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Abstract

A nonlinear Multi-Grid Predictor-Corrector algorithm is developed using a modified Full
Approximation Scheme. For this modification an extra predictor is introduced utilizing data
obtained from the coarse grid correction. Convergence of this algorithm is proven for each
continuation step and the performance of the algorithm is tested for different applications.
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1 Introduction

Consider the nonlinear, parameter dependent system of equations

Nn(un, λ) = 0, Nn : Rn × R −→ Rn, (1)

with n ∈ N assumably large, arising from the operator problem

N(u, λ) = 0, N : X × R −→ Y with X ,Y Banach Spaces. (2)

We seek approximate solutions un(λ) for λ ∈ [a, b]. For this, two types of algorithms are currently
beeing developed:

• Jacobian-free Newton-Krylov methods (JFNK, see [1]) and

• Nonlinear Multi-Grid (MG) methods such as the Full Approximation Scheme (FAS) in [4] or
algorithms of nested type as in [5].,

as well as combinations of the above using FAS as a preconditioner for JFNK, studied in [1]. The
subject of this paper is the modification of nonlinear MG methods to establish an efficient algorithm
for continuation of parameter dependent problems.

Efficient Multi-Grid (MG) methods to solve the parameter independent version of (1) have already
been developed (cf. [4]). As an obvious approach to solving (1) on a parameter interval [a, b] one
could, for every parameter λi, apply a MG method as a corrector to some u(λi−1). However, this
treats the MG methods as a “black box”, hence denying their ability to use coarse grid corrections
from former parameters. Methods for utilizing that data are presented by introducing a concept
we shall call Coarse Grid Prediction (CGP).

We define the sets

N≥0 := {m ∈ Z | m ≥ 0}, R≥0 := {r ∈ R | r ≥ 0}, N>0 := {m ∈ Z | m > 0}

Because Multi-Grid (MG) algorithms involve multiple grids, a distinguishing notation is important.

Let Ω ⊂ Rd, d ∈ N>0 the space on which a solution to (2) is sought. We define a family of grid
sizes {hl}l∈N≥0

with hl > hl+1 > 0 for all l ∈ N≥0, a family of infinite grids

Ql := {x ∈ Rd |x = (α1hl, . . . , αdhl), α = (α1, . . . , αd)
T ∈ Zd}, l ∈ N≥0, (3)

and a family of subsets
Ωl := Ql ∩ Ω, l ∈ N≥0,

with grid points (depending on the dimension d of the domain)

ωl,i1,...,id
∈ Ωl, (4)

as well as
nl := |Ωl|, l ∈ N≥0. (5)

By Nl we denote a family of nonlinear, parameter dependent systems of equations

Nl(ul, λ) = fl , Nl : Rnl × R −→ Rnl , fl ∈ Rnl , l ∈ N≥0, (6)

where, for l ∈ N≥0, Nl denotes some discretization of N from (1) on the grid Ωl with the grid
function ul.

The parameter dependent problem. In the further scope of this paper, the problem

NL(uL, λ) = 0, (7)



A MULTI-GRID CONTINUATION ALGORITHM 3

for L ∈ N>0, nL = n (from (1)) is to be solved, i.e. a solution for the discretized version of (2) is
sought on ΩL (the finest grid) for some finite subset of parameter values {λj , j ∈ I ⊂ N} ⊂ [a, b] =:
Λ ⊂ R.

We furthermore call
NL(uL) = 0 (8)

the parameter independent problem.

Definitions 1.1 (Restriction and Prolongation Functions).

We define functions that transfer grid functions from fine to coarse grids and vice versa.

(i) By Rl, R̂l we define two families of linear functions (restriction functions). For l ∈ N>0, these
map as

Rl, R̂l : Rnl −→ Rnl−1 .

(ii) By Pl we define a family of linear functions (prolongation functions). For l ∈ N>0, these map
as

Pl : Rnl−1 −→ Rnl .

Notation and Parameter Dependency. Dependency of any notation on a parameter λ is written as
an argument. For example, if we mean to denote the ith component of a solution ul for a specific
parameter λj after m iterations we write um

l,i(λj).

If an algorithm ALG with Parameters p1 and p2 is called with any of the parameters being zero,
then we add a subscript to the 0, e.g. ALG(p1, 0p2

), to clarify the origin of the zero. In all other
cases, notation is chosen to clarify the origin of the parameter.

2 The Multi-Grid Predictor-Corrector Algorithm

2.1 The Nonlinear Multi-Grid Concept

Temporarily and for ease of notation assume (7) to be independent of the parameter λ. Furthermore,
assume 0 < l ≤ L and the existence of an initial solution u0

l on Ωl of

Nl(ul) = fl. (9)

Assuming (9) has at least one solution, we may state that there exists an exact correction vl ∈ Rnl

to u0
l so that

Nl(u
0
l + vl) = fl, (10)

holds, i.e. vl improves the initial approximation u0
l . Calling dl = fl − Nl(u

0
l ) the defect, we may

rewrite (10) as
Nl(u

0
l + vl) − Nl(u

0
l ) = dl, (11)

which is the so called exact defect equation on Ωl (as in [10, (5.3.11-12), p. 155]). Trying to
approximate (11) on a coarser grid Ωl−1 (and essentially solving for the correction vl−1 on Ωl−1)
might lead to the following problem:

Assume that vl, as the difference between the exact solution to (9) and the initial approximation
u0

l , is non smooth (for a more accurate description of how to measure the smoothness of the error
of an approximation see [4, Section 2.6.3]).

Then approximating a non smooth vl on Ωl would possibly loose much information (for this, see
[10, p. 15-18]). Many iterative methods (Gauss-Seidel etc.), if appropriately applied, have a strong
smoothing effect on the error of any approximation. Note that this does not mean the iteration
makes the error smaller, it just smoothes the error.
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As a consequence, we do not try to approximate the correction to u0
l on the coarser grid Ωl−1, but

rather do so for the correction to ū0
l resulting from applying some iterative smoothing method to

u0
l .

Using the restriction functions from definition 1.1 we approximate (11) on the coarser grid Ωl−1 by

Nl−1(R̂lū
0
l + vl−1) − Nl−1(R̂lū

0
l ) = Rldl = Rl(fl − Nl(ū

0
l )),

which is the determining equation for vl−1, the coarse grid correction. Hence, we have reduced (9)
to

Nl−1(wl−1) = fl−1, (12)

with wl−1 := R̂lū
0
l + vl−1 and

fl−1 := Rl(fl − Nl(ū
0
l )) + Nl−1(R̂lū

0
l ), (13)

which is to be solved for wl−1 on the coarser grid Ωl−1. Assuming we have obtained a solution wl−1

of (12), we may compute vl−1 = wl−1 − R̂lū
0
l and prolongate it to vl = Plvl−1. Simply adding vl

to ū0
l gives a new and corrected solution.

Remark 2.1. The use of two different restriction functions R and R̂ is of a rather technical nature. In
some applications it may happen that the coarse grid function has to be restricted from the finer grid with
a different method than the defect. See [4, Note 9.3.3, p. 186] for further explanation. The functions R

and R̂ are identical throughout all applications in this paper.

Concluding this discussion, a nonlinear MG algorithm is divided into the three parts smoothing,
restriction and prolongation as well as coarse grid solving.

Smoothing Iterations

In general, the nonlinear counterparts of any of the well known linear iterative algorithms (Jacobi,
Gauss-Seidel, Richardson, et cetera) may be used as smoothing iterations as long as they have the
desired effect of smoothing as previously mentioned.

Certainly, there are precise conditions that determine whether a smoothing algorithm is suited for
a specific problem. That criteria is called smoothing property, defined in (42).

Definition 2.2. Fix l ∈ N>0. By

Sl : Rnl × Rnl × R −→ Rnl , ul 7→ Sl(ul, fl, λ) (14)

we denote one smoothing iteration on Ωl with starting value ul, right hand side fl and the parameter

value λ. The process of smoothing with ν iterations is then denoted by ul 7→ S(ν)
l (ul, fl, λ).

Fix λ ∈ [a, b] and disregard its notation where applicable. We give the nonlinear version of the
Gauss-Seidel iteration for given u0

l in algorithm 2.1.

Algorithm 2.1 Gauss-Seidel smoothing iteration

1: ul = u0
l

2: for i := 1(1)nl do

3: ul,i = u′
l,i with

4: Nl,i(ul,1, . . . , ul,i−1, u
′
l,i, u

0
l,i+1, . . . ) = fl,i

5: end for ⊲ Nl,i, fl,i the ith components of Nl, fl.

Because line 4 in algorithm 2.1 may be nonlinear in u′
l,i it has to be solved approximately, for

instance by applying one step of Newtons Method. That results in a modified version of algorithm
2.1.
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Algorithm 2.2 Gauss-Seidel-Newton smoothing iteration

1: function ul = SGS
l (u0

l , fl)

2: ul = u0
l

3: for i := 1(1)nl do

4: ul,i = ul,i − (Nl,i(ul) − fl,i) ·
[

∂Nl,i

∂ul,i
(ul)

]−1

, ⊲ assuming
∂Nl,i

∂ul,i
(ul) 6= 0.

5: end for

6: end function

Remark 2.3 (Parameters for algorithm 2.2).

u0

l Starting value
fl Right hand side of Nl, see (6)

The solution of nonlinear equations is completely avoided when we use smoothing iterations that
only rely on evaluations of Nl. Such a smoothing method is proposed in [4, (9.3.5), p. 185] and
given as

Algorithm 2.3 Richardson smoothing iteration

1: function ul = SRIC
l (u0

l , fl)

2: ul = u0
l − ωhα

l

[
Nl(u

0
l ) − fl

]
⊲ α the consistency order of Nl, ω ∈ (0, 1

2 ]

3: end function

Coarse Grid Solution

No actual solution of NL(uL) = 0 is found up to this point. Once the grid Ω0 is reached, one has
to actually solve

N0(w0) = f0 (15)

on Ω0. This is achieved by the so called coarse grid solver, which can be any algorithm suitable
for solving (15). Because the grid Ω0 is in most scenarios much coarser than the grid ΩL on which
the actual solution is sought, one may choose the coarse grid solver mainly by criteria such as
stability and robustness as opposed to computational cost. The Newton Method is a good choice in
this respect. Even the algorithm used for smoothing, if convergent, is an applicable choice which,
together with algorithm 2.3 for smoothing, would result in an easy to implement MG algorithm.

For the problem N0(u0, λ) = f0 we define a solver

Φ : Rn0 × Rn0 × R −→ Rn0 , u0 = Φ(u0
0, f0, λ), (16)

with starting value u0
0 and parameter value λ on the coarsest grid Ω0. The implementation of Φ for

the test problems in this paper is Newtons Method with approximated Jacobian.

Full Approximation Scheme The previous discussion shall be concluded in the recursive algo-
rithm 2.5. It describes (for parameter l = L) one iteration of the FAS and is based on [10, p. 157].
In this paper algorithm 2.5 will be referred to as the standard FAS algorithm.

Note that algorithm 2.5 cannot readily be applied as a MG solver. Remark 2.7 states an algorithm
for that purpose.

Remark 2.4. Before any modification to existing MG algorithms can be made, one has to decide which
algorithm to modify. The setting in this paper are parameter dependent problems, for which a solution
is to be found on a parameter interval through continuation. We assume the existence of (or at least an
efficient way to find a solution for) the initial parameter value λ0. Under these conditions, we favored the
FAS above the nested iteration from [4, Section 9.3.4, p. 188f]. In [4, Chapter 13] a continuation algorithm
based on the nested iteration is given by algorithm [4, (13.2.5)].
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Algorithm 2.5. um+1
l = FASCY CLE(l, γ, um

l , fl, ν1, ν2)

(1) Presmoothing

(1a) Perform ν1 smoothing iterations (14) (using e.g. Algorithm 2.2).

