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Abstract

We develop a behavioural approach to linear, time-varying, differential algebraic systems.
The analysis is “almost everywhere” in the sense that the statements hold on R ⊂ T, where
T is a discrete set. Controllability, observability and autonomy is introduced and related to
the behaviour of the system. Classical results on the behaviour of time-invariant systems are
studied in the context of time-varying systems.

Keywords: Time-varying linear systems, behavioural approach, controllability, observability,
autonomous system, adjoint system

Nomenclature

A the set of real analytic functions f : R → R

M the vector space of real meromorphic functions f : R → R

A[D], M[D] the skew polynomial ring of differential polynomials with coefficients in
A,M resp., indeterminate D, and multiplication rule Df = fD + ḟ

C∞(I,Rq) the real vector space of infinitely many times differentiable functions
f : I → R

q, I ⊂ R an open interval

Cω(I,Rq) the real vector space of real analytic functions f : I → R
q, I ⊂ R an

open interval

Id := diag{1, . . . , 1} ∈ R
d×d

0d := (0, . . . , 0)T ∈ R
d

kerW r( d
dt) :=

{
w ∈ W

∣∣ r( d
dt)w = 0

}
, for r(D) ∈ M[D] and W a suitable solution

space to be specified.
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1 Introduction

Systems of differential algebraic equations play an important role in modelling multi-body sys-
tems, electric circuits, or coupled systems of partial differential equations, see [1, 9]. As an
example, consider a simplified, linearized model of a two-dimensional, three-link constrained
mobile manipulator [11] as depicted in Figure 1.

Figure 1: Three-link constrained mobile manipulator

The Lagrangian equations of motion take the form

M(θ)θ̈ +D(θ, θ̇) +K(θ) = u+ F Tµ,
ψ(θ) = 0,

(1.1)

where θ = [θ1, θ2, θ3]
T is the vector of joint displacements, u ∈ R

3 is the vector of control torques
applied at the joints, the maps M : R

3 → R
3×3, D : R

3 × R
3 → R

3×3, K : R
3 → R

3 model the
mass, centrifugal and Coriolis forces, gravity, respectively. l1, l2, l3, l > 0 are the lengths of the
robot arms, the constraint function is

ψ : R
3 × R

2, [θ1, θ2, θ3] 7→
[
l1 cos(θ1) + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)l3 − l

θ1 + θ2 + θ3

]
.

F = ∂ψ
∂θ , and µ ∈ R

2 represents the Lagrange multipliers and F Tµ is the generalized constraint
force. Under suitable smoothness assumptions of the involved functions, it can be shown (see for
example [22, p. 62]) that there exists a local (possibly global) solution θ(·) of (1.1) on some open
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interval I. Linearizing along this trajectory [3] and rewriting the system in Cartesian coordinates
yields a model of the form

M0(t) z̈(t) +D0(t) ż(t) +K0(t) z(t) = S0 u(t) + F T0 µ

F0 z(t) = 0 ,

where M0, D0,K0 ∈ Cω(I,R3×3) and S0, F
T
0 ∈ R

3×2 with S0 having full row rank. Introducing
the 8 dimensional variable x(t) = [z(t), ż(t), µ(t)] results in the equivalent descriptor system
description of the form

E(t) d
dtx(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) ,
(1.2)

where

E(t) :=



I3 0 0
0 M0(t) 0
0 0 0


 , A(t) :=




0 I3 0
−K0(t) −D0(t) F T0
F0 0 0


 , B(t) :=



0
S0

0


 ,

and C(·) denotes the output matrix with appropriate format, see [11] for explicit data.

The aim of the present paper is to develop a behavioural approach to linear time-varying systems
described by differential-algebraic equations of the form

R( d
dt)w = 0, (1.3)

whereR(D) is a g×q polynomial matrix in the indeterminateD with real meromorphic coefficient
matrices belonging to Mg×q; we use the notation R(D) ∈M[D]g×q.

Systems of the form (1.2) are covered by (1.3). Instead of considering the real analytic coefficients
of R(D) on the whole time axis R, we also could develop the theory on some open interval I ⊂ R,
this is omitted.

As D stands for the ordinary differential operator d
dt , the ring M[D] is endowed with the

multiplication rule
Df = fD + d

dtf. (1.4)

This is a consequence of assuming the associative rule (Df)g = D(fg), which yields (Df)(g) =
d
dtf · g + f · d

dtg =
(

d
dtf + fD

)
(g). The non-commutativity of M[D], in contrast to the com-

mutative ring R[D] in the time-invariant case, is crucial in the following.
Note that we distinguish between the algebraic indeterminate D and the differential operator
d
dt ; for

R(D) =
n∑

i=0

RiD
i ∈M[D]g×q ∼=Mg×q[D],

equality in (1.3) means

n∑

i=0

Ri(t)w
(i)(t) = 0 for almost all t ∈ R.
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We consider local solutions belonging to

C∞t (Rq) :=
{
w ∈ C∞(I,Rq)

∣∣ I ⊂ R an open interval with t ∈ I
}

t ∈ R . (1.5)

Our approach generalizes results on the following sub-classes of systems.

(a) Time-varying state space systems of the form

d
dtx(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) + F (t)u(t),
(1.6)

with real analytic matrices A ∈ An×n, B ∈ An×m, C ∈ Ap×n and F ∈ Ap×m, are well
studied, see for example the standard monograph [26].

(b) Time-varying descriptor systems of the form

E(t) d
dtx(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) + F (t)u(t),
(1.7)

with A ∈ A`×n, B ∈ A`×m, C ∈ Ap×n, F ∈ Ap×m, where E ∈ A`×n is allowed to be
singular in the sense that rk E(t) < min{l, n} for some t ∈ R, have been studied by
different authors. In [4] controllability and observability has been studied in terms of
derivative arrays. In [2] a first behaviour like approach to systems (1.7) with analytic
coefficients has been discussed. A more general approach that allows for larger classes of
coefficients and that can be implemented also numerically has been introduced in [17] and
generalized partially to the nonlinear case in [16].

(c) In [13] time-varying polynomial systems of the form

P ( d
dt)z(t) = Q( d

dt)u(t),

y(t) = V ( d
dt)z(t) + W ( d

dt)u(t),
(1.8)

where P (D), Q(D), V (D) and W (D) are matrices of size r × r, r × m, p × r, p × m,
respectively, over M[D] are studied under the following assumptions:

– P (D) represents a so called full operator, i.e. if z is a real analytic solution of P ( d
dt)z =

0 on some interval I ⊂ R, then this solution can be analytically extended to the whole
of R.

– For every u ∈ C∞(R,Rm) with bounded support to the left, there exist some z ∈
C∞(R,Rr) and y ∈ C∞(R,Rp) so that (1.8) is satisfied.

Time-invariant polynomial (so called Rosenbrock) systems of the form (1.8), i.e. P (D),
Q(D), V (D) and W (D) are matrices over R[D] and detP (·) 6= 0, were introduced in [24],
and are well studied, see for example [10, 34].

