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Numerical Simulation of Subharmonically Reacting
Nonlinear Electrical Circuits

W.G. Bintig and W. Vogt

Technical Unwversity of llmenau

Abstract

The mathematical synthesis of nonlinear dynamical systems with subharmonic

response is an interesting approach in the study of bifurcations of electrical circuits. We
use an idea of E.S. PHLIPPOW [6] and construct a mathematical model for periodically
Jforced heteronomous systems as a combination of an oscillating system with expected
solution and a so-called identity which is coupeling the oscillator with the external
force. For parametrically forced systems, the model equations can be obtained in an
analogous way.
By numerical simulation we demonstrate the occurence of quasi-periodic solutions in
these systems. In generic cases a stable invariant torus emerges as the closure of a
quasi-periodic orbit. This leads to the idea of analyzing a quasi-periodic solution by
direct computation of the invariant torus. Two different numerical approaches are
presented which can approximate both stable and weakly unstable torus solutions.

Keywords: Numerical simulation, quasi-periodic orbits, invariant tori
AMS subject classification: 65C20, 65110

1 The Principle of Mathematical Synthesis

The idea to find a mathematical model of subharmonically reacting systems is de-
scribed by E.S. Philippow in [6]. The task is to develop an ideal frequency dividing
network with input o(7) = sin(n7) or o(7) = cos(n7) and output {(7) = sin(7) or
¢(1) = cos(7). Theinput o(r) and the output {(7) are normalized currents or voltages,
7 is a normalized time. The required behaviour can be described by a non-autonomous
2-nd order differential equation

d?x dz
W—I_F(QC’E)_U(T) (1)
with the condition

lim {z (2(0),2(0),7) - ¢(7)} =0 (2)

T—r00



for the solution a(zg, g, 7) of (1). For further considerations it is convenient to split
the function F'(z, ) into two terms, a damping term

dz\ dz

ma (s ) o

For the pure sinusoidal solution of (1), the function f(z,) in the # — & plane has to
describe an exact circle

and a restoring term

[l @) =c(a®+i%—1). (5)

€ is a parameter determining the transient process from the inital point to the limit
cycle. The restoring term saves the capability of the system to produce an oscillation.
So the term should have the following properties:

z| .

(6)

g(z,3) = —g(~2,2) , 2g(x,@)|jp5s=0, <
Then the model equation is
i—e(l—a?—iti+g(a,3) =0o(r). (7)
If g(x, &) fulfils the condition

g (x(r),@(r)) —o(r) = 2(7) (8)
the model equation becomes
i—e(l—a?—i%)i+a=0 (9)

with the exact sinusoidal solution = cos T and Z = 1. Equation (8) yields a condition
for g(x, &)

g(z,2) = o(r)+2 = cos(nr)+ 2
cos(nt) = T,(cost) = T,(2) (10)
gz, 2) = T,(z)+=z

where T),(2) is the Chebyshev polynomial of order n. (10) describes an identity. The
Chebyshev polynomials of even order n = 2m, m = 1,2,..., do not fulfil the
requirements for the restortion term (6). They have to be transformed (usually by
differentiation) into a suitable term (see Table 1). For n = 2m , T, (¢, %) has the
structure of a damping term.

The left hand side of the identity describes a circuit for the coupeling of the oscillator
with the external force. The coefficients b and B allow to investigate the influence of
the coupeling term and the amplitude of forcing term:

B cos(nr)

Bsin(nr) . ()

bT,(z, &) = {



n | o(r) To(z, ) ¢(7)
2 sin(27) 221 sin T
3 cos(37) 2% -3« COS T
4 sin(47) 822z —4x)z sin 7
5 cos(57) 162> =202 +5=x COS T

Table 1: Structure of possible terms T,

We use the term identity to call this part of the model equation and mean only a
so-called identity.

The basic philosophy of modelling a subharmonically reacting system is

(1) to build an autonomous model equation with the desired subharmonic solution

(2) to find an identity which provides the harmonic signal, if we put the same solu-
tion into this identity

(3) to add the autonomous equation and the identity to get the model of the subhar-
monic system.

A parametric system is based on an equation of Matthieu type. So we take a
Rayleigh equation to describe the oscillating system

i—elky—ita+2=0. (12)

To guarantee the stability of the investigated systems with an even subharmonic re-
action we use as identity the modified Chebyshev polynomials of the form

bdTl,. B .
—ﬁ%$ = gSln(nT) (13)
respectively
bdT, . A
P —Bsin(nT) . (14)

The identities are fulfilled if b = B. To find a parametric system we have to multiply
(13) or (14) by x. So we get two new forms of the identities

bdTl,.  bx (n7) (15)
gy te = osin(nT

bdT, . .

