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NONLINEAR CIRCUIT MODELS FOR THE ANALYSIS OF ENERGETIC SYSTEMS 21 IntroductionAn energetic system is composed by a large number of subsystems. Modelling is di�cult because of its com-plexity and the nonlinear behaviour of some system parts with hysteresis and saturated iron cores. A lineardescription is allowed only in restricted cases. The behaviour of the system is determined by a large numberof parameters. So it is necessary for analysing the system to divide it in small particular systems, which canbe described by simple nonlinear models with few parameters. Then one can analyse the properties of thesesystems by using the methods of dynamic analysis.The �rst aim of our contribution is to demonstrate how it is possible to describe a simple energetic systemwith a nonlinear load and a linear generator. Especially we discuss the form of the di�erential equationsand the e�ect of coupling between the equations. In some practical cases even harmonics in the voltage areobserved. We can �nd already in our simple models that this is caused by distortions of the nonlinear load.Because of these even harmonics we can also observe a surmounting of voltage-amplitude of the dominant mode.The second aim is to verify numerically the occurence of chaotic and quasi-periodic responses in these simpleenergetic systems. Beginning with unstable periodic responses and their Poincar�e maps we approximate bothstable and unstable invariant manifolds. With the help of a numerical continuation procedure we can detecttransversal intersections of manifolds as an indicator of chaotic behaviour. Finally it will be demonstrated thatquasi-periodic responses of the systems can be found. They are approximated by a geometrical- numericalmethod, which also includes the possibility of parameter continuation.The description of an energetic system with the more realistic nonlinear model is a possible step in nonlinearmodelling of such a system.2 Model EquationsThe generator may be linear and symmetriceR(t) = Ê0 sin!t eS(t) = Ê0 sin(!t � 2�=3) eT (t) = Ê0 sin(!t� 4�=3): (1)Some general normalization relationsXR = !LR XS = !LS XT = !LT XD = !LD XE = !LE XF = !LF (2)XCR = 1=!CR XCS = 1=!CS XCT = 1=!CT (3)� = !t U0 = ! 0 Z0 = U0=I0 x =  = 0 y = i=I0 z = u=U0 = u=(! 0) en = e=U0 (4)
Fig. 1: General Load of one PhaseThe nonlinear load of a phase can be assumed by the circuitwhich is shown on Fig.1. An additional index R, S, and T isused to distiguish the three phases.R1 - Copper-resistance of the power supply and of the mag-netic circuitL1 - Inductance of the power supply and leakage inductance ofthe magnetic circuitC - Interturn capacitance and/or outer parallel capacitanceiL( ) - Characteristic function for describing the nonlinear iron coreR - Load resistance and/or resistance for modelling the hysteresis behaviour.An incomplete power polynomial of the form iL( ) = a� + b� n can be used to approximate the magneti-zation curve. The value of the exponent may be n = 3 or more realistic n = 9. A simple typical model of anenergetic system is shown on Fig. 3. The system has a star-star structure. To analyse the properties of this



NONLINEAR CIRCUIT MODELS FOR THE ANALYSIS OF ENERGETIC SYSTEMS 3system we may observe some special cases with or without mid conductor; with a common magnetic core orwith di�erent magnetic systems. If the magnetic system has a common magnetic core the condition R +  S +  T = 0 (5)has to be full�led. This condition leads tod Rd t + d Sd t + d Rd t = 0 ; uR + us + uT = 0 (6)It reduces the number of necessary di�erential equations.2.1 Hysteresis Behaviour of the Load
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yFig. 2: Hysteresis loops for k=0.2 and k=0.4The parallel connection of the linear resistance R and the non-linear inductor describes a hysteresis loop. For the approxima-tion of the magnetization curve we use after Professor Philip-pow (see [1]) iL( ) = a�  + b� 9 . If we assume an sinusoidal
ux  = 	̂ sin !t then with u2 = d d t = !	̂r1� �  ̂	�2 andiR = u2=R we �nd iR( ). Then iH( ) = iL( ) � iR( )in thenormalized form y(x) = a x + b x9 � kp1� x2 = 0:25x + 0:75x9 � kp1� x2 (7)2.2 General Model with non-ideal Neutral ConductorThe energetic system is being described by the set of the state variables iR; iS ; iT ; uR; uS; uT ;  R;  S ; and  T .In the normalized equations are being used some short cuts and prescriptions.� = L1RL1SL1T + L0 (L1RL1S + L1RL1T + L1SL1T )LR = �=[L1SL1T + L0 (L1S + L1T )] LS = �=[L1RL1T + L0 (L1R + L1T )] (8)LT = �=[L1RL1S + L0 (L1R + L1S)]LD = �=[L1RL0] LE = �=[L1SL0] LF = �=[L1TL0]We �nd in the general case with neutral conductor and di�erent magnetic systems the following di�erentialequations for the normalized Flux x, current y, and voltage z.dxRd� = zR dxSd� = zS dxTd� = zT (9)dyRd� = Z0XR eRn � Z0XF eSn � Z0XE eTn + ��R1R +R0XR + R0XF + R0XE � yR+ �� R0XR + R1S +R0XF + R0XE �yS + �� R0XR + R0XF + R1T + R0XE � yT (10)� Z0XR zR + Z0XF zS + Z0XE zTdySd� = � Z0XF eRn + Z0XS eSn � Z0XD eTn + �R1R +R0XF � R0XS + R0XD �yR+ � R0XF � R1S +R0XS + R0XD � yS + � R0XF � R0XS + R1T +R0XD � yT (11)+ Z0XF zR � Z0XS zS + Z0XD zT



