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1. INTRODUCTION

Nomenclature

IR1 set of non-negative real numbers
lR| set of positive real numbers

In our setup, a biotechnological process consists of
a set of M reactions gt,. . ., gy involving N com-
ponents {r,...,€1,'. The latter denote the state
variables, i.e. the concentrations in the liquid
phase of the reactor. Such a process is commonly
specified by the following reaction scheme for the
jtä reaction:

9j

L " u t ' € t  - +  
D " n i - e n ,  j = 1 , . . . , M . $ )

. \  g , l €R ;
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Here

L i 9 { 1 , . . . , N } ,  L i * 0

denotes the set of indices of the components {,
which are the reactants of the j-th reaction,

A i e { 1 , . . . , N } ,  R i * A
is the set of indices of the components fi which
are the reaction prod,ucts of the j-th reaction.

The quantities of each component involved in the
reaction are specified by the nonnegative stoi-
chiometric cofficients c;i, sometimes also called
yield cofficients. The rate of consumption of the
reactants, which is equal to the rate of formation
ofthe reaction products, is called the reaction rate
and denoted by pi.

We assume that the dynamics of the process
(1) can be described by an ordinary diferential
equation:

L--

447



I

1(r)  = x eG(t))  -  D(t)  €( t )  -  Q€(f)  + r(r) ,

with init ial condition €(0) € (nl)" and concen-
tration vector

{ ( r )  =  ( { r ( t ) , . . . ,€ , . r ( r ) ) "  e  Rf  ,
vector of reaction rates

p( ( )  =  ( ,p r (6 ) ,  . . . ,pu(Q) r  €  t ry

with locally Lipschitz p, , Rf J R+, the matrix
of stoichiometric coefficients

K  =  l K t , . . . , K u l  
- -  ( k n i )  € I R N ' M ,

Iocally integrable dilution rate

D ( . )  : l R *  - - - + [ r . D ] ,  0 < D S D .

the matrix of proportional gazeous outflow rates

Q  =  d i , a g { q t , . . . , g , . r } ,  Q t , . . . , q r . r  )  0 ,

and the vector of feed rates

r ' ( r )  :  ( r1(r) , . . . ,  r ' ry(r))"  e IRf

with local ly  in tegrable 4( . )  ,  IR+ -+ [0,Fr ] ,  F i  >
0 .

The entries of K relate the reactions as follows:

k , j : c t j  >  0  i f ,  and  on l y  i f ,  i e  R i  \  ( r j nA j ) ,
k;,j - 0 if, and only rf, i € Ri n Lj

o r  i / R i 0 L i ,
ktj: -c;j < 0 if, and only if., i  e Li \ (rj nAj).

Notice that all of the entries of K are determined
by (3) since {1, . . . , N} is the disjoint union of the
sets.Ri \ (ri n Ri) , Li \ (ri n Ri) , Ri o,L, and

{ 1 , . . . , N } \ ( n i u L , ) .
Notice also that D > 0 means that we consider a
continous stirred tank reactor.

Example /. The reaction scheme

9r
3 € t  - - *  2 € z * € t

9z
2 €t+ 3 €,  -+ 4 €r  +€s

9s
{ r + { ,  * 2 e n

9a,
3 € o  - - - - +  1 € z + 2 t z

has the stoichiometric matrix

K  = I K t , K 2 , K s , K a ) =

- 3 4 - 1
2  - 3 - 1
1 0 0
f i _ r ,

0 1 0
0 0 0
0 0 0

We stress that, although the matrix K is called
stoichiometric matrix, we do not require that it

represents an exact stoichiometric relationship be-
tween the components, it represents a qualitative
relationship. Components that do not play an
important role in the process, such as by-products
of a reaction or substrates which are not limiting,
have been omitted. The advantage of this descrip-
tion is that the model might be of much smaller
dimension. This approach is quite common; see
for instance Bastin and Dochain (1990). However,
the reaction scheme may not follow the law of
conservation of mass. We therefore have to prove
that (2) still exhibits practically relevant features,
such as existence and uniqueness, positivity and
boundedness of the solution.
Before this will be done in Section 2, we compare
the basic assumption we will make on (2) with
models which do assume conservation of mass.
The most prominent reference on chemical react-
ing systems is Gavalas (1968). See in particular
Section 1.1, where he introduces systems which
can be described by an ordinary differential equa-
tion of the form (2). Although Gavalas does not
explicitly say so (see Section 1.1 and also the
sentence below equation (1.8.11)), the Principle
of Mass Conservation implies the existence of a
positive vector

