand 

depending on the value of  cr in comparison to cl. Fig. 26 shows the bands of the three different 

regions of the array for one example with  δβ=cl and cr=0.5cl.  
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Fig. 26 Illustration of the origin of interface modes. Bands of the three 

different parts of the array depicted for δβ=cl and cr=0.5cl. The dashed line 

marks the propagation constant βi of the interface mode.  

In this case a localized state can exist, because the band of the interface guide extends to higher 

values of β than the bands for the two other parts. The propagation constant of the bound state 

βi has to be located in this region. From this simple picture follows immediately, that bound 

states can occur only for cl>cr. The discussion of the existence of staggered modes follows 

analogous for δβ<0.  

However, while this simple approximation allows estimating the existence of bound states in 

an intuitive way, it cannot provide quantitative information about the existence area of the 

interface modes. In particular it fails to explain the upper limit for the existence of bound 

states.  

 

3.5.2 Reflection and transmission at interfaces 

In this section the reflection and transmission coefficients for Bloch waves at interfaces are 

calculated analytically. To this end we make the ansatz 
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with the reflection coefficient ρ and the transmission coefficient τ. The propagation constant β 

has to be conserved when the Bloch wave passes the interface. However, the effective 

propagation direction and thus the Bloch vector changes from κl to κr. Furthermore in both 

parts of the array the dispersion relation must be fulfilled 
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From this equations the Bloch vector of the transmitted Bloch wave can be calculated as 

function of the Bloch vector of the incoming wave 

 2 cos( )arccos
2

l l
r

r

c
c

⎛ ⎞κ − δβ
κ = ⎜

⎝ ⎠
⎟ . (61) 

This new Bloch vector becomes complex valued if the argument of the arccos-function is 

outside the interval [-1;1]. This is the case, if the propagation constant of the incoming wave is 

not included in the band of the right part of the array. Then no Bloch wave with a propagation 

constant matched to the incoming wave exists behind the interface and the incoming wave is 

total reflected. The appearance of total reflection can be illustrated with help of the band 

structure. We depict the bands to the left and right of the interface analogue to section 3.3.1. As 

only waves with a positive value of the Bloch vector reach the interface, we depict the bands in 

the interval [0;π]. Two examples are shown in Fig. 27. In Fig. 27 (a) the band is shifted up 

behind the interface because a positive value for δβ is assumed. In this case, no propagation 

constant exists inside the right part of the array for Bloch waves from the bottom of the band of 

the left part. Therefore, such a wave would be completely reflected. An analogous situation 

occurs for a shrinking of the band due to a decrease of the coupling constant (see Fig. 27 (b)), 

where total reflection appears if the incoming wave travels at the top or bottom of the 

respective band. 

 

 

Fig. 27 Bands to the left and right of an interface for (a) cl=cr and δβ>0, (b) 

δβ=0 and cr<cl. 

To calculate the reflection coefficient, ansatz (59) is inserted into the coupled mode equations 

(52) and we obtain 
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where β has to fulfil (60). From the reflection coefficient we determine the transmission 

coefficient  

 ( ) 2 2l l l l lr i i i i i iil

r l

c e e e e e e
c c

− κ κ − κ κ − κ κ− κ ⎧ ⎫⎡ ⎤δβ⎪ ⎪⎡ ⎤τ = β − β + ρ − − ρ − − ρ⎨ ⎬⎢ ⎥ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭
le . (63) 

To analyze the results we calculate the coefficients for different parameters and depict the 

results for examples. Therefore we use parameters, which are normalized to cl. This is useful as 

ρ and τ depend only on cr/cl and δβ/cl and not on the absolute values of cr and δβ. Both, 

reflection and transmission coefficient are complex numbers. The incoming Bloch wave is split 

up into a reflected and transmitted part, which can experience a phase shift with respect to the 

incoming wave. Two examples for the coefficients in dependence of the Bloch vector of the 

incoming wave are depicted in Fig. 28. Concerning the appearance of total reflection, the 

results are in agreement with the explanation given to Fig. 27. It might be astonishing that the 

transmitted wave does not vanish in this case. However, this becomes clear keeping in mind 

that the transmitted wave can either be a Bloch wave or decay exponentially in case of an 

imaginary κr. As both cases are included, the transmission coefficient τ does not vanish even 

for total reflection |ρ|=1.  

(a) (b)(a) (b)

 

Fig. 28 Absolute value (solid) and argument (dashed) of the reflection (red) 

and transmission (blue) coefficients for (a) δβ=0.5cl and cr=cl. and (b) δβ=0 

and cr=0.5cl. 

To derive a quantity that represents the energy conservation, we examine the energy flow 

inside the array. To this end we start from a homogeneous array. The evolution of the energy 

inside a single guide is determined by the energy exchange between the respective guide and 

its neighbours 

 ( ) (2 * *
1 1 1 1n a n n n n n nA ic A A A A A A

z + − + − )*∂ ⎡= + − +⎣∂
⎤⎦ , (64) 
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with an=Anexp(iβz). The energy inside a cluster of guides extending from –N to N is given by 

 2
N

n
n N

Q A
=−

= ∑ . (65) 

Energy can escape the cluster only via the two outermost waveguides. This is reflected in the 

corresponding equation 

 * * *
1 1 1a N N N N N N N NQ ic A A A A A A A A

z − − − − − − + +
∂ ⎡= − + −⎣∂

*
1⎤⎦ , (66) 

where only the amplitudes of the outermost guides and their neighbours outside the cluster 

contribute. 

To determine the energy flow we assume a cluster including all guides from n=-∞ to n=-1. The 

energy change in this cluster, which corresponds to the left part of the array, is given by 

 * *
0 1 0 1 0 12 Iml a aQ ic A A A A c A A

z
∂ *⎡ ⎤ ⎡= − = ⎤⎣ ⎦ ⎣∂ ⎦ . (67) 

Assuming a plane wave An=A·exp(iκn), this equation becomes 

 
22 sin( ) if is real.

0 if is imaginary.
a

l
c AQ

z
⎧− κ κ∂ ⎪= ⎨∂ κ⎪⎩

 (68) 

As expected no energy flow exists for evanescent waves (κ imaginary). To find a quantity, that 

represents the conservation of the energy, we analyse the energy flow of the incoming, 

transmitted and reflected waves. Assuming that the energy, transported by the reflected and 

transmitted wave, equals the energy of the incoming wave, the coefficients have to fulfil 

 2 2sin( ) sin( ) sin( )l l l l rc c cκ = ρ κ + τ κ r . (69) 

With eq. (61) we can derive from this equation  

 
22

2
2

11 cos( )
sin( ) 2

r
l

l l l

c
c c

⎛ ⎞δβ
= ρ + − κ − τ⎜κ ⎝ ⎠

2
⎟ , (70) 

which represents the conservation of the energy inside the array. We introduce reflection and 

transmission coefficients for the energy  

 
22

2 2
2

1and cos( )
sin( ) 2

r
l

l l l

cR T
c c

⎛ ⎞δβ
= ρ = − κ −⎜κ ⎝ ⎠

τ⎟  (71) 

and depict them in Fig. 29. 
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(a) (b)(a) (b)

 

Fig. 29 Reflection R (red) and transmission T (blue) of energy at an interface 

inside a waveguide array for (a) δβ=0.5cl and cr=cl and (b) δβ=0 and cr=0.5cl. 

As expected, the transmission T grows with decreasing reflection R and vice versa. Their sum 

is constant, which reflects the conservation of the energy.  

Next we investigate the propagation direction of the transmitted wave in dependence of the 

propagation direction of the incident wave.  For each light wave the propagation direction is 

related to the first derivative of the band and thus to the normal on the band. Keeping in mind 

that the propagation constant β is conserved at the interface, one can examine the refraction 

properties comparing the bands of the left and right part of the array (see Fig. 30). This can 

lead to astonishing properties as illustrated in two examples in Fig. 31.  

 

 

Fig. 31 Bands to the left and right of an interface for (a) cl>cr and δβ>0, (b) 

δβ=0 and cr>cl. Arrows of the same colour illustrate the propagation 

directions of incident and corresponding transmitted beam. 

In case of an array with a band structure as depicted in Fig. 31 (a), an increase of the angle of 

incidence first leads to an increase of the angle of the transmitted Bloch wave. If the angle of 

incidence exceeds some value, where the corresponding transmitted wave is located at the 
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inflection point of the band (red arrows), then the angle of the transmitted beam decreases with 

increasing angle of incidence and can become even zero. However, as the band is shallow, the 

absolute angles of the transmitted beam are always small. For an interface as depicted in Fig. 

31 (b), the angle of incidence can be varied in a wide range while the angle of the transmitted 

beam keeps almost constant. 

 

Concluding, various investigations of inhomogeneities in waveguide arrays are performed in 

this chapter. In section 3.3 the range of existence of localized defect states in a waveguide array 

is analytically determined and experimentally verified. Both, an increase of the coupling 

constant as well as the variation of the effective index of the defect guide give rise to the 

formation of localized states. Staggered modes, which are not known from conventional 

materials, are found. Furthermore it turns out that symmetric defects in waveguide arrays 

cannot support antisymmetric modes. At the edges of the arrays strong deformation of the 

waveguides leads to the existence of bound states.  

Furthermore, in section 3.4 theoretical investigations on an optical switched based on an 

electro-optical controllable defect is presented. It is demonstrated that this switch can be used 

either as an on-off-switch or as a controllable Y-branch. 

In the last part of this chapter the propagation of waves in arrays with interfaces is analyzed. In 

contrast to bulk media, bound states can exist at interfaces in waveguide arrays. Further on, the 

reflection and transmission coefficients for interfaces are derived. 
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4. Photonic Zener tunnelling in planar waveguide 
arrays 

 

 

 

 

In this chapter the field evolution in waveguide arrays with a transversely superimposed linear 

refractive index distribution is investigated with the aim to experimentally visualize Zener 

tunnelling. In the first section, an analytical model to describe Bloch oscillations and Zener 

tunnelling is derived analogue to the quantum mechanical model presented in [Zener34, Holthaus00]. 

From this model the trajectory of the Bloch oscillations and the tunnelling rate into the second 

band follow. As the derived model is only an approximation of the real system it is useful to 

understand the physics, but cannot provide exact quantitative information or describe precisely 

the field evolution inside the waveguide array. Thus some numerical calculations are presented 

to obtain more detailed information before discussing the experimental demonstration. 

Additionally the simulations give the opportunity to pre-estimate the parameters for the 

fabrication of samples.  

In the second part of this chapter an experimental setup for the detection of light inside a planar 

array is introduced. Measurements of photonic Bloch oscillations accompanied by Zener 

tunnelling are presented and discussed in comparison with theory.  

 

4.1. Theory 

The aim of this section is to derive a simple analytical model to describe the effects of Bloch 

oscillations and Zener tunnelling. To this end we start from the wave equation (6). We restrict 
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our investigations to small refractive index variations. Then derivatives of the dielectric 

function can be neglected. Furthermore we assume an x-polarized electric field and 

propagation in z-direction. Then the field can be written as 0( ) ( , , )exp( )xE x y z i z≈ βxE r e  with 

a slowly varying amplitude Ex(x,y,z) and a fast oscillating exponential term. We define the 

propagation constant β0 as 0 / cβ = ε ⋅ω  with ε  being an average value of the dielectric 

function, e.g. the average of waveguide and cladding index. As 0xE z∂ ∂ << β  holds, second 

z-derivatives of Ex(x,y,z) can be neglected and we obtain a scalar paraxial equation for the x-

polarized field  

 ( )
2 2

2 2 2
0 0 0 02 22 , ( , , ) ( , )

⎡ ⎤∂ ∂ ∂
+ + + − = −⎢ ⎥∂ ∂ ∂⎣ ⎦

xi k x y E x y z
z x y

β ε β μ ω pP x y , (72) 

with k0=ω/c. The influence of a superimposed linear potential is included by a polarisation 

Pp(x,y). ( , )x yε  is the dielectric function, which describes the index distribution of the 

homogeneous array.  

In order to derive an analytical model for Bloch oscillations and Zener tunnelling we simplify 

equation (72). Therefore we reduce our system to a 1D-problem (Bragg system), as 

schematically depicted in Fig. 32.  

 

 

Fig. 32 Scheme for reduction of a 2D waveguide array to a Bragg system. 

