
 
 

Allgöwer, Frank; Ilchmann, Achim : 

Multivariable adaptive λ-[lambda]-tracking for nonlinear 
chemical processes 

Zuerst erschienen in: 
Proceedings of the Third European Control Conference, ECC 95 : 5-8 
September  1995, Roma, Italy / Ed.: A. Isidori …., Vol.3, Teil 1, S. 
1645-1651 

  
 



Proceedings of 3rd
Europcan Control Conference
Rome, l ta ly,  Septcmber 1995

' 
\4r-rltivariable adaptirre Ä-tra,ciring for nonlinear chemical processes

, ", r, r,,T'äi,u rt ltffi " *., u
und R.ege1 ungsiecirnik
IJniversität Stutt ga,rt

Pfaflenwa]dLing I
D-70550 Stuttgart, F.R'G.
a l lgower@ rus. u ni-stuttgart.de

Keywords: Adaptive control, )-tracking, nonl.inear
control, universal stabil izabion, Process control, robust-

ness

Abstract

It is shown that incorporation of a simp)e 'dead-zone' inio

the known adaptive bigh-gain control strategy ,(x) =
-ß(r)y(r), Äp1 = 11y1t;11? for l inear systems also yields

)-tracking or ,\-stabilization in the presence of output

corrupüed noise for a large class of reference signals and

a large class of mvltiaoriable nonlineor'minimum phase'

systems with relative degree one and known sign of the

high-Irequency gain. These results are applied to a chem'

icai reactor showing ühe practical usefulness of these con-
trol laws.

1 Introduction
Chemical processes are characüerized by a number of typ

ical properties that imply specific demands on controller
design schemes, Besides the fact that usually not tlre

whole state can be measured and that most processes are
of multivariable nature, process nonlinearities and large

model uncertainties must be considered in this coniext.
In this paper we propose an adaptive high-gain control

scheme ihat specifically addresses these properties and

is thus well suited for the control of many chemical pro-

cesses.
The field of high-gain adaptive control of rninimurn

phase systems has been initiated by [8,9,10,13]. Ubiquit-
ous in the area is the following simple outPut feedback
and adaptation strategy

u(t)  = -k( l )y(t)

itrl = lly(t)ll, ,L(o) = ßo € IR.
(1. r )

This approach has been successfully applied to various
classes of minimum phase systems, see [3] for a compre-
hensive bibliography.
There are only few papera available vhere übe nominal
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system is assumed to be nonlinear rather than linear with

nonl inear  uncer ta int ies:  [ ] ,2 ,6,7,11] .

The öoncept of )-tracking, introduced by [4], is onll'
sl igbtly differeut to (1.1); )-stabil ization or )-Nracking

means, tha.t, the ouiput is no longer corttrolled [o a set-
poini but into a )-neiShbourhood of the setpoint (or bhe

reference trajectory to be tracked), where ) > 0 is prespe-

cified and may be arbii,rari)y small- The main advanbage
of this conbrol objecLive as opposed to the slandard one,

is that a rather general class of non)inear systems can be

treated and that a serious robustness problem of previ-

ous control laws will be overcome' This is achieved by a
'dead-zone'which is incorporaüed into [he gain adapta-

tion.

The present paper extends the results of [1J. In [1]
we proved tbat, the simple adaptatiorr strategy (1.1)

also works lor nonlinear systents which are multivari-

able, sürong relative degree one' minimum phase wilh

unkowu 'sign of the high-frequency gain'. The second

goal was to apply the concept of )-tracking to nonliuear

single-inpuü/single-output sysbems. In the present pa-

per, adaptive A-bracking is generalized to nonlinear rnulti-

input/mutti-output systems wibh known sign of the higlt-

frequency gain.

