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Abstract ’

It is shown that incorporation of a simple ‘dead-zone’ into
the known adaptive high—gain control strategy u{t)
—k(t)y(t), k() = |lv{)||* for linear systems also yields
A-tracking or A-stabilization in the presence of output
corrupted noise for a large class of reference signals and
a large class of multivariable nonlinear ‘minimum phase’
systems with relative degree one and known sign of the
high-frequency gain. These results are applied to a chem-
ical reactor showing the practical usefulness of these con-
trol laws.

1 Introduction
Chemica) processes are characterized by a number of typ-
ical properties that imply specific demands on controller
design schemes. Besides the fact that usually not the
whole state can be measured and that most processes are
of multivariable nature, process nonlinearities and large
 model uncertainties must be considered in this context.
In this paper we propose an adaptive high-gain control
scheme that specifically addresses these properties and
is thus well suited for the control of many chemical pro-
cesses.

The field of high-gain adaptive control of minimum
phase systems has been initiated by [8,9,10,13). Ubiquit-
ous in the area is the following simple output feedback
and adaptation strategy

—k(t) y(2)

1.1
Ny(N? -0

k(0) = ko €TR.

"This approach has been successfully applied to various
classes of minimum phase systems, see [3] for a compre-
hensive bibliography.

There are only few papers available where the nominal
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system is assumed to be nonlinear rather than linear with
nonlinear uncertainties: [1,2,6,7,11].

The éoncept of M-tracking, introduced by [4], is only
slightly different to (1.1): A-stabilization or A-tracking
means, that the output is no longer controlled to a set-
point but into a A-neighbourhood of the setpoint (or the
reference trajectory to be tracked), where A > 0 is prespe-
cified and may be arbitrarily small. The main advantage
of this control objective as opposed to the standard one,
is that a rather general class of nonlinear systems can be
treated and that a serious robustness problem of previ-
ous control laws will be overcome, This is achieved by a
‘dead—zone’ which is incorporated into the gain adapta-
tion.

The present paper extends the results of {1]. In [1]
we proved that the simple adaptation strategy (1.1)
also works for nonlinear systems which are multivari-
able, strong relative degree one, minimum phase with
unkown ‘sign of the high-frequency gain’. The second
goal was to apply the concept of A-tracking to nonlinear
single-input/single-output systems. In the present pa-
per, adaptive A-tracking is generalized to nonlinear multi-
input/multi-output systems with known sign of the high-
frequency gain.

2 Problem description
Throughout this paper we consider multivariable nonlin-

ear systems in input affine form
} (2.1)

F@, ), z@)) + gt u(t), 2(1) u(t)
k{1, y(t), z(1))

y(t)
#(1)

LI

where, for n,m € N with n > m,

f : RxR™xR"™™ — R™,
g ¢ RxR™”xR"™™ — R™", and
h : RxR™xR™ o R"7
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are assumed to be Carathéodory functions ! with an equi-
librivm point (ye,ze,u.) € R™ x R*™™ x R™, i.e.

0 f(tyye:ze)‘*'ﬂ(t,ye,zc)ue
0 = A(t,ye z) forall t€m.

The state dimension n needs not to be known.

As usual u(t) is considered as manipulated variable and
y(t) is the output to be controlled.
System (2.1} is in the so-called Byrnes-Isidori normal
form, see (2], where z = h(%, y., z). is the zero dynamics.
Starting out in this form implies that a) the nonlinear
system has a relative degree of one and b) that the in-
puts u(:) do not enter the internal dynamics.

and

rn

In addition to requiring a relative degree of one we
have to demand that the following assumptions on the
nonlinear system will hold:

(A1) f is globally Lipschitz at (g.,z), ie. for
some unknown constant M; >0, inde-
pendent of t € IR, we have, V (1,y,2) €
R x R™ x R"™™,

h is continuously differentiable and globally
Lipschitz at y., i.e. for some unknown con-
stant My > 0, independent of {t, z), we have,
V{t,y,z) ERx R™ x R"™™,

1AL, y,2) = h(t, ve, 2)l} < Mally — well.

