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Stabilization of linear systems by rotation

Hans Crauel∗ Tobias Damm† Achim Ilchmann∗

November 25, 2005

Abstract

We introduce the concept of ‘stabilization by rotation’ for deterministic linear systems
with negative trace. This concept encompasses the well known concept of “vibrational
stabilization” introduced by Meerkov in the 1970s and is a deterministic version of ‘sta-
bilization by noise’ for stochastic systems as introduced by Arnold and coworkers in the
1980s. It is shown that a linear system with negative trace can be stabilized by adding a
skew-symmetric matrix, multiplied by a suitable scalar so-called ‘gain function’ (possibly
a constant) which is sufficiently large. To overcome the problem of what is “sufficiently
large”, we also present a servo mechanism which which tunes the gain function by learning
from the trajectory until finally the trajectory tends to zero. This approach allows to show
that one of Meerkov’s assumptions for vibrational stabilization is superfluous. Moreover,
while Meerkov as well as Arnold and coworkers assume that a stabilizing periodic func-
tion or the noise has sufficiently large frequency and amplitude, we also provide a servo
mechanism to determine this function dynamically in a deterministic setup.

2000 Mathematics Subject Classification: Primary 34D05, Secondary 34D23, 15A22,
93D15

1 Introduction

The problem of stabilization by vibration or by oscillatory inputs goes back to the 1930s
if not earlier and is a longstanding problem. See the survey article “Open-loop control using
oscillatory inputs” by Baillieul and Lehman [3], where both theoretical results and applications
are discussed. In the present paper, we consider a system of the form

ẋ = Ax + u for A ∈ Rn×n with trA < 0 , (1.1)

and study the problem of stabilizing (1.1) by state feedback u(t) = S(t)x(t) where S(t) is
constrained to be skew-symmetric. Since the fundamental matrix of the system ẋ = S(t)x is
confined to the group of orthogonal matrices, which can be rephrased colloquially by saying that
the system basically produces rotations of the state space, this concept is called stabilization
by rotation. It can be regarded as a method of stabilization without introducing dissipation.
More precisely, if the norm x 7→ V (x) = ‖x‖2 is regarded as an energy functional, then
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stabilization by rotation does not affect the change of energy along the trajectories of (1.1),
i.e. d

dtV (x(t))
∣∣
u=S(t)x

= d
dtV (x(t))

∣∣
u=0

. The intuition behind this method of stabilization is
that S(t) mixes stable and unstable modes which, together with the assumption that trA < 0,
implies that the stable modes dominate as soon as the mixing is strong enough.

The concept of stabilization by vibration, which goes back to Meerkov [12] (see also [11]),
has some parallels with the present approach. Under an additional observability assumption,
Meerkov proves that the system ẋ =

(
A + B(t)

)
x can be stabilized by a zero mean periodic

function B(·) if, and only if, trA < 0. Here, the frequency and the amplitude have to be
sufficiently large. In general B(t) is not assumed to be skew-symmetric. We introduce the
concept of stabilization by vibration in Definition 2.8 and compare it with stabilization by
rotation.

The idea of stabilization by rotation has been investigated in the context of stabilization by
noise for random and for stochastic linear differential equations by Arnold, Crauel and Wih-
stutz in [1] (see also [2]). They show that the system ẋ =

(
A+S(t)

)
x can be stabilized by zero

mean random parameter vibrations S(·) if, and only if, trA < 0. In their approach, S(·) is a
stochastic ‘noise’ process taking values in the space of skew-symmetric matrices. An essential
assumption is sufficient intensity and ‘richness’ of the noise in the sense that enough rotations
have to be excited.

Our approach interpolates – in a sense – between these two. We investigate deterministic
systems

ẋ =
(
A + k(t)ΣA

)
x (1.2)

with trA < 0, time-varying k : R → R, and ΣA = −ΣT
A. First, we show the existence of a

skew-symmetric matrix ΣA, such that A + kΣA is stable for all constant k with |k| sufficiently
large. Then we give sufficient stability criteria for the time-varying system ẋ =

(
A+ k(t)ΣA

)
x

and, moreover, provide a servo mechanism to determine a stabilizing parameter function k(·)
tuned by ‖x(·)‖. Finally, we generalize Meerkov’s result by showing that there exist periodic
functions p(·) with zero-mean such that ẋ =

(
A + k p(t)ΣA

)
x is stable for sufficiently large

constant k. This shows that the observability assumption in Meerkov’s existence result is
superfluous. Moreover, we provide a servo mechanism x(·) 7→ k(·) to determine a stabilizing
function k so that the solution of ẋ =

(
A + k(t) p(t)ΣA

)
x tends to zero for t tending to ∞. In

this sense, the concepts of stabilization by random vibrations and by deterministic vibrations
are encompassed in the concept of stabilization by rotation.

Contributions related to the present paper are by Morgan and Narendra [13] and C̆elikovský [6],
who analyze stability of systems ẋ =

(
A + S(t)

)
x with a particular skew-symmetric func-

tion S(·).
Baxendale and Hennig [5] consider linear stochastic differential equations in R2 of the form

dx =
([

a 0
0 b

]
+ u

[
0 −1
1 0

])
x + σ

[
0 −1
1 0

]
x ◦ dWt with a control u bounded by K, and show

that for K big enough the system can be stabilized in an almost sure as well as in an Lp sense.

Another approach goes back to Kao and Wihstutz [9, 10], who investigate stabilization of linear
systems in companion form by noise. Roughly speaking, they consider the scalar equation
y(n) + an−1y

(n−1) + . . . + a1y
′ + a0y = 0 with real coefficients aj , which are perturbed by

mean zero noise. A simplified formulation of their result is the existence of a stationary and
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ergodic Rn-valued stochastic process (ξ) = (ξk)1≤k≤n such that the differential equation with
coefficients (ak+ξk(t/ε))1≤l≤n is stable for ε sufficiently small if, and only if, an−1 < 0 (note that
an−1 is the trace of the associated companion form matrix). This result is not so closely related
to the present approach since a system in companion form does not allow for stabilization by
rotation due to the fact that one cannot add a skew-symmetric matrix without destroying the
structure of the system.

Stability of stochastic and random linear systems is characterized by Lyapunov exponents.
For a survey on asymptotic methods for Lyapunov exponents see Wihstutz [15], in particular
with respect to the fact that the impact of noise can result in stabilization as well as in
destabilization.

In order to describe the present approach in some more detail, we stress that the only knowledge
of the nominal system ẋ = Ax needed in order to construct the stabilization by rotation device
are the eigenvectors of the symmetric part of A. This information yields a skew-symmetric
matrix ΣA which, when multiplied by a sufficiently large real valued function k (possibly a
constant), yields stabilization of (1.2).

The skew-symmetric matrix

Σn :=




0 −1
. . .

1 0


 = (σij)1≤i,j≤n ∈ Rn×n, σij =





0, i = j
−1, i < j
1, i > j

, (1.3)

plays a central rôle in this approach. If, for A ∈ Rn×n, the eigenvectors of A+AT are collected
in a matrix U , then U is orthogonal,

D = UT (A + AT )U is diagonal, (1.4)

and throughout the paper we write

ΣA = UΣnUT and Ak = A + k ΣA for k ∈ R . (1.5)

Note that ΣA is not uniquely defined by A, since the columns of U may be reordered; however,
for a given matrix A, we will assume ΣA to be fixed.

The paper is organized as follows. Section 2 states the main results on stability properties
of (1.2); the proofs are relegated to Section 6, where we make use of some technical results
derived in Sections 3 and 4. In Section 5, dynamic stabilization is illustrated by a numerical
example.