2 Problem description

Throughout this paper we consider multivariable nonlin-
ear systems in input affine form

ü(t) = f (1, y(1), z(l)) + g(1, y(t),  z(t)) u(t) \  rr.rt
i( t) = h(1, y(t),  ;( i)) J

where, for n, rn € IN with n ) tn,

f : IR x Rm x Rn-m -+ IR-.
g i IR x IR- x IRt-- -| Rmxm, and

h : IR x IRm x IR'-m -, IR'--
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are assumed t,o be Carath4odorg functions 1 with an equi-
l ibr ipm point  (9"  ,zc,ü")  € IR-  x  IR ' -^  x  IR ' ,  i .e .

0  -  f ( t , y " , 2 " ) * ! ( t , ! " , 2 " ) u o  a n d
0  -  h ( t , y " , 2 , )  f o r  a l l  t  €  n " .

The state dirnension n needs not to be known.
As usual u(l) is considered as manipulated variable and

y(l) is the output to be controlled.
System (2.1) is in the so-called Byrnes-Isidori normal
fotm, see i2], where i = h(t, gu, z) is the zero dynamics.
Stariing oui in this form implies that a) the nonlinear
system has a relative degree of one and b) that the in-
puts ui.) do not enter the internal dynamics.

In addition to requiring a relative degree of one we
have to demand ühai, the following assumptions on the
nonlinear system will hold:

(A1) / is globally Lipschirz at (g,,2"), i.e. for
some unknown constant M t ) 0., inde_
pendent of t € IR, we have, V (t,g,:) €
I R x I R - X R n - - ,

l l . f( l ,y, z)- f(x,!,,r.) l l  < *, l l t : : :  l l
(A2) Ä is continuously differentiable and globally

Lipschitz at y., i.e. for some unknown con-
stant M6 > 0, independent of (t, e), we have,
V (t,y, z) € IR x IR- x IR'--,

l lÄ(r,y, z) - h(t,! . ,  z)l l  S Mt l ly- y. l l

(Ag) g is uniformiy bounded awa1, from zero and' 
fiom above, i.e. there exist positive-definite
P = P T  € A m x m  a n d  c 1  ,  M o ) 0  s u c h t h a t
V (1, y, z) e IR x IRm x n'--;

2 t1I^  S P g( t ,v ,  z)  + g( t ,g ,  z)T p

and e.Z)
llc(r, y, r)l l  S Ms.

. P,ot,Ms are unknown, only existence is en_
sured.

(44) The zero dynamics e.re unifonnll, exponen_
tially converging torvards 4e, i.e. there exist
(unknown) M,e ) 0 such that the solution of

_ 
4(r) = ä(t,U",?(r)), n(0) = ao

satisfies for all t I 0, ?o € IR.

llrr(t) - ?,ll < M u-,, llrtoll.
From an application point of view, assumptions (A1)

and (A2) can be considered as ,,technical assumptions"'.
ra :  RxlRo -r  R,  iecal lcdaearathdodoryfunct ion, i f  o( . ,c)  :
t 

,H,d(r,s) 
is_ me"surable on IR for cach e € IRc,' and

d ( t , . J :  r r r a ( r , c )  i s con t i nuouson  F .e  f o ra l l  l € lR .

If the system is single-input,/single-output, i.e. rn = 1,
then (Ä3) simplif ies to the assumption tirat g(.) is uni-
formll, bounded awa,)r from zero and nnifornly bopnded
fiom above, i.e

(43) '  there ex is t  o1,o2 )  0 such that ,  {or  a l l
(1 ,  y ,  z)  e IR x IR x IR' - l ,

a r  S  g ( t ,  y , z )  1  o 2 .

The strougest assumption, and the one that is proba.bll,
the most diff icult to show for an application, is assump-
tion (44), that requires the system üo be g)oball l '  rniu-
imum pirase. lt is clear, bhat these assumptions. üoget,her
with the implied assumption, that tbe relative degree is
one and the inputs do not enter the interna) d],namics,
are not rnet, by mani,practical conLrol problems. On the
other hand many important practical control problems,
like for example manl' chemical rea,ctors, will meet the
requirements. In Section 4 we wilj demonstrate results
from a chemical reaclor for which the assumptions can
be shown to hold.

