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Abstract 
No exact resolution can be assigned to technical parametric measurements  

owing to their function principle. However, it is often inevitable to analyse  

the precision of these measurements, e.g. for comparison of methods  

or for choosing proper measurement parameters. This paper presents  

a calculation algorithm based on likelihood-theory where both the regular  

and the random errors will be taken into account to determine the confidence intervals.  

Thus, the reliability of parametric measurements can be characterized by a single quantity. 
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1. Introduction 
 

Parametric measurements become important especially 

for fast, in-process applications. It is characteristic for them 

that the measurands are determined indirectly by a 

parameter that varies proportional to it. Generally, the 

measurand and the measuring parameter represent different 

physical dimensions (concentration/conductibility, 

roughness/light scattering), their relation is unknown or 

very complex. Thus, they can not be connected directly and 

we are not able to assign a certain resolution to our 

measurement technique. However, it is often necessary to 

analyse the precision of these methods i.e. for selecting the 

adequate measuring parameter or parameter-combination. 

 

 

Figure 1. Calibration process of parametric measurements 

 

 

In this case we can make further tests with the calibrated 

system; the error resulting from them characterizes the 

precision that forms a feedback for the choice of suitable 

parameters or for the improvement of regression model (see 

figure 1). Conventionally, we calculate two sorts of errors 

from a test series: the regular (systematic) error that is given 

by the absolute deviation from the correct value and the 

random error that can be characterized by the dispersion of 

measured results [1,2]. It is obvious that both types of errors 

have influence on the reliability of a parametric 

measurements. In the followings we present a likelihood 

calculation where both the regular and the random errors 

will be taken into account to determine the confidence 

intervals. Thus, we have a safe quantity for further 

optimization of the measurement. 

 

2. Interpretation of measurement reliability for 

parametric processes 
 

We take the calculation of confidence radius generally 

used in measurement technology as a basis for the precision 

analysis of parametric methods. Accordingly, the goal is to 

determine an interval around the measured value, in which 

the correct value falls with a predefined probability 

(significance level, generally 95%). Conventionally, for 

indication of measurement results it is assumed that the 

average of measured values and the correct value are equal 

and the confidence interval is calculated from the standard 

deviation of measurement results. Since the correct values 

are also known in our cases (we calibrate on this basis), the 

analysis precision can be further improved. See the figure 2 

as an example.  
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Figure 2. Interpretation of regular and random errors for parametric processes 

  

Let us take two different measuring parameter p and q. 

We want to determine the same quantity X by both 

parameters for which we know the correct value: Xcorr 

(green horizontal line in diagram 2). However, instead of 

the correct value we measure the values p1, p2, pn for p and 

q1, q2, qn for q as a result. The question is, for which 

parameter is the measurement uncertainty lower? 

Suppose the averages of the measurement results are pe 

and qe (expected values) around which the values pn and qn 

form normal distributions. The corresponding density 

functions are drawn as blue Gauss curves: fp(x) and fq(x). 

The expected values and the correct values are visibly not 

equal, the deviations are Hp for p and Hq for q that also 

represent the absolute errors (the both parameters describe 

the quantity X with different absolute errors and standard 

deviations). It is obvious: the higher the probability that we 

measure the correct value the more reliable the parameter is. 

These probabilities can also be expressed mathematically as 

follows: 
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where ±ε denotes an arbitrary small interval around the 

correct value. The values Pp and Pq correspond to the areas 

Ap and Aq hatched in the diagram. It can occur that although 

Hq<Hp, for the above-mentioned probabilities applies: 

Pq<Pp. That means, although parameter q operates with a 

lower absolute error, this deviation emerges „stable“ 

because of the low dispersion and the probability that we 

measure the correct value is lower. 

 

It points out that the parameter reliability might be 

defined by the probability that the measured value falls into 

an interval around the correct value. If we want to describe 

the measurement precision by a confidence radius generally 

used in the practice we have to reverse the above statement: 

we set the probability to the usual significance level of 95% 

and try to calculate the corresponding confidence interval 

±r. This case is shown in figure 3: X denotes an arbitrary 

measurand, Fm,s(X) is the distribution function with the 

expected value m and dispersion s; fm,s(X) is the 

corresponding density function. 

 

 
 

Figure 3. Confidence interval for parametric processes 

 

Now it is to calculate which radius ±r is to take around a 

single (one-shot) measured value in order that the correct 

value will fall in this interval with a probability of 95%. 