ū
m
l = S

(ν1)
l (um

l , fl) (17)

(2) Coarse grid correction

(2a) Compute the restricted defect dl−1 = Rl(fl − Nl(ū
m
l )).

(2b) Restrict ūm
l ul−1 = R̂lū

m
l .

(2c) Compute the right hand side fl−1 = dl−1 + Nl−1(ul−1).
(2d) Set the initial value w0

l−1 = ul−1 for

Nl−1(wl−1) = fl−1. (18)

(2e) Solve (18):

wl−1 =

(

γ iterations of FASCY CLE(l − 1, γ, w0
l−1, fl−1, ν1, ν2) , l > 1

Φ(w0
0, f0) by (16) , l = 1.

(19)

(2f) Compute the correction vl−1 = wl−1 − ul−1.
(2g) Prolongate the correction vl = Plvl−1.
(2h) Compute corrected approximation on Ωl uCGC

l = ūm
l + vl.

(3) Postsmoothing

(3a) Perform ν2 smoothing iterations (14)

u
m+1
l = S

(ν2)
l (uCGC

l , fl). (20)

Remark 2.6 (Parameters for algorithm (2.5)).

l Level which determines the space Ωl for the current computation. This parameter is necessary
because FASCY CLE is called recursively in (19)

γ Number of Iterations for the recursive call of FASCY CLE (see (19))
um

l Initial value for the given iteration of FASCY CLE

fl Right hand side of Nl, see (6)
ν1 Number of presmoothing iterations, see (17)
ν2 Number of postsmoothing iterations, see (20)

Algorithm 2.4 Iteration of algorithm 2.5

1: unew = u0

2: repeat

3: uold = unew

4: unew = FASCY CLE(L, γ, uold, NL, 0fL
, ν1, ν2) ⊲ use algorithm 2.5

5: until ||unew − uold||2 ≤ ε(||unew|| + 1.0)

Remark 2.7. For actually solving (8), one needs to define some initial solution u0 on ΩL, some tolerance
ε as well as parameters γ, ν1 and ν2 and iteratively compute a solution as in algorithm 2.4 so that the FAS
can be seen as a standard nonlinear iterative algorithm. As such it can be used as a “black box” corrector
for Predictor-Corrector (PC) continuation algorithms. However, a closer look at FASCY CLE (algorithm
2.5) makes clear that each iteration divides into many different parts where information for continuation
could be used. That will be done in section 2.2.
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2.2 The Adapted Predictor-Corrector Algorithm

The Full Approximation Scheme (FAS) (algorithm 2.5) in form of algorithm 2.4 provides a MG
method for a corrector. Accompanied with a predictor that gives an initial approximation for a
parameter value λj based on the solutions for previous parameters, we have a basic Predictor-
Corrector (PC) algorithm at hand.

A Modification of the Full Approximation Scheme

Starting with that in mind, we will take a more detailed look at the FAS and introduce an additional
predictor to algorithm 2.5 for the correction vL from step (2f) in algorithm 2.5 to regard the existence
of a parameter λ.

Definition 2.8 (Predictor functions). Fix k, k̂ ∈ N>0. Those shall be the numbers of previous
values used for the prediction. Define, for L from (7) (hence n = nL),

Ψk : Rn × · · · × Rn

︸ ︷︷ ︸

k

−→ Rn and Ψ̂k̂ : Rn × · · · × Rn

︸ ︷︷ ︸

k̂

−→ Rn

where Ψk shall be the predictor for the starting value u0
l (λj) of the MG iterations and Ψ̂k̂ the

predictor for the first coarse grid correction vl(λj) within the MG iterations.

The modified computation for the coarse grid correction using prediction

As a starting value for solving (12), the FAS uses R̂lū
m
l . While this seems to be the logical choice

for the parameter independent problem (8), it is an occasion where, given the parameter dependent
problem (7), data from the computation for the previous parameter(s) may be reused.

The following lemma 2.9 gives an idea of how this may be achieved.

Lemma 2.9. In algorithm 2.5 (FASCYCLE), let ν1 = ν2 = 0 (i.e., disregard smoothing). Then
computing um+1

L (the (m + 1)st iteration of the solution to (8)) by applying FASCY CLE to um
L

is equivalent to
um+1

L = um
L + PL(PL−1(. . . P1(v

m
0 ) . . . )) (21)

Put plainly, if we disregard smoothing, then FASCY CLE just adds the L-fold prolonged coarsest
grid correction to the initial solution um

L to obtain um+1
L .

Lemma 2.9 suggests to use the first correction that has been applied on the finest grid ΩL in the
MG solver for previous values of λ as a first correction in the computation for the current λ and we
call this Coarse Grid Prediction (CGP). Therefore, we add some value vP

L predicted by Ψ̂ to the
initial solution u0

L predicted by Ψ.

To be precise, assume we have solved (7) for parameters λj−k . . . λj−1 and some k ∈ N>0. Then,
in the first iteration (m = 0) of solving (7) for λj we reformulate the coarse grid correction (12) on

ΩL−1 (using the predictor Ψ̂ from Definition 2.8) as

NL−1(wL−1(λj), λj) = fL−1(λj), (22)

with the initial approximation w0
L−1(λj) := R̂LūCGP

L .

The CGP value is used in ūCGP
L as

ūCGP
L := S(ν1)

L

(

ūL + Ψ̂k(vL(λj−k), . . . , vL(λj−1))
)

(23)

ūL := S(ν1)
L (um

L (λj), fL(λj)), (24)

where the smoothing in (23) has to be applied to guarantee a smooth initial approximation as
discussed in section 2.1. The right hand side on the grid ΩL−1 is modified from (13) to

fL−1(λj) := RL(fL − NL(ūCGP
L , λj)) + NL−1(R̂LūCGP

L , λj).
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As a possible predictor Ψ̂ in (23) one could use for example

Ψ̂1(vL(λj−1)) := vL(λj−1), (25)

which appears to be a reasonable choice as suggested by Lemma 2.9. However, also predictors of
order 2 or higher may be used here. Those are usually given through interpolation formulas as in
[2, Section 6.3.5, p. 56ff].

In subsequent iterations (m > 0), R̂lūL, with ūL as in (20) shall be used as the starting value
w0

L−1(λj) for the coarse grid correction, conforming to the standard FAS iteration.

Developing a Predictor-Corrector Algorithm

Based on the previous thoughts of this section, we develop a Predictor-Corrector (PC) algorithm
using CGP (23).

We introduce an algorithm that has strong connections to the FAS (algorithm 2.5). The modifi-
cations will be solely useful for continuation, in case of λ0 = a = b, the two algorithms coincide.
Therefore the modified FAS will be embedded into a PC continuation algorithm 2.12.

As mentioned above, for computations on the parameter λj we use solutions of (7) (fine grid
solutions)

uL(λj−k), . . . , uL(λj−1) , k ∈ N>0 (26)

and prolongated coarse grid corrections

vL(λ
j−k̂

), . . . , vL(λj−1). (27)

from computations on former parameters for prediction.

Assume that, given some k, k̂, ν1, ν2, γ ∈ N, k, k̂, γ > 0, 0 < l ≤ L, the values from (26),(27) have
been computed for (7).

Then, as a core for a PC continuation algorithm for solving (7) we present Algorithm 2.10, where
PCFASCY CLE stands for Predictor-Corrector (PC) Full Approximation Scheme (FAS) Cycle.
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Algorithm 2.10. um+1
l = PCFASCY CLE(l, γ, um

l , fl, ν1, ν2, k, λ, m)

(1) Presmoothing and Coarse Grid Prediction (CGP)

(1a) Apply ν1 smoothing iterations (14): ūm
l = S

(ν1)
l (um

l , fl, λ).

(1b) Predict a coarse grid correction (use, for example, (25)).

ū
CGP
l =

(

S
(ν1)
l

“

ūm
l + Ψ̂k(vl(λj−k), . . . , vl(λj−1)), fl

”

, l = L and m = 0

ūm
l , l < L or m > 0.

(28)

(2) Coarse grid correction

(2a) Compute the restricted defect dl−1 = Rl(fl − Nl(ū
CGP
l , λ)).

(2b) Restrict ūCGP
l ul−1 = R̂lū

CGP
l .

(2c) Compute the right hand side fl−1 = dl−1 + Nl−1(ul−1, λ).
(2d) Set the initial value w0

l−1 = ul−1 for

Nl−1(wl−1, λ) = fl−1. (29)

(2e) Solve (29) (Φ from (16)):

wl−1 =

(

γ iterations of PCFASCY CLE(l − 1, γ, w0
l−1, fl−1, ν1, ν2, λ) , l > 1

Φ(w0
0, f0, λ) by (16) , l = 1.

(30)

(2f) Compute the correction vl−1 = wl−1 − ul−1.
(2g) Interpolate the correction vl = Plvl−1.
(2h) Compute corrected approximation on Ωl uCGC

l = ūCGP
l + vl.

(3) Postsmoothing

(3a) Perform ν2 smoothing iterations (14): um+1
l = S

(ν2)
l (uCGC

l , fl, λ).

(4) Storage of Coarse Grid Prediction (CGP) value

(4a) If l = L and m = 0 then store the accumulated correction for future prediction:

vL(λ) = u
m+1
L − ū

m
L . (31)

Remark 2.11 (Parameters for Algorithm 2.10).

k Degree of coarse grid predictor Ψ̂
λ Current parameter value
m Index to current iteration (m≥ 0)

For Parameters l, γ, um
l , fl, ν1, ν2 see Remark 2.6.

We use Algorithm 2.10 to construct a simple PC continuation algorithm (algorithm 2.12) for solving
(7) for λ ∈ [a, b]. A constant stepsize is used and no specific predictor is given.



A MULTI-GRID CONTINUATION ALGORITHM 10

Algorithm 2.12. PCFASCONT (a, b, hλ, uL(a), γ, ν1, ν2, k, k̂, ε)

(0a) Set λ1 = a + hλ

(0b) Set the counter for continuation steps i = 1;

(1) Predictor step

(1a) p = min (i, k)
(1b) u0

L(λj) = Ψp(uL(λj−p), . . . , uL(λj−1))

(2) Corrector step

(2a) m = 0
(2b) do

uold = um
L (λj)

um+1
L (λj) = PCFASCY CLE(l, γ, uold, Nl, 0fL

, ν1, ν2, k̂, λj , m)
m = m + 1

while ||um
L (λj) − uold||2 > ε(||unew||2 + 1.0)

(3) Continuing λ

(3a) λj+1 = λj + hλ

(3b) if λj+1 > b then STOP
(3c) i = i + 1

Remark 2.13 (Parameters for algorithm 2.12).

a Starting value for λ-continuation
b Stopping value for λ-continuation
hλ Stepsize for λ-continuation
uL(a) Solution of (7) for a (initial solution for continuation)
γ Number of Iterations for the recursive call of PCFASCY CLE (see (30))
ν1 Number of presmoothing iterations, see (17)
ν2 Number of postsmoothing iterations, see (20)
k Degree of predictor Ψ

k̂ Degree of coarse grid predictor Ψ̂
ε Tolerance for the corrector step

Remarks 2.14. Despite the fact that Algorithm 2.12 may readily be applied for continuation, the fol-
lowing might need to be considered for implementation.

