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1 Introduction

An energetic system is composed by a large number of subsystems. Modelling is difficult because of its com-
plexity and the nonlinear behaviour of some system parts with hysteresis and saturated iron cores. A linear
description is allowed only in restricted cases. The behaviour of the system is determined by a large number
of parameters. So it is necessary for analysing the system to divide it in small particular systems, which can
be described by simple nonlinear models with few parameters. Then one can analyse the properties of these
systems by using the methods of dynamic analysis.

The first aim of our contribution is to demonstrate how it is possible to describe a simple energetic system
with a nonlinear load and a linear generator. FEspecially we discuss the form of the differential equations
and the effect of coupling between the equations. In some practical cases even harmonics in the voltage are
observed. We can find already in our simple models that this is caused by distortions of the nonlinear load.
Because of these even harmonics we can also observe a surmounting of voltage-amplitude of the dominant mode.

The second aim is to verify numerically the occurence of chaotic and quasi-periodic responses in these simple
energetic systems. Beginning with unstable periodic responses and their Poincaré maps we approximate both
stable and unstable invariant manifolds. With the help of a numerical continuation procedure we can detect
transversal intersections of manifolds as an indicator of chaotic behaviour. Finally 1t will be demonstrated that
quasi-periodic responses of the systems can be found. They are approximated by a geometrical- numerical
method, which also includes the possibility of parameter continuation.

The description of an energetic system with the more realistic nonlinear model i1s a possible step in nonlinear
modelling of such a system.

2 Model Equations

The generator may be linear and symmetric
er(t) = Egysinwt es(t) = Eo sin(wt — 27/3) er(t) = Eo sin(wt — 47/3). (1)

Some general normalization relations

XR:(.JLR XSZ(.JLS XT:(.JLT XD :(.JLD XE:(.JLE XF :(.JLF (2)
XCRZI/(.JCR XCSZI/WCS XCTZI/(.JCT (3)
r=wt Uy=wihg Zy=Us/lo e=v¢/vg y=1i/ly z=u/Uy=u/(wig) e,=r¢e/U (4)
The nonlinear load of a phase can be assumed by the circuit us
which is shown on Fig.1. An additional index R, S, and T is - >
used to distiguish the three phases. i’ :IR
R
Ry - Copper-resistance of the power supply and of the mag- — 3} > v,
netic circuit R, i Ly i
Ly - Inductance of the power supply and leakage inductance of 4>—"—
the magnetic circuit 'c ¢

C - Interturn capacitance and/or outer parallel capacitance Fig. 1: General Load of one Phase
ir (¢) - Characteristic function for describing the nonlinear iron core
R - Load resistance and/or resistance for modelling the hysteresis behaviour.

An incomplete power polynomial of the form ir () = a* ¢ + b*¢™ can be used to approximate the magneti-
zation curve. The value of the exponent may be n = 3 or more realistic n = 9. A simple typical model of an
energetic system is shown on Fig. 3. The system has a star-star structure. To analyse the properties of this
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system we may observe some special cases with or without mid conductor; with a common magnetic core or
with different magnetic systems. If the magnetic system has a common magnetic core the condition

YR+ Ys+Yr =0 (5)
has to be fullfiled. This condition leads to

dyr | dys | dim
dt dt dt

It reduces the number of necessary differential equations.

=0~ up 4+ u;, +up =0 (6)

. . 05 |
2.1 Hysteresis Behaviour of the Load
The parallel connection of the linear resistance R and the non- 0
linear inductor describes a hysteresis loop. For the approxima-

05 |

tion of the magnetization curve we use after Professor Philip-
pow (see [1]) ir () = a* ¢ + b*¢° . If we assume an sinusoidal

- d - 2
flux ¢ = ¥sin wt then with us = d—li = wWy/1— (%) and

irn = ua/R we find ig(¢). Then ig(y) = ir(¥) £ ir(¥)in the

normalized form

-1 -0.5 0 0.5 1
y

Fig. 2: Hysteresis loops for k=0.2 and k=0.4

yx) =ax + br® £ k1 —22 =025z 4 0.752° £ k\/1 — 22 (7)

2.2 General Model with non-ideal Neutral Conductor

The energetic system 1s being described by the set of the state variables ig,ig, i7, ug, us, ur, ¥r, g, and .
In the normalized equations are being used some short cuts and prescriptions.