Mathematically expressed: 

 

?=r    so that  95.0)( =+<<− rXXrXP corr
         (3) 
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After consideration it is obvious: since X is a random 

variable and Xcorr is a constant value, the following relation 

applies [3]: 
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On this basis the probability (3) can be calculated from the 

density function of the measured parameter as: 
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That means that the confidence radius searched around the 

measured value is equal to an interval around the correct 

value where the area under the density function is 0.95 (see 

the hatched region in diagram 3). 

 

3. The computing algorithm 
 

The calculation method presented previously is suitable 

to express the measurement uncertainty produced by all 

errors with a single quantity: with the confidence interval 

calculated by formula (5). According to this the precision of 

a parametric measurement is to determine as follows: 

 

1. Completion of a test series by the calibrated parametric 

method with measurements as many as possible (n>10). 

Determination of measured values by the regression 

model. 

2. Calculation of expected values, empirical dispersions 

and absolute errors from the measured values. Fitting of 

normal distribution to the measured values and 

determination of density function (if we are using 

sample means for the measurement we should calculate 

the dispersion accordingly: nss XX
/= ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Setting of a small start interval ±r around the correct 

value. Enlarging the interval in small steps ∆r and 

calculation of probabilities 

)( rXXrXP corrcorr +<<− . Continuation of the 

iteration procedure up to the value P=0.95. The 

confidence radius for P=0.95 provides the precision of 

the parametric measurement on the given significance 

level. 

 

We should choose the start interval and the step wide of 

iteration procedure ∆r according to the measuring 

parameter. In step 2. we can calculate the probabilities P 

according to formula (5) by integration of the fitted density 

function or by the error function as follows: 
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where mX corr −=∆  

 

4. An example: comparison of parameters 
 

In the followings we present the evaluation method 

through an example. We would like to calibrate a surface 

analysing process where the roughness will be determined 

from the statistical properties of coherent intensity pattern 

reflected from the surface (so called laser speckle method 

[4]). We selected four characteristic properties as measuring 

parameters: 1. intensity 2. contrast 3. 2D standard deviation 

and 4. sum of pixel differences (deviation of intensity 

patterns). By experiences, all the four quantities are 

dependent on the roughness, they change according to it. In 

the first step we calibrated the setup by a probe series and 

we calculated the regression model to each parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P 
Habs  

(nm) 
P 

Habs 

(nm) 

1 7.8 24 6.5 

2 5.3 34 13.2 

3 26.5 123 9.1 

4 2.7 124 4.9 

12 6.3 134 8.6 

13 12.9 234 9.3 

14 4.3 1234 6.8 

23 14   
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Figure 4. Absolute errors for each parameter combination 
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Figure 5. Calculated confidence intervals for each parameter combination 
 

 

Now we wish to choose a parameter or parameter 

combination that results the most reliable measurement. 

Thus, we measured every probe 25 times again with the 

calibrated setup without doing any changes to the settings. 

By this test series we calculated the absolute errors for each 

parameter and parameter combination. The results are 

shown in figure 4. 

Note that parameters 2, 4 and the combination 14 

provided the lowest absolute errors. If we carry out the 

presented evaluation process in these cases we obtain the 

confidence intervals as plotted in figure 5 (averages over the 

whole roughness range). 

If we compare the results of figures 4 and 5 it appears 

that the orders set by the absolute errors and by the 

confidence intervals are different. The lowest confidence 

interval (±7 nm) is to reach by the combination 124, 

therefore this case provides the highest reliability for our 

measurement. 

 

5. Conclusions 
 

In this study we presented a computing algorithm by 

which the reliability of parametric measurements can be 

determined by the results of test series after the calibration. 

The computing is based on the likelihood theory and 

focuses on the probability that we measure the correct value 

under the given conditions. The measurement reliability is 

characterized by the confidence interval, but since also the 

correct values are known, both the regular and the random 

errors can be taken into account. Hence we have a safe 

quantity available for the comparison of reliabilities of 

measuring parameters or for the optimization of measuring 

models. 
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P 
r 

(nm) 
P 

r 
(nm) 

1 10.6 24 12 

2 11.7 34 23.1 

3 35.6 123 12.6 

4 13.5 124 7 

12 9.5 134 15.6 

13 18.1 234 15.9 

14 11 1234 12.1 

23 18.6   

 