Assume that we are using a predictor Ψ of order k for prediction on ΩL. Then, depending on how ”good”
the initial approximation u0

L(a) is, the values in (27) change very much for i = 0 . . . k. Therefore it has
to be considered to start the CGP (28) later at i = k + 1. This modification is used in the application of
algorithm 2.12 and its effect can be observed in test results in section 4. Figures 4 and 6 show that for the
first k continuation steps no difference between using CGP and standard FAS is observed.

Because it may not be immediately clear how Algorithm 2.12 works using Algorithm 2.10, figure 1
is an attempt to sketch this. In Figure 1, both Ψ and Ψ̂ (see definition 2.8) are linear predictors
using the values from (26), (27) of the previous two λ-values.

Remark 2.15 (Computation of the solution for the initial parameter).

As with any continuation, there is the problem of finding a solution for the initial parameter value for which
no prediction is at hand. Put plainly, any method suitable for the given problem could be used to gain a
solution. However, from an implementation point of view, it is reasonable to use some sort of MG method.
For this we give two of many possible choices.

• A standard FAS Method (cf. [4], [10]) may be implemented for that purpose. One could also think
of some kind of nested iteration of which one is described in [4, Section 9.3.4, p. 188ff].
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• Because we have a solver Φ (16) on Ω0 at hand, one may also use

u
0
0(a) = PL(Sν

L−1 ◦ PL−1(. . .S
ν
1 ◦ P1(Φ(u0

0, 0, a)) . . . )) (32)

for some ν > 0 and some u0
0, a = λ0, i.e. use the inexpensive solver on the coarsest grid Ω0 and

prolong that solution onto the finest grid ΩL, which is also not expensive. The resulting initial
approximation u0

0(a) can then be used as a starting value for the standard FAS iteration (algorithm
2.5) to be improved further or can be used as u0

L(a) directly.

Instead of implementing a non-MG method or a nested MG iteration just for computation on the first
parameter value λ0, we favored (32) as an initial approximation for FAS for our implementation.

λ
       λ

i−2
λ

i−1
λ

i λ
i+1

λ
i+2

u
L
(λ

i−2
) 

u
L
(λ

i−1
) 

u
L
(λ

i
) 

u
L
(λ

i+1
) 

(2)

(1)

v
L
(λ

i−2
) 

v
L
(λ

i−1
) 

v
L
(λ

i
) 

v
L
(λ

i+1
) 

u0
L
(λ

i
)+vCGP

L
(λ

i
)

u0
L
(λ

i
)

u0
L
(λ

i+1
) 

u0
L
(λ

i+1
)+vCGP

L
(λ

i+1
)

vCGP
L

(λ
i
) 

vCGP
L

(λ
i+1

) 

Figure 1: Simplified illustration (plot of norms and no smoothing) of Algorithm 2.12. In (1) and (2), the difference
indicated by the arrows is basically the stored cumulative coarse grid correction as in step (4a) of Algorithm 2.10
(where actually the correction after the first iteration of 2.10 is stored).

3 Convergence Analysis

We prove convergence for algorithm 2.10, i.e. convergence of the iterations for one continuation
step in algorithm 2.12. We do not consider topics such as existence of solutions on certain areas or
areas in which the starting values u0

l and the coarse grid functions must lie for the algorithms to
converge. Complete discussion of these topics can be found in [4, Chapter 9.5, p. 192ff]. Because
Coarse Grid Prediction (CGP) only modifies the starting value w0

l−1 for the correction equation,
one would have to modify the results in [4] in such a way that by lowering the stepsize s in the
continuation it would be assured that the coarse grid functions um

l−1 and solutions um
l lie in the

respective areas for all iterations m.

Because no emphasis is put on neighborhoods around the solution u∗
l for which the iteration con-

verges, the convergence of the continuation in algorithm 2.12 is also not a topic in this paper. One
can always reduce the stepsize s for the continuation to assure solveability.
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We will give a brief overview for the ideas the upcoming estimates will be based on. Disregard the
parameter λ for ease of notation where it is applicable.

Let u∗
l so that Nl(u

∗
l ) = 0. The basis of the convergence theory is the introduction of the iteration

operator Ml(ν) of the nonlinear two grid iteration (either algorithm 2.10 (PCFASCY CLE) with
two grids or the later introduced algorithm 3.1) for which, schematically speaking, we will have

um+1
l − u∗

l = Ml(ν)(um
l − u∗

l ),

if we disregard postsmoothing (ν2 = 0) and assume ν1 = ν. This operator Ml(ν) is split in two
parts

[I − PlDN−1
l−1RlDNl]DS(ν)

l , (33)

using the linearizations DNl,DN−1
l−1,DSl of Nl, N

−1
l−1 and Sl which will be introduced in definition

3.4. This leads to an estimate in the shape of

||Ml(ν)|| ≤ ||DN−1
l − PlDN−1

l−1Rl|| · ||DNlDS(ν)
l ||. (34)

Let α > 0. Because we are interested in boundedness of ||Ml(ν)|| for some large enough number of
smoothing iterations ν, the estimate (34) makes the later introduced smoothing property (42)

||DNlDS(ν)
l || ≤ η(ν)h−α

l with η(ν) → 0 as ν → ∞, (35)

and approximation property (43),

||DN−1
l − PlDN−1

l−1Rl|| ≤ Chα
l , (36)

for some constant C > 0, fundamental.

The smoothing property states, in principle, that the smoothing iteration reduces the “high fre-
quency”components of the error without amplifying the “low frequency” components. The approx-
imation property requires the coarse grid discretization, together with prolongation and restriction,
to relate to the fine grid discretization in a reasonable manner.

Hence we conclude that for estimating boundedness of the iteration operator Ml(ν) we have to
suppose at least the conditions above to hold. All conditions needed to prove convergence are
summarized in suppositions 3.7

On a further note, because α is the consistency order of the operator Nl it only depends on the
problem (7) (for a second order discretization we have, for example, α = 2). Hence, estimate (34)
together with (35), (36) will show the hl-independent boundedness of Ml (||Ml(ν)|| ≤ const < 1).

3.1 The Nonlinear Two Grid Method

The strategy in proving convergence for Algorithm 2.10 is to first assume using only two grids ΩL

and ΩL−1. Furthermore, we pretend to be able to to solve the defect equation (12) on ΩL−1 exactly
and correct the solution on the fine grid ΩL with the prolonged exact correction. This is called a
nonlinear two grid method (algorithm 3.1 and is the basis of the nonlinear MG methods.
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Algorithm 3.1. um+1
l = PCNTGCY CLE(um

l , fl, ν1, ν2, k, λ̄,m)

Presmoothing and Coarse Grid Prediction (CGP)

(1) ūm
l = S(ν1)

l (um
l , fl)

(2) ūCGP
l =

{

S(ν1)
l

(

ūm
l + Ψ̂k(vl(λj−k), . . . , vl(λj−1)), fl

)

, m = 0 and l = L

ūm
l , l < L or m > 0.

Coarse grid solving

(3) d = Rl(fl − Nl(ū
CGP
l , λ̄))

(4) ul−1 = R̂lū
CGP
l = w0

l−1

(5) fl−1 = d + Nl−1(ul−1, λ̄)

(6) wl−1 = N−1
l−1|λ=λ̄

(fl−1)

Coarse grid correction and postsmoothing

(7) uCGC
l = ūCGP

l + Pl(wl−1 − ul−1)

(8) um+1
l = S

(ν2)
l (uCGC

l , fl)

Storage of coarse grid correction (only applicable for l = L)

(9) vl(λ) = um+1
l − ūm

l

One is able to derive estimates sufficient for convergence on two grids. The exact solution on Ωl−1

is then recursively replaced by a solution obtained through a two grid method until level l = 1
(second to coarsest grid) is reached. Once that is the case, the solution on the coarsest grid Ω0 is
obtained through some iterative method Φ from (16). Estimating the error which is caused by this
modification yields estimates for Algorithm 2.10.

Hence, the main work needs to be done in proving convergence for the nonlinear two grid method.
Then, algorithm 3.1 will be modified to a MG method equivalent to algorithm 2.10.

3.2 Conditions on Operators

It is clear that the existence of at least one solution of the problem on each grid Ωl, 0 ≤ l ≤ L is
required.

Supposition 3.2. Throughout this section we assume that for l ≥ 0 there exists a solution u∗
l ∈ Rnl

so that Nl(u
∗
l ) = 0.

We also need to find sets for which the computations with Nl and Sl are allowed. This certainly
requires the u∗

l from supposition 3.2 to be regular solutions, for which a condition shall be given in
the following remark.

Supposition 3.3. Let l ∈ N≥0 and assume that there exists a neighborhood U∗
l of u∗

l with Nl ∈
C1(U∗

l , Rnl). Furthermore let

det

[
∂

∂ul

Nl(u
∗
l )

]

6= 0. (37)

Then by the implicit function theorem (see e.g. [3]) there exist neighborhoods Ul of u∗
l and Fl of 0

so that
Nl∣

∣
∣Ul → Fl
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is homeomorphic.

With the above argumentation it is reasonable to call the problem well posed if (37) is satisfied.
We may then write N−1

l (fl) for fl ∈ Fl.

To analyze algorithm 2.10 we shall use linearizations of the operators Nl and Sl, l ∈ N≥0.

Definition 3.4. For ul, u′
l ∈ Ul and fl, f ′

l ∈ Fl define the linearized operators DNl, DS(ν)
l by

Nl(ul) − Nl(u
′
l) = DNl(ul, u

′
l)(ul − u′

l) (38)

and
S(ν)

l (ul, fl) − S(ν)
l (u′

l, fl) = DS(ν)
l (ul, u

′
l, fl)(ul − u′

l) (39)

as well as the inverse (DNl)
−1 by

N−1
l (fl) − N−1

l (f ′
l ) = (DNl)

−1
(
N−1

l (fl), N
−1
l (f ′

l )
)
(fl − f ′

l ). (40)

Remark 3.5. With the determining equation for DN−1
l

N
−1
l (fl) − N

−1
l (f ′

l ) = DN
−1
l

`

fl, f
′

l

´

(fl − f
′

l ),

it is clear that for (DNl)
−1 from (40) the relationship

(DNl)
−1 `

N
−1
l (fl), N

−1
l (f ′

l )
´

= DN
−1
l

`

fl, f
′

l

´

holds. Hence it is permitted to write DN−1
l instead of (DNl)

−1.

Remark 3.6. Even though in the introduction to this section we stated that we disregard topics such
as areas of existence of the solutions and such, we briefly note that several conditions on Nl and Sl, l ≥ 0
would be required for the operations in algorithm 3.1 to be well defined. Put plainly, the values um

l and
ul−1 need to lie in Ul, Ul−1 and fl, fl−1 in Fl, Fl−1 from supposition 3.3 respectively. This, amongst other
conditions, is achieved by supposing the following.

For l > 0 and w0
l−1 ∈ Ul−1(

εl−1

2
) ⊂ Ul−1 let, for some constants C, CDN

||DN
−1
l−1(ul−1, u

′

l−1)||U→F ≤ CDN for all ul−1, u
′

l−1 ∈ Ul−1(εl−1),

as well as

||DN
−1
l−1(ul−1, u

∗

l−1)[Nl−1(w
0
l−1 − RlNl(ul))]||U ≤ Ch

α
l−1 for all ul−1 ∈ Ul−1(εl−1),

||Rlfl||F
CDN

+ Ch
α
l−1 ≤ εl−1,

where α is the consistency order of Nl (i.e. α = 2 for second order discretization) and hl from (3). In
[4, Remarks 9.5.2, 9.5.3, p. 193] similar conditions are given. However, the algorithm in [4] uses an extra
parameter as stated in remark 2.14 (i), which is not necessary if the above conditions are satisfied.