A = ILiplishir + Lo(Lirlas + Lirlir + LisLir)
Lr = A/[LisLir + Lo(Lis + Li7)] Ls = A/[LirLir + Lo (Ing + Li7)] (8)
Ly = A/[LirLis + Lo (Lir + L1s)]
Ip = AJ[Lirl]  Lp = AJ[Lislk]  Le = AJ[LirLo]

We find in the general case with neutral conductor and different magnetic systems the following differential
equations for the normalized Flux x, current y, and voltage z.

drr dxg dxr

A el -/ = 9
dr R dr =S dr T )
i _ %, L. 4 [ Ruth R R
dr T Xgpg T X T Xn Xp " Xp YR
Ry Ris+Roe Ro Ry Ry Rir+ Rg
- LU 1
+ [XR X, +X]y5+[XR+XF s :|T (10)
A A A
— op4 s+ o

dys _ L, 2o, D, FaptRo  Ro | Ro
dr  —  Xp T xS T x T Xp Xo T Xp | VR
Ry Ris+Ro  Ro Ry Ry Rir+ Ry
o msTe 0 00 11
+ [XF Xs +XD] S+[X Xs Xp ]T (11)
Z Z Z
+ Sap - g =z
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dyr Lo, Lo, P, (Fart R Ro Ry
dT o XE fn XD on XT Tn XE XD XT YR
R Ris+ R R R R Rir+ R
+ _O+M__O ys + _0+_0_u yr (12)
XE XD XT XE XD XT
Zo Zo Zo
+ XEZR-I-XDs—XZT
dzr  Xcr 2o b dzs  Xcs 2o bt (13)
dr Z Yr RRZR ARTR RTR ar 7 Ys Rs 2§ —asxs 5T g
dzp Xer Zy —
- = e — —27 —arxp — X
dr Z yr Ry T TLT TLp
l The simplest form of these equations will be
reached if we assume an ideal neutral conductor
Ro~ 0 and Ly ~ 0. It leads to
ex €s e Lr=ILir Ls=1Lis Lr=Lir
1/Xp=0 1/Xg=0 1/Xp=0.
Ris R Lo . . :
_ The system of the normalized differential equa-
is iT

tions (9) to (13) for the three phases are now not
L § s Re connected to each other. So we will find three in-

dependent differential equations of third order for
the normalized flux. The solutions for this equa-
ics iRS¢ ict | iar '© tion is discussed in detail in [2]. Some informations
Ry luﬂ to parameter range

wlip/Zy, wlis/Zy, wlip/Zy — 0,03...0,05
Rir/Zo, Ris/Zo, Rir/Zy— 0,03...0,05
wligp/Rr, wlis/Rs, wLip/Rr —0,0...0,5
Xer/Zo, Xes/Zo, Xer/Zo—0,8...1,2

Fig. 3: Star-star form of a three-phase system
In the case of a common magnetic core you find

for the normalized magnetization curve with n =9 — a = 0,25 and b = 0, 75. This values may be used as basic
for the variation of a and b in the case with different magnetic systems.

2.8 General Model without Neutral Conductor

If the model is without a neutral conductor ip = 0 =  ip is dependent of ip and i¢g. In this case the
equations for the normalized flux x and for the normalized voltage z are the same as in the case with neutral
conductor. The equations for the normalized current y we have new to derive.
In the normalized equations are being used some short cuts and prescriptions.

A = Liglis + LirLir + LisLir
Lr = A/[Lis+ Li7] Ls = A/[Lir + L17] (14)
Lp = A/Ligr Lg = A/Lis Lp = A/Lyp.

We find in the general case without neutral conductor and different magnetic systems the following differential
equations for the normalized Flux x, current y, and voltage z.

dl‘R dl‘g dl‘_T

— = ZR I zs = Z7
dr dr dr
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dve  _ Lo, S, o |_FartFar | Rir
dr Xp T T X Xr Xy | VB
Rir  Ris+ Rr Zy Zq Zo
_ _ 20 20 L 420 15
+ [ X, T xp ]ys Xa Bt x5t x, T (15)
dys _ Lo, 2o, L (Bart Rar Rir
dar Xp T X e T X, X X, | R
Rir Ris+ Rar Zy Zy Zy
_ L ALl 16
[XF X ]ySJ“XFZR X 5t x, T (16)
dZR XCR Zo b n dZS XCS Zo b n
— = — —2zp — apxp — brae — = — —zg —agxg — bsx
dr Z YR Rr R RTR RTR ar 2 Ys R S STs STg
dzr _ Xeor Zy [
dr 7z, YT Ry T arvr —ordr

If we assume a common iron core the equations will be reduced only to six because of the conditions eq.(5) and

eq.(6).

drg _ dzs .
dr B ar _°°
din _ o, %, %[ RietRir, R
dr — XR Rn XF Sn XE Tn XR XF ] YR
R Ris+ R Z Z Z Z
+ |— T L5 T s — 20420 ZR + —0——025
Xgr Xp Xr Xg Xr Xg
dus _ L, %, Z, | [Riet R Rl
dr — XF Rn XS Sn XD Tn XF XS YR
Riyr Ris+ Rair Zq Zq Zq Zq
+ - 5 >~ v | %R ~ + V| %s
Xrp X X Xp Xs  Xp
dzr _ Xcr 20 - dzs  Xcs 2o begh
dr Z YR RRZR QRTR RTR dr Z Ys Rs Z§ —aAsTs ST