P L —bxsin(nT) . (16)

In the following we consider two special cases of model equations. To obtain
a mathematical model of a 3-fold subharmonically reacting system we use a
combination of the oscillating system

i—e(l—a®—itit+a=0 (17)
with the solution z(7) =sin 7 or 2(7) = cos T and the so-called identity

b(423 — 32) = Bcos(37) . (18)



The identity is fulfilled if b= B and z(7) = cos 7. By using (17) and (18) the model
equation may be written as

F—e(l —a? —i%)i 4 x + b(42® — 3z) = Beos(37) . (19)

If we consider b = B = 1 we get the desired subharmonic solutions of (19)
ry=cosT, xy=-cos(tr+2/37), a3=-cos(t+4/37). (20)

The solutions (20) can be considered within 5 < & < 30.
For the equation of a 2-fold subharmonically reacting system we have to
chose Ty = 222 —1 . If we use the identity (15) with k; = 1 we find the model equation

b
P4ei®—ci—bas + [1 — §sin(27')] z=0. (21)

The desired solution of this equation is x = cos7. For the network synthesis we may
furthermore transform the term 2?2 into 22 = 1 — #% and find

b
P4 (e +0)i° — (e +b)E + [1— §sin(27')] z=0 (22)
or more generally
b
P+ i — Bi + [1 -3 sin(QT)] z=0 (23)

with a == (¢ +b).

The choice of the parameter values is also based on the condition that the identity
and the oscillating system must have an approximately identical harmonic solution.
The solution of a Rayleigh type equation is sinusoidal only for small values of £ . The
smaller the e-values the smaller are the distortions of solutions too. The e-value may
be chosen within the boundaries 0 < e < 0.5 .

2 Computation of Torus Solutions

We consider (19) and (23) as special dynamical systems of the general form

d—wzf(x) , f:R"=R" (24)
dt

where f € (7 is a sufficiently smooth vector field. While reliable numerical tools

are available for stationary and periodic solutions, there exist only first approaches

dealing with multi-frequency oscillations as a further kind of equilibriums in dynamical

systems. Two ways are generic in the occurence of quasi-periodic orbits:

e A stable biperiodic solution emerges by a Hopf (Neimark-Sacker) bifurcation in
the neighbourhood of a periodic solution.

e A periodic solution on a torus undergoes a saddle-node bifurcation and so a
quasi-periodic solution emerges.



In both cases a stable invariant torus emerges as the closure of the quasi-periodic orbit.
This leads to the idea of analyzing quasi-periodic solutions by direct computation of
their invariant tori. We present two numerical approaches to approximate invariant
2-tori:

e Transformation of problem (24) into torus coordinates and solution of the partial
differential equations describing the invariant torus manifold (see [1], [9])

e Computation of the Poincaré map of 2-tori in R™ and approximation of the
closed invariant curve as a polygon by integration of (24) and suitable addition
of further points (see [3]).

Both approaches can be applied to general quasi-periodic orbits and to p-tori, but the
numerical effort is considerable in case of p > 2 . In our subharmonically reacting
circuits we can restrict the considerations to invariant 2-tori and to periodic and
biperiodic orbits laying on them.

2.1 Integration of the Torus Equations

We pass over from Cartesian coordinates @ = (x1,---,2,) to radial coordinates
w = (uy, - ,uy) and torus coordinates § = (6y,---,6,) with p+ ¢ = n by the trans-
formation

x = B(8)u+b(0) (25)

where b : TP — R” and B : TP — R"*? . Now we are looking for a parametrization
of the torus M in (#, u)-coordinates

M={(0,u) | u=u®), 8cT"} (26)

Using transformation (25) in (24) yields

[B'(§)u+b'(6) , [ ] f(B(O)u+0(0)) (27)
and we obtain the partitioned system (see [7])
i = o )

We will assume that (28) has a locally unique invariant torus M, which can be
parametrized in the form (26) with the C”-function u(#) (r > 1). The torus man-
ifold M C T? x R? is invariant under the given vector field (Q(6,u), R(6,u))T of (28)
if and only if u(6) satisfies the quasilinear PDE system with the same principle part

