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Numerical Simulation of Subharmonically ReactingNonlinear Electrical CircuitsW.G. B�untig and W. VogtTechnical University of IlmenauAbstractThe mathematical synthesis of nonlinear dynamical systems with subharmonicresponse is an interesting approach in the study of bifurcations of electrical circuits. Weuse an idea of E.S. Phlippow [6] and construct a mathematical model for periodicallyforced heteronomous systems as a combination of an oscillating system with expectedsolution and a so-called identity which is coupeling the oscillator with the externalforce. For parametrically forced systems, the model equations can be obtained in ananalogous way.By numerical simulation we demonstrate the occurence of quasi-periodic solutions inthese systems. In generic cases a stable invariant torus emerges as the closure of aquasi-periodic orbit. This leads to the idea of analyzing a quasi-periodic solution bydirect computation of the invariant torus. Two di�erent numerical approaches arepresented which can approximate both stable and weakly unstable torus solutions.Keywords: Numerical simulation, quasi-periodic orbits, invariant toriAMS subject classi�cation: 65C20, 65L101 The Principle of Mathematical SynthesisThe idea to �nd a mathematical model of subharmonically reacting systems is de-scribed by E.S. Philippow in [6]. The task is to develop an ideal frequency dividingnetwork with input �(�) = sin(n�) or �(�) = cos(n�) and output �(�) = sin(�) or�(�) = cos(�). The input �(�) and the output �(�) are normalized currents or voltages,� is a normalized time. The required behaviour can be described by a non-autonomous2-nd order di�erential equationd2xd�2 + F �x; dxd� � = �(�) (1)with the condition lim�!1 fx (x(0); _x(0); �)� �(�)g = 0 (2)



for the solution x(x0; _x0; �) of (1). For further considerations it is convenient to splitthe function F (x; _x) into two terms, a damping termTd = f �x; dxd� � dxd� (3)and a restoring term Tr = g�x; dxd� � : (4)For the pure sinusoidal solution of (1), the function f (x; _x) in the x� _x plane has todescribe an exact circle f (x; _x) = " �x2 + _x2 � 1� : (5)" is a parameter determining the transient process from the inital point to the limitcycle. The restoring term saves the capability of the system to produce an oscillation.So the term should have the following properties:g(x; _x) = �g(�x; _x) ; xg(x; _x)jjxj>� = 0 ; � < jx̂j : (6)Then the model equation is�x� "(1� x2 � _x2) _x+ g(x; _x) = �(�) : (7)If g(x; _x) ful�ls the conditiong (x(�); _x(�))� �(�) = x(�) (8)the model equation becomes �x � "(1� x2 � _x2) _x+ x = 0 (9)with the exact sinusoidal solution x = cos � and x̂ = 1. Equation (8) yields a conditionfor g(x; _x) g(x; _x) = �(�) + x = cos(n�) + xcos(n�) = Tn(cos �) = Tn(x) (10)g(x; _x) = Tn(x) + xwhere Tn(x) is the Chebyshev polynomial of order n. (10) describes an identity. TheChebyshev polynomials of even order n = 2m ; m = 1; 2; : : : ; do not ful�l therequirements for the restortion term (6). They have to be transformed (usually bydi�erentiation) into a suitable term (see Table 1). For n = 2m , Tn(x; _x) has thestructure of a damping term.The left hand side of the identity describes a circuit for the coupeling of the oscillatorwith the external force. The coe�cients b and B̂ allow to investigate the in
uence ofthe coupeling term and the amplitude of forcing term:b Tn(x; _x) = (B̂ cos(n�)B̂ sin(n�) : (11)



n �(� ) Tn(x; _x) �(� )2 sin(2� ) 2 x _x sin �3 cos(3� ) 2 x3 � 3 x cos �4 sin(4� ) (8 _x2 x� 4 x) _x sin �5 cos(5� ) 16 x5 � 20 x3 + 5 x cos �Table 1: Structure of possible terms TnWe use the term identity to call this part of the model equation and mean only aso-called identity.The basic philosophy of modelling a subharmonically reacting system is(1) to build an autonomous model equation with the desired subharmonic solution(2) to �nd an identity which provides the harmonic signal, if we put the same solu-tion into this identity(3) to add the autonomous equation and the identity to get the model of the subhar-monic system.A parametric system is based on an equation of Matthieu type. So we take aRayleigh equation to describe the oscillating system�x� "(k1 � _x2) _x+ x = 0 : (12)To guarantee the stability of the investigated systems with an even subharmonic re-action we use as identity the modi�ed Chebyshev polynomials of the form� bn2 dTndx _x = B̂n sin(n�) (13)respectively bn dTndx _x = �B̂ sin(n�) : (14)The identities are ful�lled if b = B̂. To �nd a parametric system we have to multiply(13) or (14) by x. So we get two new forms of the identities� bn2 dTndx _xx = bxn sin(n�) (15)bn dTndx _xx = �bx sin(n�) : (16)In the following we consider two special cases of model equations. To obtaina mathematical model of a 3-fold subharmonically reacting system we use acombination of the oscillating system�x � "(1� x2 � _x2) _x+ x = 0 (17)with the solution x(�) = sin � or x(�) = cos � and the so-called identityb(4x3 � 3x) = B̂ cos(3�) : (18)