We close the introduction with some remarks on notation.

trA trace of a squared matrix A = (aij) ∈ Rn×n, tr A :=
∑n

i=1 aii

σ(A) spectrum of A ∈ Rn×n

AT transpose of A = (aij) ∈ Rn×n, AT := (aji)
λmax(A) := maxσ(A + AT ) for A ∈ Rn×n

σmin(P ), σmax(P ) smallest, largest singular value of P ∈ Rn×n, respectively
κ2(P ) := σmax(P )/σmin(P ), condition number of non-singular P ∈ Rn×n

xT , x∗ transpose of x ∈ Cn, complex conjugate of x ∈ Cn, respectively
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‖x‖ :=
√

x∗x for x ∈ Cn

‖A‖ := max{‖Ax‖ : ‖x‖ ≤ 1} for A ∈ Cn×n

Nj := {j, j + 1, . . .}, for j ∈ {0, 1, 2, . . .}
N := N1

so(n,R) skew symmetric matrices in Rn×n, characterized by ΣT = −Σ
for Σ ∈ so(n,R)

C− := {s ∈ C : Re s < 0}
f(k) = O(kp) for p > 0, the function f : (0,∞) → [0,∞) satisfies that k 7→ f(k)/kp is

bounded if k → 0, or k →∞, respectively.

We will often make use of the following technical constants

M = MA := 1 +
2n

−trA
‖A‖ and γ = γA :=

2M − 1
2M + 1

for A ∈ Rn×n with trA 6= 0, skipping dependence on A notationally in case no confusion can
occur.

2 Stabilization by rotation

The following result is fundamental for the present approach. It shows the central rôle played
by the skew symmetric matrix Σn in stabilizing a matrix A with negative trace.

Theorem 2.1 For any A ∈ Rn×n with trA < 0 there exists k∗ ≥ 0 such that, for all k ∈ R
with |k| ≥ k∗, the zero solution of

ẋ = (A + kΣA) x (2.1)

is exponentially stable, i.e. σ(Ak) ⊂ C−.
Moreover, the transient bound T (k) := maxt≥0 ‖etAk‖ satisfies lim|k|→∞ T (k) = 1.

The proof of Theorem 2.1 makes use of a careful inspection of the eigenvalues of Σn in con-
junction with perturbation results on matrices, which is presented in Section 3. The proof of
Theorem 2.1 is given in Section 6.

It may be worthwhile to point out that Theorem 2.1 does not yield existence of k∗ such that
the time-varying system

ẋ =
(
A + k(t)ΣA

)
x (2.2)

is asymptotically stable for every t 7→ k(t) with k(t) ≥ k∗, and not even that (2.2) is asymp-
totically stable for every k with limt→∞ k(t) = ∞. This is shown in the following example.

Example 2.2 For the system (2.2) with specific entries

A =
[−4 0

0 2

]
with ΣA =

[
0 −1
1 0

]
, (2.3)

the following hold (compare Fig. 1).
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(i) For any k∗ ∈ R, there exist `,m > k∗ and h, h̃ > 0 such that the periodic gain function

k : [0,∞) → {`,m}
t 7→ k(t) =

{
`, t ∈ [j(h + h̃), j(h + h̃) + h)
m, t ∈ [j(h + h̃) + h, (j + 1)(h + h̃))

(2.4)

for j = 0, 1, 2, . . . applied to (2.2) yields, for initial condition x(0) = x0 = (1, 1)T and
some µ > 1, a solution x with

∀ j ∈ N : ‖x(j(h + h̃))‖ = µj ‖x0‖.

(ii) There exists a piecewise constant gain function k : [0,∞) → [0,∞) with limt→∞ k(t) = ∞
such that (2.2) has an initial condition x(0) = x0 ∈ R2 for which the corresponding
solution is unbounded.

−2 −1 0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Destabilisation by periodic switching between k=10 and k=90

x(t)
k= 10 ↔ 90
cont.: k=10
cont.: k=90

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
Destabilisation with unbounded k

solution
switching points

Fig. 1: Destabilisation by switching the gain parameter k. The left figure corresponds to
Example 2.2 (i): the points marked by an asterisk denote the switches between k = 10 and
k = 90. The dashed and dash-dotted curves extrapolate the (asymptotically stable) solutions
starting in the switching points, if switching is not applied further, i.e. k is kept constant. The
right figure illustrates (ii), where k(t) tends to ∞ as t →∞. All curves are traversed counter-
clockwise, starting in [1, 1]T . Both solutions are plotted over the same time interval [0, 0.9].

A proof of the assertions (i) and (ii) is given in Section 6.

Instead of the piecewise constant functions k in Example 2.2 one might construct smooth
functions which destabilize the system as well. The two important features of such destabilizing
functions, whether smooth or piecewise monotone, are that they are non-monotone, and that
their variation is unbounded for t → ∞. In the following two theorems we show that if these
two properties are excluded then u = k(t)ΣA x is going to stabilize the system. To be more
precise, if k is a non-decreasing function with sufficiently large values, or if limt→∞ k(t) = ∞
and k is essentially Lipschitz continuous for t →∞, then u = kΣA x is a stabilizing feedback.
The proof of both results, given in Section 6, relies heavily on estimates for the solutions of
the parameterized Lyapunov equation (3.7).
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Theorem 2.3 For any A ∈ Rn×n with trA < 0 there exists k∗ = k∗(A) > 0 such that,
for every measurable and non-decreasing k : [0,∞) → [k∗,∞), the zero solution of (2.2) is
asymptotically stable.

Note that the scalar k∗ in Theorem 2.3 depends on A, which may be considered as a drawback.
However, this problem can be resolved by determining k(·) by a servo mechanism. Loosely
speaking, k(·) is tuned adaptively such that k(t) increases as long as ‖x(t)‖ is “too large”, and
settles to a finite limit as soon as it is stabilizing.

As a prerequisite we need a variation of Theorem 2.3, where the monotonicity assumption is
replaced by a boundedness condition on the derivative of k. In this case, even exponential
decay of ‖x‖ is obtained.

Theorem 2.4 Let A ∈ Rn×n with trA < 0 and k : [0,∞) → R with k(t) → ∞ as t → ∞.
Assume that k is essentially Lipschitz continuous for t →∞, i.e.

lim sup
t→∞

(
sup
h>0

|k(t + h)− k(t)|
h

)
< ∞ . (2.5)

Then there exist λ > 0 and, for every t0 ≥ 0, a number M(t0) > 0, such that the solution of
the initial value problem (2.2) with x(0) = x0 satisfies

∀ t ≥ t0 : ‖x(t)‖ ≤ M(t0) e−λ (t−t0) ‖x0‖ .

Application of Theorem 2.3 or 2.4 requires either knowledge of a sufficiently large k∗ or k(t) →
∞, respectively. The following theorem provides a servo mechanism which finds a bounded
stabilizing high-gain parameter function k(·) to ensure stability.

Theorem 2.5 Suppose that A ∈ Rn×n has trA < 0 and let r ∈ (0,∞], p ≥ 1. Then the gain
adaptation

k̇ = min
{
r, ‖x(t)‖p

}
, k(0) = k0, (2.6)

in conjunction with
ẋ =

(
A + k(t)ΣA

)
x, x(0) = x0, (2.7)

defines, for any x0 ∈ Rn, k0 > 0, an initial value problem which has a unique solution (x, k)
on the whole of [0,∞), and this solution satisfies

(i) lim
t→∞ k(t) = k∞ ∈ R,

(ii) lim
t→∞x(t) = 0 .

Remark 2.6 (i) If r = ∞, then (2.6) reduces to k̇ = ‖x(t)‖p. It may, however, be advanta-
geous to choose r > 0 small in order to avoid an overshoot of the gain value. The gain
adaptation k̇(t) = ‖x(t)‖2 is ubiquitous in the area of adaptive high-gain stabilization of
input-output systems, see for example the seminal work by Morse [14] and Willems and
Byrnes [16]. The gain adaptation (2.6) with 0 < r < ∞ is due to Ilchmann and Ryan [8].

(ii) Note that Theorem 2.5 does not say that the system ẋ =
(
A + k(t)ΣA

)
x becomes

asymptotically stable, nor is the so called “limit system” ẋ =
(
A + k∞ΣA

)
x necessarily

stable. The dynamic gain adaptation (2.6) ensures only that the specific trajectory (x, k)
converges: limt→∞ x(t;x0, k0) = 0 and limt→∞ k(t; x0, k0) = k∞ ∈ R. We conjecture that
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for any nonzero initial value x0 and k0 arbitrary the limit system is asymptotically stable
(the initial value x0 = 0 gives k(·) ≡ k(0), so the assertion does not hold for x0 = 0).