(d) Time-invariant polynomial systems in the so called kernel representation

R( d
dt)w(t) = 0, R(D) ∈ R[D]g×q (1.9)

have been introduced by Willems in [30]; see also[31, 32, 33] and the monograph [21].
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Time-varying descriptor systems (1.7) or, if E = In and n = l, state space systems (1.6) are a
special case of time-varying Rosenbrock systems (1.8): set

R(D) =

[
ED −A, −B, 0
−C, −F, Ip

]
, and w =

(
xT , uT , yT

)T
. (1.10)

Furthermore, time-varying Rosenbrock systems of the form (1.8) are a special case of systems

in kernel representation (1.3): set w =
(
xT , uT , yT

)T
and

R(D) = [R1(D), R2(D)] , R1(D) =

[
P (D)
V (D)

]
, R2(D) =

[
−Q(D), 0
W (D), −Ip

]
. (1.11)

In the following, we present some prototypical scalar differential equations which illustrate how
time-varying coefficients may effect the solutions in very different ways.

Example 1.1

(i) Consider r(D) = tD + 1 . The function t 7→ w(t) = t−1 is a meromorphic solution of
r( d

dt)w = t d
dtw + w = 0. The point 0 is the only zero of the leading coefficient t 7→ t of

r(D), and 0 is also a pole of t 7→ w(t). Therefore,

kerA r(
d
dt) = kerC∞(R,R) r(

d
dt) = {0},

but, for every interval I ⊂ R with 0 6∈ I,

dim kerM r( d
dt) = dim kerA|

I

r( d
dt) = 1 = deg r(D).

In this example, in the meromorphic case the dimension of the solution space equals the
degree of r(D). This is not true in general as illustrated by the following example.

(ii) Consider r(D) = t2D + 1 . The function t 7→ w(t) = e1/t solves r( d
dt)w = 0. The point

0 is again the only zero of the leading coefficient t 7→ t2 of r(D), and 0 is also a pole
of t 7→ w(t). But w is not meromorphic and the singularity at t = 0 differs from (i) as
follows: No matter whether the solution w in (i) approaches 0 from the left or right, the
limit at t = 0 does not exist; whereas, for the solution w in the present example, we have
limt→0−w(t) = 0 and limt→0+w(t) =∞ . Hence,

kerM r( d
dt) = {0}.

For every interval I ⊂ R with 0 6∈ I we have

dim kerM|
I

r( d
dt) = 1 = deg r(D).

(iii) Consider r(D) = tD − 1 . The function t 7→ w(t) = t solves r( d
dt)w = 0 and

dim kerA r(
d
dt) = 1 = deg r(D).

Note that again the point t = 0 is the only zero of the leading coefficient t 7→ t of r(D),
but this time the zero does not produce a pole of the solution, the solution w is even a
real analytic function on R. However, the solution is not as arbitrary as for time-invariant
systems, since w(0) = 0 is the only value at t = 0.
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(iv) Consider r(D) = 2tD − 1 . The functions t 7→ w+(t) =
√
t and t 7→ w−(t) =

√
−t solve

r( d
dt)w = 0 on (0,∞), (−∞, 0), respectively. For every interval I ⊂ R with 0 6∈ I, we have

dim kerA|
I

r( d
dt) = 1 = deg r(D).

However,
kerM r( d

dt) = {0}.
The real analytic solution w+ on (0,∞) cannot be continued to (−ε,∞) for any ε > 0.
This also proves that the attempt to connect real analytic solutions between critical points
by cutting the neighbourhood and going into the complex sphere, as suggested by Ilchmann
et al. [12], does not work. ∗ 2

Our results are related to the following results in the literature. In [7], a behavioural approach
for time-varying linear systems of the form

d
dtx(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) + F (t)u(t),
(1.12)

has been introduced, where I ⊂ R is an open interval and the entries of the time-varying
coefficient matrices Ri(·) are rational analytic functions

f(·)
g(·) , f, g ∈ C[t] and g(t) 6= 0 for all t ∈ I.

The solution space B for w solving (1.12) is allowed to be the space of Sato’s hyperfunctions
on I; B is also called the behaviour of R(D). One motivation for the rather large solution
space of hyperfunctions is that a categorial one-to-one correspondence between behaviours and
finitely generated modules over a suitable ring of differential operators can be proved, see [19].
Hyperfunctions are generalized distributions and capture the singularities. The dimension of the
solution space of an ordinary differential equation is the degree plus order of the singularities.
However, in [7] these zeros are excluded and the analysis is restricted to intervals I where g(t) 6= 0.

Time-varying Rosenbrock systems of the form (1.10) have been introduced and studied in [13].
The solution space is the set of C∞-functions on the whole time axis, but this is ensured by the
assumption that imQ( d

dt) ⊂ imP ( d
dt) and, most importantly, that P (D) is a “full” operator, i.e.

every local analytic solution of P ( d
dt)z = 0 is extendable to a global analytic solution on the

whole of R.

In [6] matrices over the ring of linear differential operators k[D] are considered, where k is a
differential field. Linear dynamics are finitely generated left k[D]-modules. This contribution is
rather on the algebraic side, the solution space is not specified.

In [27] contributions to duality of systems in the set-up of [6] for systems in generalized state
space representation are given, however the solution space is not specified.

Important early contributions to time-varying systems in polynomial descriptions are given in
[36, 37, 14]; however, the assumptions on the system classes are rather restrictive.

∗We are indebted to the anonymous referee of an earlier version of the present paper for pointing out this

example to us.
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In [12] a first approach in the spirit of the present paper is presented for scalar systems.

A completely different approach results from the study of differential-algebraic equations, see
[1, 8]. A general solvability theory for nonsquare linear time-varying systems was first given in
[15] and analysed for control problems in a behavioural context in [2, 17, 23], see also [16] for
the general nonlinear case.

This paper is organized as follows. In Section 2, the concept of local behaviour is defined
and the Teichmüller-Nakayama normal form is cited and certain consequences for the present
system class are shown. In Section 3, we introduce and characterise algebraically the concept of
controllability for the kernel and image representation. The relationships between controllability,
behaviour and autonomous behaviour are studied in Section 4. Finally, in Section 5, observability
is defined, it is related via the adjoint of the kernel representation to the controllable behaviour,
and it is characterized algebraically. We conclude with a summary and some direction of future
research.

2 Behaviour

In this section we introduce the concept of local controllability as a generalization of the be-
haviour concept introduced by Willems [30], see also [21]. The Teichmüller-Nakayama normal
form is then the main tool to characterize controllability algebraically and to show that it is a
generalization of well known controllability concepts for less general system classes.

Definition 2.1 For R(D) ∈ M[D]g×q, the local behaviour of the system R( d
dt)w = 0 at t ∈ R

is defined as
B

ker
R (t) :=

{
w ∈ C∞t (Rq)

∣∣ R( d
dt)w(t) = 0 ∀t ∈ domw

}
. (2.1)

The set B
ker
R (t) becomes a real vector space if endowed, for w1, w2 ∈ B

ker
R (t), with addition

(w1 + w2)(τ) := w1(τ) + w2(τ) ∀τ ∈ domw1 ∩ domw2 ,

and obvious scalar multiplication. The dimension of this vector space is defined as

dim B
ker
R (t) := sup

{
k ∈ N

∣∣∣∣∣∃w1, . . . , wk ∈ B
ker
R (t) linearly independent on

k⋂

i=1

domwi

}
.

