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On kernel estimation of curves with non-smooth peaks
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Abstract. Nonparametric estimation of the mode of a density function via kernel methods
is considered. It is shown that asymptotic normality of the mode estimator can be achieved also
if the density has a “kink” at the location at the mode, if there is symmetry up to second order
around the kink. Tests for the presence of a smooth or symmetric peak at a preassigned location
are also considered.
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1 Introduction and assumptions

An important problem in nonparametric curve estimation consists in estimation of the
mode (location of an isolated maximum of the unknown density or regression function). A
number of distinguished papers deal with this topic: Parzen (1962), Rüschendorf (1977),
Eddy (1980, 1982), Müller (1985, 1989), Romano (1988a,b), Grund and Hall (1995), Ehm
(1996) (among many others). In the last few years, an increasing interest in this topic can
be observed. Among the most recent evidences of this growing interest are the papers by
Mokkadem and Pelletier (2003) as well as Abraham, Biau and Cadre (2003a,b).

The classical procedure is as follows: If f(x) is the unknown curve (x being a real
variable, but extensions to the multivariate case are possible) and θ the mode of f , i.e.

f(θ) > sup
|x−θ|>ε

f(x) for each ε > 0, (1)

then θ is estimated from the location θn of a maximum of a curve estimator fn(x) for f(x).
(Uniqueness of the maximum cannot be expected here, but, in general, this does not affect
the validity of asymptotic theory.)

In the present paper, we shall consider f to be a univariate probability density, and we
shall estimate it via the Rosenblatt-Parzen kernel estimator

fn(x) =
1

nhn

n∑
i=1

K(
x − Xi

hn

) (2)

based on i.i.d. observations Xi having density f , where K is a kernel (i.e. an integrable
function satisfying some regularity assumptions to be specified below) and hn → 0, hn > 0

1



a bandwidth sequence. We will write but h for hn in the sequel. Then the mode estimator
θn is any location fulfilling

fn(θn) = max
x∈R

f(x) . (3)

In Grund and Hall (1995) and Ziegler (2003) it has been shown that consistency of θn

can be ensured (under some very mild regularity conditions on kernel and bandwidth), if f
is continuous at the point θ only. More specifically, the following holds: If K is a continuous
probability density of bounded variation, f is continuous at θ satisfying (1) and hn fulfills

log n

nh
→ 0 , (4)

then

θn → θ a.s. (5)

(see Theorem 2.8 in Ziegler, 2002).
In order to determine the speed of convergence, some additional assumptions on the

shape of the curve f around θ have to be made (Herrmann and Ziegler, 2003; see also
Abraham et al., 2003). In order to achieve asymptotic normality of θn (and therefore to be
able to construct asymptotic confidence intervals for θ), however, it it is generally believed
that rather heavy smoothness conditions are needed (differentiability up to 3rd order at
least in a neighborhood of θ, see Romano, 1988a). The main aim of the present paper is
to show that this is not the case. The density f may as well exhibit a “kink” at θ, if there
is some symmetry around θ and some smoothness in left and right hand neighborhoods.
More precisely, the one-sided derivatives have to exist in θ with f ′(θ − 0) = −f ′(θ + 0)
and f ′ has to be quasi-smooth of order α > 1 in the sense of Liebscher (1990; we explain
below) which, in particular implies the condition f ′′(θ−0) = f ′′(θ+0). Then we can speak
of “symmetry of f up to 2nd order around θ”. In the present paper we show that, under
appropriate regularity conditions on kernel and bandwidth, an equivalent to the classical
asymptotic normality result for θn continues to hold in this case.

In section 2 we shall formulate adequate conditions, while section 3 contains the above
mentioned asymptotic normality result as well as a sketch of its proof. Finally, in section
4, some tests are suggested for the presence of a smooth or symmetric (up to either 1st or
2nd order) peak at a preassigned location.

2 Assumptions

First we recall the definition of quasi-smoothness of a function g (we write here g rather
than f , since our g will be f ′ later) which has apparently been introduced by Liebscher
(1990) in generalization of a concept due to Woodroofe (1970). g is called quasi-smooth of
order α > 0 at a point θ, if the following conditions are fulfilled:
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• Let m be the greatest integer being smaller than α. Then there exists a neighborhood
U of θ such that g(m) exists and is continuous on U \ {θ}. Furthermore, g(m)(θ − 0)
and g(m)(θ + 0) exist.

