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Abstract

The problem of asymptotic tracking of reference signals is considered in the context of m-
input, m-output linear systems (A,B,C) with the following structural properties: (i) CB is
sign definite (but possibly of unknown sign), (ii) the zero dynamics are exponentially stable.
The class Yref(α) of reference signals is the set of all possible solutions of a fixed, stable, lin-
ear, homogeneous differential equation (with associated characteristic polynomial α). The first
control objective is asymptotic tracking, by the system output y = Cx, of any reference signal
r ∈ Yref(α). The second objective is guaranteed error e = y− r transient performance: e should
evolve within a prescribed performance funnel Fϕ (determined by a function ϕ). Both objectives
are achieved simultaneously by an internal model in series with a proportional time-varying er-
ror feedback t 7→ u(t) = −k(t)e(t). The time-varying proportional factor k(t) is generated via
a nonlinear function of the product ‖e(t)‖ϕ(t). The feedback structure essentially exploits an
intrinsic high-gain property of the system by ensuring that, if (t, e(t)) approaches the funnel
boundary, then the gain attains values sufficiently large to preclude boundary contact.

Keywords: Tracking, output feedback, transient behaviour, internal model, minimum phase

1 Introduction

In the precursor [4] to the present paper, the concept of a performance funnel was introduced
in a context of tracking control for nonlinear systems. The basic problem addressed therein was
that of approximate tracking (with prescribed transient behaviour), by the system output y, of any
absolutely continuous and bounded function r with essentially bounded derivative: the terminology
“approximate tracking” means that, for any prescribed λ > 0, a control structure can be determined
which ensures that the tracking error e = y − r is ultimately bounded by λ (that is, ‖e(t)‖ ≤ λ
for all t sufficiently large); the terminology “with prescribed transient behaviour” means that,
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for some suitable prescribed function ϕ, the error function is required to satisfy ‖e(t)‖ ≤ 1/ϕ(t)
for all t > 0. The choice of ϕ determines the transient behaviour; moreover, by imposing the
property lim inft→∞ ϕ(t) ≥ λ > 0, the approximate tracking objective is assured. For example,
with ϕ : t 7→ min{t/T, 1}/λ, the approximate tracking objective is achieved in prescribed time
T > 0. Figure 1 encapsulates the approach: the function ϕ determines the performance funnel
Fϕ, which may be identified with the graph of the set-valued map t 7→ {v| ϕ(t)‖v‖ < 1}. Simply
stated, the control objective is to maintain the evolution of the tracking error in the funnel Fϕ. For

Error evolution

Ball of radius 1/ϕ(t)

t

Fϕ

Figure 1: Performance funnel Fϕ

the general class of reference signals considered in [4], the condition lim inf t→∞ ϕ(t) > 0 cannot be
relaxed, and so exact asymptotic tracking cannot be achieved. The purpose of the present note
is to demonstrate that the condition may be relaxed if one confines attention to minimum-phase
linear systems with sign-definite high frequency gain and restricts the class of reference signals to
coincide with the set of solutions of a fixed, stable, linear, homogeneous differential equation. Under
these restrictions, exact asymptotic tracking is achieved by adopting an internal model (capable of
replicating the reference signals) in conjunction with a performance funnel with radius asymptotic
to zero and an output feedback structure akin to that in [4, Section 6.3]. In an adaptive control
context, the use of internal models in problems of asymptotic tracking for linear systems is well
established (see, for example, [6, 7, 2, 3]). We emphasize that the approach adopted in the present
paper is non-adaptive.

2 Class of systems

We consider the class of m-input (u(t) ∈ R
m), m-output (y(t) ∈ R

m) linear systems of the form

ẋ(t) = Ax(t) +B u(t), x(0) = x0 ∈ R
n

y(t) = C x(t) ,

}
(2.1)

where the triple (A,B,C) ∈ R
n×n × R

n×m × R
m×n has the following properties:

P1: strict relative degree one with sign-definite high-frequency gain, that is,

〈x,CBx〉 = 0 ⇐⇒ x = 0,
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P2: minimum-phase, that is,

det

[
sI −A B

C 0

]
6= 0 for all s ∈ C with Re s ≥ 0.