The amplitudes of the forcing terms depend on the (varying) parameter A via

A Zy Ey A Zo Eo A Zy Ey
T — = 30.0A I'r, = ——=20.0X I'r. = —— =10.0X.
R, 30.0 ’ R Y 0.0 ’ R3 XU 0.0

T Xg Us 2 r Ug e Ug

2.4 Remarks to special Forms of Model-Equations

In all we can formulate six possible models - there are the following independent categories :

e with neutral conductor

— ideal neutral conductor (Rg &~ 0; Ly & 0)

— non-ideal neutral conductor (Ry #0; Lo # 0)
e without neutral conductor (Ry = oo; 4y = 0)
e one magnetic systems with a common iron core

e general magnetic model, non-common iron core.
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3 Numerical Analysis

For A € [1.0,6.0] , the following types of solutions could be observed:

e Beginning with A = 1.0, a stable solution with period T = 27 (see Figs. 4, 5) can be continuated
numerically by a Newton-like method (TABHET) up to A = 3.0 (see Figs. 6, 7), where stability is
guaranteed.

(a) Periodic solution for A = 1.0 (b) Periodic solution for A = 1.5

Fig. 4: Periodic solutions in coordinates (zs, ys, zs)

Do N

(a) Periodic solution for A = 2.0 (b) Periodic solution for A = 3.0

Fig. 5: Periodic solutions in coordinates (zs, ys, z5)

1 15
A=1.0 A=15
0.8
’
0.6
4 F
0 0.5
0.2
0 0
-0.2 +
.04 -0.5
-0.6 A
-0.8 -
9 ‘ ‘ ‘ ‘ i , ‘ 15 ‘ ‘ i ‘ ‘
-0.8 -06 -04 -02 0 02 04 06 08 -1 -0.5 0 0.5 1
(a) Periodic solution for A = 1.0 (b) Periodic solution for A = 1.5

Fig. 6: Periodic solutions in coordinates (zr,zs)



NONLINEAR CIRCUIT MODELS FOR THE ANALYSIS OF ENERGETIC SYSTEMS 7

15 ‘ ‘ ; ; 2
A=2.0 sl =30
1 4
’
0.5 | N 05
0 0
-0.5
_05 . 4
_1 L
a4t ]
_15 L
15 ‘ ‘ ‘ ‘ 2 L ‘
-1 -0.5 0 0.5 1 -1.5 1 0.5 0 0.5 1 1.5
(a) Periodic solution for A = 2.0 (b) Periodic solution for A = 3.0

Fig. 7: Periodic solutions in coordinates (zr,zs)

e At A~ 3.2681 an unstable solution arc bifurcates from this stable solution by a fold (D-type) bifurcation.
For greater values of A | further bifurcations arise.

e For A = 3.85 the unstable solution has a complex pair of Floquét multipliers (quasi-periodic solution),
which crosses the unit circle at A = 3.940668988 by a Hopf (H-type) bifurcation (see Figs.8, 9 and Tab. 1).

15 F

1 L

05
-1.5 -1 -0.5 0

i

1=3.0 |
ﬂ |
1 05
1 -1
1 15

1.5
Py ‘ ‘ i 2 ‘ ‘ ‘
A5 A -05 0 05 1 1.5 05 1 1.5
(a) Periodic solution for A = 3.0 (b) Quasi-periodic solution for A = 3.9
Fig. 8: Periodic and quasi-periodic solutions in coordinates (zr,zs)
2

1.5

0.5

-0.5

-1.5

0
0.5
-1
15

-2

8

. . . 2
A =5.0
A=4.0 A 1.5 g
] Mt i
4 05 L 4

\ L)

=7
05 1 1.5 15 A 0.5 0

-1.5 -1 -0.5 0

(a) Periodic solution for A = 4.0 (b) Period-doubled solution for A = 5.0

Fig. 9: Periodic and period-doubled solutions in coordinates (xR, xs)
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e Finally at A = 5.3 a chaotic solution of this model could be detected, which behaves like a bi-stable
system (see Fig.10).

e Behind this chaotic region at A = 6.0 the system hasa stable periodic response (see Fig.11).

(a) Chaotic solution in (zg,ys, zs) (b) Chaotic solution in (zg,xg)

Fig. 10: Chaotic Solution for A = 5.3

1.5
’
0.5
0
-0.5
B
15
2
1.5 1 0.5 0 0.5 1 15
(a) Chaotic solution for A = 5.2 (b) Periodic solution for A = 6.0

Fig. 11: Chaotic and periodic solutions in coordinates (xR, xs)

4 Approximation of Stable and Unstable Manifolds

For hyperbolic fixed points z* of the Poincaré map (stroboscopic map) P the Stable Manifold Theorem guaran-
tees the existence of stable and unstable manifolds W* (x*), W¥(x*) tangential to the eigenspaces E° and E".
These manifolds can be approximated numerically in the case of the 2nd order model without coupling

d? d .

d—i—kéﬁ—kal‘—l—’yl‘”:—FCOST (17)

by a geometrical algorithm described in [3].