• g(i)(θ − 0) = g(i)(θ + 0) for i = 1, . . . ,m (this condition is empty if α ≤ 1).

• The limits

lim
z→0+0

|z|−α

(
g(θ + z) −

m∑
i=0

g(i)(θ + 0)
zi

i!

)
=: g+

α (θ)

lim
z→0−0

|z|−α

(
g(θ + z) −

m∑
i=0

g(i)(θ − 0)
zi

i!

)
=: g−

α (θ)

exist and are finite.

We put
gα(θ) := g+

α (θ + 0) + g−
α (θ − 0) .

Note that g itself may be discontinuous at θ. Note further the following: If g′′ exists on
U \ {θ} and is continuous with existing limits g′′(θ − 0) and g′′(θ − 0), and if additionally
g′(θ − 0) = g′(θ − 0), then g is quasi-smooth of order α = 2 with g+

2 (θ) = 1
2
g′′(θ + 0) and

g−
2 (θ) = 1

2
g′′(θ − 0), so that in this case

g2(θ) =
1

2
(g′′(θ − 0) + g′′(θ + 0)) .

In the sequel, this will form an important special case.
Now we are in the position to state our conditions on the unknown density f . Additio-

nally to (1), we assume the following:

Assumption F

f is continuous at θ (6)

f is twice continuously differentiable in U \ {θ}, (7)

where U is an appropriate neighborhood of θ

f ′(θ − 0), f ′(θ − 0) exist with f ′(θ − 0) = −f ′(θ − 0) (8)

f ′′(θ − 0), f ′′(θ − 0) exist with f ′′(θ − 0) = f ′′(θ − 0) �= 0 (9)

f ′ is quasi-smooth at θ of order 1 < α ≤ 2 (10)
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Remarks (a) (10) implies part of (9).
(b) (9) together with (7), in turn, implies that f ′′ may be considered as a continuous func-
tion on the whole of U (by setting f ′′(θ) := f ′′(θ − 0)).
(c) In the present case, in strict contrast to the smooth one, it is possible that f ′′(θ) > 0
in spite of the fact that θ is a maximum.
(d) In case of existence and continuity of f ′′′ on U \ {θ} with existing limits f ′′′(θ− 0) and
f ′′′(θ + 0), it holds that α = 2 and (f ′)2(θ) = 1

2
(f ′′′(θ − 0) + f ′′′(θ + 0)).

Now we turn to the kernel:

Assumption K

K is twice continuously differentiable with K ′′ being of bounded variation
(11)

supp K ⊂ [−1, 1] (12)

K(−u) = K(u) for all u (13)

K(0) = 0 (14)

K ≥ 0 (15)

∫ 1

−1

K(u)du = 1 (16)

Remarks (a) (11) is needed since a consistent estimate of f ′′(θ) is required for our
procedure. So the curve estimator fn will not exhibit a kink at θ.
(b) (12) is not needed and can, as so often, be replaced with appropriate tail conditions,
rendering the proofs more technical (see Romano, 1988, Ziegler, 2002, for different types
of such conditions and the corresponding techniques of proof).
(c) (14) is not standard, but needed here in order to be able to estimate f ′′ consistently
uniformly in a neighborhood of θ. The kink at θ would disturb this procedure if (14) is not
imposed.
(d) (15) is needed only to ensure consistency of θn under the condition that f is continuous
only at the point θ. As indicated in Ziegler (2002), (15) can be dispensed with if global
continuity of f is assumed.

Finally, we state the conditions on the bandwidth:

4



Assumption H
h → 0 (17)

nh5

log n
→ ∞ (18)

nh3+2α → c2 ≥ 0 (19)

where α stems from (10).

Remarks (a) (18) is stronger than (4) and needed for consistent estimation of f ′′

(uniformly in a neighborhood of θ.
(b) Even with c = 0, (18) and (19) can be fulfilled simultaneously since α > 1.