P
Jdu
ZQ (6, u) = 0%, = R(0,u) (29)
7=1
for € TP . System (29) together with the torus conditions

w(fp, - ,0;-1,0; + 27,049, ,0,) =u(by,---,6,), j=1.p, (30)



for all #; € R, describes the invariant torus M. The aim of our approach is to reduce
the two-dimensional problem to a one-dimensional periodic problem, because there
exist reliable numerical methods for the treatment of periodic orbits. For it we have
to select the variable 6, , for which Q3 # 0 for (8, u) € T? x R% If we divide (29) by
Q5 we obtain

Jdu ou 2
N —|—w(0,t,u)% =r(,t,u), (6,t)eT (31)

with w € CY(T?,w:T? xR =+ R, r: T? x R? = R? and torus conditions
w(f,t) =u(@+2m,t), w(dt)=u(d,t+27) . (32)
For fixed t € I =[0,T], T =27, let v(t) := u(6,t) be an element of the Banach space
B={weC (T RY | w(d) =w@+27), § €[0,27)}.

With the differential operator F defined on B x I by

F(v,t) = —w(@,t,u)% +r(6,t,u) (33)

problem (31),(32) is equivalent to the two point boundary value problem

dv
S =F) . w0)=u(T) , T=2r (34)

for v : I — B. The periodicity of the functions w and r is transmitted to F with
Fo,t+T)=F(v,t) , (v,t)e BxR (35)

hence we can consider (34) as a periodically forced system. Any periodic solution v*
corresponds to exact one torus solution u* of (31) and conversely. Now it is an obvious
approach to reduce this problem with the help of a shooting method to a convergent
sequence of initial value problems. Therefore we consider the corresponding initial
value problem

Z_: =F(v,t) , v(0)=g€B (36)

fort € (0,7). Let g € B be a fixed initial element. Then (36) yields the corresponding
solution v(t;g) on I =[0,T]. So the map ¢ : B — B can be defined by

olg)=v(Tyg9)—9g - (37)

Obviously v*(0) = ¢g* is the initial condition of (36) if ¢* solves the equation

©(g)=0. (38)

A first version of the shooting method is based on the fixed point (Picard) iteration for



g=v(T.g). (39)

To apply this method the torus M has to be orbitally stable. Otherwise we have to
use Newton-like methods to solve (38). The numerical computations however must be
carried out in finite dimensional spaces. System (31) can be discretized on a suitable
grid T? over the standard torus T . On this discretized torus

T? = {(8;,t,) | 0, = jh,t,=n7, j=0.J, n=0..N} (40)

a large number of explicit and linearly implicit difference methods of first order can
be described in the general representation

1 1
1 b n n n T T
= D S ta u)ul = Y S, (0t u Uty | = (05, uf)  (41)

u=-1 pu=-1

with grid functions u? ~ u(f;,¢,) and stepsizes h and 7 ( 7/h = const). S} and

Sy (p=—1,0,1) are diagonal matrices where S} , S, € R?*7.
Under suitable assumptions it can be verified that these one-step methods are

consistent and convergent in h and 7 (see [1]). Special methods implemented in the C
code TORUS are the

e Explicit upwind-type method of order 1
e Linearly-implicit upwind-type mehod of order 1
e Upwind methods with global extrapolation of order 2

e Upwind methods with defect correction of order 2.

2.2 Approximation of Closed Invariant Curves

We now consider periodically forced systems

d
—=flta), fECTRXRY, 1>2 (42)
with f(t +7T,2z) = f(t,z) V(t,2) e Rx R", T'> 0. The (stroboscopic) Poincaré map
of (42) with time step T' is defined by

¢ : DeR"—=R", ®(zg) :=2(T;z0) . (43)

Let us assume that ® has a simple closed invariant curve v C R™. Then there exists
amap u:l — R™", I =[0,27) such that v ={zjz =u(r), 7 €I, v(0) = u(27)} is
invariant under @ :

by = ~. (44)

The numerical solution of this equation is based on an idea of Van Veldhuizen [8], who
approximates v by polygons P C R"™ in the following steps:



o Let 21, 23,...,2x be the N vertices of the polygon P({z;}Y,) with edges
[xlv $2], [$27 $3]7 SRS [xNv $1].
e Application of the Poincaré map ® yields the images ®z; and hence a new poly-

gon P({®x}L,) .

e For asymptotically stable v it can be assumed that P ({®z; f\;l) will be a ”better”
approximation of 4 than P({z;}¥ ) and finally

PH{@"zi}L) — v .  mN-—oo

if the initial polygon P({®%z;}¥,) = P({z;}Y,) is sufficiently close to 7 .

