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Abstract

We introduce a behavioural approach to linear, time-varying, differential algebraic
(descriptor) systems. The analysis is “almost global” in the sense that the analysis is
not restricted to an interval I ⊂ R but is allowed for the “time axis” R\T, where T is
a discrete set of critical points, at which the solution may exhibit a finite escape time.
Controllable, observable, autonomous, and adjoint behaviour for linear time-varying
descriptor systems is introduced and characterized.

Keywords: Time-varying linear systems, descriptor systems, behavioural approach, con-
trollability, observability, autonomous system, adjoint system

Nomenclature

A the ring of real analytic functions f : R → R

M the field of real meromorphic functions

A[D], M[D] the skew polynomial ring of differential polynomials with coefficients in
A,M resp., indeterminate D, and multiplication rule Df = fD + ḟ

C∞(R\T;Rq) the real vector space of infinitely many times differentiable functions
f : R\T → R

q, T ⊂ R a discrete set

Cω(I,Rq) the real vector space of real analytic functions f : I → R
q, I ⊂ R an

open interval

Id := diag{1, . . . , 1} ∈ R
d×d

0d := (0, . . . , 0)T ∈ R
d

1 Introduction

We develop a behavioural approach to linear time-varying desriptor systems described by
differential-algebraic equations of the form

E(t) ẋ(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) + F (t)u(t),
(1.1)
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with real analytic matrices A ∈ A`×n, B ∈ A`×m, C ∈ Ap×n, F ∈ Ap×m, and E ∈ A`×n

is allowed to be singular in the sense that rk E(t) < min{l, n} for some t ∈ R.

For notational convenience, we introduce the skew-polynomial rings A[D] and M[D] of
differential polynomials with coefficients in A, M, respectively, indeterminate D, and
multiplication rule

Df = fD + d
dtf. (1.2)

This rule is a consequence of assuming the associative rule (Df)g = D(fg), which yields
(Df)(g) = d

dtf · g + f · d
dtg =

(
d
dtf + fD

)
(g). Note that we distinguish between the

algebraic indeterminate D and the differential operator d
dt ; the algebraic object

R(D) =
n∑

i=0

RiD
i ∈M[D]g×q ∼=Mg×q[D],

acts on C∞-functions w via

R( d
dt)w(t) =

∑n
i=0 Ri(t)w

(i)(t) .

In this notation, time-varying descriptor systems (1.1) may be rewritten as

R( d
dt)w = 0, where R(D) =

[
ED −A −B 0
−C −F Ip

]
, and w =

(
xT , uT , yT

)T
. (1.3)

Skew polynomial rings are for example treated in the monograph [6], the ring M[D] has
been introduced in [14] to study linear time-varying systems, and in [13] its algebraic
properties have been exploited to achieve results on time-varying descriptor systems. In
the present paper, we useM[D] only for notational convenience and if more general results
in the context of [13] are used.

Systems of differential algebraic equations (often called descriptor systems) play an impor-
tant role in modelling multi-body systems, electric circuits, or coupled systems of partial
differential equations, see [1, 9]. In [11], for example, the model of a two-dimensional,
three-link constrained mobile manipulator is studied which leads, after linearization along
a trajectory, to a system of the form

M0(t) z̈(t) +D0(t) ż(t) +K0(t) z(t) = S0 u(t) + F T
0 µ(t)

F0 z(t) = 0 ,
(1.4)

where M0, D0,K0 ∈ C
ω(I,R3×3) and S0, F

T
0 ∈ R

3×2 with S0 having full rank. We are
interested in the behaviour, i.e. local solutions t 7→ (z(t), u(t)) of (1.4). It can be shown
that µ(·) is a latent variable, see [21, Sec. 6.3] for its definition. Introducing the 8-
dimensional variable x(t) = [z(t), ż(t), µ(t)] results in the equivalent descriptor system
description (1.1) with F ≡ 0,

E(t) =



I3 0 0
0 M0(t) 0
0 0 0


 , A(t) =




0 I3 0
−K0(t) −D0(t) F T

0

F0 0 0


 , B ≡



0
S0

0


 , (1.5)

and the specification of C is left open for the time being.
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The analysis of the behaviour of (1.1) has to cope with three essential difficulties. First,
the solutions of time-varying systems may exhibit critical points, i.e. a finite escape time.
Secondly, descriptor systems behave quite differently than classical state space systems (i.e.
E = In in (1.1)). For state space systems, the function u(·) can be considered as an input
function free to choose, and initial conditions can be arbitrary. This is in general not true
for descriptor systems (1.1), since descriptor systems may contain algebraic constraints,
which restrict the solutions, the set of possible inputs, and also the initial values to some
manifold. Thirdly, some of the constraints that arise (the hidden constraints) are not
explicit and thus it is not clear how to choose the underlying spaces for the descriptor
variables x, u, y. Finally, the analytic property of the solution or behaviour is local, which
is in contrast to the global algebraic properties of R(D).

These difficulties are illustrated by the following example.

Example 1.1

(i) The scalar differential equations tẋ = −x, t2ẋ = −x, tẋ = x, have local solutions
t 7→ t−1, e1/t, t, respectively. Hence at t = 0 the solution might be rational with a
pole, or not even analytic, or does not have any pole, respectively.

(ii) The variables x1, . . . , x4, u1, u2 of the descriptor system (1.1) with

E =




0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 , A =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 , B =




0 0
1 0
0 1
0 0


 , C =

[
0 0 0 1

]
, F = 01×2

satisfy the equivalent description

u2 = 0, ẋ2 = x1, y = x4, ẋ3 = x2 + u1 .

Thus, u2 is constrained to be 0 and cannot be freely chosen, as it could in the case
of state space systems. The variables x1 and x4 can be viewed as input or state
variables, the system description does not determine this.
Note also that if we chose the input u1 as a step function, then we would have to
enlarge our solution space in order to allow that x1 is a delta distribution. But even
if we do so, then we have the problem that x1 is not observable from the output y.

2

Hence the behavioural viewpoint, where state-, output-, and input-variables are not dis-
tinguished, seems the appropriate concept for the analysis of descriptor systems. The
behavioural approach has been introduced by Willems [26, 27, 28, 29], see also the text-
book [21] for a general presentation.

