
 

  
 

 

Müller, Christine; Kaiser, Matthias; Knauf, Rainer: 

Utilizing AI-Technologies for intelligent user 
interface behavior 
 

Publikation entstand im Rahmen der Veranstaltung: 
29th Annual German Conference on Artificial Intelligence, 2nd 
Workshop Knowledge and Software Engineering (KESE 2006), 
14. - 19. Juni 2006, Bremen 



Utilizing AI-Technologies for Intelligent User
Interface Behavior

Christine Müller1, Matthias Kaiser2, and Rainer Kauf3

1 Dept. of Information Management
Technical University of Ilmenau

PO Box 100565, 98684 Ilmenau, Germany
2 SAP Research Center Palo Alto, LCC

Palo Alto, CA, USA
3 Faculty of Computer Science and Automation

Technical University Ilmenau
PO Box 100565, 98684 Ilmenau, Germany

Abstract. While today’s business applications become more complex,
support solutions have not improved respectively. This leads to a de-
crease in the usability of software interfaces. Additionally, the current
interaction modalities do not enable users to interact with the system
in an adaptive way. This research proposes a framework for automated
and adaptive assistance in business applications. Specific focus is placed
on cognitive support and multi-channel interaction. An ontology-based
approach is applied to represent domains, tasks, and user models. Fur-
thermore, rules are implemented to trigger the generation of context-
sensitive support content which can be mapped onto individualized user
interfaces according to the device and the modality that the user prefers.

1 Introduction

While today’s business applications are characterized by an increasing degree of
complexity, user support has not improved respectively. As a consequence the
usability of software interfaces is declining. Although efforts in user interface
design are being made to reduce the complexity and to improve the usability of
software, they cannot satisfy the individual needs of every user [Nie93], [Opp94],
[ST01].

Training, e.g. by e-Learning, is one attempt to improve the usability of inter-
faces. Although, it can help the users to cope with poorly designed interfaces, it
is time-consuming, expensive, and not available when using the application.

Support features, such as manuals, hyperlink-based documents, and glos-
saries also address the problem of user support. However, major drawbacks arise
from the presentation of static and anonymous support including irrelevant and
redundant information. Most help features are also not embedded in business
applications. Consequently, users are forced to frequently interrupt their work
and reorient themselves afterwards.This decreases their productivity and satis-
faction. Due to a lack of explanation why certain information is given, users are
less likely to accept solutions and to place trust in a system [Opp94], [SS02].



Several methods have been investigated that address the improvement of soft-
ware usability by creating intelligent content-driven or adaptive systems [Opp94].
The approach in proactive UIs relates to adaptive help systems, such as UC
[Chi86] and UMFE [Sle85] following a passive, context-independent, and user-
sensitive approach, as well as Activist [Sch91] and Passivist [Lem84] offering
context-sensitive, user-independent, and active / passive support, respectively
[Opp94]. Proactive UIs provide two support modes: Depending on the individ-
ual preferences, support is given on initiative of the system (active) or has to
be explicitly requested by the user (passive). In contrast to other adaptive help
systems, users of proactive UIs initialize the support mode themselves: While
novice users might wish to be interrupted by support messages on initiative of
the system and therefore choose the active support mode, experts are more likely
to reject any kind of interference and prefer passive support on demand.

In addition, this research relates to the distinction between content genera-
tion and presentation as proposed in the adaptive help system HyPlan [Opp94].
Respectively, in proactive UIs context-sensitive content is generated and formally
represented in the system. The content is then mapped according to the device,
such as PDA, mobile phone, or desktop, and modality, such as textual, graphi-
cal, or audible, users prefer. Thus, users are supported by an optimal input and
output facilities based on their individual needs and preferences. Proactive help
has also been investigated in the Lumiere Project by Microsoft [HH98]. Based
on the interactions of users, the MS assistant proactively triggers static help
messages that are presented by a graphical avatar to guide users towards an as-
sumed goal. In contrast, a proactive UI dynamically generates content through
reasoning with ontology-based representation of the domains, tasks, and user
models. Instead of the system to assume the user’s goal, it explicitly asks for it.
Thus, allowing the user full control over the support mode (active or passive).
While the MS assistant only offers a single output facility, proactive UIs support
a multi-channel interaction.