Under assumption P1, the minimum-phase property P2 is equivalent to the assumption that the
system (2.1) has exponentially stable zero dynamics (this equivalence can also be deduced from
Lemma 3.3 below).

2.1 Control objectives, class of reference signals, and performance funnel

Let M denote the set of square real matrices having no eigenvalue with positive real part and such
that every eigenvalue on the imaginary axis is semi-simple. The reference signals to be tracked
are all functions r : R+ → R

m the components ri of which are solutions of the scalar differential
equation α( ddt)ri(·) = 0, where α ∈ R[s] is the characteristic polynomial of some M ∈ M (and so
every such function r is bounded). We denote this reference signal class by

Yref(α) :=
{
r ∈ C∞(R+,Rm)

∣∣ α( ddt)r(·) = 0, α(s) = det[sI −M ], M ∈ M
}

.

The first control objective is asymptotic (output) tracking of any reference signal r ∈ Yref(α). By
this we mean a (dynamic) output feedback strategy which incorporates an internal model (capable of
replicating the reference signal) and which ensures that limt→∞

(
y(t)−r(t)

)
= 0 whilst maintaining

boundedness all the other signals. The second control objective is prescribed transient behaviour
of the error signal e = y − r. We capture both objectives in the concept of a performance funnel

Fϕ :=
{
(t, e) ∈ R+ × R

m
∣∣ ϕ(t) ‖e‖ < 1

}
(2.2)

associated with a function ϕ (the reciprocal of which determines the funnel boundary) with the
following properties

(a) ϕ : R+ → R+ is absolutely continuous and non-decreasing;

(b) ϕ(t) = 0 ⇐⇒ t = 0;

there exists c > 1 such that:

(c) ϕ(t) ≤ c ϕ(t/2) for all t ∈ R +;

(d) ϕ̇(t) ≤ c [1 + ϕ(t)] for almost all t ∈ R +.





(2.3)

For example, t 7→ ϕ(t) = ta, a ≥ 1, satisfies (2.3) with c = 2a. We record the following observation
for later use.

Proposition 2.1 Let ϕ be such that (2.3) holds. For every p ≥ ln c/ ln 2,

0 < ϕ(t) ≤ ϕ(1) [1 + ctp] for all t > 0. (2.4)
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Proof: Since ϕ is non-decreasing with property (b), we have 0 < ϕ(t) ≤ ϕ(1) for all t ∈ (0, 1].
Now, let t ∈ (1,∞) be arbitrary and choose n ∈ N such that 2n−1 ≤ t ≤ 2n or, equivalently,
1/2 ≤ t/2n ≤ 1. Then, by (b), (c) and the non-decreasing property,

0 < ϕ(t) ≤ c ϕ(t/2) ≤ . . . ≤ cn ϕ(t/2n) ≤ cn ϕ(1) = c ϕ(1) 2(n−1) ln c/ ln 2 ≤ c ϕ(1) tp .

The claim (2.4) follows. 2

Proposition 2.1 implies, in particular, that exponentially contracting funnels are excluded.

3 The control

Let (A,B,C) ∈ R
n×n × R

n×m × R
m×n be such that P1 and P2 hold, and define

s(CB) :=

{
+1, if CB is positive definite, i.e. 〈x,CBx〉 > 0 ∀ x 6= 0
−1, if CB is negative definite, i.e. 〈x,CBx〉 < 0 ∀ x 6= 0.

(3.5)

We will have occasion to consider the two possible cases: s(CB) known or unknown a priori (the
latter case is largely of academic interest).

3.1 Internal model

A body of work by Francis and Wonham in the 1970s (see, for example, [1, 10]) led to the so-called
Internal Model Principle, succinctly summarized in the context of linear systems in [11, p. 210] as
“every good regulator must incorporate a model of the outside world”. Recent extensions of this
“principle” to a nonlinear setting are contained in [9].