Motivated by Example 1.1, we consider local solutions of R( d
dt)w = 0 belonging to

C∞t (Rq) :=
{
w ∈ C∞(I,Rq)

∣∣ I ⊂ R an open interval with t ∈ I
}

, t ∈ R . (1.6)

Definition 1.2 For R(D) ∈ M[D]g×q, the local behaviour of the system R( d
dt)w = 0 at

t ∈ R is defined as

B
ker
R (t) :=

{
w ∈ C∞t (Rq)

∣∣ R( d
dτ )w(τ) = 0 ∀τ ∈ domw

}
. (1.7)
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The set B
ker
R (t) becomes a real vector space if endowed, for w1, w2 ∈ B

ker
R (t), with addition

(w1 + w2)(τ) := w1(τ) + w2(τ) ∀τ ∈ domw1 ∩ domw2 ,

and obvious scalar multiplication. The dimension of this vector space is defined as

dim B
ker
R (t) := sup

{
k ∈ N

∣∣∣∣∣∃w1, . . . , wk ∈ B
ker
R (t) linearly independent on

k⋂

i=1

domwi

}
.

2

We are also interested in those points of the real axis, where the local solution is no longer
extendable.

Definition 1.3 Consider the descriptor system (1.3). The set of critical points, where
the solution is not defined, is given by

T
crit
R :=





t′ ∈ R

∣∣∣∣∣∣∣∣

there exists, for some ε > 0, a C∞ function
w : (t′ − ε, t′)→ R

p or w : (t′, t′ + ε)→ R
p

which solves (1.3) and cannot be extended to
(t′ − ε, t′] or [t′, t′ + ε) , respectively.





(1.8)

2

Note that for the three differential equations in Example 1.1(i) the sets of critical points
are {0}, {0}, ∅, respectively.

Since E in (1.1) is real analytic, it follows that rkE(t) = rkME(·) for almost all t ∈ R, and
hence the set of critical points is a discrete set. It is an open problem to characterize the
set of critical points. However, we will determine discrete sets which include all critical
points.

We define the appropriate behaviour, i.e. the solution space, of (1.3) on the time-axis
R\T, where T is discrete and includes the set of critical points of (1.3). Controllability
and observability are defined in terms of trajectories (descriptor variables) which is a
conceptual generalization of controllability and observability for state space systems.

For these systems in [5] controllability and observability has been studied in terms of
derivative arrays. In [4] a first behaviour like approach for analytic coefficients has been
discussed. A more general approach that allows for larger classes of coefficients and that
can be implemented also numerically has been introduced in [17].

In [12] a first approach in the spirit of the present paper was presented for scalar systems.
A completely different approach results from the study of differential-algebraic equations,
see [1, 8]. A general solvability theory for nonsquare linear time-varying systems was first
given in [16] and analysed for control problems in a behavioural context in [4, 18, 23], see
also [17] for the general nonlinear case. In these papers, however, mainly the concept of
regularization has been discussed, i.e., the problem of finding appropriate feedbacks that
make the system regular and also decreases the index. Here we consider controllability
and observability in the behavioural context.

This paper is organized as follows. In Section 2, we define critical points and follow the
concepts of [16, 23] by deriving condensed forms for time-varying descriptor systems (1.3)
to determine sets covering the critical points. In Section 3, controllability is defined, al-
gebraically characterized, and related to the well known concepts of controllability. In
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Section 4, we introduce the concept of autonomous behaviour for systems (1.3) and show
how the behaviour of a descriptor system is a direct sum of an autonomous and controllable
behaviour. In Section 5, observable behaviour is defined, it is related via the adjoint of the
kernel representation to the controllable behaviour, and it is characterized algebraically.

2 Condensed forms

In this section, condensed forms with respect to state and input transformations are stud-
ied for time-varying descriptor systems (1.3). The condensed form allows to classify the
solution sets and to identify the constraint manifolds for the variables. These forms are
akin the forms derived in [4, 18]. If the system (1.3) is time-invariant, then the presented
condensed forms are well known, see for example [3].

Theorem 2.1 Consider a time-varying descriptor system of the form (1.3).

(i) There exist orthogonal matrices U1 ∈ A
l×l, V1 ∈ A

n×n so that (1.3) is transformed
to [

U1 0
0 Ip

] [
E D −A −B 0
−C −F Ip

] [
V1 0
0 Im+p

]
, (2.1)

corresponding to the descriptor system

Σd ẋ1 = A11 x1 + A12 x2 + A13 x3 + B1 u
0 = A21 x1 + Σa x2 + B2 u
0 = A31 x1 + B3 u
0 = A41 x1

0 = 0l−ν

y = C1 x1 + C2 x2 + C3 x3 + F u,

(2.2)

where Σd ∈ A
d×d,Σa ∈ A

a×a are diagonal and invertible over M with d = rkME,
and B3 ∈ A

γ×m, A41 ∈ A
f×d with full row rank, i.e. γ = rkMB3, f = rkMA41, and

ν = d+ a+ γ + f . All matrices are real analytic and of conforming formats.

(ii) There exist orthogonal matrices U2 ∈ A
l×l, V2 ∈ A

n×n,W ∈ Ap×p, Z ∈ Am×m so
that (1.3) is transformed to

[
U2 0
0 W

] [
E D −A −B 0
−C −F Ip

]

V2 0 0
0 Z 0
0 0 Ip


 , (2.3)

corresponding to the following descriptor system in condensed form (omitting the
arguments t in the matrices and variables)

Σd ẋ1 = A11x1 + A12x2 + A13x3 + A14x4 + A15x5 + B11u1 + B12u2

0 = A21x1 + Σax2 + B21u1 + B22u2

0 = A31x1 + Σγu1

0 = Σfx5

0 = 0
y1 = C11x1 + C12x2 + Σωx3 + C15x5 + F11u1 + F12u2

y2 = C21x1 + C22x2 + C25x5 + F21u1 + F22u2

(2.4)
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where Σd,Σa,Σγ ,Σf ,Σω are diagonal matrices that are invertible over M and have
sizes d, a, γ, f, ω, respectively. Furthermore, ν = d + a + γ + f and all matrices are
real analytic and of conforming formats.