This paper proposes a framework for automated and adaptive assistance
in business applications, with a specific focus on cognitive support and multi-
channel interaction. The approach introduced here utilizes a knowledge engi-
neering technology to solve the software engineering problem of proactive UIs.

The structure of the paper is as follows. In section 2, we discuss our model
of knowledge representation. Section 3 introduces the architecture of proactive
UIs. Section 4 discusses the knowledge modeling by means of ontologies. The
conclusion and future work are outlined in section 5.

2 Knowledge Representation

We distinguish between three knowledge types: (1) domain knowledge, (2) task
knowledge, and (3) user knowledge.

Domain knowledge, stored in the domain model, is knowledge about all con-
cepts in domain and application, as well as their properties and relations.

4



Task knowledge, stored in the task model, is knowledge describing the pro-
cesses in the domain and application. In addition, we assume the existence of
three main concepts: (1) actions, (2) tasks, and (3) goals [CJB98], [vWvdV98].

– Actions are atomic preconditioned tasks that trigger a consequence [FN71].
– Tasks are activities performed by user in order to achieve a particular goal.

Complex tasks can be composed of smaller sub-tasks, which consist of a num-
ber of actions. In addition, it shall be distinguished between three different
states of tasks and sub-tasks: default, pending, and achieved.
• default : No action of a task has been executed so far.
• pending : Some but not all actions of a task have been executed.
• achieved : All actions have been executed. The task has been completed.

– Goals are intended outcomes of tasks and can be broken down into smaller
sub-goals. Sub-goals are based respectively to their sub-tasks.

User knowledge, stored in a dynamic user model, is knowledge about the goals
of the users as well as a history of all previous tasks and actions during his current
interaction with an application. While the domain and task model are static
and generated during design time of the application, the user model represents
dynamic information on the user and has to be inferred during runtime.

Figure 1 presents two state charts visualizing the interdependencies between
actions, tasks, and goals. The first state chart represents a goal which is decom-
posed into two sub-goals. Each sub-goal is achieved by a respective sub-task.
The second state chart represents a sub-goal which is achieved by executing two
actions in arbitrary order.

Fig. 1. Declaration of task knowledge. A
goal is decomposed into sub-goals. Sub-
goals are achieved by executing respective
actions.

Fig. 2. Architecture of the proactive UI.

5



3 Introducing Proactive UIs

3.1 Definition

Proactive UIs are intelligent content-driven interfaces that define human com-
puter interaction as a problem solving process in which computers provide cog-
nitive support in order to facilitate users to use a familiar or new application.
This requires the employment of cognitive strategies to understand, anticipate
and support cognitive user needs in the problem solving process of users during
his interaction with the application.

Our approach of cognitive support also includes a flexible environment in
which users can choose the device and modality they are most comfortable with.
We claim that this feature reduces cognitive overload of users since they can
fully concentrate on solving a specific problem. Consistent applicability of user
interfaces on diverse platforms as well as an easy adaptability across different
interaction modalities is therefore a major requirement for cognitive support
[KM05].

3.2 Architecture of Proactive UIs

The architecture of proactive UIs consists of a conceptual layer, an inference
layer, and a communication layer.

– The conceptual layer represents the knowledge base including domain, task,
and user model.

– The inference layer draws on the knowledge in the conceptual layer to dy-
namically generate context-sensitive support content. This content is then
represented in a formal way and passed onto the communication layer.

– The communication layer interacts with the user. Furthermore, it maps the
support content to conform to the device-specific presentation formats set by
the user. Thus, depending on the individual preferences of users, the formal
support content is mapped into an audible, graphical, or textual format.

Figure 2 presents the architecture of proactive UIs including the interactions
between layers. Users intact with the proactive UI via their preferred device, e.g.
a mobile phone, and the required modality, such as audible in- and output. In
the background, the communication layer monitors the interactions of the user,
including data entries and commands (1), and retrieves the user context. The
user context includes the goals of the user and his / her interactions with the ap-
plication. It is transferred to the support component (2) which updates the user
model in the conceptual layer (3). Furthermore, the communication layer parses
user requests and calls the support component to generate context-sensitive con-
tent (4). Based on the knowledge represented in the conceptual layer (5), the
support component generates the support content which is then transferred to
the communication layer (6). Finally, the support content is mapped according
to the device and modality constraints set by the user (7).