7  €  ( R l ) N  s o  t h a t  ' ' t r K j : 0  f o r  a l l  j : I , . . . , M . ( 4 )

Intuitively, this property means that the concen-
tration remains bounded and is in fact crucial in
proving it.
Instead of conservation of mass, we introduce the
new notion of non-cyclic processes. Cyclic means
roughly that the process contains a reaction loop,
i.e. there exists a subset of reactions S, so that
every substrate {1 involved in a reaction j e S
is also an autocatalyst or a product of one of the
reactionsj € S. One ofthe crucial consequences of
non-cyclic processes is that there exists a positive
vector

7 €  ( R l ) N  s o t h a t ' y r K j  < 0 f o r a l l  j : 7 , . . . , M . ( 5 )

Note that the condition (5) is only slightly less
restrictive than (4). However it is sufficient to
guarantee boundedness of the trajectories.

This note is organized as follows: In Section 2 we
prove, provided (5) and an additional assumption
on the growth rates holds, boundedness of the so-
Iution of (2) and invariance of the positive orthant.
In Section 3 we intoduce the new concept of non-
cyclic processes, prove that it implies (5), present
an algorithm which decides in finitely many steps
whether a process is non-cyclic or not and state
a characterization of it in terms of a normal form
of the stoichiometric matrix K. In Section 4 we
show how to control an external substrate of (2)
into a prespecified neighbourhood of a constant
reference signal by using the feedrate as control
variable. This controller is an adaptive high-gain

(2 )

(3 )

0
1
0
0
0

_ J
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controller which copes with input constraints and
noise corrupting the output.

2. DYNAMICS OF THE MODEL

In this section we show that the model (2), al-
though is does not obey the conservation of mass,
exhibits such properties as boundedness and in-
variance of the positive orthant. To this end, we
have to be more specific with the sets .L, and ,?i
and introduce:

Ca t i  : :  L i e tR i ,

i.e. the set of the indices of those components,
called catalgsts, which are involved in the r-th
reaction, but maintained by the reaction;

Subi  : :  L i  \@i n Rj)  + A,

i.e. the set of those components, called substrates,
that are consumed by the j-th reaction;

P r o d l  e  Ä ,  \  ( I r . R j )  + A ,

i.e. the set of the indices of those components,
called producls, that are produced by the j-th
reaction;

Auti := Ai \ ((I i n Ri)U Prodi),

i.e. the set of the indices of those components,
cafled autocatalysts, that are accumulated by the
j-th reaction;

R e s t j  : =  { 1 , . . . , l f }  \  ( , L i  U A i ) ,

i.e. the set of the process components that are not
involved in the j-th reaction.

No t i ce  t ha t ,  f o r  a l l  j  -  1 , . . . ,  M ,

Auti U Prodi = Ai \ (Rj O Lj),

and {1, . . . , N} can be represented as the disjoint
union:

{1,  .  .  . ,  N)  = Cat iÜSubiUAut iUProdlüRest i .

A crucial assumption on the reaction rates is, that
they are of the form, for all j : l, . . . , M,

For a comprehensive list of reaction rates see for
instance the Appendix in Bastin and Dochain
(1990). The reaction rate p is often assumed to be
proportional to the microbial growth rate p. The
most prominent ones are the models of Monod or
Haldane.

Proposition 2. Suppose (2) satisfies (A1). Then
for each initial condition ((0) e (IR|)N there
exists a unique solution €(.) '  [0, oo) ---+ (nl)t,
that means invariance of the positive orthant.
If, in addition, (5) holds, then this solution is
bounded.

The following characterizations of the catalysts,
substrates and products will be used in the sequel:

Cati  = { i  e Li  UÄi I  k; i  =0}

S u b ,  :  { z  e  { 1 , . . . , N }  |  k n i  <  0 }

Prod i  U Aut i  -  
{ i  e  {1 , . . . , , ^ / }  |  k ; i  >  0 } .

Proof of Proposition 2: Existence and unique-
ness of a solution {(.) , [0,ar) ---+ IRN of (2) on
a maximal interval of existence [0,c.r), for some
a.' € (0,oo], follows from the theory of ordinary
differential equations. We have to prove bounded-
ness (which implies r,.' : oo) and invariance of the
positive orthant.