Let α ∈ R[s] be the characteristic polynomial of some M ∈ M (and so every r ∈ Yref(α) is bounded).
Let β ∈ R[s] be a monic Hurwitz polynomial (i.e. all zeros of β lie in the open left half complex
plane) and such that α and β are coprime of degree p := deg β = degα. Then

lim
s→∞

β(s)/α(s) = 1. (3.6)

The internal model is now defined to be the m-input, m-output linear system with transfer function

Gm(s) :=
β(s)

α(s)
Im . (3.7)

Let (Â, b̂, ĉ, 1) ∈ R
p×p × R

p×1 × R
1×p × R be a minimal state space realization of β(s)/α(s). Then

a minimal state space realization of the internal model is given by

ξ̇(t) = Ã ξ(t) + B̃ w(t), ξ(0) = ξ0

u(t) = C̃ ξ(t) + Imw(t)

}
(3.8)

with
Ã = diag{Â, . . . , Â} ∈ R

mp×mp, B̃ = diag{b̂, . . . , b̂} ∈ R
mp×m,

C̃ = diag{ĉ, . . . , ĉ} ∈ R
m×mp, ξ0 ∈ R

mp.
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We will refer to (Ã, B̃, C̃, Im) as the internal model (although, strictly speaking, the use of “the”
here is incorrect as any quadruple in the similarity orbit of (Ã, B̃, C̃, Im) also qualifies for the title
“internal model”).

3.2 Feedback

Let ϕ be such that (2.3) holds and let Fϕ be the associated performance funnel given by (2.2). Let
ν : R → R be any C∞ function such that, for some strictly-increasing, unbounded sequence (kj) in
(1,∞),

ν(kj) s(CB)→∞ as j →∞ . (3.9)

If s(CB) is known a priori, then ν : k 7→ k s(CB) suffices. If s(CB) is unknown a priori, then any
C∞ function ν with the following properties suffices:

lim sup
k→∞

ν(k) = +∞ and lim inf
k→∞

ν(k) = −∞ . (3.10)

A simple example of a function satisfying (3.10) is ν : k 7→ k cos k. In the latter case of unknown
s(CB), the rôle of the function ν is similar to the concept of a “Nussbaum” function in adap-
tive control. Note, however, that the requisite properties (3.10) are less restrictive than (a) the
“Nussbaum property”

lim sup
k→∞

1

k

∫ k

0
ν(κ) dκ =∞, lim inf

k→∞

1

k

∫ k

0
ν(κ) dκ = −∞,

as required in [12], for example, or (b) the stronger “scaling invariant” Nussbaum property, as
required in [5], for example.

The control strategy is given by

w(t) = −ν(k(t)) [y(t)− r(t)], k(t) =
1

1−
(
ϕ(t)‖y(t)− r(t)‖

)2 , (3.11)

in series with the internal model (3.8).

internal model

(Ã, B̃, C̃, Im)

system
(A,B,C)

u−ν(k)e
w

y
er ∈ Yref

tracking controller

+

−

Figure 2: Asymptotic tracking controller with internal model
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3.3 Closed-loop system

The conjunction of (2.1), (3.8), and (3.11) yields the closed-loop initial-value problem

˙̄x(t) = Ā x̄(t)− ν(k(t)) B̄ [y(t)− r(t)], x̄0 =

[
x0

ξ0

]

y(t) = C̄ x̄(t),

k(t) =
1

1−
(
ϕ(t)‖C̄ x̄(t)− r(t)‖

)2 ,





(3.12)

where

Ā =

[
A BC̃

0 Ã

]
, B̄ =

[
B

B̃

]
, C̄ =

[
C , 0

]
, x̄(t) =

[
x(t)
ξ(t)

]
. (3.13)

Noting the potential singularity in the function k, some care must be exercised in defining the
concept of a solution of (3.12): a function x̄ : [0, ω) → R

n+mp, with 0 < ω ≤ ∞, is deemed
a solution of (3.12) if, and only if, it is absolutely continuous, with x̄(0) = x̄0, it satisfies the
differential equations in (3.12) for almost all t ∈ [0, ω), and ϕ(t) ‖C̄x̄(t)−r(t)‖ < 1 for all t ∈ [0, ω).
A solution is maximal if, and only if, it has no proper right extension that is also a solution.