Suppositions 3.7. Let the following conditions, which are essential for proofs of convergence, hold
for all λ ∈ [a, b], 0 ≤ l ≤ L and disregard λ for ease of notation:

1. For ul ∈ Ul let ul = N−1
l (fl) a fixed point of S(ν)

l :

ul = S(ν)
l (ul, Nl(ul)) for all ul ∈ Ul, ν ≥ 1. (41)

2. The affine operator DSl possesses the smoothing property on the linear operator DNl, i.e.
there exist functions η(ν) and ν̄(h) and a number α ≥ 0 so that

||DNlDS(ν)
l ||U→F ≤ η(ν)h−α

l for all 1 ≤ ν ≤ ν̄(hl), l ≥ 1 with

limν→∞ η(ν) = 0 and

ν̄(h) ≡ ∞ or limh→0
¯ν(h) = 0,







(42)

where α is the consistency order of Nl.
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3. There exists a constant CA so that for all ul, u
′
l ∈ Ul and ul−1, u

′
l−1 ∈ Ul−1, l ≥ 0

||DN−1
l (ul, u

′
l) − PlDN−1

l−1(ul−1, u
′
l−1)Rl||U→F ≤ CAhα

l (43)

4. For the affine operator DSl there exists a constant CS so that

||DS(ν)
l ||U→U ≤ CS for all l > 0, 0 < ν < ν̄(hl) (44)

5. There exist constants CP , C
′

P so that for all l ≥ 1

C−1
p ||ul−1||U ≤ ||Plul−1||U ≤ C

′

p||ul−1||U for all ul−1 ∈ Ul−1. (45)

3.3 Convergence of the Nonlinear Multi-Grid Method

In the following theorem 3.8 we show convergence of the nonlinear two grid method modified with
CGP (algorithm 3.1). This is the first step in showing convergence of the Multi-Grid (MG) method
(algorithm 2.10) because the nonlinear two grid method will later be recursively modified to a
MG method. We are concentrating only on the grids ΩL and ΩL−1 because on all coarser grids
no modifications from the standard two grid algorithm has been done by CGP as can be seen in
algorithm 3.1(2) and (28).

Theorem 3.8 (Convergence of algorithm 3.1 (PCNTGCY CLE)).

Let k > 0, j ≥ k and λj−k, . . . , λj−1 be given. For any stepsize s > 0 let λj := λj−1 + s and

u0
L(λj) := Ψk(u∗

L(λj−k), . . . , u∗
L(λj−1)).

Assume that there exists a stepsize smax > 0 so that for all s ≤ smax, when starting algorithm 3.1
with u0

L(λj) = u0
L(λj−1 + s), we have fL−1 ∈ FL−1 for all iterations. Then there exists ν̄1 so that

the iteration

um+1
L (λj) = PCNTGCY CLE(um

L (λj), 0fL
, ν̄1, 0ν2

, k, λ,m), m ≥ 0 (46)

converges for m → ∞ to the solution u∗
L(λj), i.e. for every ε > 0 and every s ≤ smax there exist

m(ε, s) so that
||um

L (λj) − u∗
L(λj)|| < ε for all m > m(ε, s).

Proof. For ease of notation we set l = L.

The proof will happen in several steps. After some definitions and a consideration on the coarse
grid predictor we will show a first estimate for the special case m = 0, in which CGP is used. Then
we will treat the case m > 0 where we will fall back to the standard FAS Algorithm 2.5 with two
grids Ωl, Ωl−1 and will use results from [4]. We will disregard notation of the parameter λ where it
is applicable.

Let
vP

l (λj) := Ψ̂k(vl(λj−k), . . . , vl(λj−1)). (47)

Furthermore, in accordance to the notation in algorithm 3.1 for fl = 0 with ūCGP
l = S(ν1)

l

(
ū0

l + vP
l , 0

)

let
ū0

l = S(ν1)
l (u0

l , 0), d = −Rl(Nl(ū
CGP
l ))

ul−1 = Rlū
CGP
l , fl−1 = d + Nl−1(ul−1).

}

(48)

(i) In this step we write L instead of l regardless of the fact that they are equal for the proof, to
emphasize that CGP is only done on level L. In later steps, for ease of notation we will write
l. Without loss of generality, assume we are using the simple coarse grid predictor (25), i.e.
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the predicted coarse grid correction vP
L for λj is the correction stored in the computation for

λj−1, and by (31) given as

vP
L (λj) = u1

L(λj−1) − ū0
L(λj−1). (49)

Hence vP
L is the prediction for the correction to ū0

L (as opposed to ūCGP
L ). This means we are

predicting vl from (2f) in algorithm 2.5 (used with two grids), which must not be confused
with any exact correction. We are not predicting u∗

L(λj) − ū0
L(λj).

Algorithm 2.5 (FASCY CLE) used with the two grids ΩL,ΩL−1 is a nonlinear two grid
algorithm equivalent to [4, Algorithm 9.3.10, p. 187]. Also, as we mentioned before, we are
predicting the correction in the first iteration that we would get if using algorithm 2.5 with
two grids. This correction shall hence be called vFAS

L (λj) and therefore we have

vP
L (λj) = vFAS

L (λj−1). (50)

The purpose of this is simply that at some later point in the proof we use estimates from [4]
for the standard FAS.

Assuming λ 7→ vFAS
L (λ) is differentiable on [a, b], the mean value theorem of integral type [3,

Theorem 3.10, p.174] gives

vP
L (λj) − vFAS

L (λj)
(50)
= vFAS

L (λj−1) − vFAS
L (λj)

= (λj−1−λj)

∫ 1

0

∂

∂λ
vFAS

L (λj + t(λj−1 − λj)) dt (51)

Define

L(λj−1, λj) :=

∫ 1

0

∂

∂λ
vFAS

L (λj + t(λj−1 − λj)) dt.

With s = λj − λj−1 we rewrite (51) as

vP
L (λj) − vFAS

L (λj) = −sL(λj−1, λj).

For ease of notation we disregard the parameter λj in vL and conclude

vP
L = vFAS

L − sL(λj−1, λj). (52)

(ii) Case m = 0:
Since we disregard postsmoothing (ν2 = 0 in (46)), the error after the first iteration is given
by

δu1
l := u1

l − u∗
l

= uCGC
l − u∗

l

= ūCGP
l + Pl(wl−1 − ul−1) − u∗

l

= S(ν1)
l

(
ū0

l + vP
l , 0

)
+ Pl(wl−1 − ul−1) − u∗

l . (53)

We need to investigate the value wl−1−ul−1 further. The definition of the linearized operators
(see definition 3.4) gives us

wl−1 − ul−1 = N−1
l−1(fl−1) − N−1

l−1(Nl−1(ul−1))

(48)
= N−1

l−1

(
Nl−1(ul−1) − Rl(Nl(ū

CGP
l ))

)
− N−1

l−1(Nl−1(ul−1))

Nl(u
∗
l )=0

= N−1
l−1

(
Nl−1(ul−1) − Rl(Nl(ū

CGP
l ) − Nl(u

∗
l ))

)

−N−1
l−1(Nl−1(ul−1))

(38),(40)
= −

[
DN−1

l−1(wl−1, ul−1)RlDNl(ū
CGP
l , u∗

l )
]
(ūCGP

l − u∗
l ).
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With ūCGP
l = S(ν1)

l

(
ū0

l + vP
l , 0

)
and (41) we get

wl−1 − ul−1 = −
[
DN−1

l−1(wl−1, ul−1)RlDNl(ū
CGP
l , u∗

l )
]

·
(

S(ν1)
l

(
ū0

l + vP
l , 0

)
− S(ν1)

l (u∗
l , 0)

)

(39)
= −

[

DN−1
l−1(wl−1, ul−1)RlDNl(ū

CGP
l , u∗

l )DS(ν1)
l (ūCGP

l , u∗
l , 0)

]

·(ū0
l + vP

l − u∗
l ).

Setting
DNl := DNl(ū

CGP
l , u∗

l ),

DS(ν1)
l := DS(ν1)

l (ūCGP
l , u∗

l , 0),

DN−1
l−1 := DN−1

l−1(wl−1, ul−1)

leads to
wl−1 − ul−1 = −

[

DN−1
l−1RlDNlDS(ν1)

l

]

(ū0
l + vP

l − u∗
l ). (54)

Inserting (54) into (53) yields

δu1
l = S(ν1)

l

(
ū0

l + vP
l , 0

)
− u∗

l −
[

PlDN−1
l−1RlDNlDS(ν1)

l

]

(ū0
l + vP

l − u∗
l )

(39),(41)
= DS(ν1)

l (ū0
l + vP

l − u∗
l ) −

[

PlDN−1
l−1RlDNlDS(ν1)

l

]

(ū0
l + vP

l − u∗
l )

=
[
I − PlDN−1

l−1RlDNl

]
DS(ν1)

l (ū0
l + vP

l − u∗
l )

=
[
DN−1

l − PlDN−1
l−1Rl

] [

DNlDS(ν1)
l

]

(ū0
l + vP

l − u∗
l ) (55)

Furthermore, by (52) and L := L(λj−1, λj) we have

ū0
l + vP

l − u∗
l = ū0

l + vFAS
L − sL − u∗

l . (56)

As we mentioned before, algorithm 2.5 used with two grids is a nonlinear two grid algorithm
equivalent to [4, Algorithm 9.3.10, p. 187]. Because ū0

l plus the correction that would be

computed by the two grid version of algorithm 2.5 is exactly its first iterate, namely u1,FAS
l ,

we can rewrite (56) as

ū0
l + vP

l − u∗
l = u1,FAS

l − u∗
l − sL. (57)

For a normwise estimate, we know from [4, Proposition 9.5.6, p. 194f] that there exists ν0
1 so

that (57) together with CP := |L| gives

||ū0
l + vP

l − u∗
l || ≤ ||u0,FAS

l − u∗
l || + sCP

= ξ′||u0
l − u∗

l || + sCP , (58)

with ξ′ < 1. The latter is achieved in [4] by a sufficient number of smoothing iterations.

Note that in (i) we have assumed using the simple coarse grid predictor (25). In case we
would use a predictor of order p > 1 in (47),(49), the last term in (58) would change to sp C

′

P

for some constant C
′

P .

Let
Ml(ν) :=

[
DN−1

l − PlDN−1
l−1Rl

] [

DNlDS(ν)
l

]

. (59)

Then by (43) and (42) there exists ν1
1 so that

C0 := ||Ml(ν
1
1)|| ≤ ||DN−1

l − PlDN−1
l−1Rl||

︸ ︷︷ ︸

constant by(43)

· ||DNlDS(ν1

1
)

l ||
︸ ︷︷ ︸

small by (42)

< 1; (60)
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With ν0
1 , ν1

1 from (58),(60) respectively, define ν2
1 := max {ν0

1 , ν1
1}. Going back to (55), we

use (58), (59) and (60) to rewrite (55) as

||δu1
l || ≤ ||Ml(ν

2
1)||U→U ·

(
ξ′||u0

l − u∗
l || + sCP

)
(61)

≤ C0 ξ′||u0
l − u∗

l || + sC0 CP , (62)

with C0, ξ′ < 1.

(iii) Case m > 0:
This is to be discussed rather quickly, since we fall back to the standard FAS algorithm 2.5
with 2 grids equivalent to [4, Algorithm 9.3.10, p. 187] and use, for the first iteration, the
case (ii). By [4, Proposition 9.5.6, p. 194f], there exists ν3

1 so that for some ξ < 1 we have

||δum
l || ≤ ξ||δum−1

l || ≤ · · · ≤ ξm−1||δu1
l ||

(62)

≤ ξm−1 ·
(
C0 ξ′||u0

l − u∗
l || + sC0 CP

)
.