Y~ Ye

-2z

159, 2) = Flt v 20 < My |

(A2)

(A3) g is uniformly bounded away from zero and
‘ {rom above, i.e. there exist positive-definite
P=PT € R™™ and ¢1,M, >0 such that

V(,y,2) €Rx R™ x R™™,

201 I < Pg(t,y,2) + 9(t,y,2)T P
and (2.2)
ot v 2)t < M,

P,oy, Mg are unknown, only existence is en-
sured.

(A4)

The zero dynamics are uniformly exponen-
tially converging towards 7., i.e. there exist
(unknown) M,e > 0 such that the solution of

1) = A, ve,n(t)),

satisfies for all ¢ > 0, E‘ R™

In@) =nell < Me<t{ino)).

From an application point of view, assumptions (A1)
and (A2) can be considered as “technical assumptions”.

7)(0) ="

la : RxR? — R iscalleda Carathéodory function, if a(,z) :
t = oft,z) is measurable on IR for cach z € RY, and
«(t,) + 2 aft,z) is continuouson RY for al] 1 € IR.

If the system is single-input/single-output, i.e. m = 1,
then (A3) simplifies to the assumption that g(:) is uni-
formly bounded away from zero and nniformly bounded
from above, Le.

(A3)" there exist oy,09 > 0

(thy,z) eRx R x R"T,

such that, for all

o1 < g(tl%z) < o2

The strongest assumption, and the one that is probably
the most difficult to show for an application, is assump-
tion (A4), that requires the system to be globally min-
imum phase. It is clear, that these assumptions, together
with the implied assumption, that the relative degree is
one and the inputs do not enter the internal dynamics,
are not met by many practical control problems. On the
other hand many important practical control problems,
like for example many chemical reactors, will meet the
requirements. In Section 4 we will demonstrate results
from a chemical reactor for which the assumptions can
be shown to hold.

3 A-stabilization and A-tracking

The control objective is as follows: For a prespecified but
arbitrary A > 0, guarantee that y(t) 4+ n(t) (where
y(-) denotes the output of the system and n(-) may
be viewed as a reference signal or noise) asymptotically
tends to the ball

By(0) := {z e R™||jz[l < A}

as t tends to oo . For this modified control objective
the control law (1.1) is modified by incorporating a ‘dead-
zone’ into the gain adaptation, see (3.1) below. Moreover,
the closed-loop system becomes robust with respect to
measurement noise belonging to

W .= (£ :]0,00) = IR absolutely continuous on
compact intervals and f(-), f(-) € Leo(0,0)}.

The result is formulated in a general way so that it also
solves the problem of A-tracking of Wb ®-signals.

3.1 Theorem

Suppose 7,X,f, > 0, § € R. For any multivariable
system (2.1) satisfying (A1)-(A4), and || (z, ye, ze )] <€
fe for all >0, the application of the feedback

u(t) =~ [y{t) +n{t)] + ¢
7 (lly(@®) + n(@)l] = A) Jly(@) + n(t)]|
AL fly®) + )l > A
0 i ly@) +n@)) < A

k(t) = 8.1)
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where n(-) € Wh* s arbitrary, permits, for arbitrary
initial conditions yo = y(0) € R™, z(0) = 20 G R*™™, a
solution  (y(+), z(:), k(-)) : [0,w) = R™? to the closed-
loop system, and any solution satisfies on its maximal
interval of existence, [0,w), w € (0,00], the properties:

(i) w =

(ii) tlim k(1) = koy exists and is finite;
—+00

(iii) y(), () € Lo (0, c0);

(iv) y(t) + n(t) approaches the ball By(0) as ¢t — co.

Theorem 3.1 states that the desired closed-loop ob-
jective can be achieved with the simple control strategy
(3.1). Note that not much information about the plant to
be controlled is needed. The only knowledge required is
that the plant satisfies the assumptions — which is, ad-
mittandly, not always easy to show, however. Also note
that the structure of control law (3.1) is independent of
the plant to be controlled. There are three tuning para-
meters, 7y, 6 and A, that can be used to “customize”
the feedback for the application at hand and to improve
its performance. Guidelines for a suitable choice of values
for these tuning parameters are giveh in {1].