The dynamic stabilization provided by Theorem 2.5 is robust with respect to arbitrary bounded
skew-symmetric perturbations of A.

Corollary 2.7 Assume the situation of Theorem 2.5, but instead of (2.7) consider

ẋ =
(
A + Σ(t) + k ΣA

)
x , x(0) = x0 ,

with bounded and measurable Σ : [0,∞) → so(n,R). Then the assertions of Theorem 2.5
remain valid.

We are now in a position to relate the above approach to the concept of stabilization by
vibration as it has been introduced by Meerkov [12].

Definition 2.8 [12, Def. 1] The system ẋ = Ax is called vibrationally stabilizable if, and only
if, there exists a periodic matrix B(·) with zero mean value such that the zero solution of the
system ẋ =

(
A + B(t)

)
x is asymptotically stable.

Under the assumption that A is ‘observable in principle’, Meerkov proves that ẋ = Ax is vibra-
tionally stabilizable if, and only if, trA < 0. Observable in principle means that there exists c ∈
R1×n such that (A, c) is observable; the latter is equivalent to rk [cT , AT cT , . . . , (AT )n−1cT ] = n;
and this implies that each eigenvalue of A has geometric multiplicity equal to 1.

To see that Meerkov’s observability assumption is superfluous, apply u(t) = B(t) x(t) with
B(·) = k p(·)ΣA and periodic and piecewise monotone p : R→ R to (1.1). (Piecewise monotone
means that every finite interval can be partitioned into a union of finitely many points and
finitely many sub-intervals in such a way that p is monotone on every of the sub-intervals.)

Theorem 2.9 Let A ∈ Rn×n with trA < 0, and suppose that p : R→ R is a bounded piecewise
monotone periodic function with discrete zeros. Then there exists k∗ > 0, such that for all k
with |k| ≥ k∗ the system ẋ =

(
A + kp(t)ΣA

)
x is asymptotically stable.

For example, the functions t 7→ cos(ct) or t 7→ sgn
(
cos(ct)

)
, where c ∈ R \ {0}, are periodic

and piecewise monotone, and they have zero mean. We thus obtain the following corollary.

Corollary 2.10 The system ẋ = Ax is vibrationally stabilizable if, and only if, trA < 0.

Meerkov’s method proceeds by choosing t 7→ B(t) periodic with sufficiently high frequency
and sufficiently large amplitude. Theorem 2.9 shows that one may use a periodic function
with arbitrary length of the period, one only needs sufficiently large amplitude. The following
theorem shows that one does not even have to know how large the amplitude has to be, but
choose a dynamic servo mechanism to determine the gain.

Theorem 2.11 Suppose that A ∈ Rn×n has trA < 0, and let r > 0, p ≥ 1. Then the gain
adaptation

k̇ = min
{
r, ‖x(t)‖p

}
, k(0) = k0, (2.8)

in conjunction with
ẋ =

(
A + k(t) sin(t)ΣA

)
x, x(0) = x0, (2.9)

defines, for any x0 ∈ Rn, k0 > 0, an initial value problem which has a unique solution (x, k)
on the whole of [0,∞), and this solution satisfies
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(i) lim
t→∞ k(t) = k∞ ∈ R,

(ii) lim
t→∞x(t) = 0 .

3 Parameterized matrices

In the present section a detailed investigation of the eigenvalues of the skew-symmetric matrix
Σn, as defined in (1.3), is used in connection with matrix perturbation theory in order to
obtain knowledge about the spectrum of A + kΣA for large |k|, where A ∈ Rn×n, and ΣA is
given by (1.5). We will make essential use of the following well known general result in matrix
perturbation theory; see, for example, Hinrichsen and Pritchard [7, Cor. 4.2.3, Prop. 4.2.12,
Cor. 4.2.25].

Theorem 3.1 Let A,B ∈ Rn×n and assume that B has distinct eigenvalues λ1(B), . . . , λn(B)
with corresponding eigenvectors v1(B), . . . , vn(B). Then there exists ε0 > 0 such that, for all
ε ∈ (−ε0, ε0), the matrix εA + B has n distinct eigenvalues and

λj(εA + B) = λj(B) + ε
vj(B)∗A vj(B)
vj(B)∗ vj(B)

+O(ε2) as ε → 0.

For appropriate enumeration, the functions

ε 7→ λj(εA + B) and ε 7→ vj(εA + B) are analytic on (−ε0, ε0).

In particular, limε→0 vj(εA + B) = vj(A), for j = 1, . . . , n.

Recalling the definitions of Σn, ΣA, and Ak = A + kΣA in (1.3)–(1.5), we have the following.

Lemma 3.2 The matrix Σn has n distinct eigenvalues iωj, where ωj is given by

ωj =
sinϕj

cosϕj − 1
, with ϕj =

π + 2(j − 1)π
n

, (3.1)

with corresponding normalized eigenvectors

vj(Σn) =
1√
n

(
1,

iωj + 1
iωj − 1

, . . . ,

(
iωj + 1
iωj − 1

)n−1
)T

; j = 1, . . . , n . (3.2)

Consequently,

(i) Σn = V i Ωn V ∗ and V ∗V = I

for V := [v1(Σn), . . . , vn(Σn)] and Ωn = diag (ω1, . . . , ωn) ;

(ii) rk Σn =
{

n, n even ,
n− 1, n odd ;

(iii) all entries of the eigenvectors in (3.2) have the same modulus, namely 1/
√

n;

(iv) for any A = diag [a1, . . . , an] ∈ Rn×n and all j = 1, . . . , n one has

vj(Σn)∗Avj(Σn) =
trA

n
.
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Proof: Assertion (i) is immediate since Σn is skew symmetric.

We proceed in several steps.
Step 1: We show (3.2) and assertion (iii).
Suppose that

Σn v = iω v for some ω ∈ R and v = (ξ1, . . . , ξn)T ∈ Cn \ {0}. (3.3)

Then, for all ` = 1, . . . , n− 1, we have

iω ξ`+1 − iω ξ` =
(
Σn v

)
`+1

− (
Σn v

)
`

=


∑̀

j=1

ξj −
n∑

j=`+2

ξj


−




`−1∑

j=1

ξj −
n∑

j=`+1

ξj


 = ξ` + ξ`+1,

and so
ξ`+1 =

iω + 1
iω − 1

ξ` . (3.4)

Since ξ1 = 0 yields v = 0, this proves that every eigenvector of Σn is of the form (3.2).
Obviously, all entries of vj(Σn) have modulus 1/

√
n, which proves Assertion (iii). Furthermore,

‖vj(Σn)‖ = 1.

Step 2: We show that the eigenvalues are pairwise distinct. If one of the eigenvalues had
multiplicity larger than one, then, by (3.4), any two eigenvectors associated with this eigenvalue
would be linearly dependent, contradicting the fact that Σn, being a skew symmetric matrix
and therefore diagonalizable, has n linearly independent eigenvectors.

Step 3: We show that whenever iω is an eigenvalue of Σn for some ω ∈ R, then
(

iω + 1
iω − 1

)n

= −1. (3.5)

Substituting (3.4) in Assertion (i) yields

(
Σn v(Σn)

)
n

= iω

(
iω + 1
iω − 1

)n−1

=
n−1∑

k=1

(
iω + 1
iω − 1

)k−1

and thus
1−

(
iω+1
iω−1

)n−1

1− iω+1
iω−1

= iω

(
iω + 1
iω − 1

)n−1

,

from which (3.5) follows by straightforward calculation.

Step 4: Finally, straightforward calculation shows that, for ϕ ∈ R \ 2Nπ,

eiϕ =
iω + 1
iω − 1

if, and only if, ω =
sinϕ

cosϕ− 1
.