3 Toward an asymptotic normality result

Recall the definitions (2) and (3). Then, since f ′
n(θn) = 0, we obtain by the mean value

theorem the classical representation

θn − θ = − f ′
n(θ)

f ′′
n(θ∗)

(20)

with some θ∗ between θn and θ. As usual, asymptotic normality is then gained by proving
consistency of f ′′

n(θ∗) and asymptotic normality of f ′
n(θ). Now it is well known (and a

simple consequence of Ljapunov’s CLT together with Parzen’s lemma) that

f ′
n(θ) − Ef ′

n(θ)√
V ar(f ′

n(θ))

L→ N(0, 1) ,

where only continuity of f at θ, some properties of K (contained in K) and nh → ∞ is
needed (see Parzen, 1962). Since, again by Parzen’s lemma

nh3V ar(f ′
n(θ)) → f(θ)

∫
R

(K ′(z))2dz ,

we have

√
nh3(f ′

n(θ) − Ef ′
n(θ))

L→ N(0, f(θ)

∫
R

(K ′(z))2dz) . (21)

The following proposition is crucial in order to derive asymptotic normality from (20)
and (21). In the proof, we shall, in essence, only give the steps that are different from the
smooth case:
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Proposition Under F , K and H it holds that

Ef ′
n(θ) = hα(f ′)α(θ)

∫ 1

0

zαK(z)dz + o(hα) (22)

and that

sup
x∈V

|f ′′
n(x) − f ′′(x)| → 0 f.s. , (23)

where V is an appropriate neighborhood of θ.

Sketch of proof As to (22), we first observe that in

Ef ′
n(θ) =

1

h2

∫ θ

−∞
K ′(

θ − u

h
)f(u)du +

1

h2

∫ ∞

θ

K ′(
θ − u

h
)f(u)du

the domains of integration are in fact subsets of U if h is small enough since we have (12).
Hence, by (7) and (8) we can regard f as continuously differentiable on the respective
region of integration, and we can perform integration by parts to obtain

Ef ′
n(θ) =

[
−1

h
K(

θ − u

h
)f(u)du

]θ

−∞
+

1

h

∫ θ

−∞
K(

θ − u

h
)f ′(u)du

+

[
−1

h
K(

θ − u

h
)f(u)du

]∞
θ

+
1

h

∫ ∞

θ

K(
θ − u

h
)f ′(u)du ,

which by (6) equals

1

h

∫ θ

−∞
K(

θ − u

h
)f ′(u)du +

1

h

∫ ∞

θ

K(
θ − u

h
)f ′(u)du .

If we assign an arbitrary value to f ′(θ), we can write the latter quantity as

1

h

∫ ∞

−∞
K(

θ − u

h
)f ′(u)du =

∫ 1

−1

K(u)f ′(θ − zh)dz ,

where we have performed a change of variable (recall again (12)). Now, since f ′ is quasi-
smooth of order α at θ, an obvious modification of Lemma 2 in Liebscher (1990) implies
that

Ef ′
n(θ) =

1

2
(f ′(θ − 0) + f ′(θ + 0)) + hα(f ′)α(θ)

∫ 1

0

zαK(z)dz + o(hα) .

By (8), (22) follows.
Since the mere application of Liebscher’s lemma does not give much insight in where

(9) comes in, we sketch a direct proof here in the special case mentioned above where f ′′′

is thrice continuously differentiable on V \{θ} and f ′′′(θ−0) and f ′′′(θ +0) exist. A Taylor
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expansion of f ′(θ − zh) on the left hand side of θ gives (for h > 0 small enough), by (13)
and (16) and Lebesgue’s theorem∫ 1

0

K(u)f ′(θ − zh)dz =
1

2
f ′(θ − 0) + hf ′′(θ − 0)

∫ 1

0

zK(z)dz

+
1

2
h2f ′′′(θ − 0)

∫ 1

0

z2K(z)dz + o(h2) .

An analogous expansion for
∫ 0

−1
K(u)f ′(θ − zh)dz (obtained by a Taylor expansion on the

right hand side of θ), together with
∫ 0

−1
zK(z)dz = − ∫ 1

0
zK(z)dz and

∫ 0

−1
z2K(z)dz =∫ 1

0
z2K(z)dz finally leads to

Ef ′
n(θ) =

1

2
(f ′(θ − 0) + f ′(θ + 0)) + h(f ′′(θ − 0) − f ′′(θ + 0))

∫ 1

0

zK(z)dz

+
1

2
h2(f ′′′(θ − 0) + f ′′′(θ + 0))

∫ 1

0

z2K(z)dz + o(h2) ,

whence from (8) and (9) the assertion (22) follows in the special case considered.
As to (23), we first note that under (11) and (18) we have

sup
x∈R

|f ′′
n(x) − Ef ′′

n(x)| → 0 a.s.