The function n(-) can be interpreted in different ways,
e.g. as a reference signal or as a measurement noise. See
(1] for details. -

Proof of Theorem 3.1:

We use the following notation: For p > 0 and P =
PT e R™*™ positive definite let

0 = pmin(PY/? and p = ||P||"/?

lzllp = <=z, Pz>
Dyw) = { Ywlr—p) fulle 2 p
o Woll-p) o 1ols s
— Ll =p) w2
dplw) = 0 . il < s
Then, see [4], for all we R™,
gliw|l < llwllp < pllwll (3.2)
Dpa(w) > pda(w) (3.3)
Doa(w) £ gda(w). (3.4)

We now proceed in several steps.

(a):  The closed-loop system (2.1), (3.1) posesses a
solution (y(*), ("), k() : [0,w) = R"™*!, which is max-
imally extended over [0,w) for some w € (0,00). This
follows from the classical theory of ordinary differential
equations. )

{b): We shall prove boundedness of () on {0,w).
Seeking a contradiction, suppose that k() ¢ L (0,w).
Let to € [0,w) such that k(t) >0 forall t € [to,w).

Set
LU(t) (= y(t) + 7( )
mw:z{%m%—m
@p(‘lu) = {"/ ‘;"w(’l)’;l’w :

o he]lp
y “w“P
lhollz >
Julle <

Y
A~

©

o,

Differentiation of the Lyapunov-like candidate V,(')
along the solution of

w

d

b(t) = f(t, w( n(t), 2(2)) +g(t,
+1(t) ()9 Lw(t) —n(t),
yields, by (A1), (A3 (
Vo(uw(t))

dt

=DAwM)WR§;wwaLPwm>

< Dyt Il st weo -
+mmmﬂfmﬂnun
= 40 Dy o)
+ DAl [

<

= k(t) Dp(w(t) 7y

IIW( )II

(w(t), P g(t, w(t)

w(t) —n(t
2(t)) w(t)

(1), z ()

mwmémemﬂun+M)

),2(t)) 8

), and (3.2), for all t € {to,w),

= n(t), 2(t)) w(t))

(@I IPI gt w(t) = n(2), 2(2)) 6l

3
nwW+mun%ma

2
smwm%mowm+MW+m3MM)

- KH) =

mwwwmm+%Mw§mwmmmw

smM(mwwu[z——wﬂ o(w(®) @)l (35

where

AW), =

¢e[

M, = %-IW/ + &q-M! 1\’!1%4-%-1\/.{95%_.

Applying Variation-of-Constants to

d
—Z

dt
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(t; Yeu E(t)‘*'ze) y




where (t) = z(t) — z., and using (A4) and (A2), gives + MallDp (w( Dl 2aeoy 1€ 1O (wlN N Lok,

IEOI < Me=t=t) {[3(t0)]|

IN

< 12 [ Dyt o) ds + 3t L 0, o)

™
S .

+f M e~ <=9 My lly(s) — vell ds

I

ME‘” o) [[Z(to)l] :

cwmy [ e Lol 5 [ ot wtsiiés, (5.7

to

(Il = 210, (o)) +lwell] ds) where

L]
and since, for |lw|| > p ,

My = M4§ + M.

‘ w Choose %) € [to,w) such that
llw = nl} = (wllp - p)

Nl = N9(w)ll = i
Ms — —k{t) < 0 for all t € [t;,w),
< il +2, My = k) s
and 1 where
ol = =118, ()l < nnu+§, Ms = MyMs + Ms.
. Then, integration of V,(w(:)) over [t1,t) yields, by
we obtain

(3.5), (3.7) and (3.2), that

I < M+ M5 L(19,(w (D) ), Voa(w(t)) = Voa (w(t1))

whence co e
2O € My + MaL(IBp(w(DI) (1) (3:6) S M Ms / D (w(s)) ffuo(s)if ds
whefe A |
¢
My = M|[F(to)|| + M My L
= MU+ 430 5 [ 2= Zk6)] Dpatuto) o
by o
+M M, [nn(.)"LmOw)q + lwell] - sup tf eme(t=9) 45
0to ¢ ‘
¢ .
L(v() = [ e~*(t=") y(r)dr, = / {Ms —%—k(s)] pk(s)ds
0
My = Ma +||z.]] . .
(3.5) together with the fact that 9, (w(-)] < 4D(v) b
together with the fact that ||©,(w <D _ oy ' '
and 1D, (w)ll < 7llull, yields s [ 2] . (32)
. . 1)
, .