Seeking a contradiction to the invariance of the
positive orthant under the flow, suppose there
ex i s t  some  ?  €  {1 , . . . ,N }  and  te  €  [O ,cu )  such
that

( ; ( t e ;  : 0  a n d  ( p ( l )  >  0 V ,  <  t s ,  l c : 1 , . . . , I { .  ( 7 )

The i-th coordinate of (2) satisfies, for all t €
[0,  to ] ,

M

(r(t; = Lknipi$(t)) 
- .D(t) €r(t) - qt €;(t) + Fi(t)

t - 1

Let the set of numbers of the reactions that
involve {i as a substrate be defined as

As,ö,  : :  { f  e  {1,  .  .  . ,  M} |  ko i  < 0} .  (8)

BV (6) we know that for j / Rs.o,, kü ) 0, and
since f';(l) > 0 for all t 2 0 it follows that

i ; ( t )  2 -  
t  lkulpig(t) )  -  D(t) .€o(t)  -  q; .  t ; f t ) .

j €As ' ö

Therefore by using the notation

4;r0) ::

€r(t) > ,1,,(t) .&(t),

and integration yields

[  , l , r l ,)a,
( ; ( t e ) ) e o  € , ( 0 ) .

1,,,

I r,it' itetrll ( II €-(r)) - De)- qn
j €Rs ,ü .  

\ f r € (Au r , uL j ) \ { r }  /

and (A.1), we can prove that

\..
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Since {;(0) > 0, this contradicts the assumption
(,(to) = 0 in (7). Therefore a component cannot
Ieave the positive orthant and the state variables
stay positive on their maximal interval of exis-
tence.

It remains to prove boundedness. Let 7 be given
as in (5) and define

iD(r) : :  jre(t).
Then multiplication of (2) from the left with 7"
yields, for almost all r e [0,r..r),

M
+ , . .  \ - ,o( t )  :  Lh ,x t ) , r t ( { ( t ) )  -D( t )o ( f )

J : 1
N

- l tai€i(t) + (7, F(t)),
J =)'

and hence, bV (5) and positivity of ((t),

o(r )  <  -D( t ) .o( r )+ ( r ,F( r ) ) .

Since D ) 0, an application of the Variations-of-
Constants formula yields, for all t ) 0,

t

l o ( r ) l  se -D '1o1 to ;1  +  [ " -no - " )1 rF1 r ;  d r ,
{

and boundedness of O(.) is a consequence of
boundedness of F(.). This completes the proof.

n

3. NON-CYCLIC PROCESSES

In this section we introduce the concept of non-
cyclic processes. This is satisfied by numerous bio-
chemical models of processes, also when they do
not obey conservation of mass. Most importantly,
if a process (2) is non-cyclic, then (5) is satisfied
and therefore Proposition 2 guarantees existence
and boundedness of the solution in the positive
orthant.

Cyclicity of the general dynamical model (2)
means that the process contains a reaction loop,
i.e. there exists a subset of reactions S, so that
every substrate {i invoived in a reaction j e S is
also an autocatalyst or a product of one of the
reactions j e S. Or in other words, (2) is non-
cyclic respectively does not contain a reaction loop
if, and only if, for each subset ,S there exists a
substrate (a of some reaction jo € S such that (;
is neither an autocatalyst nor a product of one of
the reactions j e S.This concept is more formally
defined as follows.

Definition 3. The biotechnological process (2) is
said to be cyclic if, and only if, there exists a
nonempty subset  S g {1, . . . ,M},  such that

[J s"a1 e l) (A"t1u prod,). (e)
j € s  j € s

Theorem l. Non-cyclicity of (2) is sufficient but
not necessary for (5).

The proof of Theorem 4 is too long that it can
be presented here in full detail; see Ilchmann
and Weirig (1997). It is mainly based on the
following algorithm which decides in finitely many
iterations whether (2) is cyclic or not.

Algorithm /. Consider the biotechnological pro-
cess (2)  wi th speci f ied M,N,Subi ,Aut i ,Prodi
f o r j = 1 , . . . , M .