Since ei nϕ = −1 if, and only if, ϕ = π+2`π
n for some ` ∈ {0, . . . , n− 1}, (3.1) follows from (3.5),

which proves the claim and completes the proof of the lemma. 2
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Lemma 3.3 For any A ∈ Rn×n with tr A < 0 there exists k∗ ≥ 0 such that

S· : {k ∈ R : |k| > k∗} → {S ∈ Cn×n : detS 6= 0}, k 7→ Sk = [v1(Ak), . . . , vn(Ak)]

is analytic, where v1(Ak), . . . , vn(Ak) denote the eigenvectors of Ak in appropriate ordering.
Moreover, we have the following.

(i) S−1
k AkSk = i k Ωn + tr A

n I + diag (δ1(k), . . . , δn(k)), where δj(k) = O(1/|k|) as |k| → ∞
for j = 1, . . . , n.

(ii) For U as in (1.4) and V as in Lemma 3.2 (i), we have Sk = UT V +O(1/|k|) as |k| → ∞.
Consequently, S∞ := UT V satisfies

S∗∞S∞ = I and S∗∞ΣAS∞ = iΩn.

(iii) S∗kSk = I +O(1/|k|) as |k| → ∞.

Proof: We show assertion (i). By (1.5), ΣA and Σn are similar, and so ΣA has eigenvalues
iωj with corresponding eigenvectors vj(ΣA) = UT vj as defined in (3.1) and (3.2). Thus, by
Theorem 3.1 with ε = 1/k, there exists k1 ≥ 0 so that, for all k ∈ R with |k| ≥ k1, the matrix
Ak = k( 1

kA + ΣA) has n distinct eigenvalues λj(Ak) satisfying

λj(Ak) = k i ωj + vj(B)∗UAUT vj(B) +O(1/|k|)
= k i ωj +

1
2
vj(B)∗U(A + AT )UT vj(B) +O(1/|k|)

= k i ωj +
1
2
vj(B)∗D vj(B) +O(1/|k|)

= k i ωj + tr A
n +O(1/|k|) ,

where D is defined in (1.4), and the last equality follows from Lemma 3.2 (iv). Since Ak =
A + kΣA and 1

kA + ΣA have the same eigenvectors – we write vj(Ak) = vj( 1
kA + ΣA) –, we

may, invoking Theorem 3.1, choose k∗ ≥ k1, such that

1
k 7→ vj( 1

kA + ΣA) is analytic on (−1/k∗, 1/k∗), for j = 1, . . . , n,

and
lim
|k|→∞

vj(Ak) = lim
|k|→∞

vj( 1
kA + ΣA) = vj(ΣA) = UT vj for j = 1, . . . , n, (3.6)

proving assertion (i).

We show assertion (ii). By (3.6) and the definition of ΣA we have, for every j with 1 ≤ j ≤ n,
lim|k|→∞ vj(Ak) = vj(ΣA) = UT vj(Σn), and thus lim|k|→∞ Sk = S∞. Since V and U are
orthogonal, so is S∞. The assertion S∗∞ΣAS∞ = V T UΣAUT V = V T ΣnV = iΩn follows from
Lemma 3.2 (i).

We show assertion (iii). Applying Theorem 3.1, for ε = 1/k, to vj(Ak) = vj( 1
kA + Σk) yields

analyticity of k 7→ Sk at k = ±∞, and thus Sk = S∞ +O(1/|k|) for |k| → ∞, whence

S∗kSk = (S∞ +O(1/|k|))∗(S∞ +O(1/|k|)) = S∗∞S∞ +O(1/|k|) = I +O(1/|k|) for |k| → ∞.

This completes the proof of the lemma. 2
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If A ∈ Rn×n with trA < 0, then Lemma 3.3 (i) ensures the existence of some k∗ ≥ 0 so that
σ(Ak) ⊂ C− holds for all k ∈ R with |k| ≥ k∗. Therefore (see, for example, Hinrichsen and
Pritchard [7, Cor. 3.3.46])

Pk :=
∫ ∞

0
eAT

k seAks ds (3.7)

is the unique positive definite solution of

AT
k Pk + PkAk = −I . (3.8)

Lemma 3.4 For any A ∈ Rn×n with tr A < 0, the matrix Pk as defined in (3.7) satisfies

Pk =
n

−2 tr A
I +O(1/|k|) for k with |k| → ∞. (3.9)

Proof: Let k∗ ≥ 0 be given as in Lemma 3.3 and set, for k ∈ R with |k| ≥ k∗,

Dk := S−1
k Ak Sk, Ek := S∗k Sk − I .

Then

Pk +
n

2trA
I =

∞∫

0

S−∗k eD∗ks S∗k Sk eDks S−1
k ds −

∞∫

0

e
2tr A

n
Is ds

= S−∗k

∞∫

0

(
eD∗ks Ek eDks − Eke

2tr A
n

s
)

ds S−1
k

+ S−∗k

∞∫

0

(
eD∗ks eDks − e

2tr A
n

sI
)

ds S−1
k . (3.10)

By Lemma 3.3 (iii), it remains to show that the integrals in (3.10) are of order 1/|k| as |k| → ∞.
Invoking Lemma 3.3 (i) yields, for all s ≥ 0,

eDks = es tr A/ndiag
(
e(ikω1+δ1(k))s, . . . , e(ikωn+δn(k))s

)

with
δj(k) = O(1/|k|) as |k| → ∞ for j = 1, . . . , n.

Thus,

∃ k1 ≥ 0 ∀ s ≥ 0 ∀ k ∈ R with |k| ≥ k1 : ‖eDks‖ = e(tr A/n+O(1/|k|))s ≤ e
tr A
2n s .

Hence

‖
∞∫

0

(
eD∗ks Ek eDks −Eke

2tr A
n

s
)

ds ‖ ≤
∫ ∞

0

(
‖eDks‖2 + e

tr A
n

s
)

ds ‖Ek‖

≤ 2
∫ ∞

0
e

tr A
n

s ds ‖Ek‖

=
2n

−trA
‖Ek‖

= O(1/|k|) ,
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where the latter equality follows from Lemma 3.3 (iii). Furthermore, there exists k2 > k1 so
that, for all k ∈ R with |k| ≥ k2 and for all j = 1, . . . , n, we have tr A

n +δj(k) < 0, and therefore
∫ ∞

0
eD∗kseDks ds =

∫ ∞

0
diag

(
e2

(
tr A
n +Re δ1(k)

)
s
, . . . , e2

(
tr A
n +Re δn(k)

)
s
)

ds

=
(

2
trA

n
I + Re diag (δ1(k), . . . , δn(k))

)−1

=
∫ ∞

0
e2 tr A

n
sI ds +O(1/|k|) as |k| → ∞.

This completes the proof of the lemma. 2

We also obtain an estimate for the growth of the condition number κ2(Pk) = σmax(Pk)/σmin(Pk)
of Pk, which plays an important rôle in the proof of Theorem 2.3.

Corollary 3.5 For any A with trA < 0 there exist numbers a, k∗ > 0 such that

∀ k ∈ R with |k| ≥ k∗ : κ2(Pk) ≤ 1 +
a

|k| . (3.11)

Proof: Theorem 3.1, applied for B = n
−2 tr AI and ε = 1/|k|, yields the existence of α, k1 ≥ 0

such that

∀ k ∈ R with |k| ≥ k1, ∀ j = 1, . . . , n :
n

−2 tr A
− α

|k| ≤ λj(Pk) ≤ n

−2 tr A
+

α

|k| ,

With k∗ := max
{
k1, 1 + (−2α trA)/n

}
we thus obtain

∀ k ∈ R with |k| ≥ k1 : κ2(Pk) =
σmax(Pk)
σmin(Pk)

≤
n

−2 tr A + α
|k|

n
−2 tr A − α

|k|
≤ 1 +

a

|k| . 2

Lemma 3.6 Suppose that A ∈ Rn×n has trA < 0. Then there exists m∗ > 0 such that, with
M = 1 + 2 n

−tr A‖A‖,
∀m ∈ R with |m| ≥ m∗ ∀ k ∈ R : AT

k Pm + PmAk ≤ −(
1− |k−m|

|m| M
)
I . (3.12)

Proof: By (3.8) and (1.5), we have, for all m with |m| > k∗,

−I = AT Pm + PmA + m (ΣT
APm + PmΣA) ,

or, equivalently,

ΣT
APm + PmΣA = − 1

m
(I + AT Pm + PmA) .