We seek
ξm−1 C0 ξ′||u0

l − u∗
l || + sC0 CP ξm−1 < ε, (63)

which, by setting ν̄1 := max {ν3
1 , ν2

1} and using, for given ε and s the relationship

s <
ε − ξm−1 C0 ξ′||u0

l − u∗
l ||

2C0 CP ξm−1
(64)

given by (63) yields m(ε, s) and therefore proves the assertion.

Remark 3.9 (Interpretation of (64)). Based on the relation (64) we take another look at how the
stepsize s may be chosen depending on the parameters ξ, ξ′, the constants C0, CP and the distance of the
initial approximation u0

L to the solution uL. We rewrite (64) as

s =
ε

2C0 CP ξm−1
−

ξ′||u0
L − u∗

L||

2CP

. (65)

A few points may be concluded from (65).

• The smaller ξ and ξ′ are, the larger s may be chosen. The values of ξ and ξ′ are contraction numbers
of the nonlinear two grid algorithm [4, Algorithm 9.3.10, p. 187] and are influenced by the number
of smoothing iterations.

• The constant C0, defined in (60) behaves like ξ, ξ′. The smaller it is, the larger s can be chosen. It is
specific to the CGP, and provides a sort of “weak” contraction number in (62) for the first iteration
m = 0 on the finest grid l = L.

• The effect of the constant CP , defined near (58) can not be clearly interpreted. This is expected,
because it is a constant coming from the mean value theorem and hence has no direct correlation to
the algorithm.

• Interpretation of ||u0
l − u∗

l || is a little tricky. At first sight, one might conclude that the closer u0
L is

to u∗

L, the larger s can be chosen. However, s is the stepsize for both predictors Ψ and Ψ̂. The s in
(64) is introduced in (52), from the predictor Ψ̂. Therefore, the closer u0

L is to u∗

L, the larger s can
be chosen. A larger s however, means a worse prediction u0

L by Ψ and possibly an u0
L which in turn

is further from u∗

L.

Theorem 3.8 verifies convergence for two grids. However, the subject of this paper is MG algorithms.
Hence we are recursively extending the two grid iteration to a MG iteration. Again we will only
derive estimates for the level L, because only there we have modified the standard FAS algorithm
with CGP. Estimates for all coarser grids , in which we conform to the standard FAS, exist in [4]
and will be used in the convergence theorem 3.11 for algorithm 2.10.

Multi-Grid (MG) algorithm as a modified two grid algorithm



A MULTI-GRID CONTINUATION ALGORITHM 19

The transition from the two grid method to a MG method is achieved by recursively replacing step
(6) in algorithm 3.1 by the γ-fold application of a converging iteration Φl−1:

wl−1 = Φγ
l−1(w

0
l−1, fl−1) for l > 1 (66)

and
w0 = Φ0(w

0
0, f0), (67)

where we disregard λ for ease of notation. The coarse grid solver Φ0 is assumed to solve N0(w0) = f0

exactly, hence we do not write the γ-fold application but denote by Φ0 a complete solver on Ω0.
That is contrary to Φl for l > 0, with which only one iteration of the modified two grid algorithm
is denoted. This modified iteration shall be called algorithm 3.1MGM . By setting

Φl−1(w
0
l−1, fl−1) = output of algorithm 3.1MGM with parameters w0

l−1, fl−1, l − 1 (68)

for l > 0 and for l = 0 using the coarse grid solver defined in (16)

Φ0(w
0
0, f0) = output of coarse grid solver Φ with parameters w0

0, f0, (69)

the new algorithm 3.1MGM is equivalent to algorithm 2.10.

Lemma 3.10. Let uL−1 7→ ΦL−1(uL−1, fL−1) be an iteration converging to N−1
L−1(fL−1) with

contraction number φL−1 < 1:

||ΦL−1(uL−1, fL−1) − N−1
L−1(fL−1)||U ≤ φL−1||uL−1 − N−1

L−1(fL−1)||U (70)

for all uL−1 ∈ UL−1, fL−1 ∈ FL−1. If step (6) in algorithm 3.1 is replaced by the γ-fold application
of ΦL−1:

wL−1 = Φγ
L−1(w

0
L−1, fL−1), (71)

then there exists a constant C∗
L so that for l = L the relation (62) from the proof of theorem 3.8

changes to
||δu1

L|| ≤
(
C0 + φγ

L−1C
∗
L

)
·
(
ξ′||u0

L − u∗
L|| + sCP

)
. (72)

Proof. Let l = L.

With introducing (71) to algorithm 3.1 we get an error δwl−1 which is given by

δwl−1 := N−1
l−1(fl−1) − wl−1. (73)

Note that N−1
l−1(fl−1) is the former wl−1 from algorithm 3.1 which has been changed by (71).

Call ũ1
l the output of the first iteration of algorithm 3.1 with modification (71). Then as in (53)

δũ1
l = δūCGP

l + Pl(wl−1 − ul−1)

(73)
= δūCGP

l + Pl(N
−1
l−1(fl−1) − δwl−1 − ul−1)

= δūCGP
l + Pl(N

−1
l−1(fl−1) − ul−1) − Plδwl−1. (74)

By Algorithm 3.1 (7), (74) can be written as

δũ1
l = δu1

l − Plδwl−1. (75)

Furthermore we can use (73) to obtain

||δwl−1|| = ||N−1
l−1(fl−1) − wl−1||

(71)
= ||N−1

l−1(fl−1) − Φγ
l−1(w

0
l−1, fl−1)||

(70)

≤ φγ
l−1||N−1

l−1(fl−1) − w0
l−1||.
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Because in algorithm 3.1 we set w0
l−1 = ul−1, we can write

||δwl−1|| ≤ φγ
l−1||N−1

l−1(fl−1) − ul−1|| ,

and therefore, (75) together with (62) gives

||δũ1
l || ≤ C0 ·

(
ξ′||u0

l − u∗
l || + sCP

)
+ φγ

l−1||Pl||U→U ||N−1
l−1(fl−1) − ul−1|| , (76)

with C0 defined in (60).

The value N−1
l−1(fl−1) − ul−1 has already been discussed in the proof of theorem 3.8 where in (54)

together with (58) we showed that

||N−1
l−1(fl−1) − ul−1|| ≤ ||DN−1

l−1RlDNlDS(ν̄1)
l ||U→U ·

(
ξ′||u0

l − u∗
l || + sCP

)
, (77)

with the number of smoothing iterations ν̄1 from theorem 3.8.

Applying (77) to (76) yields

||δũ1
l || ≤

(

C0 + φγ
l−1||Pl||U→U ||DN−1

l−1RlDNlDS(ν̄1)
l ||U→U

)

·
(
ξ′||u0

l − u∗
l || + sCP

)
. (78)

We have yet to estimate ||Pl||U→U ||DN−1
l−1RlDNlDS(ν̄1)

l ||U→U . Supposition (45) gives

||Pl||U→U ||DN−1
l−1RlDNlDS(ν̄1)

l ||U→U ≤ C
′

p||DN−1
l−1RlDNlDS(ν̄1)

l ||U→U

(45)

≤ C
′

pCp||PlDN−1
l−1RlDNlDS(ν̄1)

l ||U→U . (79)

Furthermore, by cheating a bit, we obtain

PlDN−1
l−1RlDNlDS(ν̄1)

l = DS(ν̄1)
l −

[
DN−1

l − PlDN−1
l−1Rl

]
DNlDS(ν̄1)

l

(59)
= DS(ν̄1)

l − Ml(ν̄1). (80)

Inserting (80) into (79) together with supposition (44) and the definition of C0 in (60) we conclude

||Pl||U→U ||DN−1
l−1RlDNlDS(ν̄1)

l ||U→U ≤ CpC
′

p(CS + C0) =: C∗
L. (81)

The latter equation together with (78) completes the proof.

Lemma 3.10 shows that the transition from algorithm 3.1 to the recursively modified two grid
algorithm 3.1MGM as in (68),(69) causes the extra term φγ

L−1C
∗
L to appear in (72). That means

we have to assure
C0 + φγ

L−1C
∗
L < 1 (82)

on level L with C∗
L from lemma 3.10. On all lower levels algorithm 2.10 behaves like the standard

FAS which is treated in [4, Algorithm NMGM, p. 188] and hence we can use the estimates and C∗

from [4, Section 9.5.2, p. 196ff] on these levels.

We shall conclude these statements by adapting [4, Remark 9.5.11, p. 197] to our modification for
CGP on level L. The remark in [4] uses chapters 6 and 7 from [4], therefore we are using citations
rather than including those chapters into this paper.

Let the contraction number φ0 of the coarse grid solver, given by

||Φ0(u0, f0) − N−1
0 (f0)||U ≤ φ0||u0 − N−1

0 (f0)||U
be sufficiently small. Furthermore, let C := max {C∗, C∗

L} with C∗ from [4, (9.5.8c), p. 197] (if no
CGP is used, C∗ and C∗

L are identical). With (66), (67) and (82) modify [4, (9.5.10), p. 197] to the
system of inequalities

φ1 = ξ1 + C · φ0 < 1,
φl = ξl + C · φγ

l−1 < 1 for 1 < l < L,
φL = C0 + C · φγ

L−1 < 1,






(83)



A MULTI-GRID CONTINUATION ALGORITHM 21

with ξl, 0 < l < L being the given contraction numbers from [4, Proposition 9.5.6, p. 194] for the
standard two grid iterations on levels l already mentioned in (58) and C0 from (72).

Then, if γ ≥ 2, (83) has solutions
φ0, . . . φL < 1 (84)

because by assumption φ0 is sufficiently small and by [4, Proposition 9.5.6, p. 194] and (60), for
a large enough number of smoothing iterations ν, the quantities ξ1, . . . ξL−1 and ξL = C0 can be
made sufficiently small as well.

With (84) we can use [4, Theorem 9.5.12, p. 197] and lemma 3.10 for proof of convergence of
algorithm 2.10. Because we are only interested in convergence, no attention is given to the parts of
[4, Theorem 9.5.12] in which areas of solveability and such are treated.

Theorem 3.11 (Convergence of algorithm 2.10 (PCFASCY CLE)).

Let k > 0, j ≥ k and λj−k, . . . , λj−1 be given and γ ≥ 2. For any stepsize s > 0 let λj := λj−1 + s
and

u0
L(λj) := Ψk(u∗

L(λj−k), . . . , u∗
L(λj−1)).

Assume that there exists a stepsize smax > 0 so that for all s ≤ smax, when starting algorithm 2.10
with u0

L(λj) = u0
L(λj−1 + s), we have f0 ∈ F0 for all iterations (i.e. the coarse grid solver Φ (16)

on Ω0 is well defined for the solution of N0(w0) = f0). Furthermore assume that Φ satisfies

||Φ0(u0, f0) − N−1
0 (f0)||U ≤ φ0||u0 − N−1

0 (f0)||U for all f0 ∈ F0 (85)

with φ0 sufficiently small. Then there exists ν̄1 so that the iteration

um+1
L (λj) = PCFASCY CLE(L, γ, um

L (λj), 0fL
, ν̄1, 0ν2

, k, λ,m), m ≥ 0 (86)

converges for m → ∞ to the solution u∗
L(λj), i.e. for every ε > 0 and every s ≤ smax there exist

m(ε, s) so that
||um

L (λj) − u∗
L(λj)|| < ε for all m > m(ε, s).