S E T . 9 r , :  { 1 , . . . , M } ;
, , 1 / , =  { 1 , . . . , N } ;
F O R  l : 1 . . . . . M

DO IF (, > 1) and there exists some

h e & such that (ir-r e Subl)
SET  i l  "=  i t - t i
G O T O  1 0 ;

ELSE IF there exists (ü, jt) e,A/ x Sr
such that i1 € Subr, and

t , /  U ( A u t , u P r o d ; )
j € S r

G O T O  1 0 ;
ELSE PRINT "cyclic";

10. Sr+r := Sr \  Ur);
END

END
PRINT "non-cvclic"

END.

The following example shows one 'direction' of
Theorem 4, namely that non-cyclic is not neces-
sary for (5).

Example 5. Considering again Example 1. For
. f T  , :  ( 1 , . . . , 1 )  a n d  j  -  1 , 2 , 3 , 4 ,  w e  h a v e
"yr K j :0 and hence (5) is satisfied.
However, the process is cyclic, since for the subset
^9 : :  {1 ,2 ,3 }  we have

[ J S " a 1  = { L , 2 , 4 }  q  U  ( A u t i u  P r o d i ) :  { 1 , . . . , 5 } .
j € S  j € S

Remark, d. Having established Algorithm 1 one
can formulate, by using (6), the algorithm also in
terms of the stoichiometric matrix K: In IF one
has to replace '(i;t e Subi,) ' by 'k;,-ri, ( 0',
and in ELSE IF one replaces 'ü e Subj, and ü /
l) (Aut1U Prod.i) ' by 'ki, j , < 0 and fu,r' ( 0 for

i€sr
all j e Sr.' (For a proof see Weirig (1998).)

Non-cyclic processes can be decomposed into
equivalent classes and the following theorem de-
scribes the representatives.
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Theorem 7. The biotechnological process (2) is
non-cyclic if, and only if, there exist permutation
matrices ; g 6NxN and .R 1lftM,M such that

L K R =

where O denotes negative coefficients and * are
some real coefficients.

For a proof see Weirig (1998). The above echelon
form is not unique.

4, AN EXAMPLE FOR,\-TRACKING IN THE
PRESENCE OF INPUT CONSTRAINTS

In this section we design a single adaptive con-
troller which achieves tracking of constant sub-
strate concentration in the presence of input con_
straints for a whole class of systems, the exact
systems parameter need not to be known. Here
the control objective is to track the reference
signal asymptotically only within a prespecified
neighbourhood; the tracking error is supposed to
become as small as one likes but not necessarily
zero. The controller is a simple time-varying error
feedback where the gain is tuned adaptively by the
size of the error signal only. This approach is in the
spirit of Ilchmann and Ryan (1994).It does not in-
voke any identification mechanism, internal model
or probing signals. Moreover the control structure
can cope with input saturations provided a certain
feasibility assumption is satisfied.

We are currently working on a general concept.
However, here we will only present this approach
for a simple example which captures the essence.

Suppose there exists an erternal substrate (1 of
the general reactor model (2), i.e.

M M

I . U,Suö1 \ l){t"ti u prod).
j=r  j=r

This substrate is viewed as the output variable to
be controlled. The control objective is to drive the
concentration {1 in a prespecified ,\-strip around a
constant reference signal {."1. The control variable
is the l-th feedrate f.1(.).

A further assumption to be made is the existence
of upper bounds of the reaction rates, i.e. (see (g)

. - . I for each j € Rsuo, there exists some(A2) i
t  F ;  )  sup { le ; ( { ) l  |  €  €  (n l )N } .

The knowledge of upper bounds of the reaction
rates can be guaranteed if the reaction rates do
not depend on the concentration of the autocar-
alysts. This is for instance the case when there
are no autocatalysts involved in the reactions
j € Rs*,. Then the models of Monod or Haldane
give upper bounds.
Some other examples of bounded reaction rates,
even depending on the concentration of the auto-
catalysts, are given in Appendix I in Bastin and
Dochain (1990).

In order to regulate the error between the external
substrate and the constant reference signal, i.e.

e(t) :: €r(t) - €."r,

into the Ä-strip around 0, we apply the following
feedback law

u(t) = satlo,F,l  (-fr(r)e(r) + d(r)) , (10)

where, for a ( b, we define

( o ' ' t t o
sat1",a1(l) ,: \ n, r7 e fa,bl

I b , r l > ö .
The time-varying gain /c(t) is tuned adaptively, for
some prespecified 7, ) > 0, by

( 1 1 )

Note that the gain adptation t p+ k(t) is mono-
tonically non-decreasing. The idea is that once the
gain is sufficiently large, the error is forced into
the Ä-strip and the gain adaptation is switched
off, that means k(t) stays constant.