(see, e.g. Theorem 1.1. in Ziegler, 2002; recall that f is bounded). Hence, we have only to
show that

sup
x∈V

|Ef ′′
n(x) − f ′′(x)| → 0 .

Since f is not twice continuously differentiable on a neighborhood of θ (f ′ is discon-
tinuous at θ), we cannot resort to known results here. But now consider Ef ′′

n(x) =
1
h3

∫∞
−∞ K ′(x−u

h
)f(u)du. If x �= θ, then f is twice continuously differentiable in a neigh-

borhood of x. With h being small enough, integration extends in fact only over this neigh-
borhood and a double integration by parts yields

Ef ′′
n(x) =

1

h

∫ ∞

−∞
K(

x − u

h
)f ′′(u)du . (24)

For x = θ, we split the integral
∫∞
−∞ K ′(x−u

h
)f(u)du into the two regions ] − ∞, θ[ and

]θ,∞[, as above. A first integration by parts leads, by (6), to

1

h2

∫ θ

−∞
K ′(

θ − u

h
)f ′(u)du +

1

h2

∫ ∞

θ

K ′(
θ − u

h
)f ′(u)du ,

while a further integration by parts shows the latter quantity to be equal to

Ef ′′
n(θ) =

[
−1

h
K(

θ − u

h
)f ′(u)du

]θ

−∞
+

1

h

∫ θ

−∞
K(

θ − u

h
)f ′′(u)du

+

[
−1

h
K(

θ − u

h
)f ′(u)du

]∞
θ

+
1

h

∫ ∞

θ

K(
θ − u

h
)f ′′(u)du .
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Now, due to the discontinuity of f ′ at θ, we need (14) to make the undesirable terms vanish,
and hence to prove Ef ′

n(θ) =
∫∞
−∞ K( θ−u

h
)f ′′(u)du, so that (24) holds for each x ∈ U .

From (24), in turn, we see, by standard arguments, that Ef ′′
n(x) → f ′′(x) holds uni-

formly on each interval where f ′′ is uniformly continuous. Now, by (7) and (9) this is the
case on V ⊂ U if we choose V to be a compact neighborhood of θ. (23) is proven. �

Since, under (F), (K) and (H), we have in particular (5), this implies together with
(24) and the fact that f ′′ is continuous at θ that f ′′

n(θ∗) → f ′′(θ∗) a.s. From this, (20), (21)
and (22) we obtain immediately:

Theorem Under (F), (K) and (H), we have

√
nh3(θn − θ)

L→ N(μ, σ2)

with

μ = −c(f ′)α(θ)

∫ 1

0

zαK(z)dz

σ2 =
f(θ)

f ′′(θ)2

∫ 1

−1

(K ′(z))2dz .

Remarks (a) The proof of the proposition shows that Ef ′
n(θ) explodes if either (8) or

(9) is violated. Hence, the assumption of f being locally symmetric up to 2nd order around
θ is also necessary for asymptotic normality of θn. In the case of non-symmetric kinks, a
different estimator will have to be considered correcting the non-symmetry.

(b) The theorem shows that in our case of a symmetric kink, a confidence interval for θ can
be constructed in quite the same manner as in the smooth case, since fn(θn) and f ′′

n(θn)
are consistent estimators for f(θ) and f ′′(θ), respectively. (Namely, fn is also uniformly
consistent for f locally in a neighborhood of θ, with the same reasoning as exposed above
for f ′′

n and f ′′).

(c) With appropriate modifications of the proofs, our result takes over to regression ana-
lysis.

(d) In practice, h will be chosen such that c = 0 in order to get a confidence interval being
symmetric around θ. Otherwise, one would also have to estimate the bias which would
require estimation of (f ′)α(θ). The estimation of this quantity, however, seems to be quite
a challenge. Even in the case α = 2, where (f ′)α(θ) = 1

2
(f ′′′(θ − 0) + f ′′′(θ + 0)), there is a

major difficulty: At a known point x, the one-sided derivatives f ′′′(x−0), f ′′′(x+0) can be
estimated by pilot kernel estimators f ′′′

n,−(x), f ′′′
n,+(x) employing one-sided kernels (having

support only on [−1, 0] and [0, 1], respectively, see Müller, 1992). However, we cannot esti-
mate f ′′′(θ − 0) consistently by the plug-in estimator f ′′′

n,−(θn) since, of course, f ′′′(x − 0)
is not continuous at θ, but only left-continuous and there is not necessarily θn < θ.