(iii) There exist matrices U ∈ A(l−p)×(l−p), V ∈Mn×n invertible overM, X ∈Mp×(l−p),
W ∈ Ap×p orthogonal, Z ∈ Am×m orthogonal, a scalar function σ ∈ A, and a
permutation matrix P ∈ A(n+m)×(n+m) so that (1.3) is transformed to

R̃(D) :=

[
U 0
X W

] [
E D −A −B 0
−C −F Ip

]

V 0 0
0 Z 0
0 0 Ip



[
P 0
0 Ip

]
(2.5)

=




σDId − Ã11 −Ã13 −Ã14 −B̃12 0 0 0 0 0

0 0 0 Σ−1
a B̃22 Ia 0 0 0 0

0 0 0 0 0 If 0 0 0

Σ−1
γ Ã31 0 0 0 0 0 Iγ 0 0

0 0 0 0 0 0 0 0 0

0 −Σω 0 −σ−1F̃12 0 0 0 Iω 0

−σ−1C̃21 0 0 −σ−1F̃22 0 0 0 0 Ip




corresponding to the meromorphic descriptor system in standard condensed form

σIdẋ1 = Ã11x1 + [Ã13, Ã14, B̃12]



x3

x4

u2






x2

x5

u1


 =




0 0 0 −Σ−1
a B̃22

0 0 0 0

−Σ−1
γ Ã31 0 0 0







x1

x3

x4

u2




[
y1

y2

]
=

[
0

σ−1C̃21

]
x1 +

[
Σω 0 σ−1F̃12

0 0 σ−1F̃22

]

x3

x4

u2








(2.6)

where

σ(t) := detΣd(t) detΣa(t) detΣγ(t) detΣf (t) , for all t ∈ R , (2.7)

and all matrices are real analytic and of conforming formats. The integers d, a, γ, ω, f
are invariants of (1.3).

Proof: The proof is constructive using a sequence of real analytic singular value de-
compositions. The singular value decomposition has been introduced in [2] for analytic
matrices, and it is also valid for real analytic matrices. We will frequently use the multi-
plication rule (1.2) without saying so.
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(i) Consider the first equation of (1.1) and choose orthogonal matrices Ũ ∈ Al×l, Ṽ ∈
An×n so that

[R̃(D),−B̃] = Ũ [ED −A,−B]

[
Ṽ 0
0 Im

]
=

[[
Σd 0
0 0

]
D −

[
Ã11 Ã12

Ã21 Ã22

]
,

[
B̃1

B̃2

]]

where Σd ∈ A
d×d with d = rkME is diagonal.

Next, choose orthogonal matrices Ū ∈ A(l−d)×(l−d), V̄ ∈ A(n−d)×(n−d) so that

[R̄(D), −B̄] =

[
Id1

0
0 Ū

]
[R̃(D),−B̃]




Id1
0 0

0 V̄ 0
0 0 Im




=






Σ1 0 0
0 0 0
0 0 0


D −




Ā11 Ā12 Ā13

Ā21 Σa 0
Ā31 0 0


 ,




B̄1

B̄2

B̄3




 ,

where Σa ∈ A
a×a is diagonal and invertible over M. Finally, choose an orthogonal Û ∈

A(l−d−a)×(l−d−a), so that

[
Id+a 0

0 Û

]
[R̄(D),−B̄] has the form (2.2) with B3 ∈ A

γ×m,

γ = rkMB3 = rkMB̄3 and A41 ∈ A
f×d, f = rkMA41. Performing all the transformations

also on C and partitioning analogously shows (2.2).

(ii) We apply the so-called index reduction process as introduced in [18] to (2.4): Fix f
variables of x1, corresponding to some f linearly independent columns of A41, i.e. choose
a unitary matrix Q ∈ Ad×d such that A41Q = [Aα

41, A
β
41] with Aα

41 ∈ A
f×f is invertible

over M. Then

0 = A41x1 = Aα
41x

α
1 +Aβ

41x
β
1 ,

[
xα

1

xβ
1

]
:= Qx1,

and so

ẋα
1 = −(Aα

41)
−1Aβ

41ẋ
β
1 −

d

dt

(
(Aα

41)
−1Aβ

41

)
xβ

1 .

Inserting ẋα
1 into the differential equation of (2.2) leaves d − f differential equations.

Note that we may have introduced meromorphic functions by the inverse of Aα
41 and its

derivative. A multiplication from the left with a real analytic function yields a description
in the form (1.1), however the d differential equations have been reduced to d−f differential
equations and we may apply Part (i) again. This index reduction process stops after finitely
many iterations, and we arrive at the following condensed form:

Σd ẋ1 = Â11x1 + Â12x2 + Â13x3 + Â14x4 + B̂1u

0 = Â21x1 + Σax2 + B̂2u

0 = Â31x1 + B̂3u
0 = + Σfx4

0 = 0

y = Ĉ1x1 + Ĉ2x2 + Ĉ3x3 + Ĉ4x4 + Fu,

(2.8)

where Σd,Σa,Σf are diagonal matrices, invertible overM, and of sizes d, a, f , respectively,

and B̂3 ∈ A
γ×m has full row rank over A.

As a final step we perform an analytic singular value decomposition of Ĉ3, B̂3, respectively,
and derive (2.4).
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(iii) Using the fact that the fourth equation in (2.4) implies that x5 ≡ 0, which can be
extended even at points where Σf is singular, we can eliminate all terms invoking x5 from
all the other equations. This corresponds to multiplying (2.4) from the left by

[
σΣ−1

d 0
0 Il−d+p

]




Id −A12Σ
−1
a −[B11 −A12Σ

−1
a B21]Σ

−1
γ 0 0 0 0

0 Ia −B21Σ
−1
γ 0 0 0 0

0 0 Iγ −A15Σ
−1
f 0 0 0

0 0 0 If 0 0 0
0 0 0 0 Il−ν 0 0
0 −C12Σ

−1
a −F11Σ

−1
γ 0 0 Iω 0

0 −C22Σ
−1
a −F21Σ

−1
γ 0 0 0 Ip−ω




and from the right by




Id 0 0 0
−[A21 −B21Σ

−1
γ A31]Σ

−1
a Ia 0 0

−C11Σ
−1
ω 0 Iγ 0

0 0 0 I(n−ν+f+m+p)×(n−ν+f+m+p)




yielding the transformed system

σ ẋ1 = Ã11x1 + Ã13x3 + Ã14x4 + B̃12u2

0 = Σax2 + σ−1B̃22u2

0 = Ã31x1 + Σγu1

0 = Σfx5

0 = 0l−ν

y1 = Σωx3 + σ−1F̃12u2

y2 = σ−1C̃21x1 + σ−1F̃22u2

(2.9)

where all matrices are real analytic. This proves (2.6). 2

Remark 2.2

(i) If the descriptor system (1.3) is time-invariant, then all transformations in Theo-
rem 2.1 may be chosen as constant matrices and σ = 1.