The identity is ful�lled if b = B̂ and x(�) = cos � . By using (17) and (18) the modelequation may be written as�x� "(1� x2 � _x2) _x+ x+ b(4x3 � 3x) = B̂ cos(3�) : (19)If we consider b = B̂ = 1 we get the desired subharmonic solutions of (19)x1 = cos � ; x2 = cos(� + 2=3�) ; x3 = cos(� + 4=3�) : (20)The solutions (20) can be considered within 5 < " < 30.For the equation of a 2-fold subharmonically reacting system we have tochose T2 = 2x2�1 . If we use the identity (15) with k1 = 1 we �nd the model equation�x+ " _x3 � " _x � bx2 _x+ �1� b2 sin(2�)�x = 0 : (21)The desired solution of this equation is x = cos � . For the network synthesis we mayfurthermore transform the term x2 into x2 = 1� _x2 and �nd�x+ ("+ b) _x3 � ("+ b) _x+ �1� b2 sin(2�)�x = 0 (22)or more generally �x+ � _x3 � � _x+ �1� b2 sin(2�)�x = 0 (23)with � = � = ("+ b) :The choice of the parameter values is also based on the condition that the identityand the oscillating system must have an approximately identical harmonic solution.The solution of a Rayleigh type equation is sinusoidal only for small values of " . Thesmaller the "-values the smaller are the distortions of solutions too. The "-value maybe chosen within the boundaries 0 < " < 0:5 .2 Computation of Torus SolutionsWe consider (19) and (23) as special dynamical systems of the general formdxdt = f(x) ; f : Rn! Rn (24)where f 2 Cr is a su�ciently smooth vector �eld. While reliable numerical toolsare available for stationary and periodic solutions, there exist only �rst approachesdealing with multi-frequency oscillations as a further kind of equilibriums in dynamicalsystems. Two ways are generic in the occurence of quasi-periodic orbits:� A stable biperiodic solution emerges by a Hopf (Neimark-Sacker) bifurcation inthe neighbourhood of a periodic solution.� A periodic solution on a torus undergoes a saddle-node bifurcation and so aquasi-periodic solution emerges.



In both cases a stable invariant torus emerges as the closure of the quasi-periodic orbit.This leads to the idea of analyzing quasi-periodic solutions by direct computation oftheir invariant tori. We present two numerical approaches to approximate invariant2-tori:� Transformation of problem (24) into torus coordinates and solution of the partialdi�erential equations describing the invariant torus manifold (see [1], [9])� Computation of the Poincar�e map of 2-tori in Rn and approximation of theclosed invariant curve as a polygon by integration of (24) and suitable additionof further points (see [3]).Both approaches can be applied to general quasi-periodic orbits and to p-tori, but thenumerical e�ort is considerable in case of p > 2 . In our subharmonically reactingcircuits we can restrict the considerations to invariant 2-tori and to periodic andbiperiodic orbits laying on them.2.1 Integration of the Torus EquationsWe pass over from Cartesian coordinates x = (x1; � � � ; xn) to radial coordinatesu = (u1; � � � ; uq) and torus coordinates � = (�1; � � � ; �p) with p + q = n by the trans-formation x = B(�)u + b(�) (25)where b : Tp! Rn and B : Tp ! Rn�q . Now we are looking for a parametrizationof the torus M in (�; u)-coordinatesM = f(�; u) j u = u(�) ; � 2 Tpg (26)Using transformation (25) in (24) yields[B0(�)u+ b0(�) ; B(�)] � _�_u � = f(B(�)u + b(�)) ; (27)and we obtain the partitioned system (see [7])_� = 
(�; u)_u = R(�; u) : (28)We will assume that (28) has a locally unique invariant torus M, which can beparametrized in the form (26) with the Cr-function u(�) (r � 1). The torus man-ifold M� Tp�Rq is invariant under the given vector �eld (
(�; u); R(�; u))T of (28)if and only if u(�) satis�es the quasilinear PDE system with the same principle partpXj=1 
j(�; u) @u@�j = R(�; u) (29)for � 2 Tp . System (29) together with the torus conditionsu(�1; � � � ; �j�1; �j + 2�; �j+1; � � � ; �p) = u(�1; � � � ; �p) ; j = 1:::p ; (30)