3.4 Main result

Theorem 3.1 Let (A,B,C) ∈ R
n×n ×R

n×m ×R
m×n have strict relative degree one, sign-definite

high-frequency gain, and be minimum-phase. Let ϕ satisfy (2.3), let Fϕ be the performance funnel
(2.2) associated with ϕ, and let r ∈ Yref(α). Then the feedback (3.11) applied in series with the
internal model (3.8) yields the initial-value problem (3.12) which, for every x0 ∈ R

n and ξ0 ∈ R
mp,

has a solution and every solution can be extended to a maximal solution. Every maximal solution
x̄ : [0, ω)→ R

n+mp has the properties:

(i) ω =∞;

(ii) the functions x̄, k and u are bounded;

(iii) there exists ε ∈ (0, 1) such that, for all t ≥ 0, ϕ(t) ‖y(t)− r(t)‖ ≤ 1− ε ;

(iv) if ϕ is unbounded, then (y(t)− r(t), u(t))→ (0, 0) as t→∞ .

Remark 3.2 In the specific case of positive-definite CB and zero reference signal r ≡ 0, it is
shown in [4] that the assertions of Theorem 3.1 hold for the feedback u = −ke without recourse to
an internal model.

The proof of Theorem 3.1 invokes three lemmas; we briefly digress to present these.
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3.5 Three technical lemmas

The first lemma is well known and is a re-statement of [3, Lemma 2.1.3].

Lemma 3.3 Assume that (A,B,C) ∈ R
n×n × R

n×m × R
m×n has strict relative degree one. Let

V ∈ R
n×(n−m) be such that imV = kerC (of dimension n−m) and write

N := (V TV )−1V T
[
In −B(CB)−1C

]
.

Then

L =

[
C
N

]

is invertible, with inverse L−1 =
[
B(CB)−1 , V

]
and

LAL−1 =

[
A1 A2

A3 A4

]
, LB =

[
CB
0

]
, CL−1 =

[
Im 0

]

where A1 ∈ R
m×m (with A2, A3, A4 of conforming formats). Furthermore, (A,B,C) is minimum

phase if, and only if, A4 is Hurwitz.

Lemma 3.4 Let (A,B,C) ∈ R
n×n ×R

n×m ×R
m×n be minimum phase with strict relative degree

one and sign-definite high-frequency gain. If (Ã, B̃, C̃, Im) is a minimal realization of the internal
model as specified in Subsection 3.1, then (Ā, B̄, C̄), as defined in (3.13), is minimum phase with
strict relative degree one and sign-definite high-frequency gain.

Proof: Clearly, C̄B̄ = CB and so the system (Ā, B̄, C̄) has strict relative degree one and sign-
definite high-frequency gain.
It remains to show that

det

[
sI − Ā B̄

C̄ 0

]
6= 0 for all s ∈ C with Re s ≥ 0.

Since (Â, b̂) is a controllable pair, the Hautus condition implies that [sI − Â, b̂] has full rank p for
all s ∈ C, whence

rank
[
sI − Ã B̃

]
= mp for all s ∈ C.

By the minimum-phase property of (A,B,C), we have

rank

[
sI −A B

C 0

]
= n+m for all s ∈ C with Re(s) ≥ 0 ,

and so

rank

[
sI − Ā B̄

C̄ 0

]
= rank



sI −A −B C̃ B

0 sI − Ã B̃
C 0 0


 = n+mp+m

for all s ∈ C with Re s ≥ 0, and the claim follows. 2.

A proof of the following lemma can be found in [8], see also [3, Lem. 5.1.2].
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Lemma 3.5 Let (A,B,C) ∈ R
n×n ×R

n×m ×R
m×n be minimum phase with strict relative degree

one and sign-definite high-frequency gain. If (Ã, B̃, C̃) is a minimal realization of the internal model
as specified in Subsection 3.1, then, for any r ∈ Yref(α), there exists ρ0 ∈ R

n+mp such that

ρ̇(t) = Ā ρ(t), ρ(0) = ρ0

r(t) = C̄ ρ(t) ,

}
(3.14)

where Ā and C̄ are given by (3.13).