(ii) For real analytic matrices as in (2.2), (2.4), (2.6), the analytic singular value decom-
position is not uniquely defined; essentially, there is freedom to perform orthogonal
transformations in the spaces associated with multiple singular values. However, this
freedom can be removed by choosing minimal variation curves or by always choosing
the analytic singular value decomposition to be closest to a reference point, [3, 20].

(iii) To derive (2.2), only an orthogonal transformation on the variables x in (2.1) has
been applied. To derive (2.4), non-singular transformations on the variable x and
orthogonal transformations on u have not been mixed.
To derive (2.6), we have used non-singular transformations on x, and orthogonal
transformations on u. If we allow further linear combinations (which for classical
systems where y, x, u are fixed a priori as outputs, states and controls, respectively,
correspond to state feedback or output feedback), then we can simplify (2.6) further
by removing blocks such as Ã31 or by introducing almost everywhere invertible diag-
onal blocks in diagonal positions of the transformed matrices E or A. Note that the
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transformation of derivative feedback is not an equivalence transformation, because
under derivative feedback the characteristic quantities d, a, γ, f, w are not invari-
ants and hence the properties of the system may be altered by this transformation
completely, see [18] and Remark 2.3 below.

(iv) The description (2.6) is not quite of the form (1.1), since the coefficients of x1 and
u2 in y1 and y2 may have poles at the zeros of σ.

(v) An immediate consequence of (2.6) is that the variables in x1 represent couplings
between algebraic equations and differential equations that are not influenced by u1.
Systems where such couplings between differential equations and algebraic equations
occur are typically called high index systems. For a detailed discussion of different
index concepts see [1, 8, 17, 18].

(vi) The transformation leading to (2.6) does not invoke any differentiation of u. Hence,
if the variables denoted by u are classified as inputs a priori, then no extra differen-
tiability conditions for these variables arise, see [4, 18]. 2

The condensed forms (2.1), (2.4) and (2.6) allow to detect candidates for critical points.

Remark 2.3 Consider a descriptor system (1.3) and corresponding condensed forms
(2.2), (2.4), (2.6). The set of its critical points as defined in Definition 1.3 is a subset of
all zeros of σ in (2.7), however in general it is a proper subset, i.e.,

T
crit
R ⊂ TR :=

{
t′ ∈ R

∣∣σ(t′) = 0
}
. (2.10)

To see this, consider the following descriptor system
[
0 t
0 0

]
ẋ =

[
1 0
0 1

]
x+

[
b1(t)
0

]
u(t),

with b1 real analytic, see e.g., [22]. Obviously, E has a rank drop at t = 0 and hence 0 is
a potential candidate for a critical point, but since the solution is

x1(t) = −b1(t)u(t), x2(t) = 0,

the solution is defined everywhere. 2

To characterize controllability we will also need the following staircase form which gener-
alizes the staircase form of Van Dooren [25] to systems with variable coefficients.

Lemma 2.4 For any real analytic matrices A ∈ An×n, B ∈ An×m there exist orthogonal
matrices P ∈ An×n and Q ∈ Am×m so that

P
[
DIn −A,−B

] [P T 0
0 Q

]

=




DIn −A11 · · · · · · −A1,s−1 −A1,s −B1 0

−[Â21, 0]
. . .

...
... 0 0

. . .
. . .

...
...

...
...

−[Âs−1,s−2, 0] DIn −As−1,s−1 −As−1,s 0 0

0 · · · 0 0 DIn −Ass 0 0




n1

n2
...

ns−1

ns

(2.11)
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where n1 ≥ n2 ≥ · · · ≥ ns−1 ≥ ns ≥ 0, ns−1 > 0, B1 ∈ A
n1×n1 and Âi,i−1 ∈ A

ni×ni , are
invertible over M for i = 1, . . . , s− 1.

Proof: A constructive proof is given by the so called ‘Staircase’ Algorithm invoking the
real analytic singular value decomposition (ASVD), see [2].
Whenever we use Σ in the following, it denotes a diagonal matrix.

Step 0: Choose orthogonal UB ∈ A
n×n, VB ∈ A

m×m so that

B = UT
B

[
ΣB 0
0 0

]
VB ∈ A

n×m with invertible ΣB ∈ A
n1×n1 ,

and set

A0 := UBAUT
B + U̇BUT

B =

[
A11 A12

A21 A22

]
with A21 ∈ A

(n−n1)×n1 ,

B0 := UBBVB =

[
ΣB 0
0 0

]
.

Then by (1.2)

UB

[
DIn −A,−B

] [UT
B 0
0 V

]
=
[
DIn −A0,−B0

]
.

Step 1: If n1 < n and A21 6= 0, then choose orthogonal U21 ∈ A
(n−n1)×(n−n1), V21 ∈ A

n1×n1

so that

A21 = U21

[
Σ21 0
0 0

]
V T

21 ∈ A
(n−n1)×n1 with invertible Σ21 ∈ A

n2×n2 ,

and set

P1 :=

[
V T

21 0
0 UT

21

]

A1 := P1A0P
T
1 + Ṗ1P

T
1 =




∗ ∗ ∗

Σ21 0 ∗

0 0 ∗


+




V̇ T
21V21 0

0 U̇T
21U21




B1 := V T
21ΣB ,

B̃1 :=

[
B1 0
0 0

]
∈ An×n .