2

Crucial for the analysis of the local behaviour is the following Teichmüller-Nakayama normal
form. To this end we recall some results on matrices over the skew polynomial ring M[D]; a
standard reference for this is [5]. M[D] is simple, i.e., the only ideals which are right and left
ideals at the same time are the trivial ones; the rank of a matrix overM[D] is unambiguous, since
column rank and row rank coincide; the Teichmüller-Nakayama normal form is the analogue of
the Smith normal form for matrices over the commutative ring R[D], it is simpler for matrices
over M[D], since the class of transformations is larger. W (D) ∈M[D]n×n is called unimodular

if, and only if, there exists some W (D)−1 ∈ M[D]n×n such that W (D) W (D)−1 = In; two
elements q1, q2 ∈ M[D] are similar if, and only if, q1a = bq2 for some a, b ∈ M[D] for which q1
and b (q2 and a) are called left (right) coprime, respectively.
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Lemma 2.2 (Teichmüller-Nakayama normal form)
Any R(D) ∈M[D]g×q with rkM[D]R(D) = l can be factorized into

R(D) = U(D)−1



Il−1 0 0
0 r(D) 0
0 0 0(q−l)×(q−l)


V (D)−1, (2.2)

where U(D) and V (D) are M[D]-unimodular matrices of sizes g and q, respectively, and
r(D) ∈M[D] is non-zero, unique up to similarity, and of unique degree.

Proof: A proof and an interesting historical description of the development of the normal form
(2.2) can be found in [5, Ch. 8]. In [20] it is shown that the degree of similar polynomials is
equal. 2

Remark 2.3 Let R(D) ∈ M[D]g×q and consider the factorization (2.2). Let T = T(R,U, V, r)
denote the union of all zeros and poles of the meromorphic coefficients in all entries of U(D),
U(D)−1, V (D), V (D)−1, and r(D).

(i) Certainly, T is a discrete set, and hence it follows that the local behaviour is non-trivial
almost everywhere, i.e.

{
t ∈ R

∣∣Bker
R (t) 6= {0}

}
is discrete.

(ii) Furthermore,

dimB
ker
R (t) =

{
deg r(D) for a.a. t ∈ R, if rkR(D) = q
∞ for all t ∈ R, if rkR(D) < q.

The latter is a simple consequence of (2.2) and the fact that the set of t where r( d
dt)ϕ(t) = 0

does not have a solution, is a subset of {t ∈ R| rN (t) = 0}, where r(D) =
∑N

i=0 ri(t)D
i,

rN 6≡ 0. To see this use canonical transformation to a vector-valued differential equation
of first order, see for example [29, Ch. IV].

(iii) Note that in the case of time-varying state space systems or time-invariant Rosenbrock
systems the set T is empty, the system is defined on the whole time axis.

2

Remark 2.4 Suppose that R(D) has constant coefficients, i.e. R(D) ∈ R[D]g×q. If the class
of unimodular transformations for the computation of the normal form (2.2) is restricted to
R[D]-unimodular matrices, then we arrive at the Smith normal form

R(D) = U(D)−1

[
diag {r1(D), . . . , rl(D)} 0l×(q−l)

0(q−l)×l 0(q−l)×(q−l)

]
V (D)−1, (2.3)
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where U(D) and V (D) are R[D]-unimodular matrices of sizes g and q, respectively, and ri(D) ∈
R[D] are non-zero monic polynomials with ri|ri+1, i = 1, ..., l − 1, where l = rkR[D]R(D) and
ri(D) = ψi(D)/ψi−1(D), ψ0(·) ≡ 1 and ψi(D) is the greatest common divisor of minors of order
i of R(D); see for example [25, pp. 91-93].

Note that due to the smaller class of transformations, the Smith nomral form is less simple than
the Teichmüller-Nakayama normal form.

Suppose additionally that rkR[D]R(D) = q. Then every local solution w ∈ CNt (Rq) of R( d
dt)w =

0, where N is sufficiently large depending on deg R(D) and the degrees of the transformation
matrices, can be continued to a global solution on R and it is even real analytic. This follows
immediately from the Smith normal form (2.3) and the theory of linear time-invariant differential
equations. Therefore,

B
ker
R (t) = B

ker
R (s) for all t, s ∈ R

and

dim B
ker
R (t) =

q∑

i=0

deg ri(D) for all t ∈ R.

If R(D) is factorized as in (2.2), then deg r(D) =
∑q

i=0 deg ri(D). 2

Remark 2.5 Suppose that R(D) ∈ M[D]g×q is of full rank g ≤ q. Let R(D) be factorized
as in (2.2) and differently into

R(D) = Ū(D)−1

[
Ig−1

r̄(D)

∣∣∣∣ 0g×(q−g)

]
V̄ (D)−1 . (2.4)

Then a simple algebraic manipulation shows that

V̄ (D)−1V (D) =

[
W1(D) 0
W3(D) W4(D)

]
, (2.5)

whereW1(D) ∈M[D]g×g ,W4(D) ∈M[D](q−g)×(q−g) are unimodular andW3(D) ∈M[D](q−g)×g.
2

3 Controllability

In this section we introduce, study and characterize the controllability of the system (1.3).

Definition 3.1 For R(D) ∈ M[D]g×q, the system R( d
dt)w = 0 is called locally controllable at

t ∈ R if, and only if, for every w1, w2 ∈ B
ker
R (t) and every t0 ∈ (−∞, t) ∩ dom w1 there exist

t1 ∈ dom w2 ∩ (t,∞) and w ∈ B
ker
R (t) such that

w(t) =

{
w1(t), t ∈ (−∞, t0] ∩ dom w1

w2(t), t ∈ [t1,∞) ∩ dom w2.

R( d
dt)w = 0 is called controllable if, and only if, it is locally controllable almost everywhere. 2
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t1t0 t

w
1

w
2

w

Figure 2: Local controllability at t

Remark 3.2

(i) Due to the linearity of the system R( d
dt)w = 0, the trajectory w2 in Definition 3.1 may be

replaced, without restriction of generality, by w2 = 0.

(ii) Loosely speaking, controllability means that any two trajectories w1, w2 ∈ B
ker
R (t) can be

connected by another trajectory w ∈ B
ker
R (t) so that in finite time w1 moves via w into w2.

A similar notion of controllability via trajectories was introduced in [10] for time-invariant
Rosenbrock systems with E = I of the form (1.10). For time-invariant state space systems
of the form (1.6), the concept of controllability coincides with the one introduced in [21,
Sect. 5.2]. 2

We are now in a position to prove the main theorem of this section which characterizes control-
lability in algebraic terms. Recall that R(D) is called right invertible if, and only if, there exists
some R#(D) ∈M[D]q×g such that R(D)R#(D) = Ig.