The following problem however can arise: If the flow on the torus is periodic then
the ®"z;, n = 1,2,..., converge to one point or to few points on the curve v . A
”homogeneous” distribution of the vertices ®"z;, n = 1,2,... can be obtained by
projection of the old vertices onto the new polygon P({®z,;}},) and insertion of
new vertices after each iteration step. The numerical map then consists of ® and a
projection II by piecewise linear interpolation : Kuz; = [1®x; .

One step of the fixed point iteration implemented in the C code ICURVE now reads
as follows:

1. Computation of the images of all vertices P({z;}}\,) by numerical integration of
the differential equations

2. Projection of the old vertices {z;}¥, onto the polygon P({®x;}¥,)

3. Insertion of further vertices in order to obtain a sufficiently dense approximation
of the curve

An approximating polygon P ({27} ,) is defined as a solution of the equation

P({zi}ily) = PU{EKe}L,) - (45)

Under suitable conditions of the problem (see [3]) it can be shown that this equation
has a unique solution and the sequence of the polygons

P({zi}ily), PUE L), PUK 2} L), -

converges to P({z7}Y ).

3 Torus Solutions of the Model Equations
At first we consider the model equation (23)
a'v'—l—owb?’—ﬁab—l—(l—l—BsiHQT)x:O

with
B=0.1 a=¢—-—B=¢-0.1 0=



Automatic transformation by the code TORUS into polar coordinates yields

df,
dt

9,
dt
d_u
dt

Bes — sin?6y — au? sin® 0y cos by — (14 Bsin 263) cos? 6, = (61,03, u,¢)
1 (47)

u(cs+ Bsin?0y) — au’sin® 0, — u(1 + Bsin 26;)es = r(64, 02, u, €)

with ¢s = cos 8y sin by .
The torus equation of M is now

)

Figure 1: Torus sections
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Figure 2: Torus sections

: (a) quasi-periodic solutions; (b) ¢ = 5.0

The invariant tori were computed by the linear-implicit (smooth) upwind-type
method including global defect corrections. In figure 3 the whole torus is displayed in
two projections for € = 5.0 .
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Figure 3: Grid model for ¢ = 5.0

The code ICURVE begins with an initial polygon of 40 points zq, 29, ..., 249 On
the unit circle. We obtained the following invariant curves:

Figure 4: (a) Invariant curves : periodic solutions; (b)Invariant curves : quasi-

periodic solutions
Now we apply the two methods to the parametric model (19)
i—e(l—a*—3i%d+2+0b(42” - 32) = Beos3r .

Automatic transformation by TORUS into polar coordinates yields the partitioned

system with 7 = 6,

do 1
d_tl = ¢(1- uz) sin @y cosf; — 1 — bcos® 6, (4u2 cos? 0 — 3) + —B cos #; cos 360,
U
= w(017027u7€7B)
dby
- =1 4
y (48)
d
d_?tL = (1 —u*)usin®6; — bsin 6 (4u”cos® §; — 3ucos ;) + Bsin ) cos 36,

= r(01,02,u,€,B) .



The invariant torus is described by the PDE

0 0
—u +w(01,02,u757B)8—;1 =

802 r(017027u7€7B) (49)

and the torus conditions

u(@l, 02) = u(@l, 02 + 277) (50)
B=1.0 B =045
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Figure 5: Torus sections : ¢ =2.0,b=1.0

* : stable periodic solution O : periodic solution of saddle type
< : unstable periodic solution

Figure 5 shows that both the torus with periodic solutions and the quasi-periodic
torus can be computed by the method without numerical difficulties.

Further investigation with a new version TORUS2 showed that in case of greater
values of parameter B = 1.0 the torus will be "overlapping”. The parameter studies
in Figures 6 and 7 display this development.

Finally, we compute the invariant curves with parameter values ¢ = 2.0, b =
1.0, B = 0.3 by using ICURVE. The approximating polygons for b = 1.0, B = 0.3
and different values of ¢ are displayed in figure 8. With a bound of 0.05 of the maximal
length of the edges and a tolerance of 1076, the method used 3 iterations. As initial
polygon we used 100 points on the unit circle. The numbers of the vertices of the
resulting polygons are between 180 and 250.



Figure 6: 3-fold subharmonically reacting system for ¢
and different values of B.
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The applications of the two completely different numerical methods to our model
equations (19) and (23) show that in both models quasi-periodic responses can arise.

So these methods can serve as reliable tools for numerical simulations of electrical
circuits including variations of their system parameters.
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