This gives, again by (1.2) and for some Ã32 ∈ A
(n−n1−n2)×n2 ,

P1

[
DIn −A0,−B0

] [P T
1 0
0 Im

]
=
[
DIn −A1,−B̃1

]

=


DIn −




∗ ∗ ∗

[Σ21, 0] ∗ ∗

0 Ã32 ∗


 ,−




B1 0

0 0

0 0






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Step 2: If n1 + n2 < n and Ã32 6= 0, then choose orthogonal U32 ∈ A
(n−n1−n2)×(n−n1−n2),

V T
32 ∈ A

n2×n2 so that

Ã32 = U32

[
Σ32 0
0 0

]
V T

32 ∈ A
(n−n1−n2)×n2 with invertible Σ32 ∈ A

n3×n3 ,

and set

P2 := diag
{
In1

, V T
32, U

T
32

}

Â21 := V T
32Σ21

A2 := P2A1P
T
2 + Ṗ2P

T
2

=




∗ ∗ ∗

V T
32[Σ21, 0] ∗ ∗

0 UT
32Ã32V32 ∗


+




0 0 0

0 V̇ T
32V32 0

0 0 U̇T
32U32




=




∗ ∗ ∗ ∗ ∗

Â21 0 ∗ ∗ ∗

0 0 Σ32 0 ∗

0 0 0 0 ∗




.

Then, for some Ã43 ∈ A
(n−n1−n2−n3)×n3 ,

P2P1

[
DIn −A0,−B0

] [P T
1 P T

2 0
0 Im

]
=
[
DIn −A2,−B̃1

]

=




DIn −




∗ ∗ ∗ ∗ ∗ ∗

Â21 0 ∗ ∗ ∗ ∗

0 0 Σ32 0 ∗ ∗

0 0 0 0 Ã43 ∗



,−




B1 0

0 0

0 0

0 0







Step 3: In the remainder of the proof we proceed analogously as in Step 2 and terminate
after finitely many steps with the from (2.11). This completes the proof of the lemma. 2

Example 2.5 Consider the system (1.5). We see that critical points include those values
of t where the mass matrix M0(t) changes rank. This happens for example when two arms
of the manipulator are in one straight line.

Without loss of generality (by using an appropriate permutation of the basis), we may
assume that the coordinate system for the Lagrange multipliers is such that F0 = [F1 0]
with non-singular F1 ∈ R

2×2 and if we partition

−K0 =

[
K11(t) K12(t)
K21(t) K22(t)

]
, M0 =

[
M11(t) M12(t)
M21(t) M22(t)

]
, −D0 =

[
D11(t) D12(t)
D21(t) D22(t)

]
, S0 =

[
S1

S2

]
,
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with K11(t),M11(t), D11(t), S1 ∈ R
2×2 and all other formats accordingly, then the system

(1.5) may be written as




I2 0 0 0 0
0 1 0 0 0
0 0 M11(t) M12(t) 0
0 0 M21(t) M22(t) 0
0 0 0 0 0







ẋ1

ẋ2

ẋ3

ẋ4

ẋ5




=




0 0 I2 0 0
0 0 0 1 0

K11(t) K12(t) D11(t) D12(t) F T
1

K21(t) K22(t) D21(t) D22(t) 0
F1 0 0 0 0







x1

x2

x3

x4

x5



+




0
0
S1

S2

0



u.

Since F1 is constant and non-singular, we obtain x1 = 0 and ẋ1 = 0. Inserting this and
changing the order of equations and blocks leads to



1 0 0 0 0
0 M11(t) M12(t) 0 0
0 M21(t) M22(t) 0 0
0 0 0 0 0
0 0 0 0 0







ẋ2

ẋ3

ẋ4

ẋ5

ẋ1




=




0 0 1 0 0
K12(t) D11(t) D12(t) F T

1 0
K22(t) D21(t) D22(t) 0 0

0 0 0 0 F1

0 I2 0 0 0







x2

x3

x4

x5

x1



+




0
S1

S2

0
0



u.

We can repeat the reduction process once more by using that x3 = 0 and hence ẋ3 = 0,
which gives a system



1 0 0 0 0
0 M22(t) 0 0 0
0 M12(t) 0 0 0
0 0 0 0 0
0 0 0 0 0







ẋ2

ẋ4

ẋ3

ẋ5

ẋ1



=




0 1 0 0 0
K22(t) D22(t) 0 0 0
K12(t) D12(t) 0 F T

1 0
0 0 0 0 F1

0 0 I2 0 0







x2

x4

x3

x5

x1



+




0
S2

S1

0
0



u.

Since the mass matrix M0 is positive definite almost everywhere, we can eliminate the
block M12 and obtain the system



1 0 0 0 0
0 M22(t) 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0







ẋ2

ẋ4

ẋ3

ẋ5

ẋ1




=




0 1 0 0 0
K22(t) D22(t) 0 0 0

K̃12(t) D̃12(t) 0 F T
1 0

0 0 0 0 F1

0 0 I2 0 0







x2

x4

x3

x5

x1



+




0
S2

S̃1

0
0



u. (2.12)
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t1t0 t

w
1

w
2

w

Figure 1: Local controllability at t

This is essentially (apart from diagonal matrices Σ) in the condensed form (2.2), with

Σd =

[
1 0
0 M22(t)

]
, Σa =




0 F T
1 0

0 0 F1

I2 0 0


 , B2 =




S̃1

0
0


 .

It is then obvious how the more refined forms (2.4) and (2.6) can be determined. 2

3 Controllability

In the present paper we are only interested in the concept of controllability for descriptor
systems of the form (1.3). However, we repeat the definition for general systems of the
form R( d

dt)w = 0, where R(D) ∈M[D]g×q, as introduced in [13].

Note that the family of linear sub-spaces of a linear space may be partially ordered by
inclusion, and thus constitutes a lattice with respect to + and ∩. Hence the following
definition is well-defined.

Definition 3.1 A sub-vector space B
c
R(t) of B

ker
R (t) is called locally controllable at t ∈ R

if, and only if, for every w1, w2 ∈ B
c
R(t) and every t0 ∈ (−∞, t) ∩ dom w1 there exist

t1 ∈ dom w2 ∩ (t,∞) and w ∈ B
c
R(t) such that

w(t) =

{
w1(t), t ∈ (−∞, t0] ∩ dom w1

w2(t), t ∈ [t1,∞) ∩ dom w2.

B
contr
R (t) ⊂ B

ker
R (t) is called the largest controllable behaviour of R( d

dt)w = 0 at t if, and

only if, every controllable behaviour B
c
R(t) of R( d

dt)w = 0 satisfies B
c
R(t) ⊂ B

contr
R (t)

almost everywhere.
The system R( d

dt)w = 0 is called locally controllable at t ∈ R if, and only if, the largest
controllable behaviour is B

ker
R (t).

R( d
dt)w = 0 is called controllable if, and only if, it is locally controllable almost everywhere.