3 .\-stabilization and .\-tracking

Tbe control objective is as followsl For a prespecified but
arbitrary ) ) 0, guarantee that y(t) + n(t) (where
y(.) denotes the output of the system and n(.) ' may
be viewed as a reference signal or noise) asymptotically
tends to the ball

'  
Br(0) := {o e IR- l l lr l l  < r}

as I tends to m . For this modified control objective
the control law (1.i) is modified by incorporating a ,dead-

zone'into the gain adaptation, see (3.1) below. Moreover,
the closed-loop s)'stem becomes robust with respect to
measuremenü noise belonging to

)1/1'* := {/ , [0, oo) -+ IR absolutely continuous on
compacü intervals and f(.),/(.) e .L_(O,m)).

The result is formulated in a general way so that it also
solves the problem of )-tracking of Wl,*-signals.

3.1 Theorem

Suppose 1,\,f" > 0, d € IR,. For any multivariable
system (2.1) satisfying (A1)-(Ä4), and llf (t,y","")l l  <
/" for all t > 0, ihe application of the feedtack

u(t)=- [v(r)+n(r) l  + d

f r (llv(t)+ n(t)ll - r) llv(r) + "(t)ll
Ä t r y=J  , i r  l l v ( r )+n ( t ) l l  )Ä

t  0 ,  i f  l ls(z)+ n(r) l l  < )

t646
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wlrere n(') e Wt'* is arbiirary, peuniLs, for arbitrary
i n ib ia l cond i t i ons  yp  =  y (0 )  €  IR - ,  z (0 )  = ;o  €  R" -o ' ,  ä
solut ion (v( ' ) ,  r ( . ) ,  , t (  ) )  :  [0 ,u)  -+ Ig"*r  to  the c losed-
loop system, and any soluiion satisfres on its maxirnal
in lerval  of  ex is tence,  [0 ,c . r ) ,  t r  €  (0,m],  the propert ies:

(i) o = ,>o;

(i i) 
, l11] 

,| '( l) = ,t- exists and is f inite;

( i i i )  y( ' ) ,  z( ' )  e  t r* (0,oo) ;

( iv)  y( t )  1n( t )  opproaches [he bal l  ß1(0)  as 1-+ oo.

Theorem 3.1 states that ihe desired closed-loop ob-
jective can be achieved with the simple conlrol stralegy
(3.1). Note that noü much information about the planü to
be controlled is needed. The only knowledge required is
that the plant saüisfies [he assumptions - whieh is, ad-
mittandly, not always eesy uo show, however, Also note
that the structure of control law (3,1) is independent of
ühe plant to be controlled. There are three iuning para-
meters, 7, d and ), that can be used to "customize''

the feedback ior the applicabion at hand and to improve
its performance. Guidelines for a suitable choice of values
for these tuning parameters are givet in [i].
The function n(.) can be interpreüed in different ways,
e.g. &s a reference signal or as a measurernent noise. See

[1] for deiails
Proof of Theotem 3.1:

lVe use the following notation: For p ) 0 and P =
Pr € [lmxm posicive definite let

r; := p.in(P)r/e and n := l lPllr l2

l l r l lp := 
{., f :P;S

D^(w\ := [ r( l l r l l r  - n) ,  l l ,r l lp 2 pu p \ - t  
i  0  , l l r l l p < p
r  - r l lu l l  _  r )  ,  l l r l l  )  p

dr( t )  :=  
t  

"  
11 ,  l l . l l  <p

Then, see [4J, for all tu € IR-,

(  , l l y l l r " - o ,  ,Or(ru) := { 
'  ,,f l '

l " '