3.6 Proof of Theorem 3.1

By Lemma 3.5, there exists ρ0 ∈ R
n+mp such that r(·) = C̄ρ(·), where ρ : t 7→

(
exp Āt

)
ρ0. Writing

xe(t) = x̄(t)− ρ(t), e(t) = y(t)− r(r),

the closed-loop initial-value problem (3.12) may be expressed in the equivalent form

ẋe(t) = Ā xe(t)− ν(k(t))B̄C̄ e(t), xe(0) = x0
e := x̄0 − ρ0,

e(t) = C̄ xe(t) ,

k(t) =
[
1−

(
ϕ(t)‖e(t)‖

)2]−1
.





(3.15)

Introducing the open set

D :=
{
(xe, η) ∈ R

n+mp × R
∣∣ ϕ(|η|) ‖C̄ xe‖ < 1

}
,

and defining the function

d : D→ R+, (xe, η) 7→ d(xe, η) :=
1

1−
(
ϕ(|η|)‖C̄xe‖

)2 , (3.16)

then the non-autonomous closed-loop initial-value problem (3.12) (equivalently, (3.15)) may be
recast on D as the following autonomous initial-value problem

ẋe(t) = Āxe(t)− ν
(
d(xe(t), η(t))

)
B̄C̄ xe(t)

η̇(t) = 1

(xe(0), η(0)) = (x0
e, 0) ∈ D .





(3.17)

The standard theory of ordinary differential equations now applies to conclude the existence of a
solution t 7→ (xe(t), η(t)) ∈ D to (3.17) and, moreover, every solution can be extended to a maximal
solution (xe, η) : [0, ω)→ D. We will make use of the following fact in due course: if there exists a
compact set C ⊂ D such that (xe(t), η(t)) ∈ C for all t ∈ [0, ω), then ω =∞. To see this, assume that
such a set C exists. Then (xe(·), η(·)) and ν

(
d(xe(·), η(·))

)
are bounded functions which, together

with (3.17), implies that (xe(·), η(·)) is uniformly continuous. Seeking a contradiction, suppose that
ω <∞. By uniform continuity, it follows that the limit (x∗e, ω) = limt↗ω(xe(t), η(t)) exists and, by
compactness, lies in C ⊂ D. By the existence theory, the initial-value problem (3.17), with initial
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data (x∗e, ω) replacing (x0
e, 0) has a solution: concatenation of this solution with (xe, η) yields a

proper right extension of the latter, contradicting its maximality.

Clearly, if (xe, η) : [0, ω)→ D is a solution of (3.17), then x̄ = xe + ρ : [0, ω)→ R
n+mp is a solution

of (3.12); conversely, if x̄ : [0, ω)→ R
n+mp is a solution of (3.12), then (xe, η) : [0, ω)→ R

n+mp×R,
with xe = x̄− ρ and component η given by η(t) = t, is a solution of (3.17). We may now conclude
that, for each x̄0 ∈ R

n+mp, (3.12) has a solution and every solution can be maximally extended.

Let x0 ∈ R
n and ξ0 ∈ R

mp be arbitrary and let x̄ be a maximal solution of (3.12) with interval
of existence [0, ω). Then, for x0

e = x̄0 − ρ0, the function t 7→ (xe(t), η(t)) = (x̄(t) − ρ(t) , t) is a
maximal solution of (3.17) with interval of existence [0, ω). By (3.16) and the first of equations
(3.17), we now have

ẋe(t) = Āxe(t)− ν(k(t))B̄C̄e(t), k(t) =
[
1−

(
ϕ(t)‖e(t)‖

)2]−1
∀ t ∈ [0, ω). (3.18)

By Lemma 3.4, (Ā, B̄, C̄) is minimum phase with strict relative degree one, and so, by Lemma 3.3,
there exists N such that

L :=

[
C̄
N

]

is invertible and the transformation
[
C̄
N

]
xe(t) =

[
e(t)
z(t)

]

converts (3.18) into the equivalent form

ė(t) = A1 e(t) +A2 z(t)− ν(k(t))CB e(t)

ż(t) = A3 e(t) +A4 z(t)

k(t) =
[
1−

(
ϕ(t)‖e(t)‖

)2]−1





∀ t ∈ [0, ω), (3.19)

wherein A4 ∈ R
(n+m(p−1))×(n+m(p−1)) is Hurwitz and we have invoked the equality C̄B̄ = CB.