Theorem 3.3 Let R(D) ∈ M[D]g×q. Then the system R( d
dt)w = 0 is controllable if, and

only if, R(D) is right invertible.

Proof: Suppose that R(D) is factorized as in (2.2) and let T = T(R,U, V, r) denote the discrete
set given in Remark 2.3. Then it remains to show that R( d

dt)w = 0 is locally controllable at
t ∈ R\T if, and only if, r(D) is a non-zero meromorphic function.

“⇒”: Suppose that deg r(D) ≥ 1 and t ∈ R\T. By [29, Ch. IV] there exists an open interval
I ⊂ R\T with t ∈ I and some non-zero real analytic solution ϕ : I → R which solves r( d

dt)ϕ = 0.
By the construction of T and letting eg denote the g-th canonical basis vector in R

q, it follows
that

ŵ1 := V ( d
dt) ϕ eg ∈ Cω(I,Rq)

and solves R( d
dt)ŵ

1 = 0.

Seeking a contradiction, suppose that R( d
dt)w = 0 were locally controllable at t. Let t0 ∈
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(−∞, t) ∩ I. Then there exist t1 ∈ (t,∞) and w ∈ B
ker
R such that

w(t) =

{
w1(t), t ∈ (−∞, t0] ∩ domw1

0, t ∈ [t1,∞).
(3.1)

Therefore,
diag {1, . . . , 1, r( d

dt), 0, . . . , 0}V ( d
dt)

−1w = 0 ∀ t ∈ domw

which yields
V ( d

dt)
−1w =: (0, . . . , 0, ϕg, . . . , ϕq)

T ∈ Cω(domw,Rq)

and r( d
dt)ϕg(t) = 0 for all t ∈ domw. By (3.1) we have ϕg(t) = 0 for all t ∈ [t1,∞), and since

ϕg is real analytic, the identity property of real analytic functions gives ϕ ≡ ϕg ≡ 0, which is a
contradiction.

“⇐”: Let t ∈ R\T, r(D) meromorphic and non-zero, and w1 ∈ B
ker
R (t).

Then there exists some open interval I := (τ0, τ1) ⊂ (R\T) ∩ domw1 with t ∈ I such that

w1 =: V ( d
dt) (0, . . . , 0, ϕg+1, . . . , ϕq)

T ∈ C∞(I,Rq).

Choose δ ∈ C∞(R,R) such that

δ(t) =

{
1, t ≤ τ0
0, t ≥ τ1.

Then
w := V ( d

dt) δ (0, . . . , 0, ϕg+1, . . . , ϕq)
T ∈ C∞(I,Rq)

satisfies R( d
dt)w = 0 and

w(t) =

{
w1(t), t ≤ τ0
0, t ≥ τ1.

This completes the proof. 2

For time-invariant systems (1.3), Theorem 3.3 is derived differently in [21, Th. 5.2.10].

Remark 3.4 For time-varying systems (1.6) or (1.8), it is well known that controllability of
the system yields that it can be controlled in arbitrary short time. The proof of Theorem 3.3,
in particular the choice of (τ0, τ1) and δ, shows that this is also valid for systems R( d

dt)w = 0:

If R( d
dt)w = 0 is controllable , then t0 < t and t1 > t in Definition 3.1 can be replaced by any

arbitrary close to t. 2

In the following remark we recall the classical concept of controllability for time-varying state
space systems and clarify the set of admissible input functions.

Remark 3.5 Controllability for state space systems (1.6) means (see for example [28, Def. 3.1.6]),
that for any x0, x1 ∈ R

n and t0 ∈ R, there exist t1 > t0 and a continuous function u : [t0, t1]→
R
m such that
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x(t) = (Lu)(t) := Φ(t, t0)x
0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ , t ∈ [t0, t1]

satisfies x(t1) = x1. Here Φ denotes the transition matrix of the homogeneous system ẋ = Ax.

Using the fact that the set of C∞–functions with support in [t0, t1] lies dense, with respect to the
L1–norm, in the set of piecewise continuous functions with support included in [t0, t1], it follows
from a straightforward modification of the proof of Lemma A2 in [13] that, for all t ∈ (t0, t1) ,

{
(Lu)(t)

∣∣u ∈ C∞((t0, t1),R
m)
}

=
{
(Lu)(t)

∣∣u : [t0, t1]→ R
m piecew. cont. with supp u ⊂ [t0, t1]

}
.

Therefore, although in the original definition u is required to be continuous, we may choose,
without any restriction of generality, u ∈ C∞(R,Rm) with supp u ⊂ [t0, t1]. 2

In the following Proposition 3.6, it is shown how controllability encompasses other definitions
of controllability, well established in the literature.

Proposition 3.6 Consider a time-varying Rosenbrock system of the form (1.8) with corre-
sponding R(D) as defined in (1.11), suppose that R(D) has full row rank. Then the following
conditions are equivalent:

(i) R( d
dt)w = 0 is controllable.

(ii) [P (D), −Q(D)] is right invertible.

(iii) [P ( d
dt), −Q( d

dt)]w = 0 is controllable.

(iv) (1.8) is controllable in the sense defined in [13].

(v) If R(D) represents a time-invariant Rosenbrock system (1.8), then (1.8) is controllable in
the sense defined in [10].

(vi) If R(D) represents a state space system (1.6) with corresponding R(D) as defined in (1.10),
then (1.6) is controllable in the classical sense as, for example given in [28, Def. 3.1.6].

Proof: The equivalences ‘(i) ⇔ (ii) ⇔ (iii)’ follow from Theorem 3.3 and simple algebraic
manipulations; ‘(ii)⇔ (iv)’ follows from [13, Th. 6.4]. ‘(ii) ⇔ (v)’ follows from [10, Cor. 7.3]. It
remains to prove that the classical concept of controllability as given in Remark 3.5 is encom-
passed in the behavioural setup. It is easy to see that (iii) implies (vi) and we omit the proof.
To prove the converse, suppose that (vi) holds. Then for given

(xi, ui) ∈ C∞(R,Rn)× C∞(R,Rm) such that d
dtx

i(t) = A(t)xi(t) +B(t)ui(t), i = 1, 2

and given t0 ∈ R, we need to find

(x, u) ∈ C∞(R,Rn)× C∞(R,Rm), so that d
dtx(t) = A(t)x(t) +B(t)u(t),

and t1 > t0 such that

(x(t), u(t)) =

{ (
x1(t), u1(t)

)
, for all t ≤ t0

(
x2(t), u2(t)

)
, for all t ≥ t1.

(3.2)
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Let x̄1 = x1(t0) and, for arbitrary but fixed t1 > t0 let x̄2 = x2(t1). Then by (vi) we may choose
û ∈ C∞(R,Rm) with supp û ⊂ [t0, t1] such that

x(t) = Φ(t, t0)x̄1 +

∫ t

t0

Φ(t, τ)B(τ)û(τ)dτ satisfies x(t2) = x̄2.