Differenüiation of the Lyapunov-like candidaie Vr()
along the solution of

r,ü(r) = /(i, u(r) - n(r), z(r)) + s(t,w(t) - n(r), z(r)) d
+ä(r) - ,t(r)e(r, r(r) - n(r),;(r)) t,(r)

yie lds,  by (Al ) ,  (43) ,  and (3.2) ,  for  a l l  t  €  [ ts ,a, ) ,

*n'ww
I- D,(w(t)) 

Fiitä; 
(u(t),Pü(t))

S Dp(,(r)) ffi# ll/(,, ü,(r) -'(t),'(t))ll

+ DotuP))ffi ttot,ttt
I- k(1\ Dr(u(t)) 

m)l l ,  
(!(t),P s(t,u(t) - n(t),:(t)) u(t))

I
+ Dp(u(t)) 

FOil; l l ,(t) l l  l lpl l l ls(t,."(t) - n(r), .a(t)) dll

,
( Do(u(t)) 

7 
*,(ll*(rll l+ llz(t;11a p1';

- ß(r)D,(u(,)) 
iFäF ll,(r)ll2 + De(u(r)) ' j ,,t

where

I4r := sup {M1(llnlt) + y,ll+ llr,ll)+ /, + 11;p1111 ,
t E [ 0 , @ )

M z : = ( u r + * M 1 t u I 1 f  + + I u I s 6 f .  . r

Applying Variaiion-of-Constants bo

t

l-rz1t1 
= h(t,y",i(r)+2")+Ä(t, y(t), i(t)fz,)-ä(t, y", i(t)12,) ,
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,u (l)

Vo@)

:= y(t)  + n(t)

I I i l l * l r - p ) '
\ 0 ,

l l r l lp 2 p
ll*llp < p.

ll,,lli > p
l l , l l r  <  p ,

qllul l  S l l tol lp
Drx(w)
Dor(ru) S cdx(u).

(3.2)
(3.3)
(3.4)

!  D,gu(t))f,  *, (r*n l l+ 11a1t111 + M:p-Lt*(r) l l)

- k0 ?D,(u(r)) ll,(r)ll + i u,t L oo@(r))ll,r(t)ll

! Me D,(w(t)) l l ,(t) l l  * 
[* 

- 
? 

Ä(t)] Do(a(t))l lu(r)l l  (e.r:

lVe now proceed in several steps.
(u)r The closed-loop system (2.1), (3.1) posessles a
soluüion (V(  ) , " ( . ) , , t ( . ) )  :  [0 ,c , . , ) - ]  IR"+r ,  which is  max-
imally extended over [0,o) for some s, € (0,co)' This
follows from the classical theory of ordinary diflerential
equatiöns.
(b)' We shall prove boundednesa of ,t( ') on [0'or).
Seeking a conüradiction, suppose that ß(') I t*(0,o).
Let Jo € [0,u) such thaü e(t) > 0 for all t € [ts,u).



where i ( t )  -  t ( t )  -  2 , ,  and using (A4) and (A2),  g ives

l l ; ( r ) l l  s  NI  e-c( t -co)  1 l ; ( to) l l
t

+ [ lul , ' ' t ' - ' t  ü/nl ly(s) - y, l lds
! o

s le1 "- t( t - to) l l ; ( lo) l l

+ Iut Mh 
tf 

e-'$-') [11;or1r1r1111+
;  r '

/ . .  . .
( t tvt ' l t l  -  | l loo(,r(s)) l l )  + 1;u,;1] a' ,

and since, for llrall > p , l

l lvil- illo,(,)il = ll, - nll - (llrllp - p) ffi!
s  l l " l l +  f  ,

and
I

l l e l l  - i l l o , (? r t ) l l  S  l ln l l+4 ,^t q

we obtain

'  l l t(t) l l  S Mc * tutsL(llop(u('))l l) (t),

whence

l l ,(t) l l  S M+ * Mql(l lop(ü,(.))l l) ( i) (s.d)

where

Ms ..= UrllZ(to)ll+ IuI tfh +
r 1 t

*M M6 [l l"(.)l la-ro,-l ä + l lv,l|J 
ül { 

'-s(c-r) 4'

t
r(o(.)) (1) := [ e-c(t'rt u{r) dr ,

0

tuI+ := Ms + llz.ll .