6



3.3 Cognitive Support in Proactive UIs

One feature of proactive UIs is the generation of cognitive support that facili-
tates users to solve a problem. Further discussions are based on the assumption
that the problem solving process of human beings is divided into the following
consecutive phases [Pol57], [Ama68], [ea86]:

– Phase One: The user analyzes her current situation to identify relevant in-
formation and to get a better understanding of the environment.

– Phase Two: The user identifies all options available to achieve her goal.
– Phase Three: Based on her current situation and available options in the

situation, the user chooses one option.
– Phase Four: The user executes the option to achieve the individual goal.
– Phase Five: The user reviews the problem solving process, evaluates its sat-

isfaction, and stores relevant information used in previous similar situation.

Proactive UIs provide cognitive support in each phase. Different cognitive
support types have been derived from the cognitive problem solving process of
human beings. They facilitate users to accomplish the respective phases:

– Type one: Situational descriptions facilitate users to identify relevant infor-
mation in their current situation,

– Type two: Overviews of relevant goals facilitate users to identify all options
they have in their current situations,

– Type three: Recommendations of goals support users to make their decisions,
– Type four: Goal-directed previews, and step-by-step instruction teach users

how to achieve a goal,
– Type five: Reviews present information of how a goal was achieved and point

out conclusions that can be drawn, and
– Type six and seven: Justifications of recommendations and terminological

definitions facilitate the understanding of users and encourage them to place
trust in the support messages. Hence, users are more likely to trust a system,
if they can reconstruct how it did retrieve certain solutions or what caused
the system to make certain recommendations.

4 Knowledge Modelling

4.1 Reusing Domain and Task Model

In order to model a specific business process, the knowledge about a particular
domain and its processes is collected and structured during the design phase. A
key feature of our concept is the reusability of the resulting domain and task
model for the development of the support feature of the application. The idea
is to represent the two knowledge models by ontologies, since they guarantee a
high degree of reusability and can be easily maintained. This significantly simpli-
fies the development process since information can be shared and communicated
among development teams. In addition, the fact that diverse applications and

7



their support features draw knowledge from a common ontology facilitates data
respectively knoweldge exchange and allows for a consistent user support behav-
ior.

Several ontology development environments are available to support the rep-
resentation of knowledge in several formats [MFRW00]. We use Protégé [GMF+03]
to structure the domain and task model during design time since a Protégé
project, including both models, can be directly imported into a Jess reasoning
engine [FH03], [FH05]. The reasoning engine transforms the ontological data into
a formal representation which is stored in the conceptual layer of the proactive
UI. Furthermore, the engine is used to explicate knowledge and infer new knowl-
edge from the conceptual layer, thus facilitating dynamic support generation.

The following sections discuss the ontological engineering for a domain and
task model as well as strategies for support generation in more detail by means
of a sample scenario.

4.2 The Scenario

To facilitate a better understanding of the principles proposed, we are drawing
several examples from an eRecruiting application, a business application used
in Human Ressource Departments. The eRecruiting application models the task
workflow of two types of users: candidates and recruiters. Recruiters working
in the Human Ressource Department can, for example, manage applications,
post job offers, and enter paper applications, while internal and external can-
didates enter their resumes and submit applications. Examples referring to the
eRecruiting scenario can be found pervasively throughout the following sections.

4.3 Ontologies in Proactive UIs

We distinguish between three types of ontologies: (1) top-level ontologies, (2)
domain ontologies, and (3) task ontologies [Gua97]. The top-level ontology is
a domain-independent meta-ontology that defines the structure of the domain
and task ontology. The domain ontology is used to represent the domain model.
It structures the domain concepts by giving their hierarchical position, relation,
and properties. Figure 3 shows a simple domain model of the eRecruiting sce-
nario [MFRW00],[RN03]. The task ontology is used to represent the task model.
It describes the tasks and actions in the application as well as their interdepen-
dencies [vWvdV98], [Tim02], [MSI96]. Figure 5 shows the hypothetical super
goal Resume-created of the eRecruiting scenario which requires the achievements
of three sub-tasks which can be completed in an arbitrary order. However, se-
quential orders of task can be implemented as well by setting precondition of
specific tasks. The state chart below represents the sub-goal Skill-entered which
is achieved by executing three parallel actions. In addition, ontologies represent
the user model composed of user goal, tasks, and actions. In fact, the user model
basically is considered a subset of the task model: Instead of representing all
goals, task, and actions in the domain, only individual actions and tasks already
completed by the user are included.