for all �j 2 R, describes the invariant torus M. The aim of our approach is to reducethe two-dimensional problem to a one-dimensional periodic problem, because thereexist reliable numerical methods for the treatment of periodic orbits. For it we haveto select the variable �2 , for which 
2 6= 0 for (�; u) 2 T2�Rq. If we divide (29) by
2 we obtain @u@t + !(�; t; u)@u@� = r(�; t; u) ; (�; t) 2 T2 (31)with u 2 C1(T2) ; ! :T2�Rq ! R ; r :T2�Rq ! Rq and torus conditionsu(�; t) = u(� + 2�; t) ; u(�; t) = u(�; t+ 2�) : (32)For �xed t 2 I = [0; T ] ; T = 2� ; let v(t) := u(�; t) be an element of the Banach spaceB = fw 2 C 1(T1;Rq) j w(�) = w(� + 2�) ; � 2 [0; 2�) g :With the di�erential operator F de�ned on B � I byF(v; t) � �!(�; t; u)@u@� + r(�; t; u) (33)problem (31),(32) is equivalent to the two point boundary value problemdvdt = F(v; t) ; v(0) = v(T ) ; T = 2� (34)for v : I ! B. The periodicity of the functions ! and r is transmitted to F withF(v; t+ T ) = F(v; t) ; (v; t) 2 B �R ; (35)hence we can consider (34) as a periodically forced system. Any periodic solution v�corresponds to exact one torus solution u� of (31) and conversely. Now it is an obviousapproach to reduce this problem with the help of a shooting method to a convergentsequence of initial value problems. Therefore we consider the corresponding initialvalue problem dvdt = F(v; t) ; v(0) = g 2 B (36)for t 2 (0; T ). Let g 2 B be a �xed initial element. Then (36) yields the correspondingsolution v(t; g) on I = [0; T ]. So the map ' : B ! B can be de�ned by'(g) � v(T; g)� g : (37)Obviously v�(0) = g� is the initial condition of (36) if g� solves the equation'(g) = 0 : (38)A �rst version of the shooting method is based on the �xed point (Picard) iteration for



g = v(T; g) : (39)To apply this method the torus M has to be orbitally stable. Otherwise we have touse Newton-like methods to solve (38). The numerical computations however must becarried out in �nite dimensional spaces. System (31) can be discretized on a suitablegrid T2h over the standard torus T . On this discretized torusT2h = f(�j ; tn) j �j = jh; tn = n� ; j = 0::J ; n = 0::Ng (40)a large number of explicit and linearly implicit di�erence methods of �rst order canbe described in the general representation1� 24 1X�=�1 S��(�j ; tn; unj )un+1j+� � 1X�=�1S�(�j ; tn; unj )unj+�35 = r(�j ; tn; unj ) (41)with grid functions unj � u(�j ; tn) and stepsizes h and � ( �/h = const). S�� andS� (� = �1; 0; 1) are diagonal matrices where S�� ; S� 2 Rq�q.Under suitable assumptions it can be veri�ed that these one-step methods areconsistent and convergent in h and � (see [1]). Special methods implemented in the Ccode TORUS are the� Explicit upwind-type method of order 1� Linearly-implicit upwind-type mehod of order 1� Upwind methods with global extrapolation of order 2� Upwind methods with defect correction of order 2.2.2 Approximation of Closed Invariant CurvesWe now consider periodically forced systemsdxdt = f(t; x) ; f 2 Cr(R�Rn) ; r � 2 (42)with f(t + T; x) = f(t; x) 8(t; x) 2 R�Rn ; T � 0 : The (stroboscopic) Poincar�e mapof (42) with time step T is de�ned by� : D 2 Rn! Rn ; �(x0) := x(T ; x0) : (43)Let us assume that � has a simple closed invariant curve 
 � Rn. Then there existsa map u : I ! Rn ; I = [0; 2�) such that 
 = fxjx = u(�) ; � 2 I ; u(0) = u(2�)g isinvariant under � : � 
 = 
 : (44)The numerical solution of this equation is based on an idea of Van Veldhuizen [8], whoapproximates 
 by polygons P � Rn in the following steps:



� Let x1; x2; : : : ; xN be the N vertices of the polygon P(fxigNi=1) with edges[x1; x2]; [x2; x3]; : : : ; [xN ; x1].� Application of the Poincar�e map � yields the images �xi and hence a new poly-gon P(f�xigNi=1) .� For asymptotically stable 
 it can be assumed that P(f�xigNi=1) will be a "better"approximation of 
 than P(fxigNi=1) and �nallyP(f�nxigNi=1) �! 
 ; n;N !1if the initial polygon P(f�0xigNi=1) = P(fxigNi=1) is su�ciently close to 
 .The following problem however can arise: If the 
ow on the torus is periodic thenthe �nxi; n = 1; 2; : : : ; converge to one point or to few points on the curve 
 . A"homogeneous" distribution of the vertices �nxi; n = 1; 2; : : : can be obtained byprojection of the old vertices onto the new polygon P(f�xigNi=1) and insertion ofnew vertices after each iteration step. The numerical map then consists of � and aprojection � by piecewise linear interpolation : Kxi = ��xi .One step of the �xed point iteration implemented in the C code ICURVE now readsas follows:1. Computation of the images of all vertices P(fxigNi=1) by numerical integration ofthe di�erential equations2. Projection of the old vertices fxigNi=1 onto the polygon P(f�xigNi=1)3. Insertion of further vertices in order to obtain a su�ciently dense approximationof the curveAn approximating polygon P(fx�i gNi=1) is de�ned as a solution of the equationP(fxigNi=1) = P(fKxigNi=1) : (45)Under suitable conditions of the problem (see [3]) it can be shown that this equationhas a unique solution and the sequence of the polygonsP(fxigNi=1);P(fKxigNi=1);P(fK2xigNi=1); : : :converges to P(fx�i gNi=1).3 Torus Solutions of the Model EquationsAt �rst we consider the model equation (23)�x + � _x3 � � _x + (1 +B sin 2�)x = 0with B = 0:1 � = "�B = "� 0:1 � = "2 � B = "2 � 0:1 : (46)



Automatic transformation by the code TORUS into polar coordinates yieldsd�1dt = �cs� sin2�1 � �u2 sin3 �1 cos �1 � (1 + B sin 2�2) cos2 �1 =  (�1; �2; u; ")d�2dt = 1 (47)dudt = u(cs+ � sin2 �1)� �u3 sin4 �1 � u(1 + B sin 2�2)cs = r(�1; �2; u; ")with cs = cos �1 sin �1 .The torus equation ofM is now@u@�2 +  (�1; �2; u; ") @u@�1 = r(�1; �2; u; ") :
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Figure 2: Torus sections : (a) quasi-periodic solutions; (b) " = 5:0The invariant tori were computed by the linear-implicit (smooth) upwind-typemethod including global defect corrections. In �gure 3 the whole torus is displayed intwo projections for " = 5:0 .



Figure 3: Grid model for " = 5:0The code ICURVE begins with an initial polygon of 40 points x1; x2; :::; x40 onthe unit circle. We obtained the following invariant curves:
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Figure 4: (a) Invariant curves : periodic solutions; (b)Invariant curves : quasi-periodic solutionsNow we apply the two methods to the parametric model (19)�x� "(1� x2 � _x2) _x+ x+ b(4x3� 3x) = B cos 3� :Automatic transformation by TORUS into polar coordinates yields the partitionedsystem with � = �2d�1dt = "(1� u2) sin �1 cos �1 � 1� b cos2 �1(4u2 cos2 �1 � 3) + 1uB cos �1 cos 3�2= !(�1; �2; u; "; B)d�2dt = 1 (48)dudt = "(1� u2)u sin2 �1 � b sin �1(4u3 cos3 �1 � 3u cos �1) +B sin �1 cos 3�2= r(�1; �2; u; "; B) :



The invariant torus is described by the PDE@u@�2 + !(�1; �2; u; "; B) @u@�1 = r(�1; �2; u; "; B) (49)and the torus conditions u(�1; �2) = u(�1 + 2�; �2)u(�1; �2) = u(�1; �2 + 2�) : (50)
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1 1 1B = 0:3 B = 0:6 B = 1:0Figure 6: 3-fold subharmonically reacting system for " = 2, b = 1and di�erent values of B.
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Figure 8: 3-fold subharmonically reacting systemThe applications of the two completely di�erent numerical methods to our modelequations (19) and (23) show that in both models quasi-periodic responses can arise.So these methods can serve as reliable tools for numerical simulations of electricalcircuits including variations of their system parameters.
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