2
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Remark 3.2

(i) Due to the linearity of the system R( d
dt)w = 0, the trajectory w2 in Definition 3.1

may be replaced, without restriction of generality, by w2 = 0.

(ii) Loosely speaking, controllability means that any two trajectories w1, w2 ∈ B
ker
R (t)

can be connected by another trajectory w ∈ B
ker
R (t) so that in finite time w1 moves

via w into w2, see Figure 1. A similar notion of controllability via trajectories was
introduced in [10] for time-invariant Rosenbrock systems. For time-invariant state
space systems, i.e. (1.3) with E = In, the concept of controllability coincides with
the one introduced in [21, Sect. 5.2]. 2

Remark 3.3 For descriptor systems with constant coefficients, several different con-
cepts of controllability are known, see [3, 7, 19].

(i) System (1.1) with constant coefficients is called
completely controllable iff rk [αE − βA,B] = l for all (α, β) ∈ C

2/{(0, 0)} ,

R-controllable iff rk [λE −A,B] is full for all λ ∈ C ,

I-controllable iff rk [E,AS∞, B] is full, where S∞ spans the kernel of E ,

strongly controllable iff the system is R-controllable and I-controllable.

It should be noted that these algebraic characterizations are sometimes misleading
in the literature, since it is sometimes assumed that the rank of [E,B] is full and
sometimes not.

It follows that if system (1.1) is square and time-invariant, thus, in particular, l = n,
then system (1.1) is I-controllable if, and only if, n − (d + a + γ + f) = 0, and
I-observable if, and only if, n−d−a−ω−f = 0. The constants a, d, f, γ are defined
in Theorem 2.1(ii).

(ii) For time-invariant state-space systems, i.e. (1.1) with E = In, the algebraic condi-
tions can be checked numerically via the staircase algorithm of [25]. In a similar
fashion Lemma 2.4 will be used to check controllability for time-varying systems.

(iii) For time-invariant systems (1.3), Definition 3.1 corresponds to the concept of R-
controllability. This follows from Theorem 3.4 below.

(iv) If the descriptor system (1.3) is time-varying, then Definition 3.1 is new, see [5, 23,
18] for a discussion of different controllability concepts for time-varying descriptor
systems. 2

Now Theorem 2.1 and Lemma 2.4 set us in a position to characterize controllability of
time-varying descriptor systems (1.3).

Theorem 3.4 Consider a time-varying descriptor system (1.3) and assume that R(D)
has full row rank overM[D]. Consider the condensed form (2.6) and σ as defined in (2.7).
Set, for notational convenience,

G(t) := Ã11(t) , S(t) := [Ã13(t), Ã14(t), B̃12(t)] , v(t) := (x3(t)
T , x4(t)

T , u2(t)
T )T .

Then the following conditions are equivalent.
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(i) (1.3) is locally controllable almost everywhere.

(ii) R(D) is right invertible over M [D].

(iii) (2.3) respectively (2.4) is locally controllable almost everywhere.

(iv) R̂(D) := [σDId −G, S] is right invertible over M[D].

(v) In the staircase form (2.10) of the pair [DId −G, S], the lower block is not present,
i.e. ns = 0.

(vi) There exist a discrete set T ⊂ R such that for every

(
x0

1

v0

)
,

(
x1

1

v1

)
∈ B

ker
R̂

(t)

and for every open interval I ⊂ R \ T and all t0 ∈ I, there exists t1 > t0, t1 ∈ I, and
[xT

1 , v
T ]T ∈ B

ker
R̂

(t), such that

(x1(t), v(t)) =

{
(x0

1(t), v
0(t)) , if t ∈ (−∞, t0] ∩ R \ T

(x1
1(t), v

1(t)) , if t ∈ [t1,∞] ∩ R \ T.

Proof:

“(i) ⇔ (ii)”: This is proved in [13, Prop. 3.6].
“(ii)⇔ (iii)”: The equivalence of local controllability almost everywhere of (1.3) and (2.4),
respectively (1.1) and (2.6), follows from (2.3) by invoking orthogonality of U2, V2,W,Z.
“(ii)⇔ (iv)”: By (2.5), there exist invertible matrices Ũ ∈M(l+p)×(l+p), Ṽ ∈M(n+m+p)×(n+m+p)

so that (1.1) is related to (2.6) in the form (1.3) by the transformation

Ũ

[
E D −A −B 0
−C −F Ip

]
Ṽ =




σ DId − Ã11 0 −Ã13 −Ã14 0 0 −B̃12 0 0

0 −Σa 0 0 0 0 −B̃22 0 0

−Ã31 0 0 0 0 −Σγ 0 0 0
0 0 0 0 −Σf 0 0 0 0

0(l−ν)×d 0 0 0 0 0 0 0 0

0 0 −σΣω 0 0 0 −F̃12 σIω 0

−C̃21 0 0 0 0 0 −F̃22 0 σIp−ω




. (3.1)

The above matrix is right invertible if, and only if, l− ν = l− d− a− γ − f = 0 (which is
a consequence of the full row rank assumption) and [σDId −G, S] is right invertible over
M[D].
“(iv) ⇔ (v)”: By Lemma 2.4 there exist orthogonal matrices P and Q so that P [σDId −

G,S]

[
P T 0
0 Q

]
is of the staircase form (2.10). Note that σ does not effect the staircase

form. Now the equivalence “(iv) ⇔ (v)” follows immediately since B1 and Âi,i−1 are
invertible over M for i = 1, . . . , s− 1.
“(ii) ⇔ (vi)”: This equivalence follows readily from Definition 3.1 and from (3.1), since
the set of zeros and poles of the coefficients of Ũ and Ṽ is a discrete set. 2

15



Note that the assumption that (1.3) has full row rank over M[D] is equivalent to l − d−
a− γ − f = 0 in (2.6).

Note further that the characterization in Theorem 3.4 (ii) does not require a reinterpre-
tation of variables. Moreover, in contrast to controllability of state space systems, here
u1(·) in (1.1) is not a “free input” variable.

For standard time-invariant state-space systems (i.e. E = In), the right invertibility of
R(D) in Theorem 3.4 is derived differently in [21, Th. 5.2.10].