Define, for all t ∈ R,

u(t) =





u1(t), for all t ≤ t0
û(t), for all t ∈ (t0, t1)
u2(t), for all t ≥ t1

and x(t) = Φ(t, t0)x̄1 +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ.

Then (x, u) satisfies ẋ = Ax+Bu and (3.2). The function u is in general not infinitely many times
differentiable at t0 or at t1, but applying Remark 3.5, one may replace û so that u ∈ C∞(R,Rm).
This completes the proof. 2

Next we study, for R(D) ∈ M[D]g×q, the relationship between the local kernel representation
B

ker
R (t) of the system R( d

dt)w = 0 and the local image representation at t ∈ R, i.e. for some
M(D) ∈M[D]q×m the real vector space

B
im
M (t) :=

{
w ∈ C∞t (Rq)| ∃ l ∈ C∞t (Rm) ∀ t ∈ domw ∩ dom l : w(t) =M( d

dt)l(t)
}
.

Proposition 3.7 For R(D) ∈M[D]g×q we have that R( d
dt)w = 0 is controllable if, and only

if, there exist m ∈ N and M(D) ∈M[D]q×m such that B
ker
R (t) = B

im
M (t) for almost all t ∈ R.

Proof: Suppose R(D) is factorized as in (2.2) and let T denote the discrete set given in
Remark 2.3. By Theorem 3.3 it remains to show that r(D) is a non-zero meromorphic function
if, and only if, B

ker
R (t) = B

im
M (t) for all t ∈ R\T.

“⇒”: Set

M(D) := V (D)

[
0g×(q−g)

Iq−g

]
.

Then B
im
M (t) ⊂ B

ker
R (t) for all t ∈ R\T is immediate. If w ∈ B

ker
R (t) for t ∈ R\T, then r(D)

being non-zero and meromorphic yields
[
Ig
∣∣ 0g×(q−g)

]
V ( d

dt)
−1w(t) = 0 ∀ t ∈ domw ∩ (R⊂T),

and so there exists l ∈ C∞t (Rm) such that

V ( d
dt)

−1w =

[
0g×m
Im

]
l.

“⇐”: Let t ∈ R⊂T and choose an open interval I ⊂ (R\T) with t ∈ I. Seeking a contradiction,
by Theorem 3.3 one may assume that deg p(D) ≥ 1. Comparing the gth components of the
identical vector spaces

{
w ∈ C∞(I,Rq)

∣∣∣∣
[
Ig−1

r( d
dt)

∣∣∣∣ 0g×(q−g)

]
V ( d

dt)
−1w = 0

}

13



and
{
w ∈ C∞(I,Rq)| ∃ l ∈ C∞(I,Rm) : w =M( d

dt)l
}
yields that

dim
{(
V ( d

dt)
−1w(t)

)
g

∣∣ w ∈ C∞(I,Rq) ∧ r( d
dt)
(
V ( d

dt)
−1w(t)

)
g
= 0

}

= dim
{(
V ( d

dt)
−1M( d

dt)l(t)
)
g

∣∣ l ∈ C∞(I,Rm)
}
.

However, the former has finite dimension deg r(D) ≥ 1, while the latter is zero dimensional or
has infinite dimension. This is a contradiction.
This completes the proof of the proposition. 2

Proposition 3.7 is known for time-invariant systems, see [21, Theorem 6.6.1]; however the differ-
ent proof presented here might also be of interest in the time-invariant case.

Note that the family of linear sub-spaces of a linear space may be partially ordered by inclusion,
and thus constitutes a lattice with respect to + and ∩. Hence the following definition is well-
defined.

Definition 3.8 Let R(D) ∈M[D]g×q and t ∈ R. Any vector space BR(t) with BR(t) ⊂ B
ker
R (t)

is called local sub-behaviour of R( d
dt)w = 0 at t ∈ R.

A sub-vector space B
c
R(t) of B

ker
R (t) is called locally controllable at t ∈ R if, and only if, for

every w1, w2 ∈ B
c
R(t) and every t0 ∈ (−∞, t) ∩ dom w1 there exist t1 ∈ dom w2 ∩ (t,∞) and

w ∈ B
c
R(t) such that

w(t) =

{
w1(t), t ∈ (−∞, t0] ∩ dom w1

w2(t), t ∈ [t1,∞) ∩ dom w2.

B
c
R is called controllable if, and only if, it is locally controllable almost everywhere.

B
contr
R (t) ⊂ B

ker
R is called the largest controllable behaviour of R( d

dt)w = 0 at t if, and only if,

every controllable behaviour B
c
R(t) of R(

d
dt)w = 0 satisfies B

c
R(t) ⊂ B

contr
R (t) almost everywhere.

2

In the following Proposition 3.9 we show that the largest controllable behaviour is independent
of the non-unique factorization (2.2).

Proposition 3.9 If R(D) ∈M[D]g×q is factorized as in (2.2), then we have

B
contr
R (t) =

{
w ∈ B

ker
R (t)

∣∣∣
[
Ig, 0g×(q−g)

]
V ( d

dt)
−1w = 0

}
for a.a. t ∈ R.

Proof: Since
[
Ig, 0g×(q−g)

]
V (D)−1 is right invertible, it follows from Theorem 3.3 that

B
c(t) :=

{
w ∈ B

ker
R (t)

∣∣∣ [Ig, 0] V ( d
dt)

−1w = 0
}

is a controllable behaviour almost everywhere. Therefore, we have to show that B
contr
R (t) ⊂ B

c(t)
almost everywhere. Let T denote the union of all zeros and poles of the meromorphic coefficients
in all entries of U(D), U(D)−1, V (D), V (D)−1, r(D), Ū(D), Ū(D)−1, V̄ (D), V̄ (D)−1, and r̄(D).
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Then T is a discrete set. Let w ∈ B
contr
R (t) for t ∈ R\T. Choose an open interval I ⊂ T with

t ∈ R⊂T. Then

V ( d
dt)

−1w =: (0, . . . , 0, ϕg, . . . , ϕq)
T ∈ C∞(I,Rq) and r( d

dt)ϕg = 0.

The function ϕg, as a solution of a linear ordinary differential equation with real analytic coeffi-
cients on I, is real analytic on I itself. Therefore, the normal form (2.2) and the identity property
of analytic function yields ϕg ≡ 0. This proves w(t) = V ( d

dt) (0, . . . , 0, ϕg+1, . . . , ϕq)
T ∈ B

c
R(t).

If R(D) is factorized as in (2.4), then by Remark 2.5 one concludes that

[Ig, 0] V̄ ( d
dt)

−1w = [Ig, 0]

[
W1(

d
dt) 0

W3(
d
dt) W4(

d
dt)

]
V ( d

dt)
−1w =

[
W1(

d
dt), 0

]
V ( d

dt)
−1w,

and the result follows since W1(D) is unimodular. This completes the proof. 2

4 Autonomous behaviour

In this section we show that the local behaviour (in the sense almost everywhere) can be de-
composed into the direct sum of the controllability subspace and an autonomous subspace.