Since (xe(t), t) ∈ D for all t ∈ [0, ω), we have

ϕ(t)‖e(t)‖ < 1 ∀ t ∈ [0, ω) (3.20)

and so e is bounded, which, together with the Hurwitz property of A4 and the second of equations
(3.19), implies that z is bounded. It immediately follows that xe is bounded, whence boundedness
of x̄ = xe + ρ.

Writing e0 = C̄x0
e, z

0 = Nx0
e and defining

q0(t) := A2 exp(A4t)z
0, q1(t) := A1e(t) +A2

∫ t

0
exp(A4(t− s))A3e(s)ds, ∀ t ∈ [0, ω), (3.21)

then the first two equations in (3.19) are equivalent to

ė(t) = q0(t) + q1(t)− ν(k(t))CB e(t) ∀ t ∈ [0, ω) . (3.22)

9



Since A4 is Hurwitz, there exist c1, µ > 0 such that

‖q0(t)‖ = ‖A2 exp(A4t)z
0‖ ≤ c1 e

−µt ∀ t ∈ [0, ω) (3.23)

and

‖q1(t)‖ ≤ ‖A1‖‖e(t)‖+ c1

(∫ t/2

0
+

∫ t

t/2

)
e−µ(t−s)‖e(s)‖ ds

≤ ‖A1‖‖e(t)‖+
c1

µ

[
e−µ t/2 max

s∈[0 , t/2]
‖e(s)‖+ max

s∈[t/2 , t]
‖e(s)‖

]
∀ t ∈ [0, ω). (3.24)

By boundedness of e, together with (3.20) and invoking property (2.3d) of ϕ, we may infer the
existence of c2 > 0 such that

ϕ(t) ϕ̇(t) ‖e(t)‖2 ≤ c[1 + ϕ(t)]ϕ(t) ‖e(t)‖2

≤ c [1 + 2ϕ2(t)] ‖e(t)‖2 ≤ c [‖e(t)‖2 + 2] ≤ c2 for almost all t ∈ [0, ω). (3.25)

Since CB is sign definite, there exists c3 > 0 such that

1

2
c3 ‖e‖2 ≤ |〈e, CB e〉| ∀ e ∈ R

m. (3.26)

Now we are in a position to prove boundedness of k.

Define ν̃ : R → R as follows
ν̃(k) := ν(k) s(CB).

By property (3.9) of ν, there exists a strictly-increasing unbounded sequence (kj) in (1,∞) such
that ν̃(kj)→∞ as j →∞. Passing to a subsequence if necessary, we may assume that the sequence(
ν̃(kj)

)
is in (0,∞) and is strictly increasing. Seeking a contradiction, suppose that k is unbounded.

For each j ∈ N, define

τj := inf{t ∈ [0, ω)| k(t) = kj+1}
σj := sup{t ∈ [0, τj ]| ν̃(k(t)) = ν̃(kj)}
σ̃j := sup{t ∈ [0, τj ]| k(t) = kj} ≤ σj .

Observe that
k(τj) > k(σj) ∀ j ∈ N . (3.27)

Furthermore, for all j ∈ N and all t ∈ [σj , τj ], we have k(t) ≥ kj and ν̃(k(t)) ≥ ν̃(kj). Therefore,

1 > (ϕ(t)‖e(t)‖)2 ≥ 1− 1

kj
≥ 1− 1

k1
=: c4 > 0 ∀ t ∈ [σj , τj ] ∀ j ∈ N , (3.28)

and since ϕ is non-decreasing, we arrive at

max
s∈[t/2 ,t]