For a weak modulation in x-direction, we can introduce an effective-index model. In the 

following we distinguish two different regions, which correspond to an x-position in an area 

without or with a waveguide ridge. We denote these regions as areas 1 (shaded in Fig. 32) and 

2 (white in Fig. 32). If the height of the waveguide ridges is much smaller than their width, we 

can approximate the shape of the field in y-direction for each area by the modes of the 

corresponding homogeneous systems consisting of three different layers. Then we can 

introduce a separation ansatz for the field 

 ( , , ) ( , ) ( , )xE x y z x y x z= Φ Ψ . (73) 
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Ψ(x,z) contains the evolution during propagation and Φ(x,y) the y-dependence of the field in 

dependence on the transverses position x. It contains x as a parameter which distinguishes only 

between positions inside the areas 1 and 2. As we assume Φ(x,y) to be constant inside each 

area, it can be approximated by the equation for a planar waveguide in both cases 

 
2

2 2
02 ( , ) ( ) ( , ) 0

⎡ ⎤∂
+ − Φ⎢ ⎥∂⎣ ⎦

effk x y x x y
y

ε β = , (74) 

with βeff(x)=2πneff(x)/λ. Here neff(x) is equal to neff,1 or neff,2 depending of the actual x-position 

and we obtain a Bragg system of alternating layers with the effective refractive indices neff,1 

and neff,2 (see Fig. 32).  

We insert eqs. (73) and (74) into eq. (72) and multiply the result by )y,x(Φ . Next we integrate 

over y and obtain  
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+∞

−∞
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−∞

Φ
∂ ∂

+ + − Ψ = −
∂ ∂

Φ

∫

∫

p

eff

x y P x y dy
i x x z

z x
x y dy

β β β μ ω , (75) 

describing the evolution of Ψ(x,z) during propagation. If we accomplish the integrations over y, 

this equation becomes independent of y. To calculate this number, the mode profile Φ(x,y) and 

the polarisation Pp(x,y) have to be known. Pp(x,y) is the superimposed linear gradient which is 

induced thermo-optically by heating and cooling the opposite sides of the array. The resulting 

temperature gradient is converted into a refractive index gradient via the thermo-optic effect 

inside the polymer material. In a stationary regime of the temperature gradient, the polarisation 

is given by 

 ( )0( , ) ( , ) ( , ) with , ( ) ∂
= ≈ Θ

∂p xP x y x y E x y x y y x
T
χε χ χ τ . (76) 

Here T is the temperature and τ the transverse thermal gradient /T xτ = ∂ ∂ , which is assumed 

to be constant inside the array. Θ(y) is a step like function, because the thermo-optic coefficient 

is zero for the substrate but constant inside the waveguides and cladding. However, as the 

refractive index of the substrate is much lower than the index of the waveguide and cladding 

material, the overlap of the fields with the substrate material is rather small. Then the influence 

of Θ(y) is negligible ( , ) ( )χ ≈ χx y x  and eq. (75) can be simplified to 

 
2

2 2 2
0 0 0 02[2 ( ) ] ( , ) ( ) ( , )∂ ∂

+ + − Ψ = − Ψ
∂ ∂ effi x x z x
z x

β β β ω μ ε χ x z . (77) 
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Otherwise the integration over y has to be performed. We proceed with the simplified equation 

(77). In case of a constant refractive index gradient we can write 

 
2 22

0
2

0 0

( )1[
2 2

−∂ ∂
+ + − Ψ

∂ ∂
eff x

i
z x

β β
α

β β
] ( , ) 0=x x z , (78) 

with the gradient  

 2π
α = − τ

λ thn . (79) 

nth denotes the thermo-optic coefficient of the polymer, n  the average refractive index of 

waveguide and cladding material and λ the vacuum wavelength. Equation (78) is the basis for 

the following investigations of Bloch oscillation and Zener tunnelling. It is the optical 

analogon to the quantum mechanical Schrödinger equation of a particle inside a periodic 

potential with a superimposed linear potential 

 ( )
2 2

2 ( ) , 0
2

⎡ ⎤∂ ∂
+ − − Ψ⎢ ∂ ∂⎣ ⎦

peri V x Fx x
t m x

=⎥ t . (80) 

Comparing both equations we find the evolution in time replaced by an evolution in 

propagation direction. The periodic potential in the quantum-mechanical system corresponds to 

the periodic refractive index modulation in optics. Analogous the liner potential is equivalent 

to a liner refractive index change. This similarity between the quantum-mechanical system and 

the optical waveguide array enables to find many effects from quantum mechanics to occur as 

well in periodical optical systems. 

Before analysing the influence of the linear gradient, the unperturbed system α=0 is examined. 

Solutions of the unperturbed problem are Bloch waves (cp. section 2.2) of the form 

 ( ) ( ) ( )
, ,, e +Ψ = nikx i k z

n k n kx z u x β , (81) 

with n being the band index and k the transverse wave number (Bloch vector). Inserting the 

solution (81) into eq. (78) we obtain a z-independent Schrödinger equation 

 
2 22

0
,2

0 0

( )1 ( ) ( ) ( )
2 2

⎡ ⎤β − β∂
+ Ψ = β Ψ⎢ ⎥

β ∂ β⎢ ⎥⎣ ⎦

eff
n k n n k

x
,x k

x
x , (82) 

with the z-independent Bloch modes 

 , ,( ) ( ) ikx
n k n kx u x eΨ = . (83) 

All field distributions can be expanded into these Bloch modes 
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 ( ) ( )
/

, ,
/

a

n k n k
n a

x dk g x
π

π−

Ψ = Ψ∑ ∫ . (84) 

As both edges of the Brillouin zone are equivalent,  

  (85) , / , / , / , /( ) ( )n a n a n a n ag x gπ π −π −πΨ = Ψ x

holds for all Bloch modes. We will need this relation later. 

In order to describe the dynamics of a propagating wave packet we investigate a packet which 

initially (z=0) occupies only the first band so that gn,k=0 for n≠1 (even if the following 

derivation would be possible for a wave packet of a any band n). To simplify the equations we 

omit the band index in the following equations, keeping in mind that we examine the first 

band. In particular the wave packet gk should be smooth and well localized around some value 

kc within the first Brillouin zone. Thereby the characteristic width Δk of |gk|2 has to be small 

compared with the width of the Brillouin zone. Then |g(x)|2 extends over at least a few lattice 

periods in real space, with g(x) being the Fourier transform of gk. For a weak perturbation due 

to the gradient we assume the dynamics to be completely described by a z-dependent gk(z). The 

Bloch modes are assumed to remain unchanged. Then again the field distribution can be 

expanded into Bloch-modes (see eq. (84)), but this time with z-dependent coefficients gk(z). 

The evolution of ψ(x,z) is given by the Schrödinger equation (78). After integration over the 

whole first Brillouin zone we can write with (82)

 

[ ]( ) ( ) ( )

( ) ( ) .

π π

π π
− −

π π

π π
− −
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α ∂
= − β Ψ +

∂

∫ ∫

∫ ∫

a a

k k k k

a a

a a
ikx

k k k k

a a

i g z dk g z k x dk
z

g z k dk g u e dk
i k

 (86) 

After partial integration of the second term of the right hand side we obtain with (85)

 ( ) ( ) ( )

π π π

π π π
− − −

∂ α ⎡ ∂⎛ ⎞ ⎛ ⎞Ψ = − β Ψ + +⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫ ∫
a a a

ikx
k k k k k k k k

a a a

i g z dk g z k dk g u g u e d
z i k

∂ ⎤
∂

k
k

. (87) 

With the assumption of a wave packet that is well localized inside the Brillouin zone and weak 

k-dependence of uk (which is a common assumption) we can neglect the k-derivative of uk and 

for the integrands the following equation has to hold 

 ( )∂
= − β − α

∂ ∂k ki g g k i g
z k

∂
k . (88) 
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Multiplying this equation with gk
* and subtracting its conjugate complex we obtain the famous 

acceleration theorem: 

 ( ) ( )2
kg z g z

z k
∂ ∂

= −
∂ ∂

α
2

k . (89) 

It implies that a linear potential in a periodic system leads to a motion in Fourier space. The 

solution of this equation takes the form 

 ( ) (2
= −kg z G k z )α , (90) 

implying that the wave packet moves through k-space at a constant speed, while preserving its 

shape. This leads to a linearly growing value for the wave packet’s centre 

 0( )ck z k z= + α , (91) 

with k0 being the initial position inside the Brillouin zone, which is usually zero corresponding 

to an excitation with a flat phase. What does this connection between propagation distance z 

and transverse wave number k mean for the motion of the wave packet in real space? To find 

out we describe the field by the superposition of the corresponding Bloch modes  

 ( )( , )

π

+ β

π
−

Ψ = ∫
a

ikx i k z
k

a

x z u e dk . (92) 

We develop β(k) around the centre of the wave packet kc into a Taylor series, from which we 

take only the first two elements, insert them into eq. (92) and obtain  

 
( )( )[ ]

( )( , )

π
∂β

− +
∂ β +

π
−

Ψ = ⋅∫
c

kc c

ka i k k x z
k i k z ik x

k

a

x z u e dk e c . (93) 

We compare the field for z=0 with a field after a certain propagation distance z. Except for a 

phase, the field distribution at the position z is shifted by 
ck

z
k

∂β
∂

 in the transverse direction x. 

We call the velocity of the transverse motion during propagation the group velocity vg of the 

wave packet  

 
c

g
k

xv
z k

∂ ∂β
= = −

∂ ∂
. (94) 

The position of the wave packet at a propagation distance z can be calculated by integration to 

 ( ) ( )0
1 ,c 0x z k z= − β + α +
α

x  (95) 
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with an integration constant x0. According to this equation the wave packet moves in real space 

under the influence of a gradient α along a path of the shape of the corresponding band β. The 

amplitude and the period of this oscillatory motion are determined by the strength of the 

gradient α. These oscillations became known as Bloch oscillations, although they do not 

appear in Bloch’s ground-breaking paper on quantum-mechanics of electrons in crystal lattices 

[Bloch28], but seem to be first mentioned by Zener in 1934 [Zener34].  

The occurrence of photonic Bloch oscillations can be explained as well in terms of a coupled 

mode theory, as demonstrated in [Peschel98]. In this case only one cosine-shaped band is taken 

into account and the oscillations follow a cosine-shaped trajectory in real space, which agrees 

with the model derived here. 

The question Zener traced in 1934 was how the scenario is modified when interband transitions 

come into play. We are now going to follow his way [Zener34] to solve this problem, but in our 

case for light waves instead of electrons. When a wave packet is initially prepared in the 

fundamental band n=1, and then cycles through k-space according to the acceleration theorem 

(89), it experiences a periodically varying energy separation from the next (here second) band 

and comes closest to it each time it reaches the edge of the Brillouin zone (cp. band structure 

presented in Fig. 2). So the probability for a transition to the next band is highest there. During 

this transition the propagation constant β has to be conserved. Fig. 33 schematically depicts the 

tilt of the bands and gaps due to the gradient in dependence on the transverse coordinate x.  

 

 

Fig. 33 Schematic band gap diagram in the presence of a linear index 

gradient. The shaded areas represent zones of forbidden propagation constants 

(gaps). Light inside the first band tunnels into the second band between points 

B and C. 
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A wave packet starts at its excitation in point A and has to follow the horizontal line during 

propagation. Tunnelling into the second band appears between points B and C. Light inside the 

first band moves back to point A after reaching point B. The light wave reaches the bottom of 

the first band and thus comes closest to the second band once per Bloch cycle. At this point it 

is partially transmitted into the second band and we can estimate the transmission rate [Landau67]

 [ ]2 exp 2 Im ( )
⎛ ⎞

≈ −⎜
⎝ ⎠

∫
C

B

T dx k ⎟x , (96) 

provided that there is no back-feeding from the second band to the initial one. The transmission 

is determined by the imaginary part of k, which describes the attenuation of the evanescent 

field inside the gap. The weaker this attenuation is the more light leaks through the gap and the 

higher the tunnelling becomes. Now we are left with the task to calculate Im[k(x)] inside the 

gap. From a perturbation theory for a weak effective index modulation (see [Holthaus00, Kirejew74]) 

it can be shown that 

 ( ) [ ] ( )
( )

2

max 2Im Im 1
2
ck k

β − β
β ≈ −⎡ ⎤⎣ ⎦ Δβ

 (97) 

holds inside the gap. Here βc is the value of β in the centre of the gap, kmax the corresponding k-

value and Δβ the width of the gap. With the gradient α we can write β−βc ≈ αx. Then we can 

calculate the integral and obtain for the transmission 

 
( )maxIm k2 2T e

Δβπ
−

α≈ . (98) 

As expected, the tunnelling increases with increasing gradient and decreasing band gap. 