Definition 4.1 For R(D) ∈ M[D]g×q, the system R( d
dt)w = 0 is called locally autonomous

at t ∈ R if, and only if, for any w1, w2 ∈ B
ker
R (t) with w1 ≡ w2 on some open interval I ⊂

dom w1 ∩ dom w2 with t ∈ I it follows that w1 ≡ w2 on dom w1 ∩ dom w2.

The system R( d
dt)w = 0 is called autonomous if, and only if, it is autonomous almost everywhere.

A real vector space B
aut
R (t) ⊂ B

ker
R (t) is called autonomous if, and only if, for any w1, w2 ∈

B
aut
R (t) with w1 ≡ w2 on some open interval I ⊂ dom w1 ∩ dom w2 with t ∈ I it follows that

w1 ≡ w2 on dom w1 ∩ dom w2.

A set B
aut
R , associated to t 7→ B

aut
R (t) ⊂ B

ker
R (t), is called autonomous behaviour if, and only if,

B
aut
R (t) is autonomous for almost all t ∈ R. 2

The above definition is a generalization of autonomous sub-behaviour of time-invariant systems
as, for example, defined in [21, p. 67].

Proposition 4.2 Consider the system R( d
dt)w = 0 with R(D) ∈ M[D]g×q and factorization

(2.2). For any autonomous behaviour B
aut
R , the following properties hold.

(i) B
aut
R (t) ∩ B

contr
R (t) = {0} for almost all t ∈ R.

(ii) If w ∈ B
aut
R (t), then 


Ig−1

r( d
dt)

Iq−g


V ( d

dt)
−1w = 0.
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(iii) 

w ∈ C

∞
t (Rq)

∣∣∣∣∣∣



Ig−1

r( d
dt)

Iq−g


 V ( d

dt)
−1w = 0





is an autonomous behaviour for a.a. t ∈ R.

Proof:

(i): If w ∈ B
aut
R and w 6≡ 0, then it cannot belong to the controllable behaviour, otherwise

Definition 4.1 would be violated.
(ii): By (i) and Proposition 3.9, any w ∈ B

aut
R (t) satisfies [0(q−g)×g, Iq−g]V ( d

dt)
−1w = 0. Hence

(ii) follows from (2.2).
(iii): Let T denote the discrete set given in Remark 2.3 and t ∈ R\T. If w ∈ B

ker
R (t) and satisfies



Ig−1

r( d
dt)

Iq−g


V ( d

dt)
−1w = 0 ,

then (2.2) yields that w is of the form

w = V ( d
dt) (0, . . . , 0, ϕg, 0, . . . , 0)

T ,

for some ϕg ∈ C∞t (R) with r( d
dt)ϕg = 0. Since r has real analytic coefficients, the solution is

real analytic, too, and the identity property of real analytic functions ensures local uniqueness
of w as in Definition 4.1. This completes the proof. 2

Note that the autonomous behaviour in Proposition 4.2 (iii) is not uniquely defined, it depends
on the factorization (2.2); this holds already true for time-invariant systems, see [21, Ex. 5.6].
However, the dimension of of this autonomous behaviour is unique; this follows from the fact
that r(D) is unique up to similarity, and the latter preserves the degree, see Proposition 2.2.
For time-invariant systems (1.3), the results of Proposition 4.2 can be found in [21, Sect. 5.2].

For time-invariant systems (1.9), it is well-known that an autonomous behaviour is not uniquely
defined by R(D), but depends on the factorization, see [21, Rem. 5.2.15]. However, the sum
of an autonomous behaviour and the controllable behaviour is indeed uniquely defined. In the
following we generalize this result to time-varying systems.

Theorem 4.3 Consider the system R( d
dt)w = 0 with R(D) ∈ M[D]g×q, factorizations (2.2),

(2.4), and define, for all t ∈ R,

B
contr
R (t) =

{
w ∈ B

ker
R (t)

∣∣ [
Ig, 0g×(q−g)

]
V ( d

dt)
−1w = 0

}
,

B
aut
R (t) =



w ∈ B

ker
R (t)

∣∣∣∣∣∣



Ig−1

r( d
dt)

Iq−g


V ( d

dt)
−1w = 0



 ,

B
aut
R (t) =



w ∈ B

ker
R (t)

∣∣∣∣∣∣



Ig−1

r̄( d
dt)

Iq−g


 V̄ ( d

dt)
−1w = 0



 ,
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where the latter is defined with respect to (2.4). Then

B
ker
R (t) = B

aut
R (t)⊕B

contr
R (t) = B

aut
R (t)⊕B

contr
R (t) for almost all t ∈ R. (4.1)

Proof: Let T denote the union of all zeros and poles of the meromorphic coefficients in all
entries of U(D), U(D)−1, V (D), V (D)−1, r(D) and Ū(D), Ū(D)−1, V̄ (D), V̄ (D)−1, r̄(D). T is a
discrete set. In the following we consider t ∈ R\T and an open interval I ⊂ T with t ∈ I. We
proceed in several steps.
Step 1: By Proposition 4.2 (i) the sums in (4.1) are direct sums.

Step 2: The inclusion
B

ker
R (t) ⊃ B

aut
R (t)⊕B

contr
R (t)

follows from the definition of B
aut
R (t) and B

contr
R (t).

Step 3: We show
B

ker
R (t) ⊂ B

aut
R (t)⊕B

contr
R (t) . (4.2)

Let w ∈ B
ker
R (t) and set

(ϕ1, . . . , ϕq)
T := V ( d

dt)
−1w ∈ C∞(I;Rq) .

Then 

Ig−1

r( d
dt)

Iq−g


V ( d

dt)
−1w = 0 ,

and hence
(ϕ1, . . . , ϕq)

T = (0, . . . , 0, ϕg, 0, . . . , 0)
T with r( d

dt)ϕg = 0.

Finally

w1 := V ( d
dt)

−1
(
0, . . . , 0, ϕg, 0, . . . , 0

)T ∈ B
aut
R (t),

w2 := V ( d
dt)

−1 (0, . . . , 0, ϕg+1, . . . , ϕq)
T ∈ B

contr
R (t),

yields w1 + w2 = w, whence (4.2).

Step 4: We show

B
aut
R (t)⊕B

contr
R (t) ⊂ B

aut
R (t)⊕B

contr
R (t) .

Let w1 ∈ B
aut
R (t) and w2 ∈ B

contr
R (t) . Then

(0, . . . , 0, ϕg, 0, . . . , 0)
T := V ( d

dt)
−1w1 ∈ C∞(I;Rq) with r( d

dt)ϕg = 0,

(0, . . . , 0, ϕg+1, . . . , ϕq)
T := V ( d

dt)
−1w2 ∈ C∞(I;Rq)

Since w := w1 + w2 ∈ B
ker
R (t), it follows from (2.4) that

V̄ ( d
dt)

−1w = (0, . . . , 0, ϕ̄g, . . . , ϕ̄q)
T ∈ C∞(I;Rq) with r( d

dt)ϕ̄g = 0.