In the following theorem we show that )-tracking
is possible in the presence of input saturations,
provided the input constraints satisfy a feasibility
assumption in terms of the system and control
data. This is the price to be paid if input con-
straints are applied.

Theorern 8. Suppose the general reactor model
(2) satisfies (A1), (A2), (5) and d(.) : [0,oo) ---t

[0, d] is a differentiable function with bounded
de r i va t i veandS>0 .
If $"1 € (), m) is a constant reference signal which
satisfies the feasibility condition

M

F, > I lktilpi * sr . ((.er - ^) + D. €."r, (12)
; - 1

then, for arbitrary but prespecified 7,,\ > 0, the
)-tracker (10), (11) applied to the reactor pro-
cess (?) yields, for every initial condition {(0) €
(Rl)t, k(0) € IR, a unique solution

I

i1r; ,: {r(|"(t)1,- 
^,'' 

|fllll : i
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F

of the closed-loop system (2),  (10),  (11).  This
solution satisfies

.  € (  )  €  Z- (0 ,  m) ,

. ,\L &(r) : ß- € IR+,

. 
,\* 

dist((;(t) - {."f, [-Ä,.11; = g.

Before proving this theorem, we will interprete the
design parameters. The size of the dead-zone Ä >
0 should be larger than the measurement accuracy
plus an additional width for measurement noise, if
an upper bound of the latter is known in advance.

7 ) 0 adjusts the speed of adaptation and a
sensible choice lies in the order of magnitude
of the inverse of the "dominate time constant"
of the plant. The signal d(.) could be viewed
as a disturbance but we rather use it as an
appropriate control input which might be known
to the designer from experience.

Proof of Theorem 8: Existence, uniqueness and
boundedness of the solution {(.) follows from
Proposition 2. k(.) cannot have a finite escape
time since it is the integral of a bounded function.

In order to show boundedness of ,k(.) we suppose,
by seeking a contradiction,

,\a kit; : *'

and proceed in several steps.
C h o o s e t > 0 s u c h t h a t

-k(t-)  . )  + 6 < 0 and k(r l  .Ä > F,.  (13)

STEP 1: We show that if €r(D 2 {.u1+ ), then
there exists tt > [ such that €r(tr) < €."r * ).
If we assume that

& ( r )  > € . " r * Ä  f o r a l l t ) t ,  ( 1 4 )

then similar to the proof of Proposition 2 we can
prove

€r(t)  S e-D (t- 'o)€r(to)

which contradicts (14).

STEP 2: We show that if {1(tl < {."1- .\, then
there exists some t1 > t such that €r(tr) ) €."r-Ä.
This is proved similarly as Step 1. Assuming, by
contradiction, that

{ 1 ( t )  S  € . " r - Ä  f o r a l l  t  ) f ,

we end up with

€,( t)  > D .)  for al l  t  >i ,

which condradicts the assumption.

STEP 3: By Step 1 and 2 we may choose some
t 1  ) f s u c h t h a t

We now show that

€, ( r )  €  ( - ) , ) )  for  a l l  t  )  h .

Suppose there exists some t2 > tl such that

& ( t z ) = € . e f * ) ,

then,.analogously to Step 1, we may conclude
that {1(t2) ( 0, which contradicts the assumption.
Thus we cannot hit the upper bound of the ,\-
strip. In a similar manner one shows that it is
impossible to hit the lower bound.

STEP 4: Step 3 contradicts unboundedness ofk(')
and the second statement of the theorem is estab-
Iished. To prove the last statement, differentiate
the Lyapunov function candidate

V(.) : IR1 x IR x IR1 ---+ IR, (t,e,le) F+ -,b

along the solution of the closed-loop system (2),
(10), (11). Note the V is sign indefinite, but
boundedness of the trajectories is already. estab-
I ished.  Since d ldt  V( t ,e( t ) ,  k( r ) )  = -k( t ) ,  i t
follows from LaSalle's Invariance Principle that
the c..r-limit set of the solutions is included in the
se t  { ( t . e . k )  e  IR -  x  IR  x  IR*  l *  =  o } .  wh i ch  i s

t '  )
the set {e € IR I l l" l l  S .\}. Hence
liml--.y*dist(e(t),[-I,I]) : 0, which completes
the proof. tr
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