NONLINEAR CIRCUIT MODELS FOR THE ANALYSIS OF ENERGETIC SYSTEMS 4dyTd� = � Z0XE eRn � Z0XD eSn + Z0XT eTn + �R1R +R0XE + R0XD � R0XT � yR+ � R0XE + R1S + R0XD � R0XT � yS + � R0XE + R0XD � R1T +R0XT � yT (12)+ Z0XE zR + Z0XD zS � Z0XT zTdzRd� = XCRZ0 �yR � Z0RR zR � aRxR � bRxnR� dzSd� = XCSZ0 �yS � Z0RS zS � aSxS � bSxnS� (13)dzTd� = XCTZ0 �yT � Z0RT zT � aTxT � bTxnT�
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The simplest form of these equations will bereached if we assume an ideal neutral conductorR0 � 0 and L0 � 0. It leads toLR = L1R LS = L1S LT = L1T1=XD = 0 1=XE = 0 1=XF = 0:The system of the normalized di�erential equa-tions (9) to (13) for the three phases are now notconnected to each other. So we will �nd three in-dependent di�erential equations of third order forthe normalized 
ux. The solutions for this equa-tion is discussed in detail in [2]. Some informationsto parameter range!L1R=Z0; !L1S=Z0; !L1T=Z0 ! 0; 03:::0; 05R1R=Z0; R1S=Z0; R1T=Z0 ! 0; 03:::0; 05!L1R=RR; !L1S=RS ; !L1T =RT ! 0; 0:::0;5XCR=Z0; XCS=Z0; XCT =Z0 ! 0; 8:::1;2In the case of a common magnetic core you �ndfor the normalized magnetization curve with n = 9! a = 0; 25 and b = 0; 75. This values may be used as basicfor the variation of a and b in the case with di�erent magnetic systems.2.3 General Model without Neutral ConductorIf the model is without a neutral conductor i0 = 0 ) iT is dependent of iR and iS . In this case theequations for the normalized 
ux x and for the normalized voltage z are the same as in the case with neutralconductor. The equations for the normalized current y we have new to derive.In the normalized equations are being used some short cuts and prescriptions.� = L1RL1S + L1RL1T + L1SL1TLR = �=[L1S + L1T ] LS = �=[L1R + L1T ] (14)LD = �=L1R LE = �=L1S LF = �=L1T :We �nd in the general case without neutral conductor and di�erent magnetic systems the following di�erentialequations for the normalized Flux x, current y, and voltage z.dxRd� = zR dxSd� = zS dxTd� = zT



NONLINEAR CIRCUIT MODELS FOR THE ANALYSIS OF ENERGETIC SYSTEMS 5dyRd� = Z0XR eRn � Z0XF eSn � Z0XE eTn + ��R1R +R1TXR + R1TXF � yR+ ��R1TXR + R1S + RTXF � yS � Z0XR zR + Z0XF zS + Z0XE zT (15)dySd� = � Z0XF eRn + Z0XS eSn � Z0XD eTn + �R1R + R1TXF � R1TXS � yR+ �R1TXF � R1S +R1TXS �yS + Z0XF zR � Z0XS zS + Z0XD zT (16)dzRd� = XCRZ0 �yR � Z0RR zR � aRxR � bRxnR� dzSd� = XCSZ0 �yS � Z0RS zS � aSxS � bSxnS�dzTd� = XCTZ0 �yT � Z0RT zT � aTxT � bTxnT�If we assume a common iron core the equations will be reduced only to six because of the conditions eq.(5) andeq.(6). dxRd� = zR dxSd� = zSdyRd� = Z0XR eRn � Z0XF eSn � Z0XE eTn + ��R1R + R1TXR + R1TXF � yR+ ��R1TXR + R1S +RTXF � yS � � Z0XR + Z0XE � zR + � Z0XF � Z0XE � zSdySd� = � Z0XF eRn + Z0XS eSn � Z0XD eTn + �R1R + R1TXF � R1TXS � yR+ �R1TXF � R1S +R1TXS � yS + � Z0XF � Z0XD � zR � � Z0XS + Z0XD � zSdzRd� = XCRZ0 �yR � Z0RR zR � aRxR � bRxnR� dzSd� = XCSZ0 �yS � Z0RS zS � aSxS � bSxnS�The amplitudes of the forcing terms depend on the (varying) parameter � via�̂R1 = Z0XR Ê0U0 = 30:0� ; �̂R2 = Z0XF Ê0U0 = 20:0� ; �̂R3 = Z0XE Ê0U0 = 10:0� :2.4 Remarks to special Forms of Model-EquationsIn all we can formulate six possible models - there are the following independent categories :� with neutral conductor{ ideal neutral conductor (R0 � 0; L0 � 0){ non-ideal neutral conductor (R0 6= 0; L0 6= 0)� without neutral conductor (R0 !1; i0 = 0)� one magnetic systems with a common iron core� general magnetic model, non-common iron core.