‖e(s)‖ <
1

ϕ(t/2)
≤ ϕ(t)√

c4 ϕ(t/2)
‖e(t)‖ ∀ t ∈ [σj , τj ] ∀ j ∈ N . (3.29)
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By (3.24) and (3.29), together with boundedness of e and property (2.3c) of ϕ, we may infer the
existence of c5 > 0 such that

‖q1(t)‖ ≤ c5

[
e−µt/2 + ‖e(t)‖

]
∀ t ∈ [σj , τj ] ∀ j ∈ N . (3.30)

Invoking (3.25), (3.23), (3.26), (3.30), (3.28), recalling that ϕ(t)‖e(t)‖ < 1 for all t ∈ [0, ω), and
noting that, by Proposition 2.1, the functions t 7→ ϕ(t)e−µt and t 7→ ϕ(t)e−µt/2 are bounded, we
may conclude the existence of c6 > 0 such that

d

dt
k(t) = k2(t)

[
2ϕ(t)ϕ̇(t) ‖e(t)‖2 + 2ϕ2(t) 〈e(t), q0(t) + q1(t)− ν(k(t))CB e(t)〉

]

≤ k2(t)
[
2 c2 + 2ϕ(t)

[
‖q0(t)‖+ ‖q1(t)‖

]
− 2ϕ2(t) ν̃(k(t)) |〈e(t), CB e(t)〉|

]

≤ k2(t)
[
2 c2 + 2 c1ϕ(t) e

−µt + 2 c5 ϕ(t)
[
e−µt/2 + ‖e(t)‖

]
− c3 ϕ

2(t) ν̃(k(t)) ‖e(t)‖2
]

≤ k2(t) [c6 − c3 c4 ν̃(k(t))] for almost all t ∈ [σj , τj ] and all j ∈ N .

Let j∗ ∈ N be sufficiently large to that c6 − c3 c4ν̃(kj∗) < 0. Then,

d

dt
k(t) < 0 for almost all t ∈ [σj∗ , τj∗ ] ,

which contradicts (3.27). This proves boundedness of k.

Next we show boundedness of u. Since k is bounded, there exists ε > 0 such that ϕ(t)‖e(t)‖ ≤ 1−ε
for all t ∈ [0, ω). By boundedness of e, z, and k, it follows that u is bounded.

We proceed to prove that ω = ∞. Suppose that ω is finite. Let c7 > 0 be such that ‖xe(t)‖ ≤ c7

for all t ∈ [0, ω), and set

C :=
{
(xe, η) ∈ D

∣∣ ϕ(|η|) ‖C̄ xe‖ ≤ 1− ε, ‖xe‖ ≤ c7, η ∈ [0, ω]
}
.

Then C is a compact subset of D and contains the trajectory of the maximal solution t 7→ (xe(t), t) of
(3.17). Therefore, the supposition that ω is finite is false. This completes the proof of Assertions (i)-
(iii).

It remains only to establish Assertion (iv). Assume that ϕ is unbounded. Then ‖e(t)‖ < 1/ϕ(t)→ 0
as t→∞. By boundedness of k, we have u(t) = −ν(k(t))e(t)→ 0 as t→∞. 2

4 Example

Let (A, b, c) be a single-input, single-output minimum-phase system with positive high-frequency
gain cb > 0. Assume that the class of reference signals r : R + → R comprises all linear combinations
of constant functions and sinusoidal functions of period 2π. Choosing as internal model the linear
system with transfer function

β(s)

α(s)
=

(s+ 1)3

s(s2 + 1)
,
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and selecting the funnel function t 7→ ϕ(t) := t2, then the feedback

u(t) = −k(t)e(t), k(t) =
1

1− (t2 e(t))2
, e(t) = y(t)− r(t),

in series with the internal model, ensures asymptotic tracking of every admissible reference signal r
and achieves a tracking error decay rate of the order t−2. In the specific case

A =



1 1 1
1 −1 0
1 0 −1


 , b =



1
0
0


 , c = [1 0 0] ,

with zero initial conditions and reference signal

r : t 7→ 1

2

[
1 + cos t

]
,

the behaviour of the feedback system is depicted in Figure 3(a-d).
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Figure 3: Example
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