Finally, setting

w̄1 := V̄ ( d
dt)

−1
(
0, . . . , 0, ϕ̄g, 0, . . . , 0

)T ∈ B
aut
R ,

w̄2 := V̄ ( d
dt)

−1 (0, . . . , 0, ϕ̄g+1, . . . , ϕ̄q)
T ∈ B

contr
R ,
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shows w = w̄1 + w̄2 ∈ B
aut
R (t)⊕B

contr
R (t).

Step 5: The inclusion

B
aut
R (t)⊕B

contr
R (t) ⊃ B

aut
R (t)⊕B

contr
R (t) .

follows by symmetry as in Step 4. This completes the proof of the theorem. 2

Example 4.4 Revisiting the example (1.2), we now can show that this system is locally con-
trollable almost everywhere.

Without loss of generality, we may assume that the coordinate system for the Lagrange multi-
pliers is such that F0 = [F1 0] with nonsingular F1 ∈ R

2×2 and if we partition

−K0 =

[
K11(t) K12(t)
K21(t) K22(t)

]
, M0 =

[
M11(t) M12(t)
M21(t) M22(t)

]
, −D0 =

[
D11(t) D12(t)
D21(t) D22(t)

]
, S0 =

[
S1

S2

]
,

with K11(t),M11(t), D11(t), S1 ∈ R
2×2 and all other formats accordingly, then the system (1.2),

for t ∈ I, may be written as




I2 0 0 0 0
0 1 0 0 0
0 0 M11(t) M12(t) 0
0 0 M21(t) M22(t) 0
0 0 0 0 0







ẋ1

ẋ2

ẋ3

ẋ4

ẋ5




=




0 0 I2 0 0
0 0 0 1 0

K11(t) K12(t) D11(t) D12(t) F T1
K21(t) K22(t) D21(t) D22(t) 0
F1 0 0 0 0







x1

x2

x3

x4

x5



+




0
0
S1

S2

0



u.

Since F1 is non-singular, and S1, S2 are constant matrices of full row rank, it follows that x1 = 0
and ẋ1 = 0, whence x3 = 0. Therefore, (1.2) is equivalent to




D −1 02×1 0
−K12(t) M12(t) −F1 S1

−K22(t) M22(t) 0 S2







x2

x4

x5

u


 = 0 ,

with corresponding correponding right invertible matrix R(D). By Theorem 3.3, the system
(1.2) is locally controllable almost everywhere on I.

5 Observability

In this section, we study how one behaviour can be observed from another. Essential for this
are the concepts of adjoints of matrices over M[D] and the adjoint of a kernel representation
B

ker
R .
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Definition 5.1 The adjoint for matrices over M[D] is defined as

·ad :Mn×m[D]→Mm×n[D],
k∑

i=0

PiD
i 7→

( k∑

i=0

PiD
i
)ad

:=
k∑

i=0

(−1)iDiP Ti .

Proposition 5.2 The adjoint is an anti-isomorphism, i.e., it is surjective, injective, and sat-
isfies, for arbitrary matrices P (D), Q(D) over M[D] with appropriate formats,

[P (D) +Q(D)]ad = P (D)ad +Q(D)ad, (5.1)

[P (D) ·Q(D)]ad = Q(D)ad · P (D)ad. (5.2)

Proof: Surjectivity, injectivity, and addition are straightforward. It remains to prove the anti-
multiplication rule (5.2). This is well known in the scalar case, see for example [18, p. 25]. To
prove the matrix case, denote the entries of P (D) ∈ Mn×m[D], Q(D) ∈ Mm×l[D] by pij(D),
qij(D), respectively. Then

P (D)ad =
(
pji(D)ad

)
1≤i≤n, 1≤j≤m

, Q(D)ad =
(
qji(D)ad

)
1≤i≤m, 1≤j≤l

and applying this to

(
P (D) ·Q(D)

)
ij

=
k∑

λ=1

piλ(D)qλj(D)

and using the anti-multiplication rule (5.2) for scalar polynomials yields the result. This com-
pletes the proof. 2

Definition 5.3 Let R(D) ∈ M[D]g×q and t ∈ R. The local adjoint of the kernel representa-
tion B

ker
R (t) of the system R( d

dt)w = 0 is the image representation
{
w̃ ∈ C∞t (Rq)

∣∣ ∃ l ∈ C∞t (Rg) ∀ τ ∈ domw ∩ dom l : w̃(τ) = R( d
dτ )

adl(τ)
}
. (5.3)

2

Certainly, the projection onto the first component of the kernel representation
{
(w̃, l) ∈ C∞t (Rq)× C∞t (Rg)

∣∣∣∣ ∀ τ ∈ dom w̃ ∩ dom l :
[
Iq, R(

d
dτ )

ad
](w̃(τ)

l(τ)

)
= 0

}

yields the image representation (5.3).

The following definition is a straightforward generalization of observability for time-invariant
systems in the behavioural set-up, see [21, Def. 5.3.2].

Definition 5.4 Let [R1(D), R2(D)] ∈ M[D]g×(q1+q2) and t ∈ R. Then w2 ∈ C∞t (Rq2) is
called locally observable at t ∈ R from w1 ∈ C∞t (Rq1) for t ∈ R if, and only if,

[
w1

w2

]
,

[
w1

w̃2

]
∈ B

ker
[R1,R2](t)

implies that
w2(τ) = w̃2(τ) ∀ τ ∈ domw2 ∩ dom w̃2.

2
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An algebraic characterization of observability is given in the following theorem.

Theorem 5.5 Let [R1(D), R2(D)] ∈ M[D]g×(q1+q2). Then w2 is locally observable almost
everywhere from w1 if, and only if, R2(D) is left invertible.

Proof: First note that in view of the linearity of the system, it remains to show that for almost
all t ∈ R we have

[
w2 ∈ B

ker
R2

(t) =⇒ w2 = 0
]

⇐⇒ R2(D) is left invertible.

“⇐” is immediate.
“⇒”: Let T denote the discrete set of the union of all zeros and poles of the meromorphic coef-
ficients in all entries of U2(D), U2(D)−1, V2(D), V2(D)−1, r2(D) which take R2(D) into a normal
form (2.2).
Seeking a contradiction, suppose R2(D) is not left invertible and let t ∈ T. Now either
rkM[D]R2(D) < q2 (in which case the normal form (2.2) applied to R2(D) yields the exis-

tence of some w2 ∈ B
ker
R2

(t) with w2 6= 0) or, again by Theorem 2.2, there exist r2(D) ∈ M[D]
with deg r2(D) ≥ 1 and unimodular U2(D) ∈M[D]g×g, V2(D) ∈M[D]q2×q2 such that

U2(D)−1R2(D)V2(D)−1 =




Iq2−1 0(q2−1)×1

01×(q2−1) r2(D)

0(g−q2)×(q2−1) 0


 . (5.4)

By deg r2(D) ≥ 1 there exists ϕ ∈ C∞t (R) \ {0} such that r2(
d
dt)ϕ = 0. Therefore w2 :=

(0, . . . , 0, ϕ)T ∈ B
ker
R2

(t), which is a contradiction. This completes the proof. 2

The following theorem relates the concepts of controllability and observability.