Therefore, to obtain a sufficiently strong coupling at a realistic gradient we have to choose a 

geometry with fairly small band gap.  

 

To estimate the transmission for a waveguide array, as it is used in this work for the 

experimental demonstration of Zener tunnelling, the values of Im(kmax) and Δβ have to be 

determined. The investigated array consists of 3 μm wide and 0.5 μm thick waveguide ribs 

placed on a 2.5 μm thick polymer layer of the refractive index nCo=1.5615@λ=488nm with a 

period of d=7μm. The substrate refractive index is ns=1.457@λ=488nm and the index of the 10 

μm thick cladding nCl=1.5595@λ=488nm. For this structure the effective indices of the 

corresponding Bragg system are calculated as neff,1=1.5604 and neff,2=1.5602. We calculate the 

band structure of the 1D-system using the transfer matrix method [Börner90]. For a Bragg system 
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of two alternating layers of the thicknesses d1 and d2 the equations for the fast propagation 

constant 0( ) ( )β = β + βk k  read as 
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kk d k d k d k d k n
k

kk d k d k d k d k n
k

− β

− β

 (99) 

The results are depicted in Fig. 34 by the red lines. To check the validity of our effective index 

model we additionally calculate the band structure for the 2D problem using the band solver 

MIT Photonic-Bands (black lines) and compare it with the band structure from the effective 

index approximation (red lines). We obtain excellent agreement between the waveguide bands 

for both methods. The full problem additionally provides the bands of the cladding modes, 

which are a discrete set of modes due to the finite thickness of the cladding.  

 

Fig. 34: Band structure for a waveguide array. The black curves show the 

results for the solution of the 2D problem while red curves show the bands 

calculated by the transfer matrix method for the corresponding Bragg system.  

We can also determine the value of ( )Im ⎡ ⎤β⎣ ⎦k  by the transfer matrix method. In Fig. 35 we 

compare a curve calculated by eq. (97) with the result of the transfer matrix method. We use 

the parameters Δβ=0.0011 μm-1, Im(kmax)=0.049 μm-1 and βc =20.0843 μm-1. Both results show 

good agreement. 
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Fig. 35 Comparison of Im(k) inside the gap calculated by the transfer matrix 

method (black line) and calculated by eq. (97) with parameters Δβ=0.0011 

μm-1, Im(kmax)=0.049 μm-1 and βc =20.08431 μm-1. 

To calculate the gradient α we use eq. (79) with the thermo-optic coefficient nth=-2*10-4K-1 for 

the used polymers. Τhe transverse temperature gradient τ is determined by the applied 

temperature difference ΔT divided through the width W of the sample. The transmission per 

Bloch oscillation is calculated with the given parameters and depicted in Fig. 36 in dependence 

of the applied temperature difference. 

 

Fig. 36 Transmission from first into second band due to Zener tunnelling in 

dependence of applied temperature difference. 

However, calculating the transmission, the approximate character of the derived model should 

not be forgotten. Its value is more the qualitative description of the physics of Bloch 
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oscillations and Zener tunnelling rather than giving exact numbers. To obtain quantitative 

information numerical simulations have to be used. 

 

In order to fabricate samples for experimental demonstration of Zener tunnelling we investigate 

how waveguide arrays have to be designed to provide appropriate tunnelling at moderate index 

gradients. As eq. (98) shows, the tunnelling rate is influenced by different parameters. For the 

design of samples in particular the possibility to choose the gap width by the geometry 

parameters is of importance.  

To obtain first estimations we compare band structures calculated for different Bragg systems 

by the transfer matrix method. Fig. 37 shows the dependence of the first band on the refractive 

indices n1 and n2 of the two different layers with thicknesses d1 and d2 (compare Fig. 32). In 

Fig. 37 (a) the influence of a change of the refractive index of the layer corresponding to the 

waveguides (or index difference between both layers) is illustrated. The value of n1 is increased 

by 2*10-4 between the dashed and solid lines and solid and dotted lines, respectively. The main 

influence of this variation is clearly a change in the gap width. Besides this, only a small 

deformation of the bands occurs. This dependence can be understood, having the origin of the 

band structure in mind. For a homogeneous medium the diffraction relation is a circle or a 

parabola in paraxial approximation. Going over from a homogeneous medium to a periodic 

structure this relation is folded back into the first Brillouin zone at k=±π/d. For a periodic 

structure a gap appears at these points. While the energy of the modes from the first band is 

concentrated in the high index areas, energy of the modes of the second band it is concentrated 

in the low index areas [Joannopoulos95]. Therefore the propagation constant from the bottom of the 

first band and the top of the second band must be different. The weaker the modulation or 

refractive index difference between the two alternating layers, the smaller is the difference 

between these modes and the smaller is the gap. This leads to a small gap for weak modulation 

and vice versa. 

In Fig. 37 (b) and (c) the influence of the width of the two layers is investigated. In this case 

especially the shapes of the bands depend strongly on the parameters while only small changes 

in the gap width are obtained. The variation of d2 in Fig. 37 (b) corresponds to a variation of a 

spacing of the respective waveguides. From a coupled mode theory it is known, that the width 

of a band is directly correlated to the coupling between adjacent guides. In other words we can 

influence the width of the bands via the spacing of the guides. The larger d2 the narrower the 

bands become.  
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The change in the bandwidth in Fig. 37 (c) can be understood in the same sense. For a narrower 

waveguide the field laps further out of the guides and thus the coupling increases, leading to a 

wider band. 

0.0 0.1 0.2 0.3 0.4 0.5

20.06

20.07

20.08

20.09

 

 

Pr
op

ag
at

io
n 

co
ns

ta
nt

 [1
/μ

m
]

Bloch vector [d/2π]
0.0 0.1 0.2 0.3 0.4 0.5

 

 

Bloch vector [d/2π]
0.0 0.1 0.2 0.3 0.4 0.5

 

 

Bloch vector [d/2π]

(a) (b) (c)

n1=1.5606
n1=1.5604
n1=1.5602

d2=5μm
d2=4μm
d2=3μm

d1=4μm
d1=3μm
d1=2μm

0.0 0.1 0.2 0.3 0.4 0.5

20.06

20.07

20.08

20.09

 

 

Pr
op

ag
at

io
n 

co
ns

ta
nt

 [1
/μ

m
]

Bloch vector [d/2π]
0.0 0.1 0.2 0.3 0.4 0.5

 

 

Bloch vector [d/2π]
0.0 0.1 0.2 0.3 0.4 0.5

 

 

Bloch vector [d/2π]

(a) (b) (c)

0.0 0.1 0.2 0.3 0.4 0.5

20.06

20.07

20.08

20.09

 

 

Pr
op

ag
at

io
n 

co
ns

ta
nt

 [1
/μ

m
]

Bloch vector [d/2π]
0.0 0.1 0.2 0.3 0.4 0.5

 

 

Bloch vector [d/2π]
0.0 0.1 0.2 0.3 0.4 0.5

 

 

Bloch vector [d/2π]

(a) (b) (c)

n1=1.5606
n1=1.5604
n1=1.5602

d2=5μm
d2=4μm
d2=3μm

d1=4μm
d1=3μm
d1=2μm

 

Fig. 37: Band structures of Bragg systems with refractive indices n1 and n2 of 

alternating Bragg layers of thickness d1 and d2. Unless stated otherwise inside 

the insets, the parameters are n1=1.5601, n2=1.5604, d1=3μm, d2=4μm. 

Keeping these results in mind, we design samples for the experimental demonstration of Zener 

tunnelling. In earlier observations of Bloch oscillations in polymer waveguide arrays [Pertsch99a] 

samples consisting of weakly coupled channel waveguides have been used. To describe 

propagation in these samples a coupled mode (tight binding) approximation was applied. 

Coupling to the second band was neglected because of a large gap. Therefore these structures 

were unsuitable for our experiments. In order to achieve strong tunnelling we have to decrease 

the gap width. Referring to the previous investigations on the 1D system, this can be achieved 

by a weaker periodic modulation. For our samples we reduce the gap width by a change of the 

geometry from channel to rib waveguides, with an underlying polymer layer as depicted in Fig. 

1. Then the index contrast is determined by the ratio between the height of the layer and of the 

ribs.  

To obtain a more precise picture of the field evolution inside the arrays BPM-simulations were 

performed. The simulated propagation of a broad light beam that excites several waveguides 

clearly shows Bloch oscillations and Zener tunnelling (see Fig. 38). While the earlier used tight 

binding model predicts a sinusoidal trajectory [Peschel98, Pertsch99a], we observe a kind of 

connected parabolas with rounded shapes in the low-index area and almost cusps on the high 

index side. As predicted by eq. (95), the trajectory resembles the shape of the first band.  
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Fig. 38: BPM simulation in comparison with corresponding bands of the 

structure. 

In Fig. 38 the first two bands are plotted on top of the results from a corresponding BPM 

simulation. The simulation was performed for an array with an 8 μm substrate with a refractive 

index of ns=1.457@λ=488nm. The indices of waveguide and cladding material were assumed 

to be nCo=1.5615@λ=488nm and nCl=1.5595@λ=488nm respectively. The waveguides 

consisted of 0.5μm high ribs on a 2.5μm thick polymer layer with a period of 7μm at a 

waveguide width of 3μm. Besides the perfect agreement between the trajectory of the Bloch 

oscillations and the first band, as well an agreement between the radiation and the second band 

of the structure is obvious.  

In principle, light tunnelled to the second band follows the band structure and may again 

perform Bloch oscillations. However, in this example the gaps between higher bands are much 

smaller than the first gap and light successively tunnels towards higher bands without having 

the chance to complete further oscillations.  

For a fixed gradient the tunnelling rate (transmission) can be varied by the geometry 

parameters and refractive index contrast between waveguide and cladding. An example is 

given in Fig. 39, where the propagation is depicted for three different ratios of the heights of 

the layer and the waveguide ribs. Except for these two parameters we used the same values as 

above. 

Obviously the tunnelling rate can be varied in a wide range. For relatively large waveguide ribs 

we obtain strong guiding, which leads to a large gap to the second band. As a consequence no 

tunnelling appears in the simulation (Fig. 39 (a)). If the periodic modulation is decreased, the 

gap becomes smaller. Accordingly the tunnelling grows, as demonstrated in Fig. 39 (b) and (c). 

A decrease of the modulation was achieved by a reduction of the height of the waveguide ribs 

and an increase of the underlying layer.  
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Fig. 39 Simulations of Bloch oscillations and Zener tunnelling inside 

waveguide arrays with different ratios of layer and rib heights. The sum of 

layer and rib height was 3 μm for all three simulations and the rib height 

varied form (a) 1 μm to (b) 0.5 μm and (c) 0.3 μm. 

 

4.2. Experiment and discussion 

To observe Zener tunnelling experimentally a new setup was developed. In earlier experiments 

on waveguide arrays [Pertsch99a, Pertsch02] the intensity distribution was detected at the output 

facet of the sample, which does not permit to obtain information about the evolution during the 

propagation itself. To overcome this limit we established a system, which enables to detect the 

propagating light from above the array (see Fig. 40).  

Using a cylindrical telescope and a microscope objective, a laser beam is coupled into the front 

facet of the array. The cylindrical telescope enables to create an elliptical spot of variable width 

in order to excite a predetermined number of waveguides. 
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Fig. 40 Experimental setup for visualization of the propagation inside a 

waveguide array. A top-view objective mounted on a controllable 

translational stage enables for scanning along the sample. Heating and cooling 

of the sides of the array is achieved by a special mount consisting of copper 

blocks.   

The array itself is mounted between two copper blocks, enabling to heat and cool the opposite 

sides of the array to create a refractive index gradient via the thermo-optic effect.  