(3.6) üosebher rvith the faci thai llOr(ru(.))ll S iOofu\
and l lDr(u)l l  S Tpllral l ,  yields

t
f

f  
ao(u(s)) l lz(s) l lds

l 9

D,('u(s)) [t + r 11;oo1,('))l l) (s)] ds

Dr(u.'(s))

(u(. )  ) l l r , r r , , ry l l r  ( l loo(ur( ' )  )  l l )  1L, .1," , ,1

i l r l l
Do(tu(s))  l l , ( ' ) l l  ds *  Mq 

I  l lo,(w( ' ) )11i ,1," , ,y

+ tut4llDP

t
m t

1  M o L  I' p J
L O

ü

3  Ms  I  D r (u (s ) ) l l u ( s ) l I ds ,
L O

(3 .7)

rvhere 
.  t f r l

M s  ' . =  M t 7 * * o t r r .

Choose lr € [to,cr) such that

V a - 2 * ( t )  <  0  f o r a i l  t € [ t 1 , a r ) ,' p

rvhere
Ma := M3 Ms * Mt.

Then, integration of fr(r(.)) over [tr,t) yields, by
(3.5),  (3.7) and (3.2),  that

Vrx(w(t))  -  7rr  ( tu(tr))

a t

t
f  I  n ,  1

+ I  lMt-  _ ß(") l  Dor(r , , (s)) l lu(s) l lds
J  L  p  " l
I r  o

t
r l  -  ' l

= |  I 'vr ,-* l (") l  pÄ( ')a '
J L T J
3 t

f
!  Ms Ms I Drx(ur(s)) l lu(s)l lds

J

*( ; t )  
"  != J f,vr, 

_ ,j r,l n ar.
ß ( t r )

J
ts

t

, t  t
tu t r  t. J

ü 6

M + l
l 6

, , P
lYl l  -

p

[f tt-t'ltt + I (lloo(,( litp t"l] o,

(3.8)

Since k(.) is assumed to be unbounded, the right hand
side of (3.8) tends to F, thus contradicting non-
negaiiveness of Iror(tu(1)). Therefore, ,t(.) € tr*(0,u)
is proved.

("), Since Ä(.) € tr-(0,r.r), (3.8) yields bounded-
ness of /pr( .)  and hence u(,) ,u(.)  e tr-10,o1. Since
n(r) = h(t,y",q(t)) is exponentially stable, an applica-
tion of Variation-of-Constants to

t ( t )  =  h ( t ,s , , r ( i ) )  +  Ä( r ,y ( r ) , r ( r ) )  -  h ( t ,y " , ; ( t \ )

arrd using (A2) yields, for some M,s > 0,

s
,n

l l ' (r) l l  < M e-.t l lz(0)l l+rur 1 NIn e-ctt-t)1ly(s)-y"l l  ds,
ö

Dr(tu(s)) lltu(s)ll ds

t6,f8



and lherefore z(.) e tr*(0,tr). By maximality of r.r it
fo l lows thot  t r  = co.  F let tce ( i ) - ( i i i )  are provecl .