Proof. For ease of notation disregard the parameter λ. Because the coarse grid solver Φ is assumed
to solve N0(w0) = f0 exactly, we can assume φ0 from (85) to be sufficiently small. Then with
analogue argumentation as in (58) and the same notation, (84), lemma 3.10 and [4, Theorem
9.5.12] yield that there exists a number of smoothing iterations ν1

1 so that

||δu1
L|| ≤ C1 ·

(
ξ′||u0

L − u∗
L|| + sCP

)
, (87)

with δu1
L := u1

L − u∗
L, C1 < 1 by (84) and ξ′ < 1 by [4, Theorem 9.5.12]. For iterations m < 0,

argumentation is analogue to the proof of theorem 3.8(iii). By [4, Theorem 9.5.12], there exists ν2
1

so that for some ξ < 1 we have

||δum
l || ≤ ξ||δum−1

l || ≤ · · · ≤ ξm−1||δu1
l ||

(87)

≤ ξm−1 ·
(
C1 ξ′||u0

l − u∗
l || + sC1 CP

)
.

Computations similar to (63),(64) complete the proof.

The relationship of the constants ξ, ξ′, C1, CP , ||u0
l − u∗

l || to the stepsize s can be interpreted in
analog manner to remark 3.9.

4 Test Problems

For testing algorithm 2.12, we will apply it to three different test problems of different character
each.

The Chandrasekhar-H equation is a nonlinear integral equation which gives a full (as opposed to
sparse) nonlinear system of equations if discretized. The modified Bratu problem on the other hand
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is an elliptic PDE with boundary values, which, if discretized, gives a band-shaped nonlinear system
of equations. The problem of continuation of invariant tori is different from both aforementioned
types. Because of the periodic boundary values, discretization yields a nonlinear system of equations
with band-shape and additional entries for the periodic boundary values.

We show results of applying algorithm 2.12 to these three test problems in the following sections. We
used constant stepsizes as well as a simple heuristic stepsize control. Throughout all computations
we use a set of options for algorithm 2.12. Some have common values for all test problems. These
are γ from (30) and ν1, ν2 for smoothing from algorithm 2.10 with

γ = 2 and ν1 = ν2 = 2.

The value γ = 2 results in a W-Cycle (see for example [4, Section 2.5]) and ν1, ν2 determine the
amount of smoothing iterations. For the coarse grid solver we use the Newton algorithm with
approximated Jacobian in all test problems. For those options that do not have common values,
we will give a description once in table 1, and announce their specific values in each section for the
three problems algorithm 2.12 has been applied to.

Option Description

Λ Parameter interval, see (7)
u0

L(λ0 = a) Starting solution vector for the initial parameter value in RnL

s Difference between two parameter values λj − λj−1 if no stepsize control is used

k, k̂ Orders of predictors Ψ, Ψ̂ from definition 2.8 respectively
ε Relative tolerance for ||um − um−1||

Table 1: Options for computations with algorithm 2.12

The computations that are done in this work are compared with results from [9] and [8]. We have
tried to match the conditions those results were obtained in as closely as possible. Because we
used more modern computational equipment for our computations than possibly has been used in
[9],[8], factors may be applied to the original computation times. Those will be mentioned where
necessary.

Furthermore, the computation times of algorithm 2.12 are compared with the computation times
needed when algorithm 2.5 instead of 2.10 is used in step (2b) of algorithm 2.12. The latter scenario
shall be called algorithm 2.12FAS .

The computer used was equipped with an AMD Athlon64 3000+ CPU, running at 1.8 GHz with
512 MB RAM.

4.1 Matlab Implementation

All computations are done in Matlab. The source code package as a collection of so called M-Files

is freely available from the author 1.

The central part is the implementation of the PCFASCY CLE algorithm 2.10 which itself is a
recursive algorithm. However, for the implementation we transformed it into an equivalent non
recursive algorithm and consequently have to save the current level in the variable k and the
iterations done on each level in the vector it with L elements. Figure 2 displays a flow chart for
the non recursive version of algorithm 2.10.

1 eMail schmidt@itwm.fhg.de
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yes

STOP

START

no

yes

, if l > 0
it(l) =

it(L) = 0

l = L

no (l=0)

l < L

Obtain coarse grid

solution

Presmoothing

Restriction

yes

Prolongation

Coarse grid correction

Postsmoothing

Descending the grid level Ascending in the grid level

1 , if l = 0

l > 0

l = l + 1

l = l − 1

it(l)=it(l)−1

it(l)=1

no

Figure 2: Flow chart for the non recursive version of algorithm 2.10. The current grid level is denoted by l and the
amount of iterations on each level is stored in the vector it.

4.2 Chandrasekhar-H Equation

The Chandrasekhar-H equation

F (H,λ) = 0, H : [0, 1] → R,

with parameter λ and the operator F as

F (H,λ)(µ) = H(µ) −
(

1 − λ

2

∫ 1

0

µH(ν)dν

µ + ν

)−1

(88)

is discussed in [6, p. 87ff]. To gain a system of nonlinear equations on levels l ∈ N≥0, (88) is
discretized by using an nl point grid and

∫ 1

0

f(µ)dµ ∼= 1

nl

nl∑

j=1

f(µj), µi =
i − 0.5

nl

for 1 ≤ i ≤ nl.

The resulting system of nonlinear equations (for levels l ∈ N≥0) is

Nl,i(ul, λ) = ul,i −



1 − λ

2nl

nl∑

j=1

µiul,j

µi + µj





−1

= 0, 1 ≤ i ≤ nl. (89)

When starting with 1R
nl , system (89) has a solution for all λ ∈ (0, 1). Using Algorithm 2.2 for

smoothing, we need

∂Nl,i(ul, λ)

∂ul,i

= 1 +
λ

4nl



1 − λ

2nl

nl∑

j=1

µiul,j

µj + µi





−2

. (90)
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Hence, line 4 from the Gauss-Seidel smoothing algorithm 2.2 can, using (89),(90), be written as

ul,i =



λ · ul,i + 4nl − 2λ

nl∑

j=1

µiul,j

µj + µi



 ·




λ + 4nl



1 − λ

2nl

nl∑

j=1

µiul,j

µj + µi





2





−1

.

Matching the conditions from [8, Section 6.2.4, p. 105], the options from table 1 are set as

Λ = [0.001, 0.999], u0
L(a) = 1 = (1, 1, . . . , 1)T ∈ RnL , s = 0.1,

k = 4, k̂ = 2 ε = 10e − 5.
(91)

The coarsest grid Ω0 is a 32 point grid. For smoothing we use algorithm 2.2. Computations are
done on the grids Ω1, . . . ,ΩL with the largest L being 6. The corresponding grid sizes are

n1 = 64, n2 = 128, n3 = 256, n4 = 512, n5 = 1024, n6 = 2048.

Applying algorithm 2.12 under the stated conditions with constant stepsize yields the results in
table 2, where the times are measured for the whole continuation (11 continuation steps).

Grid Comp. time Comp. time Comp. time Comp. time CG It. MG

points (L) in seconds S(νi) in % Pl, Rl in % CG It. in % of Φ iterations
64 (1) 1.2030 16.52 3.23 56.26 53 46

2.12FAS 1.3120 17.80 2.92 58.37 59 51
128(2) 2.2350 36.84 1.75 46.63 82 45

2.12FAS 2.4380 30.61 1.61 46.76 91 50
256 (3) 4.1090 51.64 0 26.95 99 44

2.12FAS 4.9540 48.70 0 33.03 142 49
512 (4) 9.6090 64.02 0 12.02 106 45

2.12FAS 10.9840 63.26 0 15.58 158 50
1024 (5) 25.7310 76.06 0 4.99 115 44

2.12FAS 30.4530 73.53 0 6.36 168 50
2048 (6) 86.5940 79.71 0 1.90 124 45

2.12FAS 95.3910 79.37 0 2.15 169 50

Table 2: Chandrasekhar-H Equation: Computational time of algorithm 2.12 (and algorithm 2.12FAS in the respec-
tive rows). Measurements were taken as an average over 5 runs. The percentwise computation times in columns 3-5
were given through the Matlab Profile Viewer tool. Percentages less than 1% are noted as 0.

From table 2 it can be concluded that Coarse Grid Prediction (CGP) in (28) has an advantage over
using the standard FAS algorithm 2.5.

The results in table 2 can be directly compared to the results from [8] because similar computational
equipment was used in [8] (Pentium IV, 2.4GHZ, 512MB RAM) on a grid of 1000 points. The fastest
of many methods tested in [8] yielded a computation time of 931.2030 seconds, meaning 2.12 is more
than 30 times faster in that application.

Aside from the computation times it might be interesting to see how the number of MG iterations
(iterations of algorithm 2.10) changes with the parameter value. Figure 3 compares algorithms 2.12
and 2.12FAS on the grid Ω5 (1024 points) in this respect. All further plots and comparisons in this
section are also done on this grid.

From figure 3, one concludes that the CGP results in some cases in fewer MG iterations. This
gives rise to the idea of applying a simple heuristic stepsize adaption to the continuation, where we
define an optimal number of iterations mopt and adapt the stepsize sj+1 according to the amount
of iterations needed for the current parameter value λj as

sj+1 = sj · max

{

min {mopt

mλ

, 2}, 0.5

}

. (92)

The results are quite impressing, as they show a clear advantage if CGP is used. Figure 4 starts
at the parameter value 0.4 because no stepsize adaption is done before the predictor has reached
order 4. After that, a square/circle is plotted for each continuation step. The figure uses mopt = 3.
For values mopt = 2, 3, 4, table 3 compares certain measures of performance.
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Figure 3: Chandrasekhar-H Equation: MG iterations plotted against the parameter value λ ∈ [0.001, 0.999] with
constant stepsize s = 0.1. Left: Algorithm 2.12 (i.e. use of CGP). Right: Algorithm 2.12FAS
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Figure 4: Chandrasekhar-H Equation: MG iterations plotted against the parameter value λ ∈ [0.001, 0.999]. Each
square/circle represents one continuation step with adaptive stepsize and mopt = 3.

4.3 Modified Two Dimensional Bratu Problem

The modified Bratu problem

△v(x, y) + κ
∂v(x, y)

∂x
+ λev(x,y) = 0 in Ω = [0, 1] × [0, 1], v = 0 on ∂Ω, (93)

where v : Ω → R, κ a given parameter and λ a parameter is discussed in [7, p. 310f]. We seek a
solution v(λ).

Let Ωl be uniform grids on [0, 1] × [0, 1] and fix λ for ease of notation. We discretize (93) on levels
l ∈ N≥0 on the grids Ωl using the grid function u with nl := |Ωl| as in (5), Ml :=

√
nl and

ul,i,j := v(ihl, jhl), 0 ≤ i, j ≤ Ml − 1.