The most intuitive way to obtain information about the evolution of the propagating light is the 

observation of the scattered light, which escapes the array at the surface of the cladding. To this 

end an imaging system consisting of a microscope objective and a CCD-camera is mounted 

vertically above the waveguide array. To be able to resolve single waveguides inside the array 

we chose a magnification of 10 for this system. This gives us an image of an area of the size of 

about 1×1mm. To obtain an image of the whole array, the imaging system is mounted on a 

translational stage, enabling to scan along the propagation direction. The single pictures for 

different positions are then composed to a single picture showing the whole array.  

First tests of this system were made imaging the propagation in homogeneous arrays or arrays 

with a defect guide as used in section 3.3.2. However, the results were not of the expected 

quality as speckle pattern limit the resolution (Fig. 41 (a)).  
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Fig. 41. Examples for direct measurements of propagation. Pictures show 

single shots of a CCD-camera mounted above the sample. a) Measurement of 

scattered light of a defect mode shows speckle pattern. b) Measurement of 

fluorescence of a defect mode with much higher resolution than achieved in 

a). c) Discrete diffraction measured detecting the fluorescence.  

To avoid this problem we record the intrinsic fluorescence of the polymer instead of the 

scattered light. To excite the fluorescence efficiently, we choose a wavelength of 488nm for 

our laser beam. The fluorescence of the polymer appears in a wide spectral range of  500- 

650nm. Fig. 42 shows the measured spectrum of light detected above the cladding of the array.  

 

Fig. 42 Spectrum of light detected above the sample. The strong peak around 

488nm corresponds to the excitation.   

Wavelengths below 530nm are blocked by an edge filter inside the imaging system in order to 

filter out the excitation wavelength. Relying on this technique the image quality is considerably 

improved by eliminating the deteriorating speckle pattern. Fig. 41 (a) and (b) show 
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measurements of the propagation along a defect guide. In Fig. 41 (a) we detected the scattered 

light and in Fig. 41 (b) the fluorescence. Clearly the resolution is improved by measuring the 

fluorescence. The diffraction pattern shown in Fig. 41 (c) demonstrates that in this technique 

single waveguides can be resolved.  

A disadvantage of this technique is the strong time dependence of the strength of the 

fluorescence. During the measurements the fluorescence decays quickly. It is brightest during 

the first few seconds after which a regime with a slow decay is reached, where measurements 

can be performed for a couple of minutes. The decay takes place only in regions of the array, 

where relatively high intensities were obtained before. Thus already after the first measurement 

the fluorescence becomes inhomogeneous. This usually prohibits further measurements at the 

same sample.  

Since in Fig. 41 only short sections of the propagation were detected, we performed another 

test to check whether it is possible to observe the evolution for a longer propagation distance. 

To this end we scanned along a waveguide array and measured the diffraction pattern, which 

appears at the excitation of a single waveguide. Fig. 43 displays the measurement of discrete 

diffraction inside the array over a propagation distance of 15mm. To obtain the measurement 

16 images where composed to a single picture.   

 

 

Fig. 43 Discrete diffraction inside a homogeneous waveguide array measured 

by scanning along the propagation direction and detecting the fluorescence 

above the array.  

For the observation of photonic Zener tunnelling waveguide arrays with a length of 7cm were 

fabricated by UV lithography from an inorganic-organic polymer (nCo=1.5615@ λ=488nm) on 

4'' Si-wafers covered with SiO2 (nS=1.457 @ λ=488nm) with a polymer cladding (nCl=1.5595 

@ λ=488nm). Every array consists of 150 ridge waveguides being 2.5 to 3.0µm wide and 
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arranged with a period of d=5.5 to 7µm (see Fig. 1). For a clear observation of photonic Zener 

tunnelling ridge waveguides of 0.5 and 1μm height on a 2.5μm-thick waveguiding layer were 

used. 

When applying a temperature drop ΔT between the opposite sides of the array, the thermo-

optic effect causes a linearly varying refractive index across the sample. The thermo-optic 

coefficient of the polymer is nth=-2*10-4K-1. Consequently, the wave number grows linearly in 

transverse direction with an inclination of α=-2πnthΔT/(W λ) (cp. eq. (79)), where W=1mm is 

the width of the array and λ=488nm the wavelength of the argon ion laser used in the 

experiment.  

In the following the results of our measurements are discussed in comparison with simulations.  

To measure Bloch oscillations and Zener tunnelling a 25µm wide elliptical input beam is used 

to illuminate approximately five waveguides. Thus, only a narrow angular spectrum is excited. 

In addition, the height of the input beam is adjusted to 3µm in order to excite mainly modes of 

the lowest order band. The resulting light propagation in the array with a transverse wave 

number gradient of α=6.2*10-5µm-2 is monitored (see Fig. 44 (a)).  

 

 

Fig. 44 Bloch oscillations and Zener tunnelling in a waveguide array when 

several waveguides were excited by a 25 µm wide elliptical beam. (a) 

Experiment, (b) corresponding BPM-simulation. (temperature difference 

ΔT=24 K). 
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The gradient α is determined from the Bloch oscillations period. From eqs. (79) and (95) it can 

be easily derived that α=2π/(LB*d), where LB BB is the period of the Bloch oscillations. From the 

measurements we obtain LB=14.4mm. With the thermo-optic coefficient being nB th=-2*10 K  

the temperature difference between the sides of the array is calculated as 24K. With an applied 

temperature difference of 58K we find that about 58% of the temperature difference drops off 

at the contacts between the probe and the copper blocks while only 42% contribute to the index 

gradient. The simulation corresponding to  (a) is depicted in  (b). For both, 

simulation and experiment we used arrays of 3 µm wide waveguides periodically arranged with 

a period of 7 µm.  

-4 -1

Fig. 44 Fig. 44

Both, measurement and simulation show that the light performs Bloch oscillations. The 

trajectory of the oscillations clearly resembles the shape of the first band, as predicted by eq. 

(95). At the high index side a sharp change in the transverse velocity appears analogue to the 

shape of the first band at the edge of the Brillouin zone. In contrast to this sharp transition on 

the low index side the beams trajectory has a parabolic shape, as expected for the acceleration 

inside a liner potential. It can be recognized from Fig. 44 that light escapes from Bloch 

oscillations at the high index turning points corresponding to the edge of the Brillouin zone. At 

these edges the band gap attains its minimum and the tunnelling rate its maximum. 

Besides the good qualitative agreement between simulation and measurement also some 

differences are visible. The experiments show a higher tunnelling rate than the simulations. 

Moreover a decay of the intensity in propagation direction appears in the measurements. 

Several reasons might contribute to these effects. One is the nonlinear dependence of the 

fluorescence on the intensity inside the array. Another reason might be a weaker periodic 

modulation of the samples than assumed for the simulations. As a result of the lithography 

process the shape of the waveguides can deviate from the ideal rectangular cross section, which 

leads to a decrease of the modulation. The decay in propagation direction is caused by a weak 

absorption, which is the origin of the fluorescence. This absorption was neglected in 

simulations. 

To clearly identify Zener tunneling as the source of the bursts of radiation we varied the index 

gradient α by changing the temperature difference ΔT. For different measurements and values 

of ΔT we extracted cross sections along the z-direction from the measurements. We chose these 

x-positions so, that the tunnelled light just left the first band. The result is shown in Fig. 45 

together with one example of the obtained cross sections. The acceleration theorem (89) 

predicts the period of Bloch oscillations to be proportional to the inverse of the gradient (see 

eq. (95)). The particular propagation distances, for which outbursts of radiation were detected, 
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followed the same rule - a 1/ΔT dependence. Hence, the observed radiation was strictly 

correlated with the Bloch oscillations as expected from Zener tunneling. 
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Fig. 45 Position of the radiation due to Zener tunnelling in dependence of the 

applied temperature difference ΔT. In correspondence to the Bloch oscillation 

period, a 1/ΔT dependence is observed. 

Up to now we have focused on experimental conditions, where photons behave very similar to 

electrons. To complete the picture another experiment has been carried out, which can be 

hardly performed in solid-state physics (e.g. semiconductor superlattices). Rather than exciting 

a few waveguides (narrow Bloch vector spectrum) light was only fed into a single waveguide 

of the array. In the spectral domain this corresponds to an excitation that extends over the 

entire Brillouin zone, usually not achievable in semiconductor superlattices. The samples used 

in this experiment have a period of 6µm, while the other parameters remain the same as before. 

While for broad excitations Bloch oscillations are observed as a transverse motion of the centre 

of the light beam, this centre is now at rest but the field distribution breathes (see Fig. 46).  
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Fig. 46 Bloch oscillations and Zener tunnelling in a waveguide array when the 

entire Brillouin zone spectrum is excited by shining light in a single 

waveguide. (a) Experiment, (b) corresponding numerical simulation 

(temperature difference ΔT=35 K). 

The reason for this is that now Bloch waves with all Bloch vectors k are excited. For each 

Bloch wave the acceleration theorem (89) holds and consequently the superposition of any 

number of Bloch waves has to evolve periodically under the influence of a linear transverse 

force. In this respect it is no surprise that Zener tunnelling appears too, but with a different 

pattern than for a wide beam excitation. Because the entire Brillouin zone is excited and some 

part of the spectral distribution is always located at the band edge, tunnelling appears upon the 

whole Bloch oscillations period. However, at the points, where the initial field distribution 

recovers and light focuses to the initial waveguide, tunnelling is particularly pronounced. If 

light is concentrated in a single waveguide all radiation escaping due to Zener tunneling is in 

phase and must follow the same path. Due to constructive interference a well-defined trace of 

fluorescence can be observed to cross the sample. In contrast radiation emanating between the 

points of refocusing is distributed over many guides and no coherent enhancement occurs. 

The effects discussed so far are in perfect agreement with theory. However, we also obtained 

measurements which deviate remarkably from the simulations we did so far. Radiation appears 

where it is not expected and cannot be explained by coupling between first and second band. 

Fig. 47 shows the propagation inside an array with a period of 5.5µm and otherwise the same 

parameters as above (cp. parameter of measurements shown in Fig. 44 and Fig. 46).  
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Fig. 47 Experimental observation of a cascade of Bloch oscillations and Zener 

tunnelling between different bands for an excitation with a broad, more 

circular beam (as in Fig. 44) and for strong coupling to modes propagating 

mainly in the cladding (temperature difference ΔT=24 K). 

Besides the Bloch oscillations and the tunnelling into the second band clearly additional 

radiation can be observed. We distinguish two different kinds of radiation, which are marked as 

(a) and (b). In the following the origin of these effects is discussed. 

We start with the discussion of the radiation marked as (a) in Fig. 47, which seems to escape 

from the second band. To find its origin, we again examine the band structure (Fig. 34). 

Thereby we take into account the discrete set of cladding modes obtained from the solution of 

the 2D eigenvalue problem instead of the usually assumed continuum. We know that light 

tunnels from the first to the second band at the edge of the Brillouin zone. After this point light 

inside the first band moves further through Fourier space, but also the light in the second band 

moves with the same transverse velocity. To see what happens during further propagation, we 

illustrate the path of the light inside the band structure. Tunnelling from the first into the 

second band is marked as a dashed line at the edge of the first Brillouin zone k=0.5. The 

second band intersects with two cladding modes before reaching again the centre of the 

Brillouin zone at k=1. At the points where the bands intersect, light couples from the second 

band to the corresponding cladding mode thereby changing its direction of propagation in real 

space. This coupling is the reason for the experimentally detected radiation out of the second 

band (Fig. 47 (a)).  

From the theoretical investigation we know, that the trajectory of the light in real space has 

roughly the same shape as the trajectory in Fourier space. Comparing the red curve Fig. 48 

(upside down) with Fig. 47, we find this again confirmed. The number of the experimentally 

detected traces varies between measurements in different samples. These variations are due to 

different geometries of the samples, e.g. thicker or thinner cladding, causing a different number 

of cladding modes crossing the second band.  
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Fig. 48 Path of light in Fourier space for excitation of first band including 

coupling to cladding modes. 

To verify this explanation more simulations were performed. Fig. 49 displays some results. 

The field distribution along the propagation direction is shown inside the waveguide layer and 

cladding. While we find the Bloch oscillations and the light inside the second band 

concentrated in the waveguide layer, the investigated radiation is located mainly inside the 

cladding, which confirms the occurrence of coupling from the second band into the cladding 

modes. 

 

Fig. 49 Numerical results for propagation inside a waveguide array shown 

inside waveguide layer (a) and cladding (b).  