(d) ,  I t  remains io  prove ( iv) .  From (3.5) ,  bounded-
ness of  z( ' )  nnd A( ' ) ,  and (3.a)  we deduce,  for  some
NIt ) 0,

i  tznrlelr l i  1 MtDq.r( 'r ,(r)) l lur(r) l l  S M?si(t)
clt

Therelore, the derivabive of t,he Cl-frrnction

PIz( . )  :  IR-+r  -+ IR,  ( t r ,A)  -+ Vn.r ( tu)  - lMzq+I lk

along the soluiion components tu and A satisfies

w(u( t ) ,e( t ) )  <  - t ( t )  =  -d; (u( t ) ) l lu( t ) l l  S o,

Now LaSalle's Invariance Principle for non-auüonomous
systems, see [7], proves that the a.'-limit set of the
bounded solut ion (v( . ) , r ( . ) , l t ( . ) )  is  conbained in

{ (y,., f) € IR"+I I l lr l l  S f }. This proves (iv) and
completes ihe proof. tr

A 'generalization' of Theorem 3.1 to single-input/
single-output sysüems with unknown sign of the high-
frequency gaiu is presented in [1]. For multivariable sys-
tems, asymptotic tracking has also been solved for non-
linear systems. However, even for linear systems it is un-
clear, if a similar result holds for ühe multivariable case,
see [4].

4 Application of multivariable adaptive
),-tracking to CSTR control

In order to demonstrate bhe practicaliiy ol control-
ler (3.1), we consider control of an exothermic continuous
stirred tank reactor (CSTR), in which the reaction

A .5 B 3*p. B 5 x

üakes place. The desired product P'is produced by a
consecutive reaction from initial reaclant :1. Intermediat
product '8 does nob only react to producü P, but also
forms an unwanted isomer X in a parallel reacüion'

The flow g that is fed to the reactor conüains only

substance Ä wiih concenbration c4g and temperature rls'
The energy flow jg is used for cooling the reactor.

The following nonlinear differenüial equations describe
the dynomics of the reactor:

ö a = q ( c a s  -  t a ) -  & 1 ( r l ) ' c a

öa =-q cs + , t r (d)  .c , r  -  ßz( t t )  'ca -  &3(d)  'ca

öp =-Q ' cp * kzbJ) ' cB

$ ks(0)cBt\H4

(4.2)

cA,cB,cp are the concentrations ofSubstances ,4, B and
P respectively and are always positive. The reactor iem-
perature is denoted by 19. The reaction velocities Ä; are
assumed io follow the Arrhenius law

i = 1 , 2 , 3 ,  ( 4 . 3 )

where ,0; are the activation energies and k;6 are the colli-
sion factors, The physico-chemical parameters, iogeiher
with the steady-state data, are given in Table 1.

r tr; ' l
h ( ' r )  =  A io. " -o t  u  i

dt

operating point parameter daba
gs

Jqs

Cr{ 0.9

dos

cAs

cBg

c P S

r9s

0 . 1 5 l m i n - ' J

- t s l  K r  I' - -  [ Z . m r n J

5t+ l
243.15[K]

stY l
n <  f  mo l  lu.., t-7-J

1 0 [ + l
253.15 [/{]

l 0

Et

Azo

Äso

E2

Es

P P .

Affr,

LH,t

Ärr",

1 .169 '10 ' "  l r n i n - r J

1 .445 -10 r t  [ ' n i " - t ]

1 .689'  l01r  [ 'n i " -1]

-eOoo [Iq
-e500 [K]
-e8oo [K]

r litrl
-40 [# ]

-20 [# ]

120 [# ]

(4.1)

Table l: Physico-chemical parameter and steady-state
data for ihe CSTR.

The reactor feed is assumed to be the outpuü of somc
upsüream unit. Therefore feed concentration cas and feed
temperature r9o will vaty with lime and are hence con-
sidered as disturbances. Using a proper controller we
want to maintain both, the product concentraiion cp and
the reactor lemperaüur d, at the steady state values given

in Table I despite these disturbances. The demanded
steady-süate control tolerances are

I rp-rpsl  5 0.02ry
l r r - d s l  S  I K . (4.4)

The flow raüe g and the cooling power jg are available as

manipulated variables. We have bhus a two-input/two-
output control problem.

The open-loop response of the reacüor to a disturbance
in the feed temperature r9e by only -0'5 K is given in

Figure 1.
Without control, the temperature toes unsteble and

drops to a new steady-state value where the reaction ex'

tinguishes, even though the Jacobi-linearized reactor is

süab le . '

r l  =q(de - ,9) - . i?