Furthermore, assume
ul,i,j = 0 for {i, j} ∩ {0,Ml − 1} 6= ∅ (94)

to satisfy the boundary values in (93). The differential operators △ and ∂
∂x

are discretized using
first and second order centered difference approximations which are defined by

D(ul,i,j) :=
1

2hl

(ul,i+1,j − ul,i−1,j) (95)

D2(ul,i,j) :=
1

h2
l

(−4ul,i,j + ul,i−1,j + ul,i+1,j + ul,i,j−1 + ul,i,j+1), (96)

(97)
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Defined opt. # Comp. time Continuation CG Iterations MG
of iterations mopt in seconds Steps from Φ iterations

2 46.4690 29 224 79
2.12FAS 56.4220 38 149 98

3 28.1250 12 121 49
2.12FAS 46.5930 21 173 80

4 26.7650 10 123 46
2.12FAS 35.7500 12 159 59

Table 3: Chandrasekhar-H Equation: Certain performance measures for the continuation with algorithm 2.12 (and
algorithm 2.12FAS in the respective rows) and adaptive stepsize.

respectively, with 0 < i, j < Ml − 1. Hence, the resulting system of nonlinear equations is

Nl,i,j(ul, λ) = D2(ul,i,j) + κ · D(ul,i,j) + λeul,i,j = 0,

with 0 < i, j < Ml − 1. For implementation we use lexicographic ordering of the grid functions ul

with the new index k := (i−1)+(j−1)(Ml −2) and regard only indexes i, j with 0 < i, j < Ml −1,
i.e the inner points of the grids Ωl, hence automatically satisfying the boundary value condition in
(93). Regarding (94), this results in a system of (Ml − 2)2 equations

Nl,k(ul, λ) = D2(ul,k) + κ · D(ul,k) + λeul,k = 0, (98)

which is to be solved. For smoothing with Algorithm 2.2 we also need

∂Nl,k(ul, λ)

∂ul,k

= − 4

h2
l

+ λeul,k , 0 ≤ k < (Ml − 2)2

and hence for 0 ≤ k < (Ml − 2)2, line 4 from algorithm 2.2 can be written as

ul,k = ul,k − [D2(ul,k) + κ · D(ul,k) + λeul,k ] ·
(

− 4

h2
l

+ λeul,k

)−1

.

The treatment of this problem is very similar to the treatment of the Chandrasekhar-H equation
in section. Therefore we will present the results in the same manner, with less explanation.

Matching the conditions from [8, Section 6.2.3, p. 98] in most aspects, the options from table 1 are
set as

Λ = [0.1, 6.8], u0
L(a) = 1 = (1, 1, . . . , 1)T ∈ RnL , s = 0.3,

k = 2, k̂ = 2 ε = 10e − 8.
(99)

During the computations we found that using predictors of orders higher than 2 (linear predictor)
yields no further improvement for this specific problem, hence we set k = 2 in (99) as opposed
to k = 4 in (91). The coarsest grid Ω0 is a 64 point grid. For smoothing we use algorithm 2.2.
Computations are done on 2kl × 2kl point grids Ω1, . . . ,ΩL with k0 = 3 and the largest L being 7.
The corresponding grid sizes are

n1 = 256, n2 = 1024, n3 = 4096, n4 = 16384, n5 = 65536, n6 = 262144, n7 = 1048576.

We set κ = 10 in (93), and measure again the computation times for the complete continuation (24
continuation steps) with constant stepsize. Table 4 displays the results.

For comparison, the results for a 1024 point grid with κ = 0 and Λ = [0.1, 3.5] from [8] are used.
The comparison should be fair, because all modifications in our paper make the problem harder
to solve and most importantly, the continuation in [8] only covers about half the interval. Here
the fastest of many methods tested in [8] yielded a computation time of 1020.4840 seconds, which
means algorithm 2.12 is more than 200 times faster in that application.
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Grid Comp. time Comp. time Comp. time Comp. time CG It. MG

points (L) in seconds S(νi) in % Pl, Rl in % CG It. in % of Φ iterations
1024 (2) 3.3440 6.45 3.85 70.70 197 93

2.12FAS 4.8620 9.18 2.63 73.36 291 130
4096(3) 6.1870 15.27 4.21 61.02 329 90

2.12FAS 9.2180 13.35 5.77 67.92 527 124
16384 (4) 11.7500 26.60 9.07 43.51 470 81

2.12FAS 17.4680 24.05 6.92 48.81 775 109
65536 (5) 30.1870 36.91 13.65 22.35 627 73

2.12FAS 44.9380 35.42 12.91 25.02 1074 107
262144 (6) 93.1090 42.39 14.88 9.03 825 68

2.12FAS 128.4070 42.56 15.35 11.23 1389 93
1048576 (7) 342.6090 45.60 15.57 3.67 1189 64

2.12FAS 449.3430 44.72 15.84 4.45 1849 84

Table 4: Modified Bratu Problem: Computational time of algorithm 2.12 (and algorithm 2.12FAS in the respective
rows). Measurements were taken as an average over 5 runs. The percentwise computation times in columns 3-5 were
given through the Matlab Profile Viewer tool. Percentages less than 1% are noted as 0.

If one compares tables 4 and 2 it becomes clear that the shares in computation times of prolongation
P and restriction R have opposite tendencies between the Chandrasekhar-H equation in table 2 and
the modified Bratu problem in table 4. This is caused by the more complicated nature of restriction
and prolongation on a two dimensional grid (2D) compared to a one dimensional grid (1D). In the
former case, if-statements have to be evaluated in every call to the operator Nl to accommodate
for the boundary values. Moreover, on a 1D grid, 2 neighboring points are considered for each grid
point, whereas on a 2D grid 8 points are used.

We plot the number of MG iterations against the parameter value λ comparing algorithms 2.12
and 2.12FAS in figure 5 on the grid Ω4 with 16384 grid points. Because of the larger amount of
continuation steps (24), we sketch both graphs in one plot, similar to figure 4, with constant stepsize
s.
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Figure 5: Modified Bratu Problem. MG iterations plotted against the parameter value λ ∈ [0.1, 6.8]. Each
square/circle represents one continuation step with constant stepsize s = 0.3.

The fact that in figure 5, the number of iterations with CGP is nearly everywhere less than without
it, again suggests to apply the stepsize control (92). This is plotted in figure 6. Again only
parameter values starting at 0.4 are plotted because no coarse stepsize adaption happens before
that (see section 4.2). The value mopt = 3 is used in figure 6.

For performance measures for other values of mopt see table 5. These computations were again
done on Ω4.

Figure 6 deserves a further remark. At a first look it may seem that for some parameter values a
larger amount of MG iterations is needed with CGP than without it. However, in these occasions,
the stepsize in the continuation plot with CGP is already much larger than without it. Hence,
the corrector certainly needs a few more iterations for a possibly less accurate prediction. This is
especially obvious between parameter values λ ∈ [2, 3] and λ ∈ [5, 6].
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Figure 6: Modified Bratu Problem: MG iterations plotted against the parameter value λ ∈ [0.1, 6.8]. Each
square/circle represents one continuation step with adaptive stepsize and mopt = 3.

Defined opt. # Comp. time Continuation CG Iterations MG
of iterations mopt in seconds Steps from Φ iterations

3 21.718 41 896 143
2.12FAS 33.7030 65 1440 213

4 11.516 15 510 70
2.12FAS 17.5940 24 775 109

5 9.5940 11 428 58
2.12FAS 12.5320 14 561 77

Table 5: Modified Bratu Problem: Certain performance measures for the continuation with algorithm 2.12 (and
algorithm 2.12FAS in the respective rows) and adaptive stepsize.

4.4 Continuation of Quasiperiodic Invariant Tori

The following application is motivated by [9], where complete coverage of the theoretical background
can be found. In this context, we shall just briefly note the parts interesting for applying the MG
continuation algorithm 2.12 to the problem of continuation of quasi periodic invariant tori for a
specific ODE.

Let
ẋ = f(x, ω1t, ω2t), f : Rd × R × R → Rd (100)

an ordinary differential equation, ω := (ω1, ω2) and assume that f is periodic with period 2π in its
second and third argument, i.e.

f(x, θ1, θ2) = f(x, θ1 + 2π, θ2) = f(x, θ1, θ2 + 2π)

for all (x, θ1, θ2) ∈ Rd ×R×R. We require the frequencies ω1 and ω2 to be rationally independent,
i.e. k1ω1 + k2ω2 6= 0 for all k1, k2 ∈ Q.

Let Tm := Rm/(2πZ)m for m > 0. Transforming (100) into an autonomous differential equation
yields

ẋ = f(x, ϑ), ϑ̇ = ω, (101)

with (x, ϑ) ∈ Rd × T2. Let f ∈ Cr(Rd × T2, Rd) for r ∈ N and let ϕt be the flow that is induced by
(101). In [9, Section 2.3.2, p. 29ff] it is shown that

ω1
∂v

∂θ1
+ ω2

∂v

∂θ2
= f(v, θ1, θ2), θ := (θ1, θ2) ∈ T2 (102)
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is the determining equation for a torus function v : T2 → Rd of an, with respect to ϕt, invariant
quasiperiodic torus. The question of existence of such a torus is also discussed in [9].

For testing algorithm 2.12 we look at a specific, parameter dependent function f . Let d = 4 and
the following system ẋ = f(x, θ1, θ2, λ) with

f1(x, θ1, θ2, λ1) = −λ1x1 − (ω1 + 1)x2 + x1(x
2
1 + x2

2) +
√

λ1 sin θ1

f2(x, θ1, θ2, λ1) = −λ1x2 + (ω1 + 1)x1 + x2(x
2
1 + x2

2) −
√

λ1 cos θ1

f3(x, θ1, θ2, λ1) = −λ2x3 − (ω2 + 1)x4 + x3(x
2
3 + x2

4) +
√

λ2 sin θ2

f4(x, θ1, θ2, λ1) = −λ2x4 + (ω2 + 1)x3 + x4(x
2
3 + x2

4) +
√

λ2 cos θ2

(103)

as well as ω1 = 1, ω2 =
√

5, λ2 = 10 and λ1 = λ the parameter given similar to [9, Section 3.1.3, p.
70ff]. The invariance equation (102) with the special f from (103) yields

ω1
∂vi

∂θ1
+ ω2

∂vi

∂θ2
= fi(v, θ1, θ2, λ), i = 1 . . . 4, (104)

which has a solution v = (v1, v2, v3, v4)
T with

v1(θ) =
√

λ1 cos θ1, v2(θ) =
√

λ1 sin θ1, v3(θ) =
√

λ2 cos θ2, v4(θ) =
√

λ2 sin θ2 (105)

To solve (104) we discretize the Torus T2 through an Ml × Ml-point grid with the respective grid
sizes and grid functions

hl =
2π

Ml − 1
, ul,i,j = v(ihl, jhl), i, j = (0 . . . Ml − 1) mod Ml. (106)

The latter modulo notation means that by the periodic nature of T2, indexes of the grid functions
have to be taken modulo Ml, e.g. index i = Ml is equivalent to index i = 0. This also means that
in our discretization we disregard the “upper” and the “right” boundary and store the periodic
boundary values in the other two. This choice is arbitrary.

With α := ω1

2hl
, β := ω2

2hl
and finite difference discretization of (104) we gain the the M2

l equations

α ul,i+1,j − α ul,i−1,j + βul,i,j+1 − βul,i,j−1 = f(ul,i,k, ihl, jhl, λ) (107)

i, j = (0 . . . Ml − 1) mod Ml.

Note that in (107), each ul,i,j is a vector in R4. Hence, for implementation we use lexicographi-
cal ordering with the index k and have a system of 4M2

l scalar, nonlinear, parameter dependent
equations which we can directly apply algorithm 2.12 to.

For reasons described in section 4.4, we use the Richardson smoothing algorithm 2.3 for this par-
ticular problem. Hence, for smoothing, line 2 from algorithm 2.3 is given as

ul = ul − ωhlNl(ul, fl),

for some ω ∈ (0, 1
2 ]. In (107) we have written out Nl, and hence the smoothing calculation is given

as

ul,i,j = ul,i,j − ωhl (uα ul,i+1,j − α ul,i−1,j + βul,i,j+1 − βul,i,j−1 − f(ul,i,k, ihl, jhl, λ))

i, j = (0 . . . Ml − 1) mod Ml.