8



Fig. 3. A simple domain model for an eRecruiting
application.

Fig. 4. Three facts representing a simplified do-
main model.

Fig. 5. Detailed view on the goal
Resume-created.

4.4 Implementation of Ontologies

We suggest the use of a rule-based language in order to implement the knowledge
representation of proactive UIs. In rule-based languages, facts are used to specify
user, task, and domain models. These facts may be regarded as axiomatically
true statements about concepts. The properties of concepts and the relations
between concepts are stored in slots which are attached to the facts [FH03].

Figure 4 shows three Jess facts representing the three domain concepts Skill,
Language, and Competence introduced in Figure 3. The slots of the facts rep-
resent their hierarchal relation, such as super-term and sub-term, as well as
properties, such as name and type.

Fig. 6. Three facts representing the domain model.

The task model introduced in Figure 5 is implemented by Jess facts as shown
in Figure 6. The first fact represents the user goal Resume-created that can

9



be achieved by the task Create-Resume. The second fact implements the task
Create-Resume which has three sub-tasks and no precondition in order to be
completed. Preconditions implement sequential order of tasks. The third fact em-
bodies the action Enter-Language which is part of the sub-task Enter-Personal-
Data and can have any value.

Fig. 7. Implementation of the default user model.

The user model can be implemented as shown in Figure 7. The user has
already chosen a goal, but has not entered any further data yet. The first fact
embodies the goal of the user to create a resume. The second fact represents the
current task of the user, Create Resume, whose state is flagged default.

Whenever the user executes an action, a fact representing the new action
is added to the user model. Furthermore, the status of its sub and super task
are updated if they are required for the overall goal of the user. The status of
a sub or super task in the user model can be default, pending, or achieved. A
(sub-)task is default if none, pending if at least one, and achieved if all of its
required (actions) sub-tasks have been completed.

4.5 Rules for Support Generation

Domain-independent rules have been implemented to dynamically update the
user model and generate definition, situational description, recommendation,
and justification. Since rules do not need to be tailored to a specific domain
but only depend on the structure of domain, task, and user model, they can be
reused in other domains.

Figure 8 shows the Jess implementation of a rule which fires whenever a
new action that is part of a default sub-task is added to the conceptual layer.
On fulfillment of this precondition the old fact representingthe sub-task will be
deleted, and a new fact representing the same – but updated – sub-task is added.

The rule for the generation of a definition is given in Figure 9. If a term needs
to be explained, the respective fact is retrieved from the knowledge base as is
the fact of a parallel concept in the ontology. The information contained in both
facts is then used to generate the definition. Next, the definition is structured
into a suitable format, such as xml, and is then passed on to the communication
layer, which maps it according to the users device and modality preferences.

Figure 10 introduces a simplified rule for the generation of a recommendation.
The rule fires whenever the user requests a valid entry for a specific field in the

10



Fig. 8. Updating the user model.

Fig. 9. Generating a definition.

application. The output of the rule is a list of possible values. This list can be
further filtered based on the user model and preferences.

5 Conclusion and Future Work

A framework for automated and adaptive support generation has been proposed
with a focus on cognitive support and multi-channel interaction. In particular, we
suggest to structure and represent domains, tasks, and user models by means of
ontologies and rule-based principles. Furthermore, reasoning strategies have been
provided to explicate knowledge and to form context-sensitive support messages.
A prototype has been implemented that delivers proof and verification of our
concept of a proactive UI.

Future work will be based on the extension and improvement of both knowl-
edge representation as well as support generation strategies of the current version
of the proactive UI. We aim to modify the prototype to further implement the

11



Fig. 10. Recommendation of a valid entry.

capabilities of the conceptual study presented which will be subject to technical
and user evaluation. User tests and interviews, as well as task analysis have to
take place in order to refine the support concept. Although the prototype and
an illustrative demo have been subject to user interviews, only the integration
of the prototype and the communication layer into a business application can
provide a basis for accurate empirical studies.

Furthermore, the current rather simple user model needs to be expanded. For
example information about the user, such as the preferred way of solving a task,
the learning preferences, and already acquired knowledge, could be included.