Consequently, for all k ≥ 0 and all m > 0,

‖AT
k Pm + PmAk − (AT

mPm + PmAm)‖ = ‖(Ak −Am)T Pm + Pm(Ak −Am)‖
= ‖(k −m)ΣT

APm + (k −m)PmΣA‖
= |k −m| ‖ΣT

APm + PmΣA‖
=

|k −m|
|m| ‖I + AT Pm + PmA‖ .

By Lemma 3.4 there exists m∗ > 0 such that, for all m ∈ R with |m| ≥ m∗, we have ‖I +
AT Pm + PmA‖ ≤ M , which proves (3.12). 2
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4 Time-varying linear systems

Suppose that t 7→ k(t) is some real-valued function. Then Lemma 3.6 implies that for m with
|m| ≥ m∗, where m∗ is specified in the lemma, the matrix Pm given by (3.7) defines a Lyapunov
function for the time-varying system ẋ =

(
A + k(t)ΣA

)
x, provided that k(t) is confined to a

certain neighbourhood of m. The following lemma shows that the length of this neighbourhood
can be chosen proportional to the size of |m|. This will be an important technical ingredient
for the proofs of the results of Section 2.

Lemma 4.1 Suppose that A ∈ Rn×n has trA < 0, and let k : [0,∞) → R be measurable.
Choose m∗ > 0 so that (3.12) holds, where again M = 1 + 2 n

−tr A‖A‖.
If, for some t0 ≥ 0 and t1 ∈ (t0,∞], we have

∃m ∈ R with |m| ≥ m∗ ∀ t ∈ [t0, t1) : |k(t)−m| ≤ |m|
2M

, (4.1)

then every solution x : [t0,∞) → Rn of

ẋ =
(
A + k(t)ΣA

)
x (4.2)

satisfies, for βm := 1
2σmax(Pm) ,

∀ t ∈ [t0, t1) : ‖x(t)‖2 ≤ κ2(Pm) e−βm (t−t0) ‖x(t0)‖2. (4.3)

Proof: Differentiating y 7→ yT Pmy along the solution of (4.2), invoking (3.12), (4.1), and

∀ y ∈ Rn : σmin(Pm) ‖y‖2 ≤ yT Pmy ≤ σmax(Pm) ‖y‖2 (4.4)

yields

d
dt

(
x(t)T Pmx(t)

)
= x(t)T

(
AT

k(t)Pm + PmAk(t)

)
x(t)

≤ −(
1− |k(t)−m|

|m| M
)‖x(t)‖2

≤ −1
2σmax(Pm)

x(t)T Pm x(t) for all t ∈ [t0, t1) . (4.5)

Integrating and applying (4.4) again, we obtain (4.3). 2

It is interesting to note that the estimate (4.3) is robust with respect to arbitrary bounded
skew-symmetric perturbations of A.

Corollary 4.2 Assume the situation of Lemma 4.1, but instead of (4.2) consider

ẋ =
(
A + Σ(t) + kΣA

)
x ,

where Σ : [0,∞) → so(n,R) is measurable and bounded. Then inequality (4.3) holds, for
sufficiently large m∗ > 0, for all m ∈ R with |m| ≥ m∗ and βm = 1

4σmax(Pm) .
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Proof: By Lemma 3.4, there exist m̃, α > 0 such that, for all t ≥ 0 and m ∈ R with |m| ≥ m̃,

‖Σ(t)T Pm + PmΣ(t)‖ = ‖Σ(t)T O(1/|m|) +O(1/|m|)Σ(t)‖ ≤ α

|m| .

Hence, differentiation along (4.5) gives, for all t ≥ 0,

d
dt

(
x(t)T Pmx(t)

) ≤ (−1 + |k(t)−m|
|m| M + α

|m|
)‖x(t)‖2 ,

and since, for sufficiently large m∗ ≥ m̃, we have

∀m ∈ R with |m| ≥ m∗ : −1 + |k(t)−m|
|m| M + α

|m| ≤ −1
4

,

the claim follows as in the proof of Lemma 4.1. 2

Remark 4.3 The following straightforward bound on the growth of t 7→ ‖x(t)‖ holds regard-
less of the values of k(·). It will be used below to obtain estimates for those times during the
evolution of the system where k(·) is not (yet) good enough.
Let A ∈ Rn×n and let Σ : R → so(n,R) be measurable and locally integrable. Then for any
solution t 7→ x(t) of

ẋ =
(
A + Σ(t)

)
x

one has for Lebesgue almost all t ∈ R, with λmax(A) = maxσ(A + AT ),

d
dt‖x(t)‖2 = x(t)T

(
AT + Σ(t)T + A + Σ(t)

)
x(t) = x(t)T

(
AT + A

)
x(t) ≤ λmax(A) ‖x(t)‖2.

This implies, for t0 ≤ t,
‖x(t)‖2 ≤ eλmax(A) (t−t0) ‖x(t0)‖2 . (4.6)

5 Numerical example

To illustrate the gain adaptation (2.6) in Theorem 2.5, consider a system of the form

ẋ =
(
A + δ Σ(t) + k(t)ΣA

)
x ,

k̇ = ‖x(t)‖ ,

with

A =




1 1 1
0 1 1
0 0 −3


 , which gives ΣA =




0 1.1401 −1.2988
−1.1401 0 −0.1154
1.2988 0.1154 0


 ,

and
Σ(t) = sin(t) Σ0 − cos(

√
2t) ΣA, t ≥ 0.

We plot the norm of the solution and the size of the adaptation parameter, i.e. ‖x(t)‖ and k(t),
for the values δ = 0, 10, 20. Analogous numerical results have been obtained for matrices with
different entries and for higher dimensions. One should note the fast oscillations in the solution
as k increases.
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Fig. 2: Dynamic gain adaptation (2.6) for the time-varying system ẋ =
(
A+ δΣ(t)+ k(t)ΣA

)
x

for different values of δ.

6 Proofs

Proof of Theorem 2.1:
The assertion σ(A + kΣA) ⊂ C− for k ≥ k∗ follows readily from Lemma 3.3 (i) and the
assumption that trA < 0. For constant k(·) ≡ m with |m| ≥ k∗, condition (4.1) of Lemma 4.1
is trivially satisfied. Hence the estimate (4.3) yields

∀ t ≥ t0 :
∥∥eAmt

∥∥ ≤
√

κ2(Pm) exp
(

−1
4σmax(Pm) t

)
≤

√
κ2(Pm) .

Now the claim follows from Corollary 3.5. 2

Proof of assertion (i), Example 2.2:
Consider the matrices in (2.3). Then, for k ≥ 3 and αk :=

√
k2 − 9, the eigenvalues of Ak are

−1± iαk with corresponding eigenvectors (−3± iαk, k)T .
Setting

tk =
π

2αk

and invoking e±iαktk = ±i gives

eAktk = e−tk

[
(−3 + iαk)eiαktk (−3− iαk)e−iαktk

keiαktk ke−iαktk

] [−3 + iαk −3− iαk

k k

]−1

=
e−tk

2kαk

[−3 + iαk 3 + iαk

k −k

] [
k 3 + iαk

−k −3 + iαk

]
=

e−tk

2αk

[−6 −2k
2k 6

]
,

and, for `,m > 3, we calculate

eAmteA`t = −e−(t`+tm)

α` αm

[
`m− 9 3(`−m)

3(`−m) `m− 9

]
, (6.7)

with eigenvalue

λ(m, `) = −e−(t`+tm)

α` αm
[`m− 9 + 3(`−m)]
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corresponding to the eigenvector (1, 1)T . Setting, in (2.4),

h = t`, h̃ = tm, and x0 = (1, 1)T ,

yields a solution of (2.2), (2.4) which satisfies

∀ j ∈ N0 : x(j(h + h̃)) =
(
eAmtmeA`t`

)j
x0 = λ(m, `)j (1, 1)T .