However, we can even learn more from this simple picture. Without coupling of light from the 

second to higher order bands, light inside the second band would have to perform Bloch 

oscillations with approximately the shape of the second band. Thus, we would expect the light 

inside the second band to turn back in the opposite transverse direction when reaching the edge 

of the Brillouin zone. Obviously this is not the case. The reason is, that most of the light inside 
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the second band tunnels into the third band (see red curve in Fig. 48), as they are separated by 

only a tiny gap. The remaining light in the second band is weak and hard to detect in 

experiments. In Fig. 47 the remaining light in the second band is visible as a weak beam, 

coming back from the upper edge of the picture. A very similar situation could be observed as 

well in simulations, which confirms this assumption.  

Next we try to find the reason for the radiation marked as (b) in Fig. 47. A strong beam is 

emitted at a large angle from the light performing Bloch oscillations. It propagates almost on a 

straight line. This effect cannot be explained in terms of coupling between bands assuming that 

only the first band is excited, but appears due to the simultaneous excitation of cladding modes 

at the beginning of the arrays due to imperfect in-coupling. If we again examine the band 

structure (Fig. 50) we find that the bands of the first cladding modes (blue and red solid lines) 

have a similar shape as the first waveguide band. They differ mainly by the absolute value of 

the propagation constant β. Consequently, we expect light in these cladding modes to behave 

very similar to light inside the first band during propagation. In particular, if we excite the first 

band of waveguide and cladding modes simultaneously, their diffraction and trajectory should 

be similar and we cannot distinguish between them by our detection technique. However, there 

is still an indication for the excitation of cladding modes that we can find in experiment (Fig. 

47) and simulation (Fig. 49). This is the beating between the different excited modes, which 

appears as a modulation in propagation direction. If this beating is visible in the experiment or 

simulations, we can conclude that we excited both, waveguide and cladding modes.  

However, we still do not know the reason for the additional beams found in our measurements 

(Fig. 47 (b)). These beams propagate at large angles inside the array. Keeping in mind that the 

angle of propagation is related to the derivative of the respective band, we find the propagation 

angle of light inside the first waveguide or cladding bands limited. This limit is lower than the 

propagation angle of the measured beams. Therefore we can attribute them to higher order 

waveguide or cladding bands. These bands show a steeper characteristic in the band structure 

diagram and enable for larger propagation angles. Having in mind the relation between 

maximum propagation angle inside the array and the shape of the corresponding band, we 

relate the radiation emerging from the Bloch oscillation to propagation inside the third 

waveguide band (see green line in Fig. 50). We still have to find out, how light couples into 

this band. The third waveguide band in not excited efficiently. Moreover, the radiation escapes 

the Bloch oscillations and not the excitation point. For these reasons coupling from other bands 

must take place. These bands must belong to the cladding modes, which we identified as the 

reason of the beating in Fig. 47 and Fig. 49. We investigate, if light of these cladding modes 
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can couple into the third waveguide band. Therefore intersections of the respective bands in 

Fig. 50 are necessary. One intersection of a cladding band (solid red line) and the third 

waveguide band (green line) exists. During propagation, a part of the light inside the cladding 

mode radiates into the third band at this intersection. Afterwards it follows the path marked by 

the red dashed line. 

0.0 0.5 1.0

20.05

20.06

20.07

20.08

20.09

 

 

P
ro

pa
ga

tio
n 

co
ns

ta
nt

 β
 [1

/μ
m

]

Bloch vector k [d/2π]
0.0 0.5 1.0

20.05

20.06

20.07

20.08

20.09

 

 

P
ro

pa
ga

tio
n 

co
ns

ta
nt

 β
 [1

/μ
m

]

Bloch vector k [d/2π]
0.0 0.5 1.0

20.05

20.06

20.07

20.08

20.09

 

 

P
ro

pa
ga

tio
n 

co
ns

ta
nt

 β
 [1

/μ
m

]

Bloch vector k [d/2π]
0.0 0.5 1.0

20.05

20.06

20.07

20.08

20.09

 

 

P
ro

pa
ga

tio
n 

co
ns

ta
nt

 β
 [1

/μ
m

]

Bloch vector k [d/2π]  

Fig. 50 Band structure of waveguide array to illustrate coupling between third 

waveguide band (green) and cladding modes. Red lines illustrate the path of 

light inside the third cladding mode (solid line) and coupling to the third 

waveguide mode (dashed line). 

Remembering that the path of light inside the band structure can be mapped onto the trajectory 

of light in real space, radiation should appear upwards before reaching the edge of the first 

Brillouin zone and downwards afterwards. We examine if this agrees with the measurements. 

In Fig. 47 radiation appears in both directions at the excitation point. However, at this point 

light that couples into the third band from cladding modes is not distinguishable from light that 

is directly coupled into the third band at the excitation. To obtain a clear picture the 

propagation further inside the sample has to be examined. Radiation occurs shortly before and 

after reaching again the centre of the Brillouin zone. This fits to the picture worked out above, 

except for the fact that, according to Fig. 50, the distance between the appearances of the 

radiation should be much larger. Again, the exact position of intersections between different 

bands depends on the geometry of the samples and the thickness of the cladding, which are not 

exactly known. Thus for different samples, radiation appears at different points. This was 
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confirmed by experiments performed in samples with different waveguide and layer 

geometries.  

To suppress the excitation of cladding modes the excitation has to be carefully adjusted to the 

modes of the first band. For the measurements presented earlier in Fig. 44 and Fig. 46 we used 

a beam, which was narrow in y-direction. Therefore almost no cladding modes were excited 

and only Bloch oscillations inside the first band appear. This is confirmed by the fact, that no 

beating is superimposed to the Bloch oscillations. 

 

In conclusion, in this chapter the first direct visualization of Zener tunnelling was 

demonstrated. In the first section we found that Zener’s theory can be applied to photons. We 

derived a general theory of Bloch oscillations and Zener tunnelling in waveguide arrays. In the 

second section we experimentally demonstrated these phenomena. Zener tunnelling was 

observed as a regular outburst from the Bloch oscillations into higher order bands. If additional 

cladding modes are excited, the interaction becomes more complex and Bloch oscillations in 

the first waveguide and cladding bands are observed simultaneously. All measurements are in 

excellent agreement with simulations.   
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5. Bloch oscillation and Zener tunnelling in two-
dimensional photonic lattices 

 

 

 

 

All direct experimental observations of Bloch oscillations and Zener tunnelling performed so 

far were limited to so-called one-dimensional lattices [Feldmann92, Dahan96, Pertsch99a, Morandotti99, 

Sapienza03, Agarwal04, Ghulinyan05]. Hence, the samples were only periodic with respect to one 

transverse direction. New effects may also be associated with these phenomena in systems of 

higher dimensionality [Kolovsky03, Witthaut04]. In a two-dimensional periodic potential the wave 

follows complex Lissajous-type trajectories when the direction of the static force does not 

coincide with a principal axis of the lattice. Additionally, the process of Zener tunnelling 

becomes nontrivial as the band gap structure can cause an enhanced tunnelling in preferred 

directions determined by the lattices symmetries.

In this chapter the first experimental observation of Bloch oscillations and Zener tunnelling in 

two-dimensional (2D) periodic systems is reported. 

A 2D lattice and a transverse refractive index ramp are optically induced into a photorefractive 

crystal [Efremisis02, Fleischer03, Neshev03]. The propagation of a beam in the resulting structure shows 

Bloch oscillations and tunnelling from the first to higher-order transmission bands of the lattice 

band spectrum. The associated spectral dynamics are observed by measurements in Fourier 

space. 
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5.1. Optically induced index changes in photorefractive crystals 

In the experiments on 2D Bloch oscillations and Zener tunnelling performed in this work the 

photorefractive effect is used to optically induce refractive index structures. For this reason a 

short introduction to this topic is given before presenting the experimental system. For more 

detailed information about photorefractive crystals various publications are available, as e.g. 
[Petrov91, Günter88].  
If a photorefractive crystal is illuminated by light of certain wavelengths free charge carriers 

are generated, which are excited electrons and holes. The reason for this photo-excitation is the 

presence of impurity centres inside the band gap. These impurity centres serve as source of 

excited photoelectrons and also as electron trapping centres. An inhomogeneous illumination 

leads to an inhomogeneous charge carrier distribution inside the crystal. Free electrons and 

holes are generated in illuminated areas. These charges can move due to two different effects, 

namely diffusion and drift. For further considerations it has to be taken into account that the 

mobility of the excited electrons is much higher than the mobility of the holes.  

In the diffusion model, the photo-excited electrons quickly diffuse from the illuminated region, 

where their concentration is higher, toward the dark regions, where their concentration is 

lower. There they become trapped. Because holes cannot follow so quickly, this results in an 

inhomogeneous charge distribution. In the dark regions the electrons create a negative charge, 

while the holes lead to a positive charge in the illuminated regions. The resulting 

inhomogeneous electric field distribution is transferred into a corresponding refractive index 

modulation via the electro-optic effect. However, as the strength of the refractive index 

modulation depends on the illumination intensity and the intrinsic parameters of the crystal 

only, it is hard to control in experiment.  

Instead of the diffusion, we used the drift mechanism in order to create an index modulation. In 

contrast to the diffusion, the drift occurs only if an external electric field is applied to the 

crystal. In this case the excited electrons and holes are accelerated by the external field and 

move until the force created by the external field is compensated by the internal field, which is 

created by the resulting inhomogeneous charge distribution. The typical distance L0, which the 

electrons move, is called drift length and is proportional to the external field. The drift of the 

holes is neglected in the following, as their mobility is much smaller than for the electrons. In 

reality even with an external field always a combination of both effects exists, but in our case 

drift is much stronger than diffusion, so the latter is neglected.  

Fig. 51 illustrates the situation in case of a cosine shaped illumination I=I0cos(x/d). The excited 

electrons move inside the external field while the holes stay where they are generated.  

 

 

73



 

x

I(x)

+
+

+
++++ +

++++ +
++++--

--- --
--- --

---

External field
L0

+
++++--

---

x

I(x)

+
+

+
+++++
++++++++ +

+++++
++++++++ +

+++++
++++++++--

--- --
--- --

--- --
--- --

--- --
---

External field
L0

+
+++++
++++++++--

--- --
---

 

Fig. 51 An inhomogeneous intensity distribution I(x) leads to an 

inhomogeneous charge distribution due to the motion of charges in an 

external field. 

In the 1D case the inhomogeneous charge distribution leads to a periodic modulation of the 

electric field of the same period as the intensity of the illumination 

 0( ) cos cose
x x Lx
d d

−⎡ ⎤⎛ ⎞ ⎛ ⎞ρ = ρ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
. (100) 

ρe includes the amount of excited electrons and depends on the illumination intensity I. d is the 

period of the cosine shaped illumination. The internal electric field Eint created by this charge 

distribution is determined by using div(ε0εE)=ρ and amounts to 

 0

0

/ 2( ) 2 sin cos
2

ρ ⎛ ⎞ ⎛= ⎜ ⎟ ⎜ε ε ⎝ ⎠ ⎝
e

int
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d d
0− ⎞

⎟
⎠

, (101) 

with ε being the linear homogeneous dielectric number. For short drift length L0<<d, the field 

can be approximated as 

 0
0

0

/ 2( ) cosρ −⎛= ⎜ε ε ⎝ ⎠
e

int
x LE x L

d
⎞
⎟ , (102) 

with an amplitude that is independent of the period d. We obtain from the cosine shaped 

illumination a cosine shaped electric field, which is shifted by L0/2 with respect to the 

illumination. As we assumed L0<<d this shift is neglected in the following. The drift length L0 

depends linear on the external field Eext. Therefore also the induced electric field Eint evolves 

linearly with Eext and can be controlled by the applied voltage.  