Application of the continuation method
to this model equation with parameters n = 9; § = 0.15; a = 0.65; v = 0.75; T' = 4x yields the following
results:
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Tab. 1: Continuation of a Periodic Solution

A Floquét multipliers Spectral radius | Type of
my, Mo, M3 0 = max |m;]| solution

1.0 6.3875E-1 6.38756E-1 stable
6.2968E-1

7.1041E-3 +2.0812E-2%j

2.0 2.1611E-1 2.16116E-1 stable
-1.4926 E-2 +4.2658F-2%j
-1.4926 E-2 -4.2658E-2%]

3.0 3.8294E-1 3.82949E-1 stable
9.5958E-2
-3.6799E-3 +3.3982E-2%j

3.273 1.0049E40 1.00499E+40 Fold-
-4.6643E-2 -8.4952E-2%] (D-type-)
-4.6643E-2 +8.4952E-2%*] bifurcation

3.8 1.1111E+40 1.11113E+0 unstable
9.8612E-1

-1.4840E-2 +1.5307E-2%j

3.85 1.0418E+40 +2.8871E-2%j 1.04221E+0 unstable
1.0418E40 -2.8871E-2%]
-1.4142E-2 +1.6228E-2%j

3.9 1.0224E40 +7.0124E-2%j 1.02483E4-0 unstable
1.0224E4-0 -7.0124E-2%]
-1.3486E-2 +1.7161E-2%j

3.940 9.9658E-1 +8.9890E-2*] 1.00063E40 Hopf-
9.9658E-1 -8.9890E-2%] (H-type-)
-1.3031E-2 +1.7992E-2%*] bifurcation
4.0 9.3596E-1 -1.0938E-1%j 9.42334E-1 stable

9.3596E-1 +1.0938E-1%;
-1.2305E-2 +1.9455E-2%j

4.3 1.1604E-1 +1.0951E-2%] 1.16565E-1 stable
1.1604E-1 -1.0951E-2%*]
7.2586E-2 +2.5850E-2%;

Code: TABHET, Period: T = 2m, Precision: tol = 10710

e For I' = 2.08 the fixed point P, = (—1.32525; —0.73182) of saddle type has non-intersecting invariant
manifolds (see Fig.12(a)), whereas the fixed points Py; and Pag are stable. By increasing the amplitude
' a period doubling occurs. For I' = 2.15 the fixed points P»; and Pss are of saddle type.
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W_stable —— W_stable ——

W _unstable - 4k . W21 _stable B
3r P2 o A S ‘W22_stable -
P21 o
P2 - | 3L

- L L i L - L L i L
2 -1.5 -1 -0.5 0 0.5 1 L5 2 -1.5 -1 -0.5 0 0.5 1 L5

(a) Manifolds of P, for [' = 2.08 (b) Manifolds for [' = 2.15

Fig. 12: Invariant manifolds and fixed points

e After continuation of the 3 fixed points up to I' = 2.15 we now approximate (see Fig.12(b)) their stable
manifolds W*(Py), W?*(Pa1), W?(Paz) . The curve W?(Ps) as a separatriz divides the regions of the
other invariant manifolds.

e In Fig.13(a) we restrict the method to the fixed point Py = (—1.01019;0.37511) . Here the invariant
curves W?*(Pa1) and WY(Pay) intersect transversally at homoclinic points Py # Pa; . Due to the
Smale-Birkhoff Theorem (see [5]) the Poincaré-map has an imbedded horseshoe-like map as an indi-
cator of chaos.

W_stable ——

T T e 2t
257 15t
2 F s
L5 05
! 0
0.5 -0.5
0 RS
-0.5 15+
-1 L L L 2
-1.5 -1 -0.5 0 0.5 -1.5 -1.4 -1.3 -1.2 -1l -1 -0.9
(a) Manifolds of Py, I' = 2.15 (b) Manifolds of Pz for ' = 3.0

Fig. 13: Intersection of invariant manifolds

e This observation also holds for greater values of the amplitude ' . Fig. 13(b) shows a zooming for r'=3.0
in the neighbourhood of the fixed point Ps; where transversal homoclinic points are displayed.
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5 Conclusion

This general model seems to be well-suited for describing energetic systems with nonlinear behaviour. As a
first step ist is advisible to analyse numerically special models and to use their results as an information for the
treatment of the general model.
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