It remains to prove that, for suitable m, ` > 0,

µ := |λ(m, `)| > 1 .

Invoking the convexity of the exponential function in the form

e−(t`+tm) ≥ 1− (t` + tm) = 1− π

2α`
− π

2αm
=

2α`αm − παm − πα`

2α`αm

gives

µ ≥ 2α` αm − παm − πα`

2α2
`α

2
m

(`− 3)(m + 3)

=
2
√

`2 − 9
√

m2 − 9− π
√

`2 − 9− π
√

m2 − 9
2(` + 3)(m− 3)

>
2
√

`2 − 9
√

m2 − 9− π(` + m)
2(` + 3)(m− 3)

=

√
`− 3
` + 3

m + 3
m− 3

− π(` + m)
2(` + 3)(m− 3)

=

√
1 +

6(`−m)
(` + 3)(m− 3)

− π(` + m)
2(` + 3)(m− 3)

≥ 1 +
2(`−m)

(` + 3)(m− 3)
− π(` + m)

2(` + 3)(m− 3)
. (6.8)

≥ 1 +
1

(` + 3)(m− 3)

[
2(`−m)− π

2
(` + m)

]
, (6.9)

where the inequality in (6.8) follows, for ` > m > 9, θ = 6(`−m)
(`+3)(m−3) < 1 and hence

√
1 + θ ≥

1 + θ/3; the second term in (6.9) is positive if, e.g. ` = 9m. This proves |λ(10, 90)| > 1 . 2

Proof of assertion (ii), Example 2.2:
Choose a sequence (mj) in N with

∑∞
j=1 m−1

j = ∞ and set, for j ∈ N, `j = 9 mj , and tk, αk as
in the proof of assertion (i), and

Φj = eA`j
t`j eAmj tmj , j ∈ N.

Then the function k : [0,∞) → [0,∞), given by

k(t) =

{
`j , t ∈ [j(t`j + tmj ), j(t`j + tmj ) + t`j )

mj , t ∈ [j(t`j + tmj ) + t`j , (j + 1)(t`j + tmj ))
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for j = 0, 1, 2, . . ., inserted into (2.2) yields, for the initial condition x(0) = x0 = 1√
2
(1, 1)T , i.e.

the normalized eigenvector of Φj , a solution x satisfying

∀ j ∈ N : x(j(t`j
+ tmj )) = Φj · · ·Φ1 x0 .

Finally, using (6.9) and
∑∞

j=1 m−1
j = ∞, we arrive at

‖Φj · · ·Φ1 x0‖ ≥
j∏

λ=1

(
1 +

16− 5π

9
1

mλ

)
→∞ for j →∞. 2

Proof of Theorem 2.3:
Fix A ∈ Rn×n with tr A < 0. Choose k∗, a > 0 so that (3.11) and (3.12), with k∗ taking the rôle
of m∗, hold. Given k : [0,∞) → [k∗,∞) measurable and non-decreasing, let x : [0,∞) → Rn

be a solution of (2.2).

If k is bounded, then m := limt→∞ k(t) exists by monotonicity of k, so there exists t0 > 0 such
that (4.1) holds with t ∈ [t0,∞). We thus may apply (4.3) to conclude that limt→∞ x(t) = 0.
The case of unbounded k, i.e. k(t) → ∞ as t → ∞, is more subtle. Now we cannot find a
common uniform static quadratic Lyapunov function for all k(t) ≥ k∗. Therefore, we first
define disjoint intervals of k-values, on each of which we are going to use one fixed Lyapunov
function.
For M = 1 + 2n

−tr A‖A‖ put t0 = 0 and, for j ∈ N,

mj :=
(

2M+1
2M−1

)j
k(0), kj := mj − mj

2M , and tj := sup{t ≥ 0 : k(t) ≤ kj} .

By construction, t ∈ [tj , tj+1) implies k(t) ∈ [kj , kj+1), i.e.

∀ j ∈ N0 ∀ t ∈ [tj , tj+1) : |k(t)−mj | ≤ mj

2M
. (6.10)

Invoking Corollaries 4.1 and 3.5 gives, for all t ∈ [tj , tj+1),

‖x(t)‖2 ≤ κ2(Pmj ) exp
( −1

2σmax(Pmj )
(t− tj)

)
‖x(tj)‖2

≤
{

1 +
a

k(0)
(

2M−1
2M+1

)j
}

exp
( −(t− tj)

2σmax(Pmj )

)
‖x(tj)‖2 . (6.11)

In view of the equivalence of σmax(Pm) ≤ n
−4tr A and −1

2σmax(Pm) ≤ tr A
2n Lemma 3.4 yields:

∃ j0 ≥ k∗ ∀m ≥ j0 :
−1

2σmax(Pm)
≤ trA

2n
< 0 . (6.12)

With γ = 2M−1
2M+1 < 1 and β = − tr A

2n > 0 we obtain by inserting (6.12) into (6.11)

∀ j ≥ j0 : ‖x(tj+1)‖2 ≤ (
1 +

a

k(0)
γj

)
e−β (tj+1−tj) ‖x(tj)‖2 . (6.13)
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Since tj → ∞ for j → ∞ by construction, the right hand side of the following chain of
inequalities

ln
( j∏

`=j0

(
1 + a

k(0)γ
`
)

e−β (tj+1−tj0)
)

=
j∑

`=j0

ln
(
1 + a

k(0)γ
`
)
− β (tj+1 − tj0)

≤
j∑

`=j0

a

k(0)
γ` − β (tj+1 − tj0)

≤ a

k(0)
γ

1− γ
− β (tj+1 − tj0)

tends to −∞ for j → ∞, and so (6.13) yields limj→∞ x(tj) = 0. Since for all j ≥ j0 and all
t ∈ [tj , tj+1] we have

‖x(t)‖2 ≤ (
1 +

a

k(0)
)‖x(tj)‖2 ,

continuity of t 7→ x(t) yields limt→∞ x(t) = 0. 2

Proof of Theorem 2.4:
By assumption (2.5) there exist T > 0, K0 > 0, such that |k(t+h)− k(t)| ≤ K0 h for all t ≥ T
and all h ≥ 0. Put β := −tr A

2n and M := 1 + 2 n
−tr A‖A‖.

By Corollary 3.5 and Lemma 3.4 the inequalities k ≥ k∗ ≥ 4 ln 2 ·M K0/β imply κ2(Pk) ≤ 2
and − 1

2σmax(Pk) ≤ −β. Writing h := 2 ln 2
β , we have

∀ t ≥ T ∀ τ ∈ [T, T + h] : |k(τ)− k(t)| ≤ hK0 =
2 ln 2

β
K0 ≤ k∗

2M
≤ k(t)

2M
.

Hence we may apply Lemma 4.1 on the interval [t, t + h] to obtain, for any solution x of (2.2)
and all t ≥ T ,

‖x(t + h)‖2 ≤ 2e−βh‖x(t)‖2 = 2e−2 ln 2‖x(t)‖2 = 1
2‖x(t)‖2 ,

whence
∀ j ∈ N ∀ t ∈ [T, T + h) : ‖x(t + jh)‖2 ≤ (

1
2

)j ‖x(t)‖2 ,

or, equivalently,

∀ j ∈ N ∀ t ∈ [T + jh, T + (j + 1)h) : ‖x(t)‖2 ≤ (
1
2

)j ‖x(t− jh)‖2 .

For t ∈ [T + jh, T + (j + 1)h) and t0 ∈ [0, T ) we have, by Remark 4.3,

‖x(t)‖2 ≤ (
1
2

)j ‖x(t− jh)‖2

≤ (
1
2

) t−T
h −1 max

s∈[T,T+h)
‖x(s)‖2

≤ (
1
2

) t−T
h −1 eλmax(A) (T+h−t0)‖x(t0)‖2

≤ 2 eλmax(A) (T+h−t0)+ln 2
T−t0

h e− ln 2
T−t0

h ‖x(t0)‖2 .