Analogue to this 1D case an illumination which is periodic in both transverse directions can be 

used to create a field modulated in two dimensions. 
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To transfer the modulated electric field into a refractive index modulation the electro-optic 

effect is used. In order to make use of the largest electro-optic coefficient of the strontium 

barium niobate (SBN) crystal the external field and therefore also the internal field are oriented 

along the c-axis of the crystal, which corresponds to the x-direction in our notation. The 

induced refractive index change appears mainly for extraordinary (parallel to c-axis) polarized 

light. The index change for light which is ordinary (normal to c-axis) polarized is much smaller 

(~ factor 20). We assume for the probe beam always extraordinary polarization. The refractive 

index change saturates for high illuminations to its maximum value. It can be written in a 

saturable model as 

 ( , )( , )
( , )d

I x yn x y
I I x y

Δ = γ
+

. (103)  

I(x,y) is the intensity of the illumination and Id the so-called dark intensity, including a 

homogeneous illumination that might exist additionally to the modulated intensity. γ is 

described by material parameters and the external field 

 , (104)  0 eff extn r Eγ =

with the linear refractive index n0, the relevant effective electro-optic coefficient reff and the 

external field Eext.  

According to these equations the absolute refractive index change is directly proportional to the 

drift length and therefore to the external field, what gives us the possibility to control it easily 

via the applied voltage. Furthermore the induced refractive index change depends nonlinearly 

on the illumination, as it is of a saturable nature. If the illumination I(x,y) is much weaker than 

the dark intensity Id, the refractive index change Δn depends approximately linear on I(x,y). 

With increasing intensity of the illumination the refractive index change saturates and 

converges to γ for I(x,y) >> Id. 

So far we looked into a stationary regime, but in reality the described processes are slow. 

Therefore in experiment also the time dependence has to be taken into account, in order to 

work in a stationary regime. The speed of the processes depends strongly on the intensities, in 

particular on Id. For very low intensities it takes a long time until a stationary regime is 

obtained, what makes it hard to perform reproducible experiments. This leads to further 

restrictions on the choice of the intensities. 
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5.2. Preparations 

After introducing the basic effects in photorefractive crystals in the last section, in the 

following the preparations for experiments are presented together with the equations used in 

respective simulations. 

An optical lattice is induced inside a strontium barium niobate (SBN) crystal by interfering 

four mutually coherent beams with ordinary polarization. To this end we use an amplitude 

mask with a diffraction grating, which is imaged by a 4f-system into the crystal, as shown in 

Fig. 52.  

 

 

Fig. 52 Schematic representation of experimental setup to optically induce a 

lattice (green) and a refractive index gradient (blue). 

The grating is illuminated by a laser beam. The respective diffraction pattern is found in the 

Fourier plane. There, an amplitude filter is placed in the optical path. It consists of a mask with 

four holes, letting pass only the first diffraction order. This ensures a cosine shape of the 

interference pattern inside the crystal instead of the step like pattern on the mask. The four 

beams of the first diffraction order are transformed into tilted waves by the second lens. In the 

crystal they interfere to a square lattice as shown in Fig. 53. The period of the lattice can be 

varied by the size of the diffraction pattern on the mask and the magnification of the imaging 

system. 
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Fig. 53 Measured intensity pattern created by four coherently interfering 

beams with a lattice period of d=20 μm. 

For our experiments the pattern is oriented with a tilt of 45° with respect to the principal axes 

of the resulting lattice in order to minimize effects of the anisotropy of the crystal [Desyatnikov05]. 

For numerical simulation the intensity distribution of the lattice is described by 

 2 2( ) ( )( , ) cos cos
2 2

π + π −⎡ ⎤ ⎡= ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

g
⎦

x y xI x y A
d d

y , (105) 

with the lattice period d and the amplitude A. Such a periodic light pattern induces a 2D 

modulation of the refractive index for the extraordinary polarized probe beam. We found that 

for this lattice orientation the influence of the anisotropy of the crystal on the induced index 

structure can be neglected. The ordinary polarized lattice beams remain stationary along the 

whole length of the crystal, as back feeding due to the index change is small for this 

polarization.   

To test the quality of the lattice and to find out what experimental parameters to use, we first 

checked for discrete diffraction inside the induced lattice. Therefore we launched an 

extraordinary polarized probe beam having about the same size as the spots forming the lattice 

and hitting a single channel of increased refractive index at the entrance facet of the crystal. 

We observed its intensity distribution at the output facet of the crystal with a CCD-camera. We 

found that the lattice is very homogeneous as we were able to observe a diffraction pattern of a 

high symmetry for lattice periods of 10μm or larger. Fig. 54 shows an example of a diffraction 

pattern for such a lattice. 
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Fig. 54 Measured discrete diffraction in an optically induced 2D-lattice with a 

period of  d=10 μm. 

Next we investigated how to create the transverse refractive index gradient. Therefore, the 

crystal was illuminated from the top by a modulated incoherent white light beam (see Fig. 52). 

The modulation was achieved placing an amplitude mask on top of the crystal. This mask was 

illuminated by a fibre bundle. In order to collect the light from the fibres, a lens was placed 

above the amplitude mask. The measured intensity profile of the white light is shown in Fig. 

55. 

 

Fig. 55 Intensity distribution of white light illumination measured 3mm 

underneath the amplitude mask. For comparison: Shaded region illustrates 

width of area used in experiments. 

For simulations it can be well approximated by 

 ( )( ) 1 tanh / / 2mI x B x= + η⎡ ⎤⎣ ⎦ , (106) 
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where the parameter η determines the extend of the induced index gradient and B is the 

amplitude. In the centre of this gradient we find a region with approximately linear 

dependence. To test the performance of the induced gradient we launched a probe beam in the 

resulting structure without a superimposed lattice. Measuring the intensity at the output facet 

we found that the beam experiences a maximum transverse shift of 350μm when propagating 

in the gradient. To obtain this shift we had to apply an external field of 5000V/cm. 

After investigating both components, lattice and gradient, separately, the next task was to 

superimpose them. While it was straightforward to optimize the parameters for gradient and 

lattice separately, we found it quite hard to get both working at the same time. The reason for 

this is, that the parameters for a good lattice and a strong gradient are completely different.  

To obtain a strong gradient, the white light intensity has to be varied in transverse direction in a 

wide range. In contrast to that, the lattice would need a medium white light intensity of 

constant level. Thus, the quality of the lattice is drastically reduced by the gradient. 

Furthermore we found that the existence of the lattice reduced the gradient, as the background 

level of light inside the crystal is increased. Even if obviously the amount of light inside the 

bright region is increased as well, the absolute refractive index contrast is still reduced as we 

work in a saturated regime on the bright side of the gradient. Hence we had to find a 

compromise for the different parameters, where we obtain a lattice and gradient of sufficient 

quality simultaneously. We found that the system works well if we use an external field of 

5000V/cm and a lattice beam with a power of about 100μW and a diameter of 3.5mm. The 

amount of white light to induce the gradient was only slightly lower as in the experiments 

without a lattice.   

To find the parameters for numerical simulations we compared results from experiment and 

simulation and tried to achieve agreement between both. We describe the total induced 

refractive index pattern by  

 
( , ) ( , )

( , )
( , ) ( , )

g m

d g m

I x y I x y
n x y

I I x y I x y
+

Δ = γ
+ +

. (107) 

The inhomogeneous illumination of the crystal Im results in an inhomogeneous index 

distribution. A periodic structure is imposed onto a monotonically increasing background. For 

a finite region this leads to an almost liner increase of the background, as necessary for the 

observation of Bloch oscillations. Fig. 56 shows a cross section through the calculated 

refractive index profile at the position y=0. 
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Fig. 56 Cross section through the calculated change of the refractive index 

inside the crystal at the position y=0 for γ=2*10-4, A/Id=0.25 and B/Id=1.  

Because of the saturable character of the photorefractive nonlinearity the contrast of the 

resulting index gradient varies across the crystal.  

We simulated the propagation of an optical beam by solving the corresponding paraxial 

equation 
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Ei E n
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=x y E

) )

. (108) 

For the calculations we used the same parameters as in the experiments, which are the 

wavelength in vacuum λ=532nm, the refractive index n0=2.35, the lattice period d=20μm 

(measured along diagonal in Fig. 53) and the crystal length L=23mm. The intensities, the exact 

width of the gradient and the nonlinear coefficient were determined from comparison of 

theoretical and experimental results as follows: lattice amplitude normalized to dark intensity 

A/Id=0.25, normalized gradient amplitude B/Id=0.25, width of the gradient η=300μm, nonlinear 

coefficient γ=2*10-4.  

For a homogeneous lattice (Im=0) the propagation of light is determined by Bloch waves, 

which have the form 

 , ( ( ,( , , ) ( , ) + +β= x y x yi k x k y k k zE x y z u x y e

with the Bloch vector k=(kx,ky). The band structure of the two-dimensional lattice describes the 

dependence of propagation constant β of the two components of the Bloch vector kx and ky. 

The first Brillouin zone is determined by the symmetry points of the lattice, which are depicted 
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in Fig. 57 (a). The three special points Γ, M and X correspond to kx,Γ=ky,Γ=0, kx,M= 2 g/2 and 

ky,M=0 and to kx,X=ky,X=g/(2* 2 ) with g=2π/d. They determine the corners of the irreducible 

part of the first Brillouin zone. Usually the band structure has to be calculated inside the whole 

irreducible part of the Brillouin zone. However, essential information about the propagation of 

waves is already included in a scan through the band structure along the connections of the 

three symmetry points [Joannopoulos95], as it is depicted in Fig. 57 (b). For reasons of simplicity 

we often refer to this scan as band structure in the following. To calculate the band structure, 

again the program MIT photonic bands has been used [Johnson01]. As it was already shown for 

the band structure of a one-dimensional lattice, also here the band structure includes 

information about the propagation direction and diffraction properties. However, it has to be 

taken into account, that therefore usually the whole band structure instead of the scan is 

necessary. But due to symmetry reasons the scan still includes information about the group 

velocity of the respective Bloch waves. For these waves the Bloch vector has no componenet, 

which is orientend perpendicular to the path of the scan. At all three symmetry points the 

transverse velocity of the Bloch waves vanishes. 

 

 

Fig. 57 (a) Symmetry points of the first Brillouin zone for a lattice as shown 

in Fig. 53, (b) calculated band structure of the lattice for Im=0 and (c) band 

structure of the lattice vs. Im. The horizontal line is the adiabatic value of the 

propagation constant. The dashed segment indicated Zener tunnelling through 

the gap. 

Between the first and second band of the structure we obtain a band gap. The total gap is 

marked as a yellow region. Its width is narrower than the bands itself. However, the width of 

the local gap depends on the exact position in Fourier space. The local gap is largest at the Γ-

point and decreases from there towards the X- and M-points of the lattice. Between these 
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points the gap width is almost constant. The small gap width at the M-point enables for a high 

tunnelling rate for our orientation of the gradient.  

The superposition of the modulated illumination Im results in a varying modulation depth of the 

lattice (see Fig. 56) due to saturation of the index change. Fig. 57 (c) shows how the band 

structure changes for increasing background illumination corresponding to the gradient in x- 

direction. We find that the total gap decreases and finally closes for high background 

illumination. The horizontal line in Fig. 56 (c) shows the value of the propagation constant for 

a wave packet that starts to propagate at the top of the first band in the low index region. Under 

the assumption that the propagation constant β is conserved, the wave packet follows this line 

while moving in x-direction in real space. 

The dashed segment of the line indicates Zener tunnelling from the M-point at the bottom of 

the first band into the M-point of the second and third bands. For high values of Im the total gap 

between first and second band vanishes. However, for Zener tunnelling the local gap (between 

the M-points of first and second band) is important. In Fig. 56 (c) we find this gap always open 

and almost independent of the gradient.  

 

5.3. Results of simulations and experiments 

In this section the propagation of a probe beam through an optical lattice with superimposed 

linear potential is discussed. For experiments the setup described in the last section was used. 

Results from numerical simulations and experiments are compared for different excitations and 

gradients.  

Fig. 58 displays the calculated intensity distribution of a probe beam inside the optically 

induced lattice with a transversely superimposed gradient for different propagation distances. 

The parameters for this simulation are the same as determined in the last section. The width of 

the input beam is 37.5μm (full width half maximum-FWHM). White crosses mark the centres 

of the lattice maxima.  

After propagating a distance of 18mm (Fig. 58 (a)) the beam is strongly modulated, indicating 

that neighbouring intensity maxima are out of phase. This occurs for a Bloch vector close to 

k=π/d at the edge of the Brillouin zone. Intensity maxima of the left part of the beam are 

centred on the lattice maxima, indicating that the light is located inside the first band. In the 

right part of the beam intensity maxima lie in between lattice maxima and correspondingly this 

light can be assigned to higher order bands. Thus, the right part already has tunnelled from the 

first to higher bands. 
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Fig. 58 Simulation of trajectory of the probe beam inside the first band and 

intensity distribution of the probe beam for propagation distance of (a) 18mm, 

(b) 23mm and (c) 28mm. The gradient is directed along x. 