Remark 3.5 For time-varying systems (1.1) with E = In, i.e. state space systems, it is
well known that controllability of the system yields that it can be controlled in arbitrary
short time. I in Definition 3.1 can be replaced by any arbitrary short open interval Î ⊂ I.
This holds also true for descriptor systems (1.3), since R̂(D) in Theorem 3.4 (iv) can be
viewed locally as state space system, namely at those t ∈ R where σ(t) 6= 0; note that the
zeros of σ are a discrete set. An alternative and constructive proof is given in [13, Th. 3.3]
for general systems of the form R( d

dt)w = 0. 2

To illustrate these results consider the following examples.

Example 3.6

(i) R(D) = [t2D +1, 1] has right inverse [0, 1]T and hence, by Theorem 3.4, R( d
dt)w = 0

is controllable.

(ii) Revisit the linearized model (1.5) of the three-link constrained mobile manipulator.
In Example 2.5 it is shown that (1.5) is equivalent to (2.11). Rewriting (2.11) in
the form (1.3) and invoking that M22 is invertible over M and F1 is non-singular,
it is easy to see that the corresponding R(D) is right invertible. Therefore, by
Theorem 3.4, the linearized model (1.5) is controllable. 2

4 Autonomous behaviour

In this section we show that the behaviour of a descriptor system (1.1) respectively (1.3)
can be decomposed into the direct sum of a controllable and an autonomous behaviour.
Loosely speaking, an autonomous behaviour consists of those solutions which are uniquely
determined if they are known on an arbitrarily small open interval. For systems (1.3) we
have to cope with the problem of finite escape time.

Definition 4.1 For R(D) ∈ M[D]g×q, the system R( d
dt)w = 0 is called locally au-

tonomous at t ∈ R if, and only if, for any w1, w2 ∈ B
ker
R (t) with w1 ≡ w2 on some open

interval I ⊂ dom w1 ∩ dom w2 with t ∈ I it follows that w1 ≡ w2 on dom w1 ∩ dom w2.

The system R( d
dt)w = 0 is called autonomous if, and only if, it is autonomous almost

everywhere.

A real vector space B
aut
R (t) ⊂ B

ker
R (t) is called autonomous if, and only if, for any w1, w2 ∈

B
aut
R (t) with w1 ≡ w2 on some open interval I ⊂ dom w1 ∩ dom w2 with t ∈ I it follows

that w1 ≡ w2 on dom w1 ∩ dom w2.
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A parametrical family of sets B
aut
R , associated to t 7→ B

aut
R (t) ⊂ B

ker
R (t), is called au-

tonomous behaviour if, and only if, B
aut
R (t) is autonomous for almost all t ∈ R. 2

Remark 4.2

(i) Suppose that the descriptor system (1.3) is time-invariant, or even more general
R( d

dt)w = 0 for R(D) ∈ R[D]g×q but time-invariant, then Definition 4.1 corresponds
to the concept introduced in [21, p. 67].

(ii) Let R( d
dt)w = 0 be given as in (1.3). Since any non-trivial trajectory belonging to

an autonomous subspace cannot be controlled, otherwise the definition of autonomy
would be violated, it follows that

B
aut
R (t) ∩B

contr
R (t) = {0} for almost all t ∈ R.

(iii) An autonomous behaviour B
aut
R (t) of the system (1.3) is invariant under all trans-

formations (2.1), (2.2), (2.4), (2.10). 2

Proposition 4.3 Consider a descriptor system (1.3). Then there exists an autonomous
behaviour t 7→ B

aut
R (t) such that

B
ker
R (t) = B

aut
R (t)⊕B

contr
R (t) for almost all t ∈ R.

Proof: Existence of this decomposition is proved in [13, Th. 4.3]. Non-uniqueness of
B

aut
R (t) is already known for time-invariant systems, see [21, Rem. 5.2.15]. However,

the sum of an autonomous behaviour and the controllable behaviour is indeed uniquely
defined. 2

Example 4.4 Consider a time-varying state space system (1.3) with E = In. By [15]
there exists T ∈ An×n invertible over A so that the coordinate transformation z := T−1x
converts (1.1) into

d
dtz1(t) = A11(t)z1(t) + A12(t)z2(t) + B1(t)u(t)

d
dtz2(t) = A22(t)z2(t)

y(t) = C1(t)z1(t) + C2(t)z2(t) + F (t)u(t),

(4.1)

with all matrices real analytic of conforming formats, and controllable sub-system d
dtz1(t) =

A11(t)z1(t) + B1(t)u(t). Since (4.1) is a state space system, finite escape time does not
occur and the controllable and autonomous subspaces can be described globally. Set

R̂(D) :=



DI −A11 −A12 −B1 0

0 DI −A22 0 0
−C1 −C2 −F −Ip


 .
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Then

B
contr
R̂

(t) =
{
w = (zT1 , zT2 , uT , yT )T ∈ C∞(R;R(n+m+p))

∣∣∣ R̂( d
dt)w = 0 ∧ z2 = 0

}
∀ t ∈ R

and

B
aut
R̂

(t) =

{
w = (zT1 , zT2 , uT , yT )T ∈ C∞(R;R(n+m+p))

∣∣∣∣
R̂( d

dt)w = 0, z1 = 0,
u = 0, ż2 = A22 z2

}
∀ t ∈ R

is an autonomous behaviour and hence, in the original coordinates, we have

B
contr
R (t) =

[
T (t) 0
0 Im+p

]
B

aut
R̂

(t)⊕

[
T (t) 0
0 Im+p

]
B

contr
R̂

(t) ∀ t ∈ R .

2

Remark 4.5 Consider a time-varying descriptor systems (1.1) in the condensed form
(2.6). If (2.6) were controllable, then B

aut
R = {0} is the only autonomous behaviour of

(2.6). To see this, note that (x3, x4, u2) is free to choose and hence cannot be a non-zero
component of an autonomous behaviour. Furthermore, since [σDId−G,S] is controllable
by Theorem 3.4 (iii), it follows that x1 is uniquely (modulo initial condition) determined
by (x3, x4, u2), and hence also not a non-trivial component of an autonomous behaviour.
Finally, (2.6) yields that the remaining components x2, x5, u1, y1, y2 are uniquely deter-
mined by x3, x4, u2, x1. This shows B

aut
R = {0}.