' Since k(-) is assumed to be unbounded, the right hand
/Dp(w(s))”z(s)uds side of (3.8) tends to oo, thus contradicting non-
to negativeness of Vpa(w(t)). Therefore, k() € Ly (0,w)

is proved.
(c):  Since k() € Loo(0,w), (3.8) yields bounded-
< M4/ Dy(w(s)) 1+ L (I1©p(w( N (s)] ds ness of ¥pa(-) and hence w(:),y(-) € Loo(0,w). Since

1(t) = h(t,ye,n(t)) is exponentially stable, an applica-
tion of Variation-of-Constants to

< My / D,(w(s)) [§g|w(s)|1+L(1|ep(w(-)j||) (s)] ds  #(t) = h{t,g.,2(t)) + A(t,y(t),2(t)) —~ h(2,ve, 3(t))

and using (A2) yields, for some M,c > 0,

t ’ . t
< M2 [ Do) luts)l ds ool € M e =)+ [ My e E=ly(s) -yl s,
to 0 \
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and therefore z(-) € Leo(0,w).
follows that w = co. Hence (i)~(iii) are proved.

(d): It remains to prove (iv). From (3.5), bounded-
ness of z{-) and k(-), and (3.4) we deduce, for some
M7 > 0,

4
dt

By maximality of w it

Var(e(t) < M7 Dap(w(t)ljw(t)) < Myak(t).
Therefore, the derivative of the C!-function

W)y : R™Y 5 R, (w,k) = Vou(w)—[Mre+1]k

along the solution components w and k satisfies

Wlw(t), k(1)) < —d\(w(t)llw(®)l] < 0.

Now LaSalle’s Invariance Principle for non—-autonomous
systems, see [7], proves that the w-limit set of the

dt

bounded solution  (y(-),w(:),k({)) is contained in
{(y,w k) € R"™|||w]l € A}. This proves (iv) and
completes the proof. m}

A ‘generalization’ of Theorem 3.1 to single-input/
single-output systems with unknown sign of the high~
frequency gain is presented in {1]. For multivariable sys-
tems, asymptotic tracking has also been solved for non-
linear systerns. However, even for linear systems 1t is un-
clear, if a similar result holds for the multivariable case,
see [4].

4 Application of multivariable adaptive
A-tracking to CSTR control

In order to demonstrate the practicality of control-
ler (3.1), we consider control of an exothermic continuous
stirred tank reactor (CSTR), in which the reaction

A 5 B e B D ox (4.1)
takes place. The desired product P'is produced by a
consecutive reaction from initial reactant A. Intermediat
product B does not only react to product P, but also
forms an unwanted isomer X in a parallel reaction.

The flow ¢ that is fed to the reactor contains only
substance A with concentration ¢4 and temperature Jg.
The energy flow jq is used for cooling the reactor.

The following nonlinear differential equations describe

the dynamics of the reactor:
éA =q(cAo - CA) hoad kl(‘l?) *CA
¢p=—qcp +ki(9) ca—ka(J)-cp—ks(?)-cB
¢p=—q-cp+ky(d) ca

=q(¥0 ~ 9) = ;L l:kl(ﬂ)cAAH,‘ + ky(9)epAH,,

+k3(19)cBAH,-,] + 5= dq-

(42)

¢A,¢p,cp are the concentrations of substances A, B and
P respectively and are always posttive. The reactor tem-
perature is denoted by ¢J. The reaction velocities k; are
agsumed to follow the Arrhenius law

E
ki(9) = ko - e‘(p{ l}, i=1,23, (43)

s

where E; are the activation energies and kjq are the colli-
sion factors. The physico~chemical parameters, together
with the steady-state data, are given in Table 1.

operating point parameter data
¢s | 0.15[min~I] [ k1o [ 1.169- 10™® [min~1]
jas | =45 (AL | kao | 1.445- 10 [min~!]
caos | 5 [ kso | 1.689- 10 [min~!]
dos | 243.15[K] || E1 | —9000 (K]
cas | 3[2Y) E; | —9500 [K]
cps | 05[] E3 | —9800 [K]
crs |10(24] e |1[&
9s | 253.15[K] || AH,, | —40 [£]]

AH,, | -2 [£2]

AH,, | 120 [£L

Table 1: Physico-chemical parameter and steady-state
data for the CSTR.