18



It remains to consider the case T ∈ [0, t0). Invoking Remark 4.3 again gives, for t ∈ [t0 +
jh, t0 + (j + 1)h),

‖x(t)‖2 ≤ (
1
2

)j ‖x(t− jh)‖2 ≤ (
1
2

)j eλmax(A) h ‖x(0)‖2 ≤ (
1
2

) t−t0
h −1 eλmax(A) h ‖x(t0)‖2 .

This completes the proof of the theorem. 2

It is quite instructive to see how both Theorems 2.3 and 2.4 are crucial in Step 2 of the following
proof.

Proof of Theorem 2.5:
Consider, for r ∈ (0,∞], q ≥ 1, x0 ∈ Rn, k0 > 0, the system (2.6), (2.7). Note that k̇ = ‖x(t)‖p

if r = ∞.
Step 1: Since the right hand side of (2.6), (2.7) is locally Lipschitz, the initial value problem
has a unique solution (x, k) : [0, ω) → Rn ×R for some ω ∈ (0,∞], the latter is assumed to be
maximal. By Remark 4.3, ‖x(·)‖ grows at most exponentially and therefore x(·) cannot escape
in finite time. Hence k(t) ≤ k0 +

∫ t
0 ‖x(τ)‖p dτ < ∞ for all t < ∞, whence ω = ∞.

Step 2: We show that k is bounded, whence assertion (i).
Seeking a contradiction, suppose that k is unbounded, i.e., by (2.6), k(t) tends monotonically
to ∞ as t →∞.
Suppose that r is finite. Theorem 2.3 ensures that x(t) tends to 0 for t → ∞. By the gain-
adaptation law (2.6), there exists t0 ≥ 0 such that 0 ≤ k̇(t) ≤ r for all t ≥ t0. Therefore,
Theorem 2.4 yields that x(t) tends to 0 exponentially, and, invoking (2.6) again, we obtain
that k, being the integral of an exponentially decaying function, is bounded. This contradicts
the assumption that k is unbounded.
It remains to consider the case r = ∞. Since x(t) tends to 0 as t →∞, k̇ is bounded and so k
satisfies (2.5), which gives exponential decay of x(t) for t → ∞. However, the latter entails
that ‖x‖p is integrable, and so k has to be bounded, which again contradicts the assumption.
Step 3: We show that x is bounded.
Seeking a contradiction, suppose that x is unbounded. Observe that by boundedness of k
and (2.7), there exists c1 > 0 so that

∀t > 0 : d
dt‖x(t)‖ ≤ c1 ‖x(t)‖ .

Choose t0 ≥ 0 such that
‖x(t0)‖ ≥ ‖x0‖ ,

and set, for arbitrary R > 0,

τR := inf {t > t0 : ‖x(t)‖ = eR‖x(t0)‖} , σR := sup {t ∈ [t0, τR) : ‖x(t)‖ = ‖x(t0)‖} .

Then

∀ t ∈ [σR, τR] : ‖x(t0)‖ ≤ ‖x(t)‖ ≤ eR‖x(t0)‖ = ‖x(τr)‖ ≤ ec1(τR−σR)‖x(t0)‖ ,

whence, by monotonicty of k,

k(τR) = k(σR) +

τR∫

σR

min{r, ‖x(t)‖p} dt

≥ k0 + (τR − σR) min
{
r, ‖x(t0)‖p

}

≥ k0 +
R

c1
min

{
r, ‖x0‖p

}
.
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Since R is arbitrary, the latter contradicts boundedness of k. Therefore, x is bounded.

Step 4: We show assertion (ii).
Since x and k are bounded, it follows that d

dt‖x‖p is bounded, and so ‖x‖p is uniformly
continuous. Consequently, also t 7→ min{r, ‖x(t)‖p} is uniformly continuous. Thus we may
apply Barbălat’s Lemma [4] to conclude that k∞ − k0 =

∫∞
0 min{r, ‖x(t)‖p}dt ∈ R yields

min{r, ‖x(t)‖p} → 0 as t →∞, which is assertion (ii). 2

Proof of Corollary 2.7:
The key tool in proving the Theorems 2.3, 2.4 and 2.5 is Lemma 4.1. To derive Corollary 2.7,
repeat the arguments exploiting the assertion of Corollary 4.2. We omit the details for brevity.

2

Proof of Theorem 2.9:
Consider a piecewise monotone periodic function p with period ω > 0, and with discrete zeros.
By piecewise monotonicity t 7→ p(t) is measurable, hence the initial value problem

ẋ =
(
A + kp(t)ΣA

)
x, x(0) = x0 (6.14)

has, for any x0 ∈ Rn, a unique solution on R. Linearity of (6.14) implies that the zero solution
is asymptotically stable if it is attractive. It therefore remains to determine some k∗ > 0 such
that, for every k with k ≥ k∗, the zero solution of ẋ =

(
A + kp(t)ΣA

)
x is globally attractive.

This follows, by invoking (4.6) again, if there exists some ρ ∈ (0, 1) such that, for all k with
k ≥ k∗ and all x0 ∈ Rn \ {0}, the solution of (6.14) satisfies

‖x(ω)‖2 ≤ ρ ‖x0‖2 . (6.15)

With M = 1 + 2n‖A‖
−tr (A) and γ = 2M−1

2M+1 put, for j ∈ N,

p0 = sup{|p(t)| : t ∈ [0, ω)}, pj = γj p0, and mj = 2M−1
2M pj

as well as

Tj = {t ∈ [0, ω] : |p(t)| ∈ [pj+1, pj)} and T∞ = {t ∈ [0, ω] : p(t) = 0}.

Note that p0 < ∞ by assumption, so that limj→∞ pj = limj→∞mj = 0 by virtue of γ < 1.
Furthermore, T∞ is a finite set by assumption, and the time interval [0, ω] can be written as
the disjoint union [0, ω] =

⋃∞
j=0 Tj ∪ T∞. We partition each Tj further as follows. Since p is

piecewise monotone, for each j ∈ N0 there exist Lj ∈ N0 (set Lj = 0 if Tj = ∅) disjoint intervals
Tj` = (tj`, tj`) ⊂ Tj such that p(·) is monotone and has constant sign on Tj`, ` = 1, . . . , Lj ,

and such that Tj =
⋃Lj

`=1 (tj`, tj`) except for finitely many points (in fact, consisting of tj`).
Writing

∀ j ∈ N0 ∀ ` = 1, . . . , Lj : hj := |Tj |, hj` := |Tj`| ,
gives

∀ j ∈ N0 : |Tj | =
Lj∑

`=1

|Tj`| =
Lj∑

`=1

(tj` − tj`) =
Lj∑

`=1

hj` .
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By Lemma 3.6 and Lemma 3.4 we may choose m∗, β > 0 such that

∀m ∈ R with |m| ≥ m∗ ∀ k ∈ R : AT
k Pm + PmAk ≤ −

(
1− |k−m|

|m| M
)

I (6.16)

and
∀m ∈ R with |m| ≥ m∗ : β <

1
σmax(Pm)

. (6.17)

Define the strictly increasing and unbounded N-valued sequences (ψ(j))j∈N0 and (j(ψ))ψ∈Nψ(0)

by

ψ(j) = min{p ∈ N : pmj > m∗}, j ∈ N0, j(ψ) = max{j ∈ N : ψ(j) ≤ ψ}, ψ ∈ Nψ(0).

Since
∑∞

j=1 hj = ω implies

µ(ψ) :=
∞∑

j=j(ψ)+1

hj → 0 as ψ →∞ , (6.18)

we may choose ψ ∈ N so large that

eλmax(A) µ(ψ)−β
2 (ω−µ(ψ)) =: ρ < 1 . (6.19)

Put
mj`(k) := sgn

(
p
( tj`+tj`

2

))
k mj , j ∈ N0, ` ∈ {1, . . . , Lj}, k > 0.