If (2.6) is not controllable but has a non-trivial uncontrollable subspace, then there exists
B

aut
R 6= {0} which is determined by the uncontrollable subspace as for state space systems,

see Example 4.4. 2

6 Observability

In this section, we study how one behaviour can be observed from another. Essential
for this are the concepts of adjoints of matrices over M[D] and the adjoint of a kernel
representation B

ker
R .

Definition 6.1 The adjoint for matrices over M[D] is defined as

·ad :Mn×m[D]→Mm×n[D],
k∑

i=0

PiD
i 7→

( k∑

i=0

PiD
i
)ad

:=
k∑

i=0

(−1)iDiP T
i .

It is easy to show (see [13, Prop. 5.2]) that, for arbitrary matrices P (D), Q(D) overM[D]
with appropriate formats, we have

[P (D) +Q(D)]ad = P (D)ad +Q(D)ad, [P (D) ·Q(D)]ad = Q(D)ad · P (D)ad. (6.1)

Definition 6.2 Let R(D) ∈ M[D]g×q and t ∈ R. The local adjoint of the kernel
representation B

ker
R (t) of the system R( d

dt)w = 0 is the image representation

{
w̃ ∈ C∞t (Rq)

∣∣ ∃ l ∈ C∞t (Rg) ∀ τ ∈ dom w ∩ dom l : w̃(τ) = R( d
dτ )

adl(τ)
}

. (6.2)

2
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Certainly, the projection onto the first component of the kernel representation

{
(w̃, l) ∈ C∞t (Rq)× C∞t (Rg)

∣∣∣∣ ∀ τ ∈ dom w̃ ∩ dom l :
[
Iq, R( d

dτ )
ad
] [w̃(τ)

l(τ)

]
= 0

}

yields the image representation (6.2).

The following definition is a straightforward generalization of observability for time-invariant
systems in the behavioural set-up, see [21, Def. 5.3.2].

Definition 6.3 Let [R1(D), R2(D)] ∈ M[D]g×(q1+q2) and t ∈ R. Then w2 ∈ C
∞
t (Rq2)

is called locally observable at t ∈ R from w1 ∈ C
∞
t (Rq1) for t ∈ R if, and only if,

[
w1

w2

]
,

[
w1

w̃2

]
∈ B

ker
[R1,R2](t) =⇒ ∀ τ ∈ dom w2 ∩ dom w̃2 : w2(τ) = w̃2(τ) .

2

In [13, Prop. 5.7] it is shown that Definition 6.3 generalizes other well known concepts of
observability, such as for time-varying state space systems (see for example [24]), time-
varying Rosenbrock systems (see [14]). Furthermore, in [13, Th. 5.5, 5.6] the following is
shown:

Proposition 6.4 For [R1(D), R2(D)] ∈M[D]g×(q1+q2) the following two statements hold:

(i) Consider the system [R1(
d
dt), R2(

d
dt)]

[
w1

w2

]
= 0;

then w2 is locally observable almost everywhere from w1 if, and only if, R2(D) is left
invertible over M [D].

(ii) The system [R1(
d
dt), R2(

d
dt)]

[
w1

w2

]
= 0 is locally controllable almost everywhere if,

and only if, l is locally observable almost everywhere from w with respect to the
system [

Iq ,
R1(

d
dt)

ad

R2(
d
dt)

ad

] [
w
l

]
= 0.

2

An application of Proposition 6.4 to descriptor systems (1.3) yields the following result.

Theorem 6.5 Consider a descriptor system (1.3) with R(D) = [R1(D), R2(D)] parti-
tioned as

R1(D) =

[
E D −A
−C

]
, R2(D) =

[
−B 0
−F Ip

]
.

Then the following are equivalent:

(i) x is locally observable from (u, y) almost everywhere,

(ii) R1(D) is left invertible over M[D],
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(iii) the matrix 


σ DId − Ã11 −Ã13 −Ã14

−Ã31 0 0
0 −Σω 0

−σ−1C̃21 0 0


 (6.3)

is left invertible overM[D], where the matrices in (6.3) are from the condensed form
(2.4).

Proof: The equivalence “(i)↔ (ii)” follows Proposition 6.4 (i). To see “(ii)↔ (iii)”, note
that left invertibility of R2(D) is equivalent to

[
U 0
X W

]
R2(D)V =




σ DId − Ã11 0 −Ã13 −Ã14 0
0 −Σa 0 0 0

−Ã31(t) 0 0 0 0
0 0 0 0 −Σf

0 0 0 0 0
0 0 −Σω 0 0

−σ−1C̃21 0 0 0 0




being left invertible, where U,X, V,W are specified in Theorem 2.1 (iii). Since

[
U 0
X W

]

and V are invertible over M, the latter holds true if, and only if, (6.3) is left invertible.
This completes the proof. 2

Example 6.6 Consider again the linearized model (1.5) of the three-link constrained
mobile manipulator. Suppose that the positions can be measured, corresponding to the
additional equation

y =

[
0 0 I2 0 0
0 0 0 1 0

]



x1

x2

x3

x4

x5



. (6.4)

In Example 2.5 we have shown that x1 = 0, x3 = 0 and thus ẋ1 = 0 and ẋ3 = 0 and
permuting the variables accordingly to (2.12), we obtain

y =

[
0 0 0 0 0
0 0 0 1 0

]



x2

x4

x3

x5

x1



. (6.5)

Hence by Theorem 6.5, x is observable from (u, y) with respect to the system (1.5), (6.4)
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or equivalently system (2.11), (6.5) if, and only if,




D − 1 0 0 0 0
−K22 M22D −D22 0 0 0

− K̃12 −D̃12 0 −F T
1 0

0 0 0 0 F1

0 0 −I2 0 0

0 0 0 0 0
0 0 0 0 0




(6.6)

is left invertible over M[D]. Since F1 is invertible over M, (6.6) is left invertible if, and

only if,

[
D − 1 0
−K22 M22D −D22

]
is invertible over M[D]. Summarizing: x is observable

from (u, v) almost everywhere if, and only if, K22 is invertible over M. 2

7 Conclusion

We have introduced a general behavioural approach to linear descriptor systems with
real analytic coefficients. We have characterized autonomous, controllable and observable
behaviour and have generalized results on time-varying ordinary differential equations and
on time-invariant linear algebraic-differential equations. The results have been illustrated
by several examples which demonstrates that the approach also helps in understanding
practical problems such as constrained multibody systems.
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