For longer propagation distances ((Fig. 58 (b) and (c)) the light inside different bands 

separates. Light inside the first band is Bragg reflected at the lattice and moves back into the 

opposite direction corresponding to Bloch oscillations inside the first band. Its trajectory is 

shown in the upper part of Fig. 58. Three other beams are located inside the second and third 

band. It can be seen from the band structure that these bands degenerate at the M-point. 

Therefore tunnelling from the first band occurs into the second and third band simultaneously. 

In real space one of the tunnelled beams moves further towards the right. The two other beams 

have tunnelled to another band and move up and down. Later they are accelerated by the 

gradient and thus gaining speed as well to the right. Now clearly the tunnelled beams have their 

intensity maxima located in between the lattice maxima, indicating that they belong to higher 

order bands. 

In experiment we cannot monitor the evolution of light inside the crystal, but only observe the 

intensity at the crystal output. Thus, we have to follow a different strategy to obtain 

information about the evolution of the light during the propagation. We tilt the input beam to 

obtain an excitation with a linearly varying phase. With this excitation we are able to excite 

Bloch oscillations at different points of their trajectory. In order to check the validity of this 

assumption we calculated the trajectories for different angles. The results are depicted in Fig. 

59. It can be clearly seen that the trajectory is shifted in propagation direction for an excitation 

with an input angle. Thereby a negative angle corresponds to an initial motion against the 
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gradient and vice versa. Besides a shift of the trajectory in propagation direction a shift in 

transverse direction occurs, leading to a small transverse shift of the output intensity 

distribution in the experiments. 

 

Fig. 59 Simulated Bloch trajectory for three different angles of input beam. 

Dashed line: -0.15°, solid line: 0.0° and dotted line: 0.15° tilt of input beam. 

The measurements obtained with this technique are presented in Fig. 60. They show good 

qualitative agreement with the simulations. Only the tunnelling rate deviates slightly from the 

simulations. The lattice or gradient used in this experiment might have been stronger than the 

one used in simulations, leading to slightly higher reflection.  

 

 

Fig. 60 Measured output intensity distribution for input angles of (a) -0.10°, 

(b) 0.00° and (c) 0.12°. 

To understand better what happens during the tunnelling we performed another experiment, 

where not only the intensity distribution at the output but also the Fourier transform of the 

output field was observed [Bartal05]. Therefore an experimental setup as shown in Fig. 61 was 

used, where the Fourier plane (FT) of the imaging lens 1 at the crystal output is imaged by a 
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second lens (imaging lens 2) to a second CCD camera. This enables to take pictures from real 

and Fourier space simultaneously.  
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Fig. 61 Schematic representation of setup to detect simultaneously the 

intensity distribution and Fourier transform of the field at the output facet of 

the crystal.  

In the images taken from Fourier space the first Brillouin zone is determined by the position of 

the four lattice beams (not shown), which define its corners. The results of the measurements 

are shown in Fig. 62. 

For a negative angle of -0.10° we observe in real space a beam that is strongly modulated (Fig. 

62 (a)). Between the intensity maxima the intensity decreases to zero. Hence we can infer that 

adjacent intensity maxima are out of phase, as it is the case at the edge of the Brillouin zone. 

This is confirmed by the picture from Fourier space, where we find the beam located at the M-

point. Accordingly the measurement shows the intensity distribution at the centre of a Bloch 

period, where the elongation of the beam inside the first band is largest. 

After a slight increase of the angle to -0.04° we took the next pictures (Fig. 62 (b)). While in 

real space still only one beam is visible, in Fourier space now three more beams appear, 

indicating tunnelling into higher bands. In real space we see this as an increase of the size of 

the beam corresponding to a beginning of the splitting into four beams. In Fourier space we 

find the beam inside the first band now appearing at the opposite side of the first Brillouin zone 

and moving again with the gradient. Three more beams are located close to the three other M-

points of the first Brillouin zone. 
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Fig. 62 Measurements of intensity distribution in real space (top) and Fourier 

space (bottom) after propagation through a 23mm long crystal with optically 

induced lattice and gradient. The angular tilt of the input beam is increased 

from (a) to (e) corresponding to measurements at larger propagation distance. 

The values of the input angle are shown in the top pictures. The white squares 

mark the first Brillouin zone. 

We infer from this picture that light starts to tunnel, when the edge of the first Brillouin zone 

(M-point) is reached by the original beam. The tunnelled light couples from the first band into 

the M-point of higher bands and appears correspondingly at the M-points of the first Brillouin 

zone in the measurements. Due to the gradient it is again accelerated, as can be seen from Fig. 

62 (c)-(e). The acceleration leads to a motion of the beams towards the right in the pictures 

from Fourier space. In real space the splitting into four beams becomes clearly visible, as the 

beams move away from each other. From the intensities inside the different beams, we can find 

that the described process does not occur instantaneously, but needs some propagation distance 

to happen. While in Fig. 62 (b) the original beam is still the strongest one, later one again the 

beam inside the first band becomes stronger than the tunnelled beams. 

 

Besides experiments with a broad input beam we again performed experiments with a narrow 

beam exciting mainly one lattice maximum. Analogue to the experiments in planar waveguide 

arrays the Bloch oscillations are replaced by periodic diffraction and refocusing of the beam. 

As Bloch waves with all Bloch vectors k are excited by a narrow beam, Zener tunnelling is 

expected to appear continuously during the propagation, because there are always components 

which propagate in the vicinity of the band edge. To observe this effect we used a tightly 

focused signal beam which was launched into the crystal directly on one of the lattice maxima. 

As we cannot use the technique to tilt the input angle for narrow excitation, we recorded the 
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light intensity distribution at the exit facet of the crystal varying the strength of the transverse 

index gradient instead. In simulations this was achieved by changing the width of the tanh-

function η (cp. eq. (106)). In Fig. 63 results of simulations for three different cases are 

presented. Except for the gradient, the parameters are the same as for the simulations with 

excitation by a broad beam. In (a) to (c) the propagation in a homogeneous lattice is 

demonstrated. The pictures show the intensity distribution after (a) 18mm, (b) 23mm and (c) 

28mm propagation distance. We observe a typical discrete diffraction pattern. 

 

 

Fig. 63 Simulated propagation with excitation of a single waveguide in (a-c) a 

homogeneous lattice, (d-e) a weak and (g-i) a strong index gradient. Intensity 

distributions are shown after propagation distance of (a,d,g) 18mm, (b,e,h) 

23mm and (c,f,i) 28mm. Arrows show direction of gradient. 

Fig. 63 (d)-(f) show the propagation, if a weak gradient with η=166μm is superimposed onto 

the lattice. Due to the gradient the beam starts to diffract asymmetrically while a part of the 

intensity is radiated into higher order bands (see Fig. 63 (d)). For a longer propagation distance 
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the beam first continues to diffract (Fig. 63 (e)), but then starts to refocus (Fig. 63 (f)). 

Radiation appears as expected continuously during propagation. A completely different 

behaviour can be observed for propagation inside a strong gradient. The stronger gradient was 

achieved by decreasing the width of the gradient to η=66μm. Analyzing Fig. 63 (g) and (h) the 

excited waveguide seems almost to decouple from the array, as the main part of the light is 

trapped in the excited guide. As before, also here radiation to higher order bands can be 

observed continuously. However, for longer propagation distance of 23mm (Fig. 63 (i)) this 

picture does not hold anymore. The light does not stay inside the excited guide but diffracts. 

We found that for such a gradient as used here, Bloch oscillations are destroyed as the gradient 

varies inside the area where the beam propagates. Thus the conditions for Bloch oscillations 

are not given anymore.  

 

Additional to the simulations we again performed experiments. The results are presented in 

Fig. 64. Fig. 64 (a) shows the discrete diffraction of a narrow beam in the lattice with no 

superimposed index gradient. The spatial symmetry of the field distribution is almost perfect, 

which reflects the good symmetry of the lattice. 

 

 

Fig. 64 Measured light intensity profiles at the crystal output for excitation of 

a single site. (a) Discrete diffraction with no background modulation, 

propagation in (b) weak and (c) strong index gradient.   

In the case of a rather weak gradient (Fig. 64 (b)) the light has approximately travelled two 

thirds of a Bloch period before reaching the end of the crystal. The central part of the beam 

starts to refocus again while some light already tunnelled to the second band. Although no 

pronounced spatial separation of the light in the first and second bands has occurred so far, the 

induced asymmetry of the field distribution is a clear indication that tunnelling has taken place. 

To obtain a stronger gradient as in Fig. 64 (b) we observed propagation in an area close to the 

top of the crystal and thus as well close to the mask. In contrast to before, where the beam 
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propagated about 3mm under the mask, we were then only 1mm away from it. As can be seen 

in Fig. 64 (c), almost no breathing is visible and the light in the first band is confined to the 

input waveguide and its direct neighbours. The gradient is so strong that light cannot escape 

from this area as it is immediately Bragg or total reflected at the surrounding. Now, the 

tunnelled light appears as radiation along the Γ-X-directions of the lattice. Note that only the 

light inside higher bands follows the action of the gradient by performing a transverse motion 

and thus breaking the symmetry. The experimental results again are in excellent agreement 

with the simulations. 

 

Concluding this chapter, we were able to perform the first experimental demonstration of two-

dimensional Bloch oscillations and Zener tunnelling. To this end we investigated the 

propagation of a light beam in a 2D optically-induced lattice with a superimposed transverse 

gradient. For broad excitation tunnelling appeared as a splitting of the beam into four parts, 

three of them propagating in higher order bands. Our measurements in Fourier space gave clear 

evidence that Bloch oscillations in the first band correspond to a motion through the first 

Brillouin zone, as it was predicted already by Zener [Zener34]. When the light beam reaches the 

edge of the Brillouin zone, it jumps to the other side and keeps moving in the same direction 

afterwards. Simultaneously Zener tunnelling occurs and three tunnelled beams appear at the M-

points. In contrast to the oscillatory motion of a broad beam, for excitation of a single lattice 

site periodical diffraction and refocusing of the beam was observed. In this case tunnelling 

appears continuously during propagation. 
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6. Conclusions  
 

 

 

 

The dynamics in discrete or periodical systems under the influence of a perturbation is a 

subject of active research in various branches of physics. Examples are investigations of 

electrons in semiconductor superlattices [Esaki70, Mendez88, Feldmann92], ultra-cold atoms in 

accelerated optical lattices [Dahan96] and photons in photonic lattices [Pertsch99a, Morandotti99, 

Sapienza03, Argawal04]. The subject of this thesis is the theoretical and experimental investigation 

of the propagation of light waves in inhomogeneous waveguide arrays.  

Defects and interfaces were introduced into waveguide arrays by varying the width or spacing 

of the waveguides. The existence of localized states at defects in otherwise homogeneous 

arrays has been analytically predicted and experimentally confirmed. To induce a defect the 

propagation constant of one guide and the corresponding coupling constants have been varied 

with respect to the homogeneous array. The observed intensity patterns at the output facet of 

the arrays gave clear evidence of the existence of defect modes. Both an increase of the 

coupling constant as well as the variation of the effective index gave rise to the formation of 

localized states. Depending on the parameters a staggered mode, an unstaggered mode or both 

could exist. Furthermore it turned out that symmetric defects even if they are multimode cannot 

support antisymmetric modes. Defects, which do not support a bound state, were found to be 

repulsive. Excellent agreement was achieved between the theoretical predictions and the 

experimental verification.  

To demonstrate an application of defects in waveguide arrays, an electro-optical switch was 

designed, which could act either as an on-off-switch or as a Y-branch with a controllable split-

ratio.  
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In a next step the optical properties of interfaces between two distinct arrays were investigated 

on the basis of a coupled mode theory. For certain parameters bound states were found to exist, 

which have no analogon at interfaces in bulk media. Furthermore, analytical expressions for 

the reflection and transmissions coefficients of Bloch waves at interfaces were derived and 

interpreted by means of the band structure.  

Photonic Zener tunnelling has been studied in planar and two-dimensional waveguide arrays. 