Then

∀ j ∈ N0 ∀ ` ∈ {1, . . . , Lj} ∀ t ∈ [tj`, tj`) ∀ k ≥ ψ(j) :

|kp(t)−mj`(k)| = kmj

∣∣∣∣
|p(t)|
mj

− 1
∣∣∣∣ = kmj

[
1− |p(t)|

mj

]

≤ kmj

[
1− pj+1

mj

]
=

k mj

2M
=
|mj`(k)|

2M
. (6.20)

Now (6.16) and (6.20) ensure that the assumptions of Lemma 4.1 are fulfilled, and so apply-
ing (4.3) to the solution x of the initial value problem (6.14) gives, by invoking (6.17),

∀ j ∈ N0 ∀ ` ∈ {1, . . . , Lj} ∀ k ≥ ψ(j) : ‖x(tj`)‖2 ≤ κ2(Pmj`(k)) e−β hj` ‖x(tj`)‖2. (6.21)

In view of (4.6) and (6.21), we have, for any x0 6= 0,

‖x(ω)‖2

‖x0‖2
=

∞∏

j=1

Lj∏

`=1

‖x(tj`)‖2

‖x(tj`)‖2

=
( ∞∏

j=j(k)+1

Lj∏

`=1

‖x(tj`)‖2

‖x(tj`)‖2

)(j(k)∏

j=1

Lj∏

`=1

‖x(tj`)‖2

‖x(tj`)‖2

)

≤ eλmax(A) µ(ψ)

j(ψ)∏

j=1

Lj∏

`=1

κ2(Pmj`(k)) e−β hj`

≤ eλmax(A) µ(ψ)

j(ψ)∏

j=1

( Lj∏

`=1

κ2(Pmj`(k))
)
e−β hj . (6.22)
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By Corollary 3.5, we may choose a, k̃ = k̃(ψ) > 0 such that

∀ k ≥ k̃ ∀ j ∈ {1, . . . , j(ψ)} ∀ ` ∈ {1, . . . , Lj} : κ2(Pmj`(k)) ≤ 1 + a
|mj`(k)| = 1 + a

kmj
,

and hence

∀ k ≥ k̃ ∀ j ∈ {1, . . . , j(ψ)} :
Lj∏

`=1

κ2(Pmj`(k)) ≤
(
1 + a

kmj

)Lj

,

and furthermore, we may choose k∗ = k∗(ψ) ≥ k̃ such that

∀ k ≥ k∗ ∀ j ∈ {1, . . . , j(ψ)} :
Lj∏

`=1

κ2(Pmj`(k)) ≤ eβ hj/2 ,

which, when inserted into (6.22) and invoking (6.15), yields

∀ k ≥ k∗ :
‖x(ω)‖2

‖x0‖2
≤ eλmax(A) µ(ψ)

j(ψ)∏

j=1

e−β hj/2 ≤ eλmax(A) µ(ψ)−β
2 (ω−µ(ψ)) < ρ .

This shows (6.15). 2

Proof of Theorem 2.11:
Let r > 0, p ≥ 1, x0 ∈ Rn, k0 > 0. Existence and uniqueness of the solution x : [0,∞) → Rn

to the initial value problem (2.9), (2.9) follows as in Step 1 of the proof of Theorem 2.5.
If k is bounded, then it follows as in Step 3 and 4 of the proof of Theorem 2.5 that x is bounded,
and that assertion (ii) holds.
Therefore, it remains to show boundedness of k, whence assertion (i). Seeking a contradiction,
suppose that k is unbounded, i.e. k(t) tends monotonically to ∞ as t tends to ∞. If Φ(·, ·)
denotes the transition matrix of (2.9), then in view of (4.6) it remains to show that

∃ ρ ∈ (0, 1) ∃ i ∈ N ∀ j ∈ Ni : ‖Φ(tj+1, tj)x(tj)‖ ≤ ρ ‖x(tj)‖ . (6.23)

For N ∈ N3 put

tj = jπ, tj` = jπ + `
N π, j ∈ N0, ` ∈ {0, . . . , N}

t̄j` = tj,`+1+tj`

2 , j ∈ N0, ` ∈ {0, . . . , N − 1}
hj = tj+1 − tj , hj` = tj,`+1 − tj` = π/N j ∈ N0, ` ∈ {1, . . . , N − 1}
mj = k(tj1) | sin(π/N)| j ∈ N0

mj` = k(t̄j`) sin(t̄j`), j ∈ N0, ` ∈ {1, . . . , N − 2} .

In passing, note that tj0 = tj and tjN = tj+1 for all j ∈ N0 and, since k is assumed to be
unbounded,

∃ i ∈ N ∀ j ∈ Ni ` ∈ {1, . . . , N − 2} : mj ≤ |mj`| .
By Lemma 3.6 and Lemma 3.4 we may choose m∗, β > 0 such that for every real m with
|m| ≥ m∗ and for every k ∈ R

AT
k Pm + PmAk ≤ −

(
1− |k−m|

|m| M
)

I and β <
1

σmax(Pm)
, (6.24)
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where again M = 1 + 2n‖A‖
−tr (A) . Next choose N ∈ N and i ∈ N, both sufficiently large, and, in

view of Corollary 3.5, a > 0 such that

exp
(
2λmax(A)− β(N − 2)

)
=: ρN < 1 , (6.25)

∀ j ∈ Ni ∀ ` ∈ {1, . . . , N − 2} ∀ t ∈ (tj`, tj,`+1) :
k(t̄j`) + rπ

2 N

k(t̄j`)
| sin t|
| sin(t̄j`)| ≤ 1 + 1

2M , (6.26)

∃ ρ ∈ (0, 1) ∀ j ∈ Ni : ρN

(
1 + a

|mj |
)N−2

≤ ρ , (6.27)

∀ j ∈ Ni ∀ ` ∈ {1, . . . , N − 2} : κ2(Pmj`
) ≤ 1 + a

|mj`| ≤ 1 + a
mj

. (6.28)

In view of k̇(t) ≤ r and (6.26), we have

∀ j ∈ Ni ∀ ` ∈ {1, . . . , N − 2} ∀ t ∈ (tj`, tj,`+1) :

|k(t) sin t−mj`|
|mj`| =

k(t) | sin t|
k(t̄j`)| sin(t̄j`)| − 1 ≤ k(t̄j`) + rπ

2N

k(t̄j`)
| sin t|
| sin(t̄j`)| − 1 ≤ 1

2M
,

and together with (6.24) we may apply Lemma 4.1 to conclude, by invoking (4.6) again,

∀ j ∈ Ni ∀ ` ∈ {1, . . . , N − 2} :
‖Φ(tj+1, tj) x(tj)‖ ≤ ‖Φ(tjN , tj,N−1) · · ·Φ(tj1, tj0)x(tj)‖

≤ eλmax(A)2π/N
N−2∏

`=1

κ2(Pmj`
) e−β hj` ‖x(tj)‖

(6.28)

≤ eλmax(A)2π/N
(
1 + a

|mj`|
)N−2e−β π(N−2)/N ‖x(tj)‖

(6.25),(6.28)

≤ ρN

(
1 + a

|mj |
)N−2 ‖x(tj)‖

(6.27)

≤ ρ ‖x(tj)‖ .

This proves (6.23). 2

7 Conclusions

We have derived several stabilization results of linear systems by rotation:

(a) For any A with trA < 0, there exists a skew-symmetric matrix ΣA, such that A + kΣA

is stable for k with |k| large enough. The transient bound of the system ẋ = (A + kΣ)x
approaches the optimal value 1 as |k| → ∞. The matrix ΣA depends only on the
symmetric part A + AT of A. This, in particular, implies that A + AT alone does not
yield any information on the transient bound.

(b) The system ẋ =
(
A + k(t)ΣA

)
x is stable, if t 7→ k(t) becomes sufficiently large and k

grows monotonically. If k is not monotone, then the system may be unstable, even if k
tends to ∞.
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(c) A stabilizing controller gain function k can be determined by a servo mechanism so that
u(t) = k(t)ΣA x(t) is stabilizing.

(d) The dynamic state feedback controller is robust with respect to bounded skew-symmetric
perturbations.

(e) A system ẋ = Ax is vibrationally stabilizable in the sense of Meerkov if, and only if,
trA < 0.

(f) A stabilizing controller gain function k can be determined by a servo mechanism so that
u(t) = k(t)p(t)ΣA x(t) is vibrationally stabilizing.
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