(e) The question of bandwidth choice must also remain unanswered here. An optimal choice

8



in the sense of minimizing the MSE of the asymptotic distribution would lead to a rate of
n−1/(3+2α), but the constant would contain (f ′)α(θ), so that, in order to render this choice
feasible, we would again arrive at the problem of estimating this quantity consistently.

(f) For computational reasons, Abraham et al. (2003a,b) consider a different mode estima-
tor which maximizes fn only over the finite data set X1, . . . , Xn. They show an asymptotic
equivalence result of their estimator to the classical one, so that, in the smooth case, the
asymptotic normality of their estimator follows. Since their proof relies heavily on the usual
smoothness and regularity conditions (including f to be twice continuously differentiable
with a negative definite Hessian; they consider the multivariate case), we do not know if
their result would continue to hold in the situation of the present paper.

(g) Concerning asymptotic normality of fn(θn), it is known that there are even problems
in the smooth case. Under the usual regularity conditions, only a degenerate asymptotic
normal law of

√
nh3(fn(θn)− f(θ)) can be obtained (Ziegler, 2003, Theorem 3.10). Higher

order kernels are required if one wants to have a non-degenerate asymptotic normality
result for

√
nh(fn(θn)− f(θ)) (Ziegler, 2003, Theorem 4.1). However, none of these results

seems to take over to the non-smooth case since the continuity of f ′ at θ has been crucial
in the proofs.

4 Testing for the presence of a smooth or symmetric

peak

Consider now the situation that we want to know if there is a nice symmetric (or even
smooth) local peak at a given location θ. Using the methods described above, we can easily
construct a test for the null hypothesis that f is either smooth with f ′(θ) or symmetric
up to 1st or 2nd order, respectively around θ. (This test will not be able to separate
smoothness from certain symmetry.) First we observe that V arf ′

n(θ) → 0 if nh3 → ∞ and
hence, under some mild conditions on K and f (not including (8) and (9)) we have

f ′
n(θ) → 1

2
(f ′(θ − 0) + f ′(θ + 0)) in probability .

If f has a smooth or 1st order symmetric peak at θ, this limit equals zero, and, vice versa,
we should expect to be |f ′

n(θ)| “too large” if there is too much lack of symmetry. Under
appropriate conditions we have (see the proof of the first part of the proposition)

√
nh3Ef ′

n(θ) ∼
√

nh3
1

2
(f ′(θ − 0) + f ′(θ + 0)) +

√
nh5

∫ 1

0

zK(z)dz(f ′′(θ − 0) − f ′′(θ + 0)) ,
(25)

which, under nh5 �→ 0, is asymptotically zero if and only if the null hypothesis

H0 : f ′(θ − 0) = −f ′(θ + 0) and f ′′(θ − 0) = f ′′(θ + 0)
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(i.e. local symmetry up to 2nd order around θ) is fulfilled. Under H0 then we can easily
conclude from (21) that

√
nh3f ′

n(θ)√
fn(θ)

∫
(K ′)2

→ N(0, 1) (26)

in distribution, so that an asymptotic level-γ test is given by

Reject H0, iff |f ′
n(θ)| > cn,γ

with

cn,γ := u1−γ/2

√
fn(θ)

∫
(K ′)2

nh3

where uβ denotes the β-quantile of the standard normal distribution.
The test has a very wide alternative; perhaps it is more natural testing only for 1st

order symmetry, i.e. to set up the null hypothesis

H ′
0 : f ′(θ − 0) = −f ′(θ + 0) .

If we take h smaller, i.e. nh5 → 0, the 2nd order term in (25) vanishes, and (26) holds still
under H ′

0, so that the above test is in this case a level-γ test for H ′
0.

For the validity of (26) under H ′
0, it is only needed that

√
nh3Ef ′

n(θ) ∼
√

nh3
1

2
(f ′(θ − 0) + f ′(θ + 0))

which continues to hold if f ′ is only quasi-smooth of order α > 0 and if nh3+2α → 0. So
the test for H ′

0 will work under those circumstances, too.
If we know about smoothness of the curve in advance, the test becomes a test for the

presence of a local peak at θ.
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