The reactor feed is assumed to be the output of some
upstream unit. Therefore feed concentration c4p and feed
temperature 9 will vary with time and are hence con-
sidered as disturbances. Using a proper controller we
want to maintain both, the product concentration ¢p and
the reactor temperatur ¥, at the steady state values given
in Table 1 despite these disturbances. The demanded
steady-state control tolerances are

(4.4)

The flow rate ¢ and the cooling power jq are available as
manipulated variables. We have thus a two-input/two-
output control problem.

The open—loop response of the reactor to a disturbance
in the feed temperature 190 by only —0.5 K is given in
Figure 1.

Without control, the temperature goes unstable and
drops to a new steady-state value where the reaction ex-
tinguishes, even though the Jacobi-linearized reactor is
stable. -
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In order to apply adaptive A-tracking a number of as-
sumptions have to be satisfied {Compare Sec. 2). Equa-
tions (4.2) are given in Byrnes-Isidori-normal form,
- hence it can be seen immediately that the reactor has
a well-defined vector relative degree r = [1,1]T. Ex-
ponential stability of the 2nd order zero-dynamics can
be shown for the relevant operating region. In addition,
the system equations need to have form (2.1) where the
inputs do not enter the internal dynamics. Nonlinear co-
ordinate transformation

~ Ccp - cp
=—— ip=-—,
CAD — €4 CB (45)
EP:CP, 9 :‘0)

that is nonsingular for the relevant operating regime,
where cp > 0 holds, brings eqs. (4.2) to the required
form. Assumption (A3) is however not met for the re-
actor. It is easy to show that no positive-definite P = PT
exists, that satisfies eq. (2.2). A simple input transform-
ation '

i = —q,

u = jq (4.6)

(that is a simple gain change in the first input channel),
results in a transformed system for which any diagonal,
positive-definite P will satisfy condition (2.2). Assump-
tion (A1) and (A2) are also satisfied.

Strictly speaking, Theorem 3.1 cannot be applied for
the reactor because the zero~-dynamics is not globally ex-
ponentially stable. Extension of Theorem 3.1 to the case
with non-global domains is the subject of current invest-

igation. For practical applications controller (3.1) will

nevertheless achieve closed—loop stability if the region of
attraction of the stable zero-dynamics is larger than the
operating region considered. This is the case here and,
as all other assumptions are satified, closed~loop stability
can be expected.

Appropriate scaling of the inputs and outputs is es-
sential in the multivariable case. An even load on the
manipulated variables can be achieved by input scaling

v = [1/010 0 Jﬁ'

1/3
Because the control tolerances for ¥ and cp vary by a
factor of 50 (compare (4.4)), the outputs are scaled by
50 0

5= [ 9]

in order that a choice of A = 1 will guarantee (4.4) asymp-
totically in a least conservative way. Controller para-
meter v is chosen as v = 100.

The excellent control performance of the adaptive A~
tracker can be seen from Figs. 2-5. Fig. 2 shows the re-
sponse of the product concentration cp and reactor tem-
perature ¥ to a constant disturbance in the feed temper-
ature ¥g by —20 K. This is a severe disturbance. Note

(4.7)

(48)

that the open—loop reactor goes unstable for a disturb-
ance in ¥y of only —0.5 &. The product concentration cp
stays within the control tolerance for all times. The tem-
perature leaves the required tolerance for only less than
half a minute. Fig. 3 shows the manipulated variables,
that reach their new steady-state values without excess-
ive action. The high gain parameter is depicted in Pig. 4
The closed-loop behaviour for a joint disturbance in the
feed concentration by -3 '—"7'1 and +10 K is depicted in
Fig. 5
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