+  f i , i c .

t&9



In order to apply adaptive .\-tracking a number of as-
sumptions have to be satisfied (Compare Sec. 2). Equa-
tions (4.2) are given in Byrnes-Isidori-normai form,
Lence il can be seen imrnediately lhac t,he reactor has
a rvell-defi.ned vector relative degree r - 

[1,1]". Ex-
ponential stabil ity of the Znd order zero-dynamics can
be shorvn ior the relevant operating region. In addition,
tl ie system equations need to have form (2.1) where the
inputs do not enter the internal dynamics. Nonlinear co-
ordinate transformation

bhat the open-loop reactor goes unstable for a disturb-
ance in d6 of only -0.5 If . The product concentration cp
stays wilhin the conbrol iolerance for all hirnes. The tem-
perature leaves ühe required tolerance for only less bhan
hal f  a  minute.  F ig.  3 shows the manipulated var iables,
that reach their new steady-siabe values without excess-
ive action. The high gain parameter is depicted in Fig. 4
The closed-loop behaviour for a joini dislurbance in the
feed concenirahion by 4n{  and +101( is  depictec l  in
Fig.  5
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tha[ is nonsingular for the relevant operating regime,
where cp ) 0 holds, brings eqs. (a.2) to the required
form. Assumption (Ä3) is however not met for the re-
actor. It is easy bo show that no positivrdefinite p = p"
exists, that satisfies eq. (2.2). A simple input transform-
at ion

ü t = - g r  u Z =  j e (4.6)

(4.i)

(that is a simple gain chauge in the first input channel),
results in a transformed system for which any diagonal,
positive-definite P will satisfy condition (2.2). Assump
iion (Al) and (A2) are also satisfied.

. Strictly speaking, Theorem J.l cannot be applied for
the reactor because the zero-dynamics is not glotaily ex-
ponentially stable. Extension ofTheorem 3.1 io the case
with non-global domains is the subject of current invest_
igation. For practical applications controller (8.1) will
nevertheless achieve closed-loop stabiliiy if the region of
attraction of the stable zero-dynamics is larger than the
operating region considered. This is the case here and,
as all other assumptions are satified, closed-loop stabiliiy
can be expected.

Appropriate scaling of the inputs and outputs is es_
senüial in the multivariable case. An even load on the
manipulated variables can be achieved by input scaling

u  =  
[ t ' J t  ' 7 r ] "

(4 5)

(4.8)

Because the control tolerances for rg and cp vary by a
facior of 50 (compare (4.4)), the outputs are scaled by

! =  i t  ? 1 ,
in order that a choice of ) = 1 rvill guarantee (4.4) asyrnp
totically in a least conservaüive way, Coniroller para_
meüerf is chosen as 7 = 100.

The excellent control performance of the adaptive Ä_
tracker can be seen from Figs. 2-S. Fig. 2 shows the re-
sponse of ühe product coucentraiion cp and reactor tem_
peraüure d to a constant disturbance in the feed temoer-
ature dq by -20K, This is a severe disturbance. Noie
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Figure 1l Open-loop response cf the reactor temperature
rl to a disturbance in the feed temperature do by -0.5 J(.
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Figure 2: Closed-loop behaviour of the product concen-
tration cp and reactor temperature rl to a disturbance in

bhe feed temperabure r9s by -20li.

Figure 3l Closed-loop behaviour of the manipulated in-
puts g and jg for a disturbance in the feed ternperature
by  -20 I { .
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Figure 4: Closed-loop behaviour of the high-gain para-

meter r9 to a disturbance in the feed temperabure dq by
-20 Ii.
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Figure 5: Closed-loop behaviour of the product concen-

üration cp reactor temperature rJ io a joint disturbance

in rls by +101{ and c4s bV -3 ?.
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