While this effect was originally predicted for electrons in crystals, we demonstrated that it can 

also happen to photons, which move in a periodic structure with a superimposed index 

gradient. An analytical expression for the tunnelling rate was derived analogous to the 

tunnelling rate for electrons presented in [Zener34, Holthaus00]. The experimental demonstration of 

Zener tunnelling in planar arrays was performed in polymer waveguides. To this end a new 

setup has been developed, which enables to directly observe the propagation inside the arrays 

by detecting the fluorescence. With this system we observed damped Bloch oscillations, which 

were accompanied by Zener tunnelling. The latter one appeared as regular outbursts of 

radiation into higher order bands. This is the first direct visualization of Zener tunnelling. 

For the excitation by a narrow beam the Bloch oscillations appeared as periodic de- and 

refocusing. In this case Zener tunnelling was found to appear continuously. If additionally to 

the first band cladding modes were excited by a broad beam the interaction became more 

complex, as Bloch oscillations in different bands were observed simultaneously. Furthermore 

coupling between higher order bands could be observed as additional radiation. All 

measurements were in perfect qualitative agreement with numerical simulations. 

While so far Bloch oscillations and Zener tunnelling were restricted to one-dimensional 

systems, first observations of these effects in two-dimensional lattices were presented in this 

work. For this purpose both, the two-dimensional periodic structure and the refractive index 

gradient were optically induced into a photorefractive crystal. The propagation of light in the 

resulting structure was analyzed by BPM simulations and measurements. We were able to 

observe an initial state of Bloch oscillations from up to one period. These oscillations were 

accompanied by Zener tunnelling to higher order bands. For the first time the motion of a beam 

through the first Brillouin zone corresponding to Bloch oscillations in real space was directly 

detected in Fourier space. Zener tunnelling appeared as radiation into three different directions 

in real space. In Fourier space tunnelling into three different symmetry points of the lattice was 

observed. The propagation of the three corresponding beams outside the first Brillouin zone 

gave clear evidence that this light belongs to higher order bands. The presented measurements 

gave the first evidence of Bloch oscillations and Zener tunnelling in a two-dimensional system. 
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For a continuation of the research presented in this work, different interesting tasks can be 

imagined. While the experimental verification of bound states at defects was already presented 

in this work, it should be also possible to observe bound states at interfaces. Furthermore so far 

no measurements on reflection and transmission at defects and interfaces in planar waveguide 

arrays were performed. 

Bloch oscillations and Zener tunnelling still are a hot topic of research. While in this work first 

direct observations of photonic Zener tunnelling in one and two dimensions were presented, it 

is worth to investigate these effects more precisely. In a two-dimensional lattice Bloch 

oscillations and Zener tunnelling were presented only for one particular orientation of the 

gradient with respect to the lattice. However, it was shown theoretically that for gradients, 

which are not oriented along the symmetry axes of the lattice Lissajous-like trajectories can be 

expected [Pertsch99b, Kolovsky03, Witthaut04]. Furthermore also the phenomenon of Zener tunnelling 

becomes more complex in this case, as it does not necessarily appear at the symmetry points 

anymore. Therefore I think it is worth to investigate systems which enable for the observation 

of these effects.  

As in this work only qualitative results on Zener tunnelling were presented, also quantitative 

investigations on the tunnelling rate should follow. The tunnelling rate has been a 

controversially discussed subject of research during the last years (see e.g. [Glutsch04] and 

references therein). It would be worth to study experimentally the dependence of the tunnelling 

rate on the system parameters, in particular on the refractive index gradient, and compare it 

with the different theoretical predictions.  

Besides a straight forward continuation of this work, also the transfer of other quantum 

mechanical effects to optical systems would be worthwhile to study. For example, publications 

can be found, which suggest the demonstration of optical analogies to Fano resonances 

[Miroshnichenko05], quantum tunnelling [Longhi05a] and dynamic localization of electrons in an 

alternating electric field [Longhi05b].  
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Kurzfassung 

 

Ein aktuelles Forschungsthema in der Optik ist die Lichtausbreitung in künstlichen 

Materialien, wie zum Beispiel in photonischen Kristallen oder Metamaterialen. Auch 

photonische Kristallfasern und Wellenleiterarrays gehören dieser Klasse von Systemen an. Im 

Rahmen dieser Arbeit werden Wellenleiterarrays untersucht. Unter Wellenleiterarrays werden 

dabei in einer oder beiden transversalen Richtungen periodisch wellenleitende Strukturen 

verstanden 

Aufgrund ihrer Periodizität weisen Wellenleiterarrays viele Ähnlichkeiten mit anderen 

physikalischen Systemen aus der Quantenmechanik oder Festkörperphysik auf. Teilchen in 

periodischen Potentialen, z.B. Elektronen in Kristallen oder Super-Gittern oder Bose-Einstein-

Kondensate in optischen Gittern, haben Energien die im Impulsraum auf so-genannte Bänder 

beschränkt sind. Diese Bänder werden durch Bandlücken voneinander getrennt. Analog dazu 

sind auch die Propagationskonstanten der Bloch-Wellen in Wellenleiterarrays in Bändern 

angeordnet. Dies ermöglicht, dass viele aus der Quantenmechanik bekannte Effekte auch in 

Wellenleiterarrays beobachtet werden können. 

In der Vergangenheit wurde gezeigt, dass sich bereits in homogenen Wellenleiterarrays die 

Lichtausbreitung von derjenigen in homogenen Materialien deutlich unterscheidet [Pertsch02]. 

Erste Untersuchungen von inhomogenen Arrays ergaben, dass Bloch-Oszillationen beobachtet 

werden können, falls einer periodischen Struktur zusätzlich eine lineare 

Brechungsindexänderung in transversaler Richtung überlagert wird [Pertsch99a, Morandotti99].  

In der vorliegenden Arbeit werden weitere theoretische und experimentelle Untersuchungen 

zur Ausbreitung von Licht in inhomogenen Wellenleiterarrays vorgestellt. Der Schwerpunkt 

liegt dabei auf der Untersuchung lokaler Inhomogenitäten (Kapitel 3) und dem experimentellen 

Nachweis von photonischem Zener-Tunneln (Kapitel 4 und 5). 

Vor der Präsentation der Ergebnisse der theoretischen und experimentellen Untersuchungen, 

wird in Kapitel 1 eine Einleitung gegeben. In Kapitel 2 werden die grundlegenden Gleichungen 

zur theoretischen Untersuchung von Wellenleiterarrays vorgestellt. Ausgehend von den 

Maxwellschen Gleichungen wird das Eigenwertproblem für planare Wellenleiterarrays 

hergeleitet und diskutiert. 

In Kapitel 3 wird der Einfluss von Defekten und Grenzflächen auf die Lichtausbreitung in 

Wellenleiterarrays analysiert. Für theoretische Untersuchungen wird dabei die Theorie 

gekoppelter Moden angewendet. Dadurch können die Eigenschaften jedes einzelnen 

Wellenleiters durch die Propagationskonstante der in ihm geführten Mode und die Kopplung 
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zu Moden benachbarter Wellenleiter beschrieben werden. Um Defekte und Grenzflächen zu 

erzeugen, werden genau diese zwei Größen variiert. Die Existenz gebundener Zustände wird 

für einen Defekt, der aus einem einzelnen gestörten Wellenleiter innerhalb eines ansonsten 

homogenen Arrays besteht, theoretisch vorausgesagt und in Experimenten in Polymer-

Wellenleiterarrays bestätigt. Sowohl für eine Vergrößerung der Koppelkonstante als auch für 

eine Änderung des effektiven Index des Defektwellenleiters treten Defektmoden auf. Abhängig 

von den Parametern können diese entweder eine konstante Phase oder Phasensprünge von π 

zwischen den Feldern in benachbarten Wellenleitern aufweisen. Bemerkenswert ist, dass auch 

in mehrmodigen Defekten nur symmetrische Moden existieren. Weiterhin wird gezeigt, dass 

Defekte, die keine Mode führen, abstoßend wirken. Als Anwendungsbeispiel für Defektmoden 

wird ein elektro-optische Element, das als Schalter oder steuerbarer Strahlteiler verwendet 

werden kann, theoretisch untersucht. Im letzten Teil von Kapitel 3 werden theoretische 

Untersuchungen zu Grenzflächen in Wellenleiterarrays vorgestellt. Es wird gezeigt, dass im 

Gegensatz zu Grenzflächen zwischen ansonsten homogenen dielektrischen Medien, im Array 

Grenzflächenmoden existieren können. Des Weiteren werden die Reflexions- und 

Transmissionskoeffizienten für Bloch-Wellen an Grenzflächen berechnet. Die untersuchten 

Effekte werden mit Hilfe der Bandstruktur interpretiert. 

Im 4. Kapitel der Arbeit wird Zener-Tunneln in planaren Wellenleiterarrays untersucht. Zener-

Tunneln ist ein Effekt, der ursprünglich in der Quantenmechanik vorhergesagt wurde. Wird ein 

Elektron in einem periodischen Potential einem zusätzlich überlagerten elektrischen Feld 

ausgesetzt, so führt es eine oszillierende Bewegung aus, die als Bloch-Oszillationen bekannt 

wurde. Dabei tunnelt es mit einer bestimmten Wahrscheinlichkeit in höhere Bänder der 

Struktur. In der Vergangenheit wurden bereits photonische Bloch-Oszillationen in 

Wellenleiterarrays demonstriert. In dieser Arbeit wird theoretisch und experimentell 

nachgewiesen, dass auch Zener-Tunneln in Wellenleiterarrays auftreten kann. Der 

Schwerpunkt liegt dabei auf der experimentellen Demonstration des Effektes. Dazu wurde ein 

neuer Aufbau entwickelt, der es ermöglich die Lichtausbreitung innerhalb des Arrays zu 

beobachten. Hierfür wird die Fluoreszenz des Polymers, aus dem die Arrays hergestellt 

werden, mit einer CCD Kamera oberhalb der Probe detektiert. Unter dem Einfluss eines 

transversalen Brechungsindexgradienten führt ein Lichtbündel in einem Wellenleiterarray 

Bloch-Oszillationen aus, d.h. es folgt während der Ausbreitung einer oszillierenden Bewegung 

in transversaler Richtung. Wenn die Bandlücke zwischen dem ersten und zweiten Band des 

Arrays klein ist, koppelt periodisch Licht aus Bloch-Oszillationen im ersten Band in das zweite 

Band. Dieser Effekt ist das optische Analogon zu quantenmechanischem Zener-Tunneln. Die 
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präsentierten Ergebnisse stellen die erste direkte Beobachtung von Zener-Tunneln dar. Die 

Ergebnisse der Messungen zeigen dabei eine gute qualitative Übereinstimmung mit 

numerischen Simulationen.  

Alle bisher existierenden experimentellen Untersuchungen zu Zener-Tunneln und Bloch-

Oszillationen beschränken sich auf so genannte eindimensionale periodische Systeme, die nur 

in eine transversale Richtung periodisch sind. In Kapitel 5 werden erste experimentelle 

Beobachtungen dieser Effekte in zweidimensionalen (2D) Strukturen vorgestellt. Hierzu wird 

ein 2D-Gitter optisch in einen photorefraktiven Kristall induziert. Diesem wird ein 

näherungsweise linearer Brechungsindexverlauf überlagert, der ebenfalls optisch erzeugt wird. 

Um Bloch-Oszillationen und Zener-Tunneln zu beobachten wird die Intensitätsverteilung eines 

Teststrahls nach der Propagation durch die im Kristall erzeugte Struktur beobachtet. In den 

Experimenten können Bloch-Oszillationen und Zener-Tunneln in höhere Bänder beobachtet 

werden. Im Unterschied zu den Experimenten in planaren Wellenleiterarrays tritt im 2D Fall 

Tunneln in verschiedene Richtungen auf. Zusätzlich zur Intensitätsverteilung wird auch die 

Fouriertransformierte (Fernfeld) des Feldes am Kristallausgang gemessen. Dadurch kann die 

zu den Blochoszillationen gehörende Bewegung des Strahls innerhalb der ersten Brioullinzone 

erstmals direkt beobachtet werden. Zenertunneln tritt wie vorausgesagt beim Erreichen des 

Randes der ersten Brillouinzone auf, wo das Licht in drei Symmetriepunkten des Gitters 

tunnelt.  
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