The choice of ω depends on the given problem and can be used to fine-tune the behavior of the MG
algorithm. In [4, Section 3.3.2, p. 52f] the choice of ω is discussed further. Matching the conditions
from [9, Section 3.1.3, p. 70ff] the options from table 1 are set as

Λ = [9, 25], u0
L(a) = 0.01 · (1, 1, . . . , 1)T ∈ RnL , s = 2,

k = 1, k̂ = 1 ε = 10e − 5.
(108)
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We found that for this problem the simple predictor which uses only the previous value is best
with and without CGP. This may be caused by the weak dependency of the solution (105) on the
parameter λ. Even a linear predictor may give an initial solution too far away from the solution.

Compared to the previous two sections a few aspects change for this problem. At first, the periodic
boundary values should be mentioned. The experiments showed that the smoothing algorithm 2.2 is
not well suited. It seems that the periodic boundary values cause the smoother to diverge. However,
algorithm 2.3 with ω = 1/8 has the desired smoothing effect and hence we use it for smoothing in
this application.

The coarsest grid Ω0 is a 8×8 = 64 point grid, i.e. M0 = 8 (Ml from (106)). The coarse grid solver
(16) always operates on this grid, i.e. solves systems of 64 · 4 = 256 equations. Computations are
done on 2kl × 2kl point grids with each grid point in R4, k0 = 3 and the largest L being 4. The
grids are Ω1, . . . ,ΩL with corresponding grid sizes

n1 = 1024 (16 × 16), n2 = 4096 (32 × 32), n3 = 16384 (64 × 64),

n4 = 65536 (128 × 128).
(109)

Again we measure the computation times for the complete continuation (11 continuation steps)
with constant stepsize on the grids (109).

Grid Comp. time Comp. time Comp. time Comp. time CG It. MG

points (L) in seconds S(νi) in % Pl, Rl in % CG It. in % of Φ it.
1024 (16 × 16 × 4) 4.8390 2.27 6.88 86.87 26 37

2.12FAS 5.2820 2.38 6.21 85.47 29 40
4096(32 × 32 × 4) 8.2500 9.51 26.84 63.64 29 50

2.12FAS 9.3590 8.82 25.52 64.13 32 56
16384 (64 × 64 × 4) 21.2660 17.19 62.98 26.45 33 65

2.12FAS 25.2970 19.63 58.60 27.18 39 76
65536 (128 × 128 × 4) 94.8910 24.47 76.67 6.52 35 90

2.12FAS 106.0780 23.70 75.69 7.69 40 99

Table 6: Continuation of quasiperiodic invariant tori: Computational time of algorithm 2.12 (and algorithm 2.12FAS

in the respective rows). Measurements were taken as an average over 5 runs. The percentwise computation times in
columns 3-5 were given through the Matlab Profile Viewer tool.

For comparison we use the computations in [9, Section 3.1.3, p. 70f]. The reference does not give
computation times for continuation, only for the parameter values λ1 = λ2 = 9. Computations in [9]
were done on a Pentium III running at 800Mhz, therefore we apply the factor 3 to our computation
times.

In this respect, on a 128×128 point grid, algorithm 2.12 needed 34 MG iterations of algorithm 2.10
and 3 · 35.2030sec = 105.609sec for finding a solution. The computations in [9] took 4 iterations
and 836.7sec on a 100 × 100 point grid. This means our algorithm performs about 8 times faster.

Because in table 6, use of CGP always results in fewer MG iterations, in figure 7 we plot the number
of MG iterations on the 128× 128 point grid Ω4 for each continuation step as in figures 3 and 5 to
see where CGP saves MG iterations.

In figure 7 we find that in the continuation, the number of MG iteration reduces faster with CGP
than without it. That is a promising result in its own respect. Figure 8 however, shows the real
advantage of CGP if the heuristic stepsize control (92) is used on the 128 × 128 point grid Ω4.

Certainly, (92) yields different results for different values mopt. We chose mopt = 4 for figure 8
because it was best suited for display. Additionally, performance measures for the values mopt = 3, 5
are displayed in table 7 to give an idea of how the choice of mopt affects the continuation.

The results from table 7 suggest that the smaller we chose mopt (i.e. the less MG iterations we allow
in each continuation step), the more of an advantage CGP has over the standard FAS corrector.

Remark 4.1 (Use of different smoothing algorithms). Note that we have used different smoothing
algorithms for the three problems discussed above. Aside from performance reasons, in the special case of



A MULTI-GRID CONTINUATION ALGORITHM 31

9 13 17 21 25 29
2
3
4

6

8

10

12

14

16

18

20

λ

M
G

 it
er

at
io

ns

9 13 17 21 25 29
2
3
4

6

8

10

12

14

16

18

20

λ

M
G

 it
er

at
io

ns

Figure 7: Continuation of quasiperodic invariant tori: Continuation with constant stepsize s = 2 on Ω4. MG
iterations plotted against the parameter value λ ∈ [9, 29]. Left: Algorithm 2.12 (i.e. use of CGP). Right: Algorithm
2.12FAS
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Figure 8: Continuation of quasiperiodic invariant tori: MG iterations plotted against the parameter value λ ∈ [9, 29]
on Ω4. Each square/circle represents one continuation step with adaptive stepsize and mopt = 4.

the continuation of quasiperiodic tori this is due to the fact that the Gauss-Seidel smoothing algorithm 2.2
yielded strong divergence as has been mentioned in section 4.4. Therefore we used algorithm 2.3 for that
particular problem.

In our tests we found that one may always apply the Richardson iteration (algorithm 2.3) for smoothing.
This may not always yield the best performance, but it seemed to have a smoothing effect in all applications
and is easy to implement since only evaluations of Nl are required. Hence as a start, we recommend trying
algorithm 2.3 for smoothing first, and from there try other smoothing algorithms to possibly improve
performance.

Remark 4.2 (Dependency of computation time on the amount of grid points in ΩL). We are looking
for a quantity which, the larger it gets, higher the computational time for finding a solution is expected to
be. It seems reasonable to choose the amount of grid points in the fine grid. With this in mind, we have
plotted the dependence of computation times on the amount of grid points in figure 9 for all three test
problems with appropriate continuous fitting curves.
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Defined opt. # Comp. time Continuation CG Iterations MG
of iterations mopt in seconds Steps from Φ iterations

3 34.15 26 54 103
2.12FAS 84.8910 75 133 255

4 23.829 14 37 73
2.12FAS 42.2500 25 80 119

5 21.547 11 34 66
2.12FAS 32.9690 16 60 95

Table 7: Continuation of quasiperiodic invariant tori: Certain performance measures for the continuation with
algorithm 2.12 (and algorithm 2.12FAS in the respective rows) and adaptive stepsize.

5 Conclusion

Based on the Multi-Grid (MG) algorithm Full Approximation Scheme (FAS) we developed a modi-
fication in section 2, which we called Coarse Grid Prediction (CGP). The corresponding procedure
2.10 was embedded into a simple Predictor-Corrector (PC) continuation algorithm 2.12. In this
continuation algorithm we use two predictors, one for the solution, and one for the first coarse grid
correction as illustrated in figure 1.

In section 3 we could prove convergence of the corrector 2.10 in every continuation step of algo-
rithm 2.12 under reasonable conditions. We did not focus on specifics of the continuation such as
bifurcation detection and verification of the solveability of the continuation These topics are briefly
covered in [4, p. 270-276] for the nested type of MG iterations.

The concept of our CGP predicts the first correction on the fine grid ΩL coming from the coarse
grid solution on the grid Ω0. In this aspect, CGP is specific to MG algorithms. However, one could
also look at it as a prediction for the first correction in an iterative algorithm, regardless of where
that correction originates from. Let g be an iterative algorithm. Furthermore, assume that an
initial approximation u0(λj) for the parameter value λj is given through some prediction method
and that g produces iterates

um(λj) = g(um−1, λj), m > 0 . (110)

One could also store, for some k > 0,

v(λj−1) := u1(λj−1) − u0(λj−1), . . . , v(λj−k) := u1(λj−k) − u0(λj−k),

and in (110) use u0(λj) + v(λj) as the initial approximation, where v(λj) is predicted from
v(λj−k), . . . , v(λj−1).

In Section 4 we applied our continuation algorithm to three different numerical problems. The
results show that for constant stepsize, the use of CGP has an advantage of 10% to 30% in compu-
ation time over the use of the standard FAS as a corrector as can be observed from tables 2, 4, 6.
However, the more important conclusion that can be drawn is that the use of CGP results in less
MG iterations, as it can also be observed from the aforementioned tables.

Following this observation consequently, and because the amount of MG steps needed is a direct
measure for the computational time, we applied a heuristic stepsize control which adapts the stepsize
based on the amount of MG iterations needed compared to a given reference number mopt of
iterations. Using this, CGP showed potential, by achieving peaks of less than half the computation
times (e.g. table 7) than FAS. Even on average, CGP needed about 2/3rd of the computation times
of the standard FAS corrector.

Aside from comparisons between CGP and the FAS as a corrector, the continuation algorithm 2.12
was also briefly compared to Newton-Krylov (NK) algorithms from [8] and computations from [9].
In both cases algorithms 2.12 and 2.10 are significantly faster than the NK algorithms used in the
references. However, we must refrain this judgment to the measure of computation times and the
three problems tested. No other aspects were compared.
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Figure 9: Plots and respective curve fittings of the computation times from tables 2,4 and 6 in that order from top
to bottom. To obtain a fit for the middle plot, the first value has been excluded. From top to bottom, the plots show
the Chandresekhar-H equation, the modified Bratu problem and the continuation of quasiperiodic invariant tori. All
plots have been created using the Matlab CurveFitting Toolbox.

As a final note, we recommend trying the FAS algorithm for nonlinear systems of equations of any
type, as long as there exist reasonable versions of the system on different grids. For continuation,
the use of CGP seems to have an advantage over using the “black boxed” FAS as a corrector.
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[3] H. Ammann, J. Escher: Analysis II. Birkhäuser, Basel, Boston, Berlin, erste Auflage, 1999.

[4] Hackbusch, W.: Multi-Grid Methods and Applications. Springer-Verlag, Berlin, Heidelberg,
1st edition, 1985.

[5] Hackbusch, W.: Comparison of different multi-grid variants for nonlinear equations. ZAMM,
72:148–151, 1992.

[6] Kelley, C. T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia,
1995.

[7] M. Pernice, H. F. Walker: Nitsol: A newton iterative solver for nonlinear systems. SIAM,
19:302–318, 1998.

[8] Meyer, S.: Numerische Lösungsfortsetzung parameterabhängiger nichtlinearer Gleichungssyste-
me mit Newton-Krylov-Verfahren. Diplomarbeit, Technische Universität Ilmenau, 2005.

[9] Schilder, F.: Numerische Approximation quasiperiodischer invarianter Tori unter Anwendung
erweiterter Systeme. Dissertation, Technische Universität Ilmenau, 2004.

[10] U. Trottenberg, C. W. Oosterlee, A. Schüller: Multigrid. Academic Press, San Diego, San
Francisco, New York, Boston, London, Sydnay, Tokyo, 2000.


	1 Introduction
	2 The Multi-Grid Predictor-Corrector Algorithm
	2.1 The Nonlinear Multi-Grid Concept
	2.2 The Adapted Predictor-Corrector Algorithm

	3 Convergence Analysis
	3.1 The Nonlinear Two Grid Method
	3.2 Conditions on Operators
	3.3 Convergence of the Nonlinear Multi-Grid Method

	4 Test Problems
	4.1 Matlab Implementation
	4.2 Chandrasekhar-H Equation
	4.3 Modified Two Dimensional Bratu Problem
	4.4 Continuation of Quasiperiodic Invariant Tori

	5 Conclusion
	6 Contact