References

[Ama68] S. Amarel. On representations of problems of reasoning about actions.
Machine Intelligence, 3, 1968.

[Chi86] D.N. Chin. User modeling in uc: The unix consultant. In Proc. of the CHI86
Conference on Human Factors in Computing Systems, pages 24–28, 1986.

[CJB98] B. Chandrasekaran, J.R. Josephson, and V.R. Benjamins. Ontology of
tasks and methods. In 11th Knowledge Acquisition Modeling and Manage-
ment Workshop (KAW’98), Banff, Canada, 1998.

[ea86] H.A. Simon et al. Decision making and problem solving, 1986.

[FH03] E. Friedman-Hill. Jess in action. rulebased system in java, 2003.

[FH05] E. Friedman-Hill. Jess information, 2005.

[FN71] R. Fikes and N. Nilson. Strips: A new approach to the application of the-
orem proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[GMF+03] J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubezy,
H. Eriksson, N. F. Noy, and S. W. Tu. The evolution of protege: An envi-
ronment for knowledge-based systems development. International Journal
of HumanComputer Studies, 58(1):89–123, 2003.

[Gua97] N. Guarino. Formal ontological distinctions for information organization,
extraction, and integration. Information Extraction: A Multidisciplinary
Approach to an Emerging Information Technology, pages 139–170, 1997.

[HH98] E. Horovitz and D. Heckerman. The lumiere project: Bayesian user mod-
eling for inferring the goals and needs of software users. In Proc. of 14th
Conference on Uncertainty in Artificial Intelligence, pages 256–265, Madi-
son, WI, USA, 1998.

[KM05] M. Kaiser and C. Mueller. The shopping scout: A framework for an in-
telligent shopping assistant. In Proc. of Workshop of the 2nd Internat.
Conference on eBusiness and Telecommunication Networks, Reading, UK,
2005.

12



[Lem84] A.C. Lemke. Passivist: Ein passives, natuerlichsprachiges hilfesystem fuer
den bildschirmorientierten editor bisy(in german). Master’s thesis, Uni-
versity of Stuttgart, Computer Science Department, Stuttgart, Germany,
1984.

[MFRW00] D.L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment
for merging and testing large ontologies. In Proc. of the Seventh Inter-
nat. Conference on Principles of Knowledge Representation and Reasoning
(KR2000), Breckenridge, Colorado, USA, 2000.

[MSI96] R. Mizoguchi, K. Sinitsa, and M. Ikeda. Task ontology design for intelligent
educational/training systems. In Position Paper for ITS96 Workshop on
Architectures and Methods for Designing Cost-Effective and Reusable ITSs,
Montreal, 1996.

[Nie93] J. Nielson. Usability Engineering. San Francisco. California, USA, 1993.
[Opp94] R. Oppermann. Adaptive User Support: Ergonomic Design of Manually

and Automatically Adaptable Software. Hillsdale, New Jersey, USA, 1994.
[Pol57] G. Polya. How to Solve It. Princeton University Press, New Jersey, USA,

1957.
[RN03] S.J. Russel and P. Novig. Artificial Intelligence: A Modern Approach, vol-

ume Second Edition. Upper Saddle River, New Jersey, USA, 2003.
[Sch91] T. Schwab. A framework for modelling dialogues ininteractive systems.

Human aspects in computing: Design and use of interactive system and
information management, 18 B:940–945, 1991.

[Sle85] D. Sleemann. A user modelling frontend subsystem. International Journal
of Man-Machine Studies, 23:71–88, 1985.

[SS02] R. Sinha and K. Swearing. The role of transparency in recommender sys-
tems. In Extended Abstracts Proc. of Conference on Human Factors in
Computer Systems (CHI2002), pages 830–831, Minneapolis, Minnesota,
NewYork, USA, 2002. ACM Press.

[ST01] P. Sisler and C. Titta. Help is dead. long live help. In STC Proceedings,
2001 Annual Conference of the Society forTechnical Communication, pages
543–548, 2001.

[Tim02] S. Timpf. The need for task ontologies in interoperable gis, 2002.
[vWvdV98] M. van Welie and G.C. van der Veer. Ontology for task world models. In

Proceedings DSV-IS98, pages 57–70, 1998.

13


	Knauf_Vorblatt_KESE2006_MKK.pdf
	KESE2006_MKK.pdf