NONLINEAR CIRCUIT MODELS FOR THE ANALYSIS OF ENERGETIC SYSTEMS 63 Numerical AnalysisFor � 2 [1:0; 6:0] , the following types of solutions could be observed:� Beginning with � = 1:0, a stable solution with period T = 2� (see Figs. 4, 5) can be continuatednumerically by a Newton-like method (TABHET) up to � = 3:0 (see Figs. 6, 7), where stability isguaranteed.
(a) Periodic solution for � = 1:0 (b) Periodic solution for � = 1:5Fig. 4: Periodic solutions in coordinates (xS; yS; zS)
(a) Periodic solution for � = 2:0 (b) Periodic solution for � = 3:0Fig. 5: Periodic solutions in coordinates (xS; yS; zS)
(a) Periodic solution for � = 1:0 (b) Periodic solution for � = 1:5Fig. 6: Periodic solutions in coordinates (xR; xS)



NONLINEAR CIRCUIT MODELS FOR THE ANALYSIS OF ENERGETIC SYSTEMS 7
(a) Periodic solution for � = 2:0 (b) Periodic solution for � = 3:0Fig. 7: Periodic solutions in coordinates (xR; xS)� At � � 3:2681 an unstable solution arc bifurcates from this stable solution by a fold (D-type) bifurcation.For greater values of � , further bifurcations arise.� For � � 3:85 the unstable solution has a complex pair of Floqu�et multipliers (quasi-periodic solution),which crosses the unit circle at� = 3:940668988 by a Hopf (H-type) bifurcation (see Figs.8, 9 and Tab. 1).
(a) Periodic solution for � = 3:0 (b) Quasi-periodic solution for � = 3:9Fig. 8: Periodic and quasi-periodic solutions in coordinates (xR; xS)
(a) Periodic solution for � = 4:0 (b) Period-doubled solution for � = 5:0Fig. 9: Periodic and period-doubled solutions in coordinates (xR; xS)



NONLINEAR CIRCUIT MODELS FOR THE ANALYSIS OF ENERGETIC SYSTEMS 8� Finally at � = 5:3 a chaotic solution of this model could be detected, which behaves like a bi-stablesystem (see Fig.10).� Behind this chaotic region at � = 6:0 the system hasa stable periodic response (see Fig.11).
(a) Chaotic solution in (xS; yS ; zS) (b) Chaotic solution in (xR; xS)Fig. 10: Chaotic Solution for � = 5:3
(a) Chaotic solution for � = 5:2 (b) Periodic solution for � = 6:0Fig. 11: Chaotic and periodic solutions in coordinates (xR; xS)4 Approximation of Stable and Unstable ManifoldsFor hyperbolic �xed points x� of the Poincar�e map (stroboscopic map) P the Stable Manifold Theorem guaran-tees the existence of stable and unstable manifolds W s(x�); Wu(x�) tangential to the eigenspaces Es and Eu:These manifolds can be approximated numerically in the case of the 2nd order model without couplingd2xd�2 + � dxd� + �x+ 
xn = ��̂ cos � (17)by a geometrical algorithm described in [3].Application of the continuation methodto this model equation with parameters n = 9; � = 0:15; � = 0:65; 
 = 0:75; T = 4� yields the followingresults:



NONLINEAR CIRCUIT MODELS FOR THE ANALYSIS OF ENERGETIC SYSTEMS 9Tab. 1: Continuation of a Periodic Solution� Floqu�et multipliers Spectral radius Type ofm1;m2;m3 % = max jmij solution1.0 6.3875E-1 6.38756E-1 stable6.2968E-17.1041E-3 +2.0812E-2*j2.0 2.1611E-1 2.16116E-1 stable-1.4926E-2 +4.2658E-2*j-1.4926E-2 -4.2658E-2*j3.0 3.8294E-1 3.82949E-1 stable9.5958E-2-3.6799E-3 +3.3982E-2*j3.273 1.0049E+0 1.00499E+0 Fold--4.6643E-2 -8.4952E-2*j (D-type-)-4.6643E-2 +8.4952E-2*j bifurcation3.8 1.1111E+0 1.11113E+0 unstable9.8612E-1-1.4840E-2 +1.5307E-2*j3.85 1.0418E+0 +2.8871E-2*j 1.04221E+0 unstable1.0418E+0 -2.8871E-2*j-1.4142E-2 +1.6228E-2*j3.9 1.0224E+0 +7.0124E-2*j 1.02483E+0 unstable1.0224E+0 -7.0124E-2*j-1.3486E-2 +1.7161E-2*j3.940 9.9658E-1 +8.9890E-2*j 1.00063E+0 Hopf-9.9658E-1 -8.9890E-2*j (H-type-)-1.3031E-2 +1.7992E-2*j bifurcation4.0 9.3596E-1 -1.0938E-1*j 9.42334E-1 stable9.3596E-1 +1.0938E-1*j-1.2305E-2 +1.9455E-2*j4.3 1.1604E-1 +1.0951E-2*j 1.16565E-1 stable1.1604E-1 -1.0951E-2*j7.2586E-2 +2.5850E-2*jCode: TABHET, Period: T = 2�; Precision: tol = 10�10� For �̂ = 2:08 the �xed point P2 = (�1:32525;�0:73182) of saddle type has non-intersecting invariantmanifolds (see Fig.12(a)), whereas the �xed points P21 and P22 are stable. By increasing the amplitude�̂ a period doubling occurs. For �̂ = 2:15 the �xed points P21 and P22 are of saddle type.



NONLINEAR CIRCUIT MODELS FOR THE ANALYSIS OF ENERGETIC SYSTEMS 10
(a) Manifolds of P2 for �̂ = 2:08 (b) Manifolds for �̂ = 2:15Fig. 12: Invariant manifolds and �xed points� After continuation of the 3 �xed points up to �̂ = 2:15 we now approximate (see Fig.12(b)) their stablemanifolds W s(P2) ; W s(P21) ; W s(P22) . The curve W s(P2) as a separatrix divides the regions of theother invariant manifolds.� In Fig.13(a) we restrict the method to the �xed point P21 = (�1:01019; 0:37511) . Here the invariantcurves W s(P21) and Wu(P21) intersect transversally at homoclinic points PH 6= P21 . Due to theSmale-Birkho� Theorem (see [5]) the Poincar�e-map has an imbedded horseshoe-like map as an indi-cator of chaos.
(a) Manifolds of P21, �̂ = 2:15 (b) Manifolds of P21 for �̂ = 3:0Fig. 13: Intersection of invariant manifolds� This observation also holds for greater values of the amplitude �̂ . Fig. 13(b) shows a zooming for �̂ = 3:0in the neighbourhood of the �xed point P21 where transversal homoclinic points are displayed.



NONLINEAR CIRCUIT MODELS FOR THE ANALYSIS OF ENERGETIC SYSTEMS 115 ConclusionThis general model seems to be well-suited for describing energetic systems with nonlinear behaviour. As a�rst step ist is advisible to analyse numerically special models and to use their results as an information for thetreatment of the general model.References[1] E. Philippw, Der ferromagnetische Spannungsstabilisator. Akademische Verlagsgesellschaft Geest & PortigK.-G., Leipzig 1968[2] E.S. Philippow, W.G. B�untig, Analyse nichtlinearer dynamischer Systeme der Elektrotechnik. M�unchen,Wien: Carl Hanser Verlag, 1992[3] W.G. B�untig, W. Vogt, Non-Linear Basic Circuits for Modelling Energetic Systems. Proceedings Interna-tional Symposium on Non-Linear Electromagnetic Systems, Braunschweig 1997[4] K. Bernet, W. Vogt, "Anwendung �niter Di�erenzenverfahren zur direkten Bestimmung invarianter Tori",Z. Angew. Mathematik u. Mech. Vol. 74, 1994, T577 - T579[5] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory. New York, Berlin, Heidelberg: Springer-Verlag,1995Authors:Dr.-Ing. W.G. B�untig and Priv.Doz.Dr. W. VogtTechnical University of IlmenauDept. Fundamentals and Theory of Electrical Engineering and Dept. of MathematicsD-98684 Ilmenau GERMANYTel.: +49-03677- 6911 53, Fax: +49-03677-691152, E-mail:buentig@e-technik.tu-ilmenau.deTel.: +49-03677- 6932 66, Fax: +49-03677-693270, E-mail:vogt@mathematik.tu-ilmenau.de