Theorem 5.6 For [R1(D), R2(D)] ∈ M[D]g×(q1+q2) the following two statements are equiv-
alent:

(i) The system [R1(
d
dt), R2(

d
dt)]

(
w1

w2

)
= 0 is locally controllable almost everywhere;

(ii) l is locally observable almost everywhere from w with respect to the system[
Iq ,

R1(
d
dt)

ad

R2(
d
dt)

ad

](
w
l

)
= 0.

2

Proof: By Theorem 3.3, the statement (i) is equivalent to [R1(D), R2(D)] being right in-

vertible, which, by Proposition 5.2, is equivalent to [R1(D), R2(D)]ad =

[
R1(D)ad

R2(D)ad

]
being left

invertible. The latter is, by invoking Proposition 5.5, equivalent to statement (ii) This completes
the proof of the theorem. 2

In order to relate the classical concepts of observability known in the literature to observability
as introduced above, we have to permute the columns in the presentation (1.10), (1.11) in the
following proposition.
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Proposition 5.7 For a time-varying Rosenbrock system of the form (1.8) represented in the
form

R(D) = [R1(D), R2(D)] , R1(D) =

[
−Q(D), 0
W (D), −Ip

]
, R2(D) =

[
P (D)
V (D)

]
,

the following conditions are equivalent.

(i) w2 is locally observable from w1 almost everywhere w.r.t. the system

[R1(
d
dt), R2(

d
dt)]

(
w1

w2

)
= 0.

(ii) R2(D) is left invertible.

(iii) [R1(D), R2(D)] is observable in the sense defined in [13].

(iv) If R(D) represents a time-invariant Rosenbrock system, then it is observable in the sense
defined in [10].

(v) If R(D) represents a state space system (1.6) in the form

R1(D) =

[
−B 0
−F Ip

]
, R2(D) =

[
DIn −A
−C

]
,

then it is observable in the classical sense, see for example [26].

Proof: The equivalence ‘(i)⇔(ii)’ follows from Theorem 5.5. The equivalences ‘(ii)⇔(iii)’ and
‘(ii)⇔(iv)’ follow from [13, Th. 6.5] and [10, Cor. 7.6], respectively. They all can be shown
directly, but only for state space systems we prove ‘(i)⇔(v)’ directly; it shows how observability
in the classical sense and in the behavioural set-up are related. Note that in the case of time-
varying state space systems and time-invariant Rosenbrock systems the set of critical points T

is empty, the system is defined on the whole time axis.
Complete observability for time-varying state space systems of the form (1.6) means, see [26,
Def. 9.7], that for any open interval I ⊂ R we have

[
d
dtIn −A(t)
−C(t)

]
z(t) = 0 ∀ t ∈ I =⇒ z(t) = 0 ∀ t ∈ I. (5.5)

(5.5) is equivalent to R2(D) being left invertible, and hence ‘(i)⇔(v)’ follows from Theorem 5.5.
This completes the proof of the theorem. 2

Example 5.8 Revisiting example (1.2) and adding to (??) the output equation

y =

[
0 0 I2 0 0
0 0 0 1 0

]
x (5.6)

corresponding to measuring the positions, we see that the resulting matrix

[
E(t)D −A(t)

C

]
,
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is left invertible if, and only if, the matrix



D −1 0
−K12(t) M12(t)D −F1

−K22(t) M22(t)D 0




is left invertible, which holds if, and only if, K22(t) is non-zero. The latter is typically the case
in practice, since the stiffness matrix K0(t) is symmetric and positive definite. An application
of Theorem 5.5 yields: x is locally observable from (u, y) at t with respect to the system (??),
(5.6) if, and only if, K22(t) is non-zero.

6 Latent variables and elimination

In [21, Sect. 6.2], full and manifest behaviour is considered for time-invariant systems. We do
not repeat these definitions for time-varying systems but show a time-varying version of the
crucial Theorem 6.2.6 in [21].

Theorem 6.1 Let [R(D), S(D)] ∈ M[D]g×(q+s). Then there exists R′(D) ∈ M[D]g
′×q such

that

B
ker
R′ (t) =

{
w ∈ C∞t (Rq)

∣∣ ∀τ ∈ domw ∩ dom l : R( d
dτ )w(τ) = S( d

dτ )l(τ)
}

for a.a. t ∈ R.
(6.1)

Proof: By Theorem 2.2, there exists some unimodular U(D) ∈M[D]g×g such that

U(D)R(D) =

[
R′(D)
R′′(D)

]
, U(D)S(D) =

[
0

S′′(D)

]
,

where R′(D) ∈M[D]g
′×q, R′′(D) ∈M[D]g

′′×q, S′′(D) ∈M[D]g
′′×s, and rkM[D]S

′′(D) = g′′.
Applying Theorem 2.2 again, there exist M[D]-unimodular matrices U(D) and V (D) of sizes
g′′ and s, and r(d) ∈M[D] such that

S′′(D) = U(D)−1

[
Ig′′−1 0
0 r(D)

∣∣∣∣ 0g′′×(q−g′′)

]
V (D)−1.

Choose T as the discrete set of the union of all zeros and poles of the meromorphic coefficients
in all entries of U(D), V (D), U(D)−1, V (D)−1, r(D). Let I be an open interval with I ⊂ R \ T

and t ∈ I.

Then

R( d
dτ )w(τ) = S( d

dτ )l(τ) ⇐⇒
[
R′( d

dτ ) 0

R′′( d
dτ ) S′′( d

dτ )

](
w(τ)
l(τ)

)
∀ τ ∈ I.

Hence the inclusion ‘⊃’ in (6.1) is obvious. To show ‘⊂’ in (6.1), let w ∈ B
ker
R′ (t) for t ∈ I. Let

l̃g′′ ∈ C∞(I,R) denote the solution of

r( d
dτ )l̃g′′(τ) =

(
U( d

dτ )S
′′( d

dτ )w(τ)
)
g′′

on I.

This solution exists, see for example [29, Ch. IV]. Setting

l := V [0, . . . , 0, l̃g′′ ]
T
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yields

U( d
dτ )R

′′( d
dτ )w(

d
dτ ) =

[
Ig′′−1 0
0 r(D)

∣∣∣∣ 0g′′×(q−g′′)

]
V ( d

dt)
−1l(τ)

which is equivalent to R( d
dτ )w(τ) = S( d

dτ )l(τ). This completes the proof of the theorem. 2

7 Conclusions

We have introduced a general behavioural approach for linear systems with time-varying coef-
ficients. We have characterized autonomous, controllable and observable behaviour and have
generalized the results on time-varying ordinary differential equations and on time-invariant lin-
ear algebraic-differential equations. The results have been illustrated by several examples and it
has been demonstrated that the approach also helps in the understanding of practical problems
such as